1
|
Albrecht J, Czuczwar SJ, Zielińska M, Miziak B. Methionine Sulfoximine as a Tool for Studying Temporal Lobe Epilepsy: Initiator, Developer, Attenuator. Neurochem Res 2025; 50:84. [PMID: 39843842 DOI: 10.1007/s11064-024-04329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
Methionine sulfoximine (MSO) is a compound originally discovered as a byproduct of agene-based milled flour maturation. MSO irreversibly inhibits the astrocytic enzyme glutamine synthase (GS) but also interferes with the transport of glutamine (Gln) and of glutamate (Glu), and γ-aminobutyric acid (GABA) synthesized within the Glu/Gln-GABA cycle, in this way dysregulating neurotransmission balance in favor of excitation. No wonder that intraperitoneal administration of MSO has long been known to induce behavioral and/or electrographic seizures. Recently, a temporal lobe epilepsy (TLE) model based on local continuous infusion of MSO into the hippocampus has been developed reproducing the main features of human mesial TLE: induction of focal seizures, their spreading, increase in intensity over time, and development of spontaneous recurrent seizures. Fully developed TLE in this model is associated with hippocampal degeneration, hallmarked by reactive astrogliosis, and causally related to the concomitant loss of GS-containing astrocytes. By contrast, short-term pre-exposure of rats to relatively low MSO doses that only moderately inhibited GS, attenuated and delayed the initial seizures in the lithium-pilocarpine model of TLE and in other seizure-associated contexts: in the pentylenetetrazole kindling model in rat, and in spontaneously firing or electrically stimulated brain slices. The anti-initial seizure activity of MSO may partly bypass inhibition of GS: the postulated mechanisms include: (i) decreased release of excitatory neurotransmitter Glu, (ii) prevention or diminution of seizure-associated brain edema, (iii) stimulation of glycogenesis, an energy-sparing process; (iv) central or peripheral hypothermia. Further work is needed to verify either of the above mechanisms.
Collapse
Affiliation(s)
- Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Stanisław J Czuczwar
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, 20-090, Lublin, Poland
| |
Collapse
|
2
|
Gruenbaum BF, Merchant KS, Zlotnik A, Boyko M. Gut Microbiome Modulation of Glutamate Dynamics: Implications for Brain Health and Neurotoxicity. Nutrients 2024; 16:4405. [PMID: 39771027 PMCID: PMC11677762 DOI: 10.3390/nu16244405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/07/2024] [Accepted: 12/20/2024] [Indexed: 01/05/2025] Open
Abstract
The gut-brain axis plays an integral role in maintaining overall health, with growing evidence suggesting its impact on the development of various neuropsychiatric disorders, including depression. This review explores the complex relationship between gut microbiota and glutamate (Glu) regulation, highlighting its effect on brain health, particularly in the context of depression following certain neurological insults. We discuss how microbial populations can either facilitate or limit Glu uptake, influencing its bioavailability and predisposing to neuroinflammation and neurotoxicity. Additionally, we examine the role of gut metabolites and their influence on the blood-brain barrier and neurotransmitter systems involved in mood regulation. The therapeutic potential of microbiome-targeted interventions, such as fecal microbiota transplantation, is also highlighted. While much research has explored the role of Glu in major depressive disorders and other neurological diseases, the contribution of gut microbiota in post-neurological depression remains underexplored. Future research should focus on explaining the mechanisms linking the gut microbiota to neuropsychiatric outcomes, particularly in conditions such as post-stroke depression, post-traumatic brain-injury depression, and epilepsy-associated depression. Systematic reviews and human clinical studies are needed to establish causal relationships and assess the efficacy of microbiome-targeted therapies in improving the neuropsychiatric sequalae after neurological insults.
Collapse
Affiliation(s)
- Benjamin F. Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Kiran S. Merchant
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (A.Z.); (M.B.)
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (A.Z.); (M.B.)
| |
Collapse
|
3
|
Zhang YM, Qi YB, Gao YN, Chen WG, Zhou T, Zang Y, Li J. Astrocyte metabolism and signaling pathways in the CNS. Front Neurosci 2023; 17:1217451. [PMID: 37732313 PMCID: PMC10507181 DOI: 10.3389/fnins.2023.1217451] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Astrocytes comprise half of the cells in the central nervous system and play a critical role in maintaining metabolic homeostasis. Metabolic dysfunction in astrocytes has been indicated as the primary cause of neurological diseases, such as depression, Alzheimer's disease, and epilepsy. Although the metabolic functionalities of astrocytes are well known, their relationship to neurological disorders is poorly understood. The ways in which astrocytes regulate the metabolism of glucose, amino acids, and lipids have all been implicated in neurological diseases. Metabolism in astrocytes has also exhibited a significant influence on neuron functionality and the brain's neuro-network. In this review, we focused on metabolic processes present in astrocytes, most notably the glucose metabolic pathway, the fatty acid metabolic pathway, and the amino-acid metabolic pathway. For glucose metabolism, we focused on the glycolysis pathway, pentose-phosphate pathway, and oxidative phosphorylation pathway. In fatty acid metabolism, we followed fatty acid oxidation, ketone body metabolism, and sphingolipid metabolism. For amino acid metabolism, we summarized neurotransmitter metabolism and the serine and kynurenine metabolic pathways. This review will provide an overview of functional changes in astrocyte metabolism and provide an overall perspective of current treatment and therapy for neurological disorders.
Collapse
Affiliation(s)
- Yong-mei Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying-bei Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ya-nan Gao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wen-gang Chen
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ting Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Pathak D, Sriram K. Neuron-astrocyte omnidirectional signaling in neurological health and disease. Front Mol Neurosci 2023; 16:1169320. [PMID: 37363320 PMCID: PMC10286832 DOI: 10.3389/fnmol.2023.1169320] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Astrocytes are an abundantly distributed population of glial cells in the central nervous system (CNS) that perform myriad functions in the normal and injured/diseased brain. Astrocytes exhibit heterogeneous phenotypes in response to various insults, a process known as astrocyte reactivity. The accuracy and precision of brain signaling are primarily based on interactions involving neurons, astrocytes, oligodendrocytes, microglia, pericytes, and dendritic cells within the CNS. Astrocytes have emerged as a critical entity within the brain because of their unique role in recycling neurotransmitters, actively modulating the ionic environment, regulating cholesterol and sphingolipid metabolism, and influencing cellular crosstalk in diverse neural injury conditions and neurodegenerative disorders. However, little is known about how an astrocyte functions in synapse formation, axon specification, neuroplasticity, neural homeostasis, neural network activity following dynamic surveillance, and CNS structure in neurological diseases. Interestingly, the tripartite synapse hypothesis came to light to fill some knowledge gaps that constitute an interaction of a subpopulation of astrocytes, neurons, and synapses. This review highlights astrocytes' role in health and neurological/neurodegenerative diseases arising from the omnidirectional signaling between astrocytes and neurons at the tripartite synapse. The review also recapitulates the disruption of the tripartite synapse with a focus on perturbations of the homeostatic astrocytic function as a key driver to modulate the molecular and physiological processes toward neurodegenerative diseases.
Collapse
|
5
|
Andersen JV, Schousboe A. Glial Glutamine Homeostasis in Health and Disease. Neurochem Res 2023; 48:1100-1128. [PMID: 36322369 DOI: 10.1007/s11064-022-03771-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Glutamine is an essential cerebral metabolite. Several critical brain processes are directly linked to glutamine, including ammonia homeostasis, energy metabolism and neurotransmitter recycling. Astrocytes synthesize and release large quantities of glutamine, which is taken up by neurons to replenish the glutamate and GABA neurotransmitter pools. Astrocyte glutamine hereby sustains the glutamate/GABA-glutamine cycle, synaptic transmission and general brain function. Cerebral glutamine homeostasis is linked to the metabolic coupling of neurons and astrocytes, and relies on multiple cellular processes, including TCA cycle function, synaptic transmission and neurotransmitter uptake. Dysregulations of processes related to glutamine homeostasis are associated with several neurological diseases and may mediate excitotoxicity and neurodegeneration. In particular, diminished astrocyte glutamine synthesis is a common neuropathological component, depriving neurons of an essential metabolic substrate and precursor for neurotransmitter synthesis, hereby leading to synaptic dysfunction. While astrocyte glutamine synthesis is quantitatively dominant in the brain, oligodendrocyte-derived glutamine may serve important functions in white matter structures. In this review, the crucial roles of glial glutamine homeostasis in the healthy and diseased brain are discussed. First, we provide an overview of cellular recycling, transport, synthesis and metabolism of glutamine in the brain. These cellular aspects are subsequently discussed in relation to pathological glutamine homeostasis of hepatic encephalopathy, epilepsy, Alzheimer's disease, Huntington's disease and amyotrophic lateral sclerosis. Further studies on the multifaceted roles of cerebral glutamine will not only increase our understanding of the metabolic collaboration between brain cells, but may also aid to reveal much needed therapeutic targets of several neurological pathologies.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Pawlik M, Czarnecka AM, Kołodziej M, Skowrońska K, Węgrzynowicz M, Podgajna M, Czuczwar SJ, Albrecht J. Attenuation of initial pilocarpine-induced electrographic seizures by methionine sulfoximine pretreatment tightly correlates with the reduction of extracellular taurine in the hippocampus. Epilepsia 2023; 64:1390-1402. [PMID: 36808593 DOI: 10.1111/epi.17554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/20/2023]
Abstract
OBJECTIVE Initiation and development of early seizures by chemical stimuli is associated with brain cell swelling resulting in edema of seizure-vulnerable brain regions. We previously reported that pretreatment with a nonconvulsive dose of glutamine (Gln) synthetase inhibitor methionine sulfoximine (MSO) mitigates the intensity of initial pilocarpine (Pilo)-induced seizures in juvenile rats. We hypothesized that MSO exerts its protective effect by preventing the seizure-initiating and seizure-propagating increase of cell volume. Taurine (Tau) is an osmosensitive amino acid, whose release reflects increased cell volume. Therefore, we tested whether the poststimulus rise of amplitude of Pilo-induced electrographic seizures and their attenuation by MSO are correlated with the release of Tau from seizure-affected hippocampus. METHODS Lithium-pretreated animals were administered MSO (75 mg/kg ip) 2.5 h before the induction of convulsions by Pilo (40 mg/kg ip). Electroencephalographic (EEG) power was analyzed during 60 min post-Pilo, at 5-min intervals. Extracellular accumulation of Tau (eTau) served as a marker of cell swelling. eTau, extracellular Gln (eGln), and extracellular glutamate (eGlu) were assayed in the microdialysates of the ventral hippocampal CA1 region collected at 15-min intervals during the whole 3.5-h observation period. RESULTS The first EEG signal became apparent at ~10 min post-Pilo. The EEG amplitude across most frequency bands peaked at ~40 min post-Pilo, and showed strong (r ~ .72-.96) temporal correlation with eTau, but no correlation with eGln or eGlu. MSO pretreatment delayed the first EEG signal in Pilo-treated rats by ~10 min, and depressed the EEG amplitude across most frequency bands, to values that remained strongly correlated with eTau (r > .92) and moderately correlated (r ~ -.59) with eGln, but not with eGlu. SIGNIFICANCE Strong correlation between attenuation of Pilo-induced seizures and Tau release indicates that the beneficial effect of MSO is due to the prevention of cell volume increase concurrent with the onset of seizures.
Collapse
Affiliation(s)
- Marek Pawlik
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Maria Czarnecka
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Kołodziej
- Institute of Theory of Electrical Engineering, Measurement, and Information Systems, Warsaw University of Technology, Warsaw, Poland
| | - Katarzyna Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Węgrzynowicz
- Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Martyna Podgajna
- Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Łukasiuk K, Lasoń W. Emerging Molecular Targets for Anti-Epileptogenic and Epilepsy Modifying Drugs. Int J Mol Sci 2023; 24:ijms24032928. [PMID: 36769250 PMCID: PMC9917847 DOI: 10.3390/ijms24032928] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The pharmacological treatment of epilepsy is purely symptomatic. Despite many decades of intensive research, causal treatment of this common neurologic disorder is still unavailable. Nevertheless, it is expected that advances in modern neuroscience and molecular biology tools, as well as improved animal models may accelerate designing antiepileptogenic and epilepsy-modifying drugs. Epileptogenesis triggers a vast array of genomic, epigenomic and transcriptomic changes, which ultimately lead to morphological and functional transformation of specific neuronal circuits resulting in the occurrence of spontaneous convulsive or nonconvulsive seizures. Recent decades unraveled molecular processes and biochemical signaling pathways involved in the proepileptic transformation of brain circuits including oxidative stress, apoptosis, neuroinflammatory and neurotrophic factors. The "omics" data derived from both human and animal epileptic tissues, as well as electrophysiological, imaging and neurochemical analysis identified a plethora of possible molecular targets for drugs, which could interfere with various stages of epileptogenetic cascade, including inflammatory processes and neuroplastic changes. In this narrative review, we briefly present contemporary views on the neurobiological background of epileptogenesis and discuss the advantages and disadvantages of some more promising molecular targets for antiepileptogenic pharmacotherapy.
Collapse
Affiliation(s)
- Katarzyna Łukasiuk
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Władysław Lasoń
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
- Correspondence:
| |
Collapse
|
8
|
Berk BA, Ottka C, Hong Law T, Packer RMA, Wessmann A, Bathen-Nöthen A, Jokinen TS, Knebel A, Tipold A, Lohi H, Volk HA. Metabolic fingerprinting of dogs with idiopathic epilepsy receiving a ketogenic medium-chain triglyceride (MCT) oil. Front Vet Sci 2022; 9:935430. [PMID: 36277072 PMCID: PMC9584307 DOI: 10.3389/fvets.2022.935430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/15/2022] [Indexed: 11/04/2022] Open
Abstract
Consumption of medium-chain triglycerides (MCT) has been shown to improve seizure control, reduce behavioural comorbidities and improve cognitive function in epileptic dogs. However, the exact metabolic pathways affected by dietary MCT remain poorly understood. In this study, we aimed to identify changes in the metabolome and neurotransmitters levels relevant to epilepsy and behavioural comorbidities associated with the consuming of an MCT supplement (MCT-DS) in dogs with idiopathic epilepsy (IE). Metabolic alterations induced by a commercial MCT-DS in a population of 28 dogs with IE were evaluated in a 6-month multi-centre, prospective, randomised, double-blinded, controlled cross-over trial design. A metabolic energy requirement-based amount of 9% MCT or control oil was supplemented to the dogs' stable base diet for 3 months, followed by the alternative oil for another 3 months. A validated, quantitative nuclear magnetic resonance (NMR) spectroscopy platform was applied to pre- and postprandially collected serum samples to compare the metabolic profile between both DS and baseline. Furthermore, alterations in urinary neurotransmitter levels were explored. Five dogs (30%) had an overall reduction in seizure frequency of ≥50%, and were classified as MCT-responders, while 23 dogs showed a ≤50% reduction, and were defined as MCT non-responders. Amino-acid metabolism was significantly influenced by MCT consumption compared to the control oil. While the serum concentrations of total fatty acids appeared similar during both supplements, the relative concentrations of individual fatty acids differed. During MCT supplementation, the concentrations of polyunsaturated fatty acids and arachidonic acid were significantly higher than under the control oil. β-Hydroxybutyric acid levels were significantly higher under MCT supplementation. In total, four out of nine neurotransmitters were significantly altered: a significantly increased γ-aminobutyric acid (GABA) concentration was detected during the MCT-phase accompanied by a significant shift of the GABA-glutamate balance. MCT-Responders had significantly lowered urinary concentrations of histamine, glutamate, and serotonin under MCT consumption. In conclusion, these novel data highlight metabolic changes in lipid, amino-acid and ketone metabolism due to MCT supplementation. Understanding the metabolic response to MCT provides new avenues to develop better nutritional management with improved anti-seizure and neuroprotective effects for dogs with epilepsy, and other behavioural disorders.
Collapse
Affiliation(s)
- Benjamin Andreas Berk
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
- BrainCheck.Pet, Tierärztliche Praxis für Epilepsie, Mannheim, Germany
| | - Claudia Ottka
- Department of Veterinary Biosciences and Department of Medical and Clinical Genetics, Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
- PetBiomics Ltd., Helsinki, Finland
| | - Tsz Hong Law
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Rowena Mary Anne Packer
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Annette Wessmann
- Pride Veterinary Centre, Neurology/Neurosurgery Service, Derby, United Kingdom
| | | | - Tarja Susanna Jokinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, Helsinki, Finland
| | - Anna Knebel
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Hannes Lohi
- Department of Veterinary Biosciences and Department of Medical and Clinical Genetics, Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
- PetBiomics Ltd., Helsinki, Finland
| | - Holger Andreas Volk
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
9
|
Suvekbala V, Ramachandran H, Veluchamy A, Mascarenhas MAB, Ramprasath T, Nair MKC, Garikipati VNS, Gundamaraju R, Subbiah R. The Promising Epigenetic Regulators for Refractory Epilepsy: An Adventurous Road Ahead. Neuromolecular Med 2022:10.1007/s12017-022-08723-0. [DOI: 10.1007/s12017-022-08723-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/13/2022] [Indexed: 10/14/2022]
|
10
|
Andersen JV, Schousboe A, Verkhratsky A. Astrocyte energy and neurotransmitter metabolism in Alzheimer's disease: integration of the glutamate/GABA-glutamine cycle. Prog Neurobiol 2022; 217:102331. [PMID: 35872221 DOI: 10.1016/j.pneurobio.2022.102331] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
Astrocytes contribute to the complex cellular pathology of Alzheimer's disease (AD). Neurons and astrocytes function in close collaboration through neurotransmitter recycling, collectively known as the glutamate/GABA-glutamine cycle, which is essential to sustain neurotransmission. Neurotransmitter recycling is intimately linked to astrocyte energy metabolism. In the course of AD, astrocytes undergo extensive metabolic remodeling, which may profoundly affect the glutamate/GABA-glutamine cycle. The consequences of altered astrocyte function and metabolism in relation to neurotransmitter recycling are yet to be comprehended. Metabolic alterations of astrocytes in AD deprive neurons of metabolic support, thereby contributing to synaptic dysfunction and neurodegeneration. In addition, several astrocyte-specific components of the glutamate/GABA-glutamine cycle, including glutamine synthesis and synaptic neurotransmitter uptake, are perturbed in AD. Integration of the complex astrocyte biology within the context of AD is essential for understanding the fundamental mechanisms of the disease, while restoring astrocyte metabolism may serve as an approach to arrest or even revert clinical progression of AD.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania.
| |
Collapse
|
11
|
Szu JI, Binder DK. Mechanisms Underlying Aquaporin-4 Subcellular Mislocalization in Epilepsy. Front Cell Neurosci 2022; 16:900588. [PMID: 35734218 PMCID: PMC9207308 DOI: 10.3389/fncel.2022.900588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a chronic brain disorder characterized by unprovoked seizures. Mechanisms underlying seizure activity have been intensely investigated. Alterations in astrocytic channels and transporters have shown to be a critical player in seizure generation and epileptogenesis. One key protein involved in such processes is the astrocyte water channel aquaporin-4 (AQP4). Studies have revealed that perivascular AQP4 redistributes away from astrocyte endfeet and toward the neuropil in both clinical and preclinical studies. This subcellular mislocalization significantly impacts neuronal hyperexcitability and understanding how AQP4 becomes dysregulated in epilepsy is beginning to emerge. In this review, we evaluate the role of AQP4 dysregulation and mislocalization in epilepsy.
Collapse
|
12
|
Thompson JA, Miralles RM, Wengert ER, Wagley PK, Yu W, Wenker IC, Patel MK. Astrocyte reactivity in a mouse model of SCN8A epileptic encephalopathy. Epilepsia Open 2022; 7:280-292. [PMID: 34826216 PMCID: PMC9159254 DOI: 10.1002/epi4.12564] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/15/2021] [Accepted: 11/23/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE SCN8A epileptic encephalopathy is caused predominantly by de novo gain-of-function mutations in the voltage-gated sodium channel Nav 1.6. The disorder is characterized by early onset of seizures and developmental delay. Most patients with SCN8A epileptic encephalopathy are refractory to current anti-seizure medications. Previous studies determining the mechanisms of this disease have focused on neuronal dysfunction as Nav 1.6 is expressed by neurons and plays a critical role in controlling neuronal excitability. However, glial dysfunction has been implicated in epilepsy and alterations in glial physiology could contribute to the pathology of SCN8A encephalopathy. In the current study, we examined alterations in astrocyte and microglia physiology in the development of seizures in a mouse model of SCN8A epileptic encephalopathy. METHODS Using immunohistochemistry, we assessed microglia and astrocyte reactivity before and after the onset of spontaneous seizures. Expression of glutamine synthetase and Nav 1.6, and Kir 4.1 channel currents were assessed in astrocytes in wild-type (WT) mice and mice carrying the N1768D SCN8A mutation (D/+). RESULTS Astrocytes in spontaneously seizing D/+ mice become reactive and increase expression of glial fibrillary acidic protein (GFAP), a marker of astrocyte reactivity. These same astrocytes exhibited reduced barium-sensitive Kir 4.1 currents compared to age-matched WT mice and decreased expression of glutamine synthetase. These alterations were only observed in spontaneously seizing mice and not before the onset of seizures. In contrast, microglial morphology remained unchanged before and after the onset of seizures. SIGNIFICANCE Astrocytes, but not microglia, become reactive only after the onset of spontaneous seizures in a mouse model of SCN8A encephalopathy. Reactive astrocytes have reduced Kir 4.1-mediated currents, which would impair their ability to buffer potassium. Reduced expression of glutamine synthetase would modulate the availability of neurotransmitters to excitatory and inhibitory neurons. These deficits in potassium and glutamate handling by astrocytes could exacerbate seizures in SCN8A epileptic encephalopathy. Targeting astrocytes may provide a new therapeutic approach to seizure suppression.
Collapse
Affiliation(s)
- Jeremy A. Thompson
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Raquel M. Miralles
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Eric R. Wengert
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Pravin K. Wagley
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
| | - Wenxi Yu
- Department of Human GeneticsUniversity of MichiganAnn ArborMIUSA
| | - Ian C. Wenker
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
| | - Manoj K. Patel
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| |
Collapse
|
13
|
Yu J, Zhang J, Shi M, Ding H, Ma L, Zhang H, Liu J. Maintenance of glutamine synthetase expression alleviates endotoxin-induced sepsis via alpha-ketoglutarate-mediated demethylation. FASEB J 2022; 36:e22281. [PMID: 35344214 DOI: 10.1096/fj.202200059r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022]
Abstract
Glutamine synthetase (Glul) is the enzyme that synthesizes endogenous glutamine, which is responsible for critical metabolic pathways and the immune system. However, the role of Glul in regulating endotoxin (lipopolysaccharide, LPS)-induced sepsis remains unclear. Here, we found that Glul expression in macrophages was significantly inhibited in endotoxemia, and that Glul deletion induced macrophages to differentiate into the pro-inflammatory type and aggravated sepsis in mice. Mechanistically, TLR4/NF-κB-induced alpha-ketoglutarate (α-KG) depletion inhibits Glul expression through H3K27me3-mediated methylation in septic mice. Both Glul overexpression with adeno-associated virus (AAV) and restoration by replenishing α-KG can alleviate the severity of sepsis. In conclusion, the study demonstrated that Glul can regulate LPS-induced sepsis and provides a novel strategy for the treatment of this disease.
Collapse
Affiliation(s)
- Jianghong Yu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Menglin Shi
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Ding
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Liyun Ma
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huilu Zhang
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Abstract
Metabolomics is the laboratory analysis and scientific study of the metabolome—that is, the entire collection of small molecule chemicals in an organism. The metabolome represents the functional state of an organism and provides a multifaceted readout of the aggregate activity of endogenous (cellular) and exogenous (environmental) processes. In this review, we discuss how the integrative and dynamic properties of the metabolome create unique opportunities to study complex pathologies that evolve and oscillate over time, like epilepsy. We explain how the scientific progress and clinical applications of metabolomics remain hampered by biological and technical challenges, and we propose best practices to overcome these challenges so that metabolomics can be used in a rigorous and effective manner to further epilepsy research.
Collapse
Affiliation(s)
- Tore Eid
- Departments of Laboratory Medicine, of Neurosurgery, and of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
- Clinical Chemistry Laboratory, Yale-New Haven Hospital, New Haven, CT, USA
| |
Collapse
|
15
|
Dhaher R, Chen EC, Perez E, Rapuano A, Sandhu MRS, Gruenbaum SE, Deshpande K, Dai F, Zaveri HP, Eid T. Oral glutamine supplementation increases seizure severity in a rodent model of mesial temporal lobe epilepsy. Nutr Neurosci 2022; 25:64-69. [PMID: 31900092 PMCID: PMC8970572 DOI: 10.1080/1028415x.2019.1708568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Glutamine synthetase (GS) is the only enzyme known to synthesize significant amounts of glutamine in mammals, and loss of GS in the hippocampus has been implicated in the pathophysiology of medication refractory mesial temporal lobe epilepsy (MTLE). Moreover, loss-of-function mutations of the GS gene causes severe epileptic encephalopathy, and supplementation with glutamine has been shown to normalize EEG and possibly improve the outcome in these patients. Here we examined whether oral glutamine supplementation is an effective treatment for MTLE by assessing the frequency and severity of seizures after supplementation in a translationally relevant model of the disease.Methods: Male Sprague Dawley rats (380-400 g) were allowed to drink unlimited amounts of glutamine in water (3.6% w/v; n = 8) or pure water (n = 8) for several weeks. Ten days after the start of glutamine supplementation, GS was chronically inhibited in the hippocampus to induce MTLE. Continuous video-intracranial EEG was collected for 21 days to determine the frequency and severity of seizures.Results: While there was no change in seizure frequency between the groups, the proportion of convulsive seizures was significantly higher in glutamine treated animals during the first three days of GS inhibition.Conclusion: The results suggest that oral glutamine supplementation transiently increases seizure severity in the initial stages of an epilepsy model, indicating a potential role of the amino acid in seizure propagation and epileptogenesis.
Collapse
Affiliation(s)
- Roni Dhaher
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA,Correspondence Roni Dhaher, PhD, Associate Research Scientist in Neurosurgery, Yale School of Medicine, 330 Cedar St., P.O. Box 208035, New Haven, CT 06520-8035, USA, Fax: +1-203-688-8597,
| | - Eric C. Chen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Edgar Perez
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Amedeo Rapuano
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Shaun E. Gruenbaum
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ketaki Deshpande
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Feng Dai
- Department of Biostatistics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Hitten P. Zaveri
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
16
|
Inhibition of Glutamate Release, but Not of Glutamine Recycling to Glutamate, Is Involved in Delaying the Onset of Initial Lithium-Pilocarpine-Induced Seizures in Young Rats by a Non-Convulsive MSO Dose. Int J Mol Sci 2021; 22:ijms222011127. [PMID: 34681786 PMCID: PMC8536987 DOI: 10.3390/ijms222011127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Initial seizures observed in young rats during the 60 min after administration of pilocarpine (Pilo) were delayed and attenuated by pretreatment with a non-convulsive dose of methionine sulfoximine (MSO). We hypothesized that the effect of MSO results from a) glutamine synthetase block-mediated inhibition of conversion of Glu/Gln precursors to neurotransmitter Glu, and/or from b) altered synaptic Glu release. Pilo was administered 60 min prior to sacrifice, MSO at 75 mg/kg, i.p., 2.5 h earlier. [1,2-13C]acetate and [U-13C]glucose were i.p.-injected either together with Pilo (short period) or 15 min before sacrifice (long period). Their conversion to Glu and Gln in the hippocampus and entorhinal cortex was followed using [13C] gas chromatography-mass spectrometry. Release of in vitro loaded Glu surrogate, [3H]d-Asp from ex vivo brain slices was monitored in continuously collected superfusates. [3H]d-Asp uptake was tested in freshly isolated brain slices. At no time point nor brain region did MSO modify incorporation of [13C] to Glu or Gln in Pilo-treated rats. MSO pretreatment decreased by ~37% high potassium-induced [3H]d-Asp release, but did not affect [3H]d-Asp uptake. The results indicate that MSO at a non-convulsive dose delays the initial Pilo-induced seizures by interfering with synaptic Glu-release but not with neurotransmitter Glu recycling.
Collapse
|
17
|
Farina MG, Sandhu MRS, Parent M, Sanganahalli BG, Derbin M, Dhaher R, Wang H, Zaveri HP, Zhou Y, Danbolt NC, Hyder F, Eid T. Small loci of astroglial glutamine synthetase deficiency in the postnatal brain cause epileptic seizures and impaired functional connectivity. Epilepsia 2021; 62:2858-2870. [PMID: 34536233 DOI: 10.1111/epi.17072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The astroglial enzyme glutamine synthetase (GS) is deficient in small loci in the brain in adult patients with different types of focal epilepsy; however, the role of this deficiency in the pathogenesis of epilepsy has been difficult to assess due to a lack of sufficiently sensitive and specific animal models. The aim of this study was to develop an in vivo approach for precise and specific deletions of the GS gene in the postnatal brain. METHODS We stereotaxically injected various adeno-associated virus (AAV)-Cre recombinase constructs into the hippocampal formation and neocortex in 22-70-week-old GSflox/flox mice to knock out the GS gene in a specific and focal manner. The mice were subjected to seizure threshold determination, continuous video-electroencephalographic recordings, advanced in vivo neuroimaging, and immunocytochemistry for GS. RESULTS The construct AAV8-glial fibrillary acidic protein-green fluorescent protein-Cre eliminated GS in >99% of astrocytes in the injection center with a gradual return to full GS expression toward the periphery. Such focal GS deletion reduced seizure threshold, caused spontaneous recurrent seizures, and diminished functional connectivity. SIGNIFICANCE These results suggest that small loci of GS deficiency in the postnatal brain are sufficient to cause epilepsy and impaired functional connectivity. Additionally, given the high specificity and precise spatial resolution of our GS knockdown approach, we anticipate that this model will be extremely useful for rigorous in vivo and ex vivo studies of astroglial GS function at the brain-region and single-cell levels.
Collapse
Affiliation(s)
- Maxwell G Farina
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mani Ratnesh S Sandhu
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Maxime Parent
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Basavaraju G Sanganahalli
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Matthew Derbin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Roni Dhaher
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Helen Wang
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hitten P Zaveri
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yun Zhou
- Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Niels C Danbolt
- Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
18
|
Andersen JV, Westi EW, Jakobsen E, Urruticoechea N, Borges K, Aldana BI. Astrocyte metabolism of the medium-chain fatty acids octanoic acid and decanoic acid promotes GABA synthesis in neurons via elevated glutamine supply. Mol Brain 2021; 14:132. [PMID: 34479615 PMCID: PMC8414667 DOI: 10.1186/s13041-021-00842-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/22/2021] [Indexed: 11/23/2022] Open
Abstract
The medium-chain fatty acids octanoic acid (C8) and decanoic acid (C10) are gaining attention as beneficial brain fuels in several neurological disorders. The protective effects of C8 and C10 have been proposed to be driven by hepatic production of ketone bodies. However, plasma ketone levels correlates poorly with the cerebral effects of C8 and C10, suggesting that additional mechanism are in place. Here we investigated cellular C8 and C10 metabolism in the brain and explored how the protective effects of C8 and C10 may be linked to cellular metabolism. Using dynamic isotope labeling, with [U-13C]C8 and [U-13C]C10 as metabolic substrates, we show that both C8 and C10 are oxidatively metabolized in mouse brain slices. The 13C enrichment from metabolism of [U-13C]C8 and [U-13C]C10 was particularly prominent in glutamine, suggesting that C8 and C10 metabolism primarily occurs in astrocytes. This finding was corroborated in cultured astrocytes in which C8 increased the respiration linked to ATP production, whereas C10 elevated the mitochondrial proton leak. When C8 and C10 were provided together as metabolic substrates in brain slices, metabolism of C10 was predominant over that of C8. Furthermore, metabolism of both [U-13C]C8 and [U-13C]C10 was unaffected by etomoxir indicating that it is independent of carnitine palmitoyltransferase I (CPT-1). Finally, we show that inhibition of glutamine synthesis selectively reduced 13C accumulation in GABA from [U-13C]C8 and [U-13C]C10 metabolism in brain slices, demonstrating that the glutamine generated from astrocyte C8 and C10 metabolism is utilized for neuronal GABA synthesis. Collectively, the results show that cerebral C8 and C10 metabolism is linked to the metabolic coupling of neurons and astrocytes, which may serve as a protective metabolic mechanism of C8 and C10 supplementation in neurological disorders.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen E, Denmark.
| | - Emil W Westi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen E, Denmark
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen E, Denmark
| | - Nerea Urruticoechea
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen E, Denmark
| | - Karin Borges
- Department of Pharmacology, School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen E, Denmark.
| |
Collapse
|
19
|
Wilson CS, Dohare P, Orbeta S, Nalwalk JW, Huang Y, Ferland RJ, Sah R, Scimemi A, Mongin AA. Late adolescence mortality in mice with brain-specific deletion of the volume-regulated anion channel subunit LRRC8A. FASEB J 2021; 35:e21869. [PMID: 34469026 PMCID: PMC8639177 DOI: 10.1096/fj.202002745r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022]
Abstract
The leucine-rich repeat-containing family 8 member A (LRRC8A) is an essential subunit of the volume-regulated anion channel (VRAC). VRAC is critical for cell volume control, but its broader physiological functions remain under investigation. Recent studies in the field indicate that Lrrc8a disruption in the brain astrocytes reduces neuronal excitability, impairs synaptic plasticity and memory, and protects against cerebral ischemia. In the present work, we generated brain-wide conditional LRRC8A knockout mice (LRRC8A bKO) using NestinCre -driven Lrrc8aflox/flox excision in neurons, astrocytes, and oligodendroglia. LRRC8A bKO animals were born close to the expected Mendelian ratio and developed without overt histological abnormalities, but, surprisingly, all died between 5 and 9 weeks of age with a seizure phenotype, which was confirmed by video and EEG recordings. Brain slice electrophysiology detected changes in the excitability of pyramidal cells and modified GABAergic inputs in the hippocampal CA1 region of LRRC8A bKO. LRRC8A-null hippocampi showed increased immunoreactivity of the astrocytic marker GFAP, indicating reactive astrogliosis. We also found decreased whole-brain protein levels of the GABA transporter GAT-1, the glutamate transporter GLT-1, and the astrocytic enzyme glutamine synthetase. Complementary HPLC assays identified reduction in the tissue levels of the glutamate and GABA precursor glutamine. Together, these findings suggest that VRAC provides vital control of brain excitability in mouse adolescence. VRAC deletion leads to a lethal phenotype involving progressive astrogliosis and dysregulation of astrocytic uptake and supply of amino acid neurotransmitters and their precursors.
Collapse
Affiliation(s)
- Corinne S Wilson
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Preeti Dohare
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Shaina Orbeta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Julia W Nalwalk
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Yunfei Huang
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Russell J Ferland
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, Maine, USA
| | - Rajan Sah
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Annalisa Scimemi
- Department of Biology, University at Albany, State University of New York, Albany, New York, USA
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| |
Collapse
|
20
|
Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA, Aldana BI. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 2021; 196:108719. [PMID: 34273389 DOI: 10.1016/j.neuropharm.2021.108719] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023]
Abstract
Glutamate is the primary excitatory neurotransmitter of the brain. Cellular homeostasis of glutamate is of paramount importance for normal brain function and relies on an intricate metabolic collaboration between neurons and astrocytes. Glutamate is extensively recycled between neurons and astrocytes in a process known as the glutamate-glutamine cycle. The recycling of glutamate is closely linked to brain energy metabolism and is essential to sustain glutamatergic neurotransmission. However, a considerable amount of glutamate is also metabolized and serves as a metabolic hub connecting glucose and amino acid metabolism in both neurons and astrocytes. Disruptions in glutamate clearance, leading to neuronal overstimulation and excitotoxicity, have been implicated in several neurodegenerative diseases. Furthermore, the link between brain energy homeostasis and glutamate metabolism is gaining attention in several neurological conditions. In this review, we provide an overview of the dynamics of synaptic glutamate homeostasis and the underlying metabolic processes with a cellular focus on neurons and astrocytes. In particular, we review the recently discovered role of neuronal glutamate uptake in synaptic glutamate homeostasis and discuss current advances in cellular glutamate metabolism in the context of Alzheimer's disease and Huntington's disease. Understanding the intricate regulation of glutamate-dependent metabolic processes at the synapse will not only increase our insight into the metabolic mechanisms of glutamate homeostasis, but may reveal new metabolic targets to ameliorate neurodegeneration.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Kia H Markussen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Paul A Rosenberg
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
21
|
Flanagan B, McDaid L, Wade JJ, Toman M, Wong-Lin K, Harkin J. A Computational Study of Astrocytic GABA Release at the Glutamatergic Synapse: EAAT-2 and GAT-3 Coupled Dynamics. Front Cell Neurosci 2021; 15:682460. [PMID: 34322000 PMCID: PMC8312685 DOI: 10.3389/fncel.2021.682460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Neurotransmitter dynamics within neuronal synapses can be controlled by astrocytes and reflect key contributors to neuronal activity. In particular, Glutamate (Glu) released by activated neurons is predominantly removed from the synaptic space by perisynaptic astrocytic transporters EAAT-2 (GLT-1). In previous work, we showed that the time course of Glu transport is affected by ionic concentration gradients either side of the astrocytic membrane and has the propensity for influencing postsynaptic neuronal excitability. Experimental findings co-localize GABA transporters GAT-3 with EAAT-2 on the perisynaptic astrocytic membrane. While these transporters are unlikely to facilitate the uptake of synaptic GABA, this paper presents simulation results which demonstrate the coupling of EAAT-2 and GAT-3, giving rise to the ionic-dependent reversed transport of GAT-3. The resulting efflux of GABA from the astrocyte to the synaptic space reflects an important astrocytic mechanism for modulation of hyperexcitability. Key results also illustrate an astrocytic-mediated modulation of synaptic neuronal excitation by released GABA at the glutamatergic synapse.
Collapse
Affiliation(s)
- Bronac Flanagan
- Intelligent Systems Research Centre, Ulster University, Derry, United Kingdom
| | | | | | | | | | | |
Collapse
|
22
|
Sandhu MRS, Gruenbaum BF, Gruenbaum SE, Dhaher R, Deshpande K, Funaro MC, Lee TSW, Zaveri HP, Eid T. Astroglial Glutamine Synthetase and the Pathogenesis of Mesial Temporal Lobe Epilepsy. Front Neurol 2021; 12:665334. [PMID: 33927688 PMCID: PMC8078591 DOI: 10.3389/fneur.2021.665334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
The enzyme glutamine synthetase (GS), also referred to as glutamate ammonia ligase, is abundant in astrocytes and catalyzes the conversion of ammonia and glutamate to glutamine. Deficiency or dysfunction of astrocytic GS in discrete brain regions have been associated with several types of epilepsy, including medically-intractable mesial temporal lobe epilepsy (MTLE), neocortical epilepsies, and glioblastoma-associated epilepsy. Moreover, experimental inhibition or deletion of GS in the entorhinal-hippocampal territory of laboratory animals causes an MTLE-like syndrome characterized by spontaneous, recurrent hippocampal-onset seizures, loss of hippocampal neurons, and in some cases comorbid depressive-like features. The goal of this review is to summarize and discuss the possible roles of astroglial GS in the pathogenesis of epilepsy.
Collapse
Affiliation(s)
| | - Benjamin F Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Shaun E Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Roni Dhaher
- Department of Neurosurgery, New Haven, CT, United States
| | | | - Melissa C Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, CT, United States
| | | | - Hitten P Zaveri
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Tore Eid
- Department of Laboratory Medicine, New Haven, CT, United States
| |
Collapse
|
23
|
Dhaher R, Gruenbaum SE, Sandhu MRS, Ottestad-Hansen S, Tu N, Wang Y, Lee TSW, Deshpande K, Spencer DD, Danbolt NC, Zaveri HP, Eid T. Network-Related Changes in Neurotransmitters and Seizure Propagation During Rodent Epileptogenesis. Neurology 2021; 96:e2261-e2271. [PMID: 33722994 PMCID: PMC8166437 DOI: 10.1212/wnl.0000000000011846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To test the hypothesis that glutamate and GABA are linked to the formation of epilepsy networks and the triggering of spontaneous seizures, we examined seizure initiation/propagation characteristics and neurotransmitter levels during epileptogenesis in a translationally relevant rodent model of mesial temporal lobe epilepsy. METHODS The glutamine synthetase (GS) inhibitor methionine sulfoximine was infused into one of the hippocampi in laboratory rats to create a seizure focus. Long-term video-intracranial EEG recordings and brain microdialysis combined with mass spectrometry were used to examine seizure initiation, seizure propagation, and extracellular brain levels of glutamate and GABA. RESULTS All seizures (n = 78 seizures, n = 3 rats) appeared first in the GS-inhibited hippocampus of all animals, followed by propagation to the contralateral hippocampus. Propagation time decreased significantly from 11.65 seconds early in epileptogenesis (weeks 1-2) to 6.82 seconds late in epileptogenesis (weeks 3-4, paired t test, p = 0.025). Baseline extracellular glutamate levels were 11.6-fold higher in the hippocampus of seizure propagation (7.3 µM) vs the hippocampus of seizure onset (0.63 µM, analysis of variance/Fisher least significant difference, p = 0.01), even though the concentrations of the major glutamate transporter proteins excitatory amino acid transporter subtypes 1 and 2 and xCT were unchanged between the brain regions. Finally, extracellular GABA in the seizure focus decreased significantly from baseline several hours before a spontaneous seizure (paired t test/false discovery rate). CONCLUSION The changes in glutamate and GABA suggest novel and potentially important roles of the amino acids in epilepsy network formation and in the initiation and propagation of spontaneous seizures.
Collapse
Affiliation(s)
- Roni Dhaher
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Shaun E Gruenbaum
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Mani Ratnesh S Sandhu
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Sigrid Ottestad-Hansen
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Nathan Tu
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Yue Wang
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Tih-Shih W Lee
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Ketaki Deshpande
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Dennis D Spencer
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Niels Christian Danbolt
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Hitten P Zaveri
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Tore Eid
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway.
| |
Collapse
|
24
|
Pawlik MJ, Obara-Michlewska M, Popek MP, Czarnecka AM, Czuczwar SJ, Łuszczki J, Kołodziej M, Acewicz A, Wierzba-Bobrowicz T, Albrecht J. Pretreatment with a glutamine synthetase inhibitor MSO delays the onset of initial seizures induced by pilocarpine in juvenile rats. Brain Res 2021; 1753:147253. [PMID: 33422530 DOI: 10.1016/j.brainres.2020.147253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/26/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
The contribution of glutamatergic transmission to generation of initial convulsive seizures (CS) is debated. We tested whether pretreatment with a glutamine synthetase (GS) inhibitor, methionine sulfoximine (MSO), affects the onset and progression of initial CS by cholinergic stimulus in juvenile rats. Male rats (24 days old, Sprague Dawley) sequentially received i.p. injections of lithium-carbonate, MSO, methyl-scopolamine, and pilocarpine (Pilo). Pilo was given 150 min after MSO. Animals were continuously monitored using the Racine scale, EEG/EMG and intrahippocampal glutamate (Glu) biosensors. GS activity as measured in hippocampal homogenates, was not altered by MSO at 150 min, showed initial, varied inhibition at 165 (15 min post-Pilo), and dropped down to 11% of control at 60 min post-Pilo, whereas GS protein expression remained unaltered throughout. Pilo did neither modulate the effect of MSO on GS activity nor affect GS activity itself, at any time point. MSO reduced from 32% to 4% the number of animals showing CS during the first 12 min post-Pilo, delayed by ~6 min the appearance of electrographic seizures, and tended to decrease EMG power during ~15 min post-Pilo. The results indicate that MSO impairs an aspect of glutamatergic transmission involved in the transition from the first cholinergic stimulus to the onset of seizures. A continuous rise of extracellular Glu lasting 60 min was insignificantly affected by MSO, leaving the nature of the Glu pool(s) involved in altered glutamatergic transmission undefined.
Collapse
Affiliation(s)
- Marek J Pawlik
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| | - Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| | - Mariusz P Popek
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| | - Anna Maria Czarnecka
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Jarogniew Łuszczki
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Marcin Kołodziej
- Institute of Theory of Electrical Engineering, Measurement and Information Systems, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.
| | - Albert Acewicz
- Department of Neuropathology, Institute of Psychiatry and Neurology, Jana III Sobieskiego 9, 02-957 Warsaw, Poland.
| | - Teresa Wierzba-Bobrowicz
- Department of Neuropathology, Institute of Psychiatry and Neurology, Jana III Sobieskiego 9, 02-957 Warsaw, Poland.
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| |
Collapse
|
25
|
Reis de Assis D, Szabo A, Requena Osete J, Puppo F, O’Connell KS, A. Akkouh I, Hughes T, Frei E, A. Andreassen O, Djurovic S. Using iPSC Models to Understand the Role of Estrogen in Neuron-Glia Interactions in Schizophrenia and Bipolar Disorder. Cells 2021; 10:209. [PMID: 33494281 PMCID: PMC7909800 DOI: 10.3390/cells10020209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia (SCZ) and bipolar disorder (BIP) are severe mental disorders with a considerable disease burden worldwide due to early age of onset, chronicity, and lack of efficient treatments or prevention strategies. Whilst our current knowledge is that SCZ and BIP are highly heritable and share common pathophysiological mechanisms associated with cellular signaling, neurotransmission, energy metabolism, and neuroinflammation, the development of novel therapies has been hampered by the unavailability of appropriate models to identify novel targetable pathomechanisms. Recent data suggest that neuron-glia interactions are disturbed in SCZ and BIP, and are modulated by estrogen (E2). However, most of the knowledge we have so far on the neuromodulatory effects of E2 came from studies on animal models and human cell lines, and may not accurately reflect many processes occurring exclusively in the human brain. Thus, here we highlight the advantages of using induced pluripotent stem cell (iPSC) models to revisit studies of mechanisms underlying beneficial effects of E2 in human brain cells. A better understanding of these mechanisms opens the opportunity to identify putative targets of novel therapeutic agents for SCZ and BIP. In this review, we first summarize the literature on the molecular mechanisms involved in SCZ and BIP pathology and the beneficial effects of E2 on neuron-glia interactions. Then, we briefly present the most recent developments in the iPSC field, emphasizing the potential of using patient-derived iPSCs as more relevant models to study the effects of E2 on neuron-glia interactions.
Collapse
Affiliation(s)
- Denis Reis de Assis
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Attila Szabo
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Jordi Requena Osete
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Francesca Puppo
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin S. O’Connell
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
| | - Ibrahim A. Akkouh
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Timothy Hughes
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Evgeniia Frei
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Division of Mental Health and Addiction, Oslo University Hospital, 0372 Oslo, Norway
| | - Srdjan Djurovic
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- NORMENT, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
26
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
27
|
Zhou Y, Eid T, Hassel B, Danbolt NC. Novel aspects of glutamine synthetase in ammonia homeostasis. Neurochem Int 2020; 140:104809. [DOI: 10.1016/j.neuint.2020.104809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
28
|
Lee DH, Lee DW, Kwon JI, Woo CW, Kim ST, Kim JK, Kim KW, Woo DC. Retrospective Brain Motion Correction in Glutamate Chemical Exchange Saturation Transfer (GluCEST) MRI. Mol Imaging Biol 2020; 21:1064-1070. [PMID: 30989439 DOI: 10.1007/s11307-019-01352-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE To evaluate the feasibility of motion correction in glutamate chemical exchange saturation transfer (GluCEST) imaging, using a rat model of epileptic seizure. PROCEDURES Epileptic seizure was induced in six male Wistar rats by intraperitoneal injection of kainic acid (KA). CEST data were obtained using a 7.0 T Bruker MRI scanner before and 3 h after KA injection. Retrospective motion correction was performed in CEST images using a gradient-based motion correction (GradMC) algorithm. GluCEST signals in the hippocampal regions were quantitatively evaluated with and without motion correction. RESULTS Calculated GluCEST signals differed significantly between the pre-KA injection group, regardless of motion-correction implementation, and the post-KA injection group with motion correction (3.662 ± 1.393 % / 3.726 ± 1.982 % for pre-KA injection group with/without motion correction vs. 6.996 ± 1.684 % for post-KA injection group with motion correction; all P < 0.05). CONCLUSIONS Our results clearly show that GradMC can be used in CEST imaging for efficient correction of seizure-like motion. The GradMC can be further implemented in various CEST imaging techniques to increase the accuracy of analysis.
Collapse
Affiliation(s)
- Dong-Hoon Lee
- Faculty of Health Sciences and Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Do-Wan Lee
- Center for Bioimaging of New Drug Development, Asan Medical Center, Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Jae-Im Kwon
- MR Core Laboratory, Convergence Medicine Research Center, Asan Medical Center, Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Chul-Woong Woo
- MR Core Laboratory, Convergence Medicine Research Center, Asan Medical Center, Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Sang-Tae Kim
- MR Core Laboratory, Convergence Medicine Research Center, Asan Medical Center, Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Jeong Kon Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyung Won Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-Cheol Woo
- MR Core Laboratory, Convergence Medicine Research Center, Asan Medical Center, Asan Institute for Life Sciences, Seoul, Republic of Korea. .,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Sandhu MRS, Dhaher R, Gruenbaum SE, Raaisa R, Spencer DD, Pavlova MK, Zaveri HP, Eid T. Circadian-Like Rhythmicity of Extracellular Brain Glutamate in Epilepsy. Front Neurol 2020; 11:398. [PMID: 32499751 PMCID: PMC7242976 DOI: 10.3389/fneur.2020.00398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Seizures often exhibit striking circadian-like (~24-h) rhythms. While chronotherapy has shown promise in treating epilepsy, it is not widely used, in part because the patterns of seizure rhythmicity vary considerably among patients and types of epilepsy. A better understanding of the mechanisms underlying rhythmicity in epilepsy could be expected to result in more effective approaches which can be tailored to each individual patient. The excitatory neurotransmitter glutamate is an essential modulator of circadian rhythms, and changes in the extracellular levels of glutamate likely affect the threshold to seizures. We used a reverse translational rodent model of mesial temporal lobe epilepsy (MTLE) combined with long-term intracerebral microdialysis to monitor the hourly concentrations of glutamate in the seizure onset area (epileptogenic hippocampus) over several days. We observed significant 24-h oscillations of extracellular glutamate in the epileptogenic hippocampus (n = 4, JTK_CYCLE test, p < 0.05), but not in the hippocampus of control animals (n = 4). To our knowledge, circadian glutamate oscillations have not been observed in a seizure onset region, and we speculate that the oscillations contribute to the rhythmicity of seizures in MTLE.
Collapse
Affiliation(s)
- Mani Ratnesh S Sandhu
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Roni Dhaher
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
| | - Shaun E Gruenbaum
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, FL, United States
| | - Raaisa Raaisa
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Dennis D Spencer
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
| | - Milena K Pavlova
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, United States
| | - Hitten P Zaveri
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
30
|
Zaveri HP, Schelter B, Schevon CA, Jiruska P, Jefferys JGR, Worrell G, Schulze-Bonhage A, Joshi RB, Jirsa V, Goodfellow M, Meisel C, Lehnertz K. Controversies on the network theory of epilepsy: Debates held during the ICTALS 2019 conference. Seizure 2020; 78:78-85. [PMID: 32272333 DOI: 10.1016/j.seizure.2020.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 12/21/2022] Open
Abstract
Debates on six controversial topics on the network theory of epilepsy were held during two debate sessions, as part of the International Conference for Technology and Analysis of Seizures, 2019 (ICTALS 2019) convened at the University of Exeter, UK, September 2-5 2019. The debate topics were (1) From pathologic to physiologic: is the epileptic network part of an existing large-scale brain network? (2) Are micro scale recordings pertinent for defining the epileptic network? (3) From seconds to years: do we need all temporal scales to define an epileptic network? (4) Is it necessary to fully define the epileptic network to control it? (5) Is controlling seizures sufficient to control the epileptic network? (6) Does the epileptic network want to be controlled? This article, written by the organizing committee for the debate sessions and the debaters, summarizes the arguments presented during the debates on these six topics.
Collapse
Affiliation(s)
- Hitten P Zaveri
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Björn Schelter
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3UE, UK
| | | | - Premysl Jiruska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - John G R Jefferys
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Gregory Worrell
- Mayo Systems Electrophysiology Laboratory, Departments of Neurology and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Rasesh B Joshi
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France
| | - Marc Goodfellow
- Living Systems Institute, University of Exeter, Exeter, UK; Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, UK; EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK
| | - Christian Meisel
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA; Department of Neurology, University Clinic Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn, Venusberg Campus 1, 53127 Bonn, Germany; Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Str. 7, 53175 Bonn, Germany.
| |
Collapse
|
31
|
Abstract
This review is intended to provide a summary of the literature pertaining to the perioperative care of neurosurgical patients and patients with neurological diseases. General topics addressed in this review include general neurosurgical considerations, stroke, neurological monitoring, and perioperative disorders of cognitive function.
Collapse
|
32
|
Patel DC, Tewari BP, Chaunsali L, Sontheimer H. Neuron-glia interactions in the pathophysiology of epilepsy. Nat Rev Neurosci 2019; 20:282-297. [PMID: 30792501 DOI: 10.1038/s41583-019-0126-4] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epilepsy is a neurological disorder afflicting ~65 million people worldwide. It is caused by aberrant synchronized firing of populations of neurons primarily due to imbalance between excitatory and inhibitory neurotransmission. Hence, the historical focus of epilepsy research has been neurocentric. However, the past two decades have enjoyed an explosion of research into the role of glia in supporting and modulating neuronal activity, providing compelling evidence of glial involvement in the pathophysiology of epilepsy. The mechanisms by which glia, particularly astrocytes and microglia, may contribute to epilepsy and consequently could be harnessed therapeutically are discussed in this Review.
Collapse
Affiliation(s)
- Dipan C Patel
- Fralin Biomedical Research Institute, Glial Biology in Health, Disease, and Cancer Center, Roanoke, VA, USA
| | - Bhanu P Tewari
- Fralin Biomedical Research Institute, Glial Biology in Health, Disease, and Cancer Center, Roanoke, VA, USA
| | - Lata Chaunsali
- Fralin Biomedical Research Institute, Glial Biology in Health, Disease, and Cancer Center, Roanoke, VA, USA
| | - Harald Sontheimer
- Fralin Biomedical Research Institute, Glial Biology in Health, Disease, and Cancer Center, Roanoke, VA, USA. .,School of Neuroscience, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
33
|
Nikolic L, Nobili P, Shen W, Audinat E. Role of astrocyte purinergic signaling in epilepsy. Glia 2019; 68:1677-1691. [DOI: 10.1002/glia.23747] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Ljiljana Nikolic
- Institute for Biological Research Siniša Stanković, University of Belgrade Serbia
| | | | - Weida Shen
- Zhejiang University City College Zhejiang Hangzhou China
| | - Etienne Audinat
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM Montpellier France
| |
Collapse
|
34
|
Eid T, Lee TSW, Patrylo P, Zaveri HP. Astrocytes and Glutamine Synthetase in Epileptogenesis. J Neurosci Res 2019; 97:1345-1362. [PMID: 30022509 PMCID: PMC6338538 DOI: 10.1002/jnr.24267] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/15/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022]
Abstract
The cellular, molecular, and metabolic mechanisms that underlie the development of mesial temporal lobe epilepsy are incompletely understood. Here we review the role of astrocytes in epilepsy development (a.k.a. epileptogenesis), particularly astrocyte pathologies related to: aquaporin 4, the inwardly rectifying potassium channel Kir4.1, monocarboxylate transporters MCT1 and MCT2, excitatory amino acid transporters EAAT1 and EAAT2, and glutamine synthetase. We propose that inhibition, dysfunction or loss of astrocytic glutamine synthetase is an important causative factor for some epilepsies, particularly mesial temporal lobe epilepsy and glioblastoma-associated epilepsy. We postulate that the regulatory mechanisms of glutamine synthetase as well as the downstream effects of glutamine synthetase dysfunction, represent attractive, new targets for antiepileptogenic interventions. Currently, no antiepileptogenic therapies are available for human use. The discovery of such interventions is important as it will fundamentally change the way we approach epilepsy by preventing the disease from ever becoming manifest after an epileptogenic insult to the brain.
Collapse
Affiliation(s)
- Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine
- Department of Molecular Medicine, University of Oslo
| | | | - Peter Patrylo
- Department of Physiology, Southern Illinois University School of Medicine
| | | |
Collapse
|
35
|
Chan F, Lax NZ, Voss CM, Aldana BI, Whyte S, Jenkins A, Nicholson C, Nichols S, Tilley E, Powell Z, Waagepetersen HS, Davies CH, Turnbull DM, Cunningham MO. The role of astrocytes in seizure generation: insights from a novel in vitro seizure model based on mitochondrial dysfunction. Brain 2019; 142:391-411. [PMID: 30689758 DOI: 10.1093/brain/awy320] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
Approximately one-quarter of patients with mitochondrial disease experience epilepsy. Their epilepsy is often severe and resistant towards conventional antiepileptic drugs. Despite the severity of this epilepsy, there are currently no animal models available to provide a mechanistic understanding of mitochondrial epilepsy. We conducted neuropathological studies on patients with mitochondrial epilepsy and found the involvement of the astrocytic compartment. As a proof of concept, we developed a novel brain slice model of mitochondrial epilepsy by the application of an astrocytic-specific aconitase inhibitor, fluorocitrate, concomitant with mitochondrial respiratory inhibitors, rotenone and potassium cyanide. The model was robust and exhibited both face and predictive validity. We then used the model to assess the role that astrocytes play in seizure generation and demonstrated the involvement of the GABA-glutamate-glutamine cycle. Notably, glutamine appears to be an important intermediary molecule between the neuronal and astrocytic compartment in the regulation of GABAergic inhibitory tone. Finally, we found that a deficiency in glutamine synthetase is an important pathogenic process for seizure generation in both the brain slice model and the human neuropathological study. Our study describes the first model for mitochondrial epilepsy and provides a mechanistic insight into how astrocytes drive seizure generation in mitochondrial epilepsy.
Collapse
Affiliation(s)
- Felix Chan
- Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, UK.,Wellcome Centre for Mitochondrial Research, Newcastle University, Institute of Neuroscience, The Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Nichola Z Lax
- Wellcome Centre for Mitochondrial Research, Newcastle University, Institute of Neuroscience, The Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Caroline Marie Voss
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Blanca Irene Aldana
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Shuna Whyte
- Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Alistair Jenkins
- Department of Neurosurgery, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Claire Nicholson
- Department of Neurosurgery, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Sophie Nichols
- Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Elizabeth Tilley
- Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Zoe Powell
- Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ceri H Davies
- Neural Pathways DPU, GSK, 11 Biopolis Way, Singapore
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Newcastle University, Institute of Neuroscience, The Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Mark O Cunningham
- Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, UK.,Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
36
|
Eid T. An Ancient Enzyme Takes a Hit in Epilepsy. Epilepsy Curr 2019; 19:400-401. [PMID: 31530017 PMCID: PMC6891189 DOI: 10.1177/1535759719875468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
37
|
Gruenbaum SE, Chen EC, Sandhu MRS, Deshpande K, Dhaher R, Hersey D, Eid T. Branched-Chain Amino Acids and Seizures: A Systematic Review of the Literature. CNS Drugs 2019; 33:755-770. [PMID: 31313139 DOI: 10.1007/s40263-019-00650-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Up to 40% of patients with epilepsy experience seizures despite treatment with antiepileptic drugs; however, branched-chain amino acid (BCAA) supplementation has shown promise in treating refractory epilepsy. OBJECTIVES The purpose of this systematic review was to evaluate all published studies that investigated the effects of BCAAs on seizures, emphasizing therapeutic efficacy and possible underlying mechanisms. METHODS On 31 January, 2017, the following databases were searched for relevant studies: MEDLINE (OvidSP), EMBASE (OvidSP), Scopus (Elsevier), the Cochrane Library, and the unindexed material in PubMed (National Library of Medicine/National Institutes of Health). The searches were repeated in all databases on 18 February, 2019. We only included full-length preclinical and clinical studies that were published in the English language that examined the effects of BCAA administration on seizures. RESULTS Eleven of 2045 studies met our inclusion criteria: ten studies were conducted in animal models and one study in human subjects. Seven seizure models were investigated: the strychnine (one study), pentylenetetrazole (two studies), flurothyl (one study), picrotoxin (two studies), genetic absence epilepsy in rats (one study), kainic acid (two studies), and methionine sulfoximine (one study) paradigms. Three studies investigated the effect of a BCAA mixture whereas the other studies explored the effects of individual BCAAs on seizures. In most animal models and in humans, BCAAs had potent anti-seizure effects. However, in the methionine sulfoximine model, long-term BCAA supplementation worsened seizure propagation and caused neuron loss, and in the genetic absence epilepsy in rats model, BCAAs exhibited pro-seizure effects. CONCLUSIONS The contradictory effects of BCAAs on seizure activity likely reflect differences in the complex mechanisms that underlie seizure disorders. Some of these mechanisms are likely mediated by BCAA's effects on glucose, glutamate, glutamine, and ammonia metabolism, activation of the mechanistic target of rapamycin signaling pathway, and their effects on aromatic amino acid transport and neurotransmitter synthesis. We propose that a better understanding of mechanisms by which BCAAs affect seizures and neuronal viability is needed to advance the field of BCAA supplementation in epilepsy.
Collapse
Affiliation(s)
- Shaun E Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, USA.
| | - Eric C Chen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Ketaki Deshpande
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Roni Dhaher
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Denise Hersey
- Lewis Science Library, Princeton University, Princeton, NJ, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
38
|
Effects of Branched-Chain Amino Acid Supplementation on Spontaneous Seizures and Neuronal Viability in a Model of Mesial Temporal Lobe Epilepsy. J Neurosurg Anesthesiol 2019; 31:247-256. [PMID: 29620688 DOI: 10.1097/ana.0000000000000499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The essential branched-chain amino acids (BCAAs) leucine, isoleucine, and valine have recently emerged as a potential novel treatment for medically refractory epilepsy. Blood-derived BCAAs can readily enter the brain, where they contribute to glutamate biosynthesis and may either suppress or trigger acute seizures. However, the effects of BCAAs on chronic (ie, spontaneous recurrent) seizures and epilepsy-associated neuron loss are incompletely understood. MATERIALS AND METHODS Sixteen rats with mesial temporal lobe epilepsy were randomized into 2 groups that could drink, ad libitum, either a 4% solution of BCAAs in water (n=8) or pure water (n=8). The frequency and relative percent of convulsive and nonconvulsive spontaneous seizures were monitored for a period of 21 days, and the brains were then harvested for immunohistochemical analysis. RESULTS Although the frequency of convulsive and nonconvulsive spontaneous recurrent seizures over a 3-week drinking/monitoring period were not different between the groups, there were differences in the relative percent of convulsive seizures in the first and third week of treatment. Moreover, the BCAA-treated rats had over 25% fewer neurons in the dentate hilus of the hippocampus compared with water-treated controls. CONCLUSIONS Acute BCAA supplementation reduces seizure propagation, whereas chronic oral supplementation with BCAAs worsens seizure propagation and causes neuron loss in rodents with mesial temporal lobe epilepsy. These findings raise the question of whether such supplementation has a similar effect in humans.
Collapse
|
39
|
Gzielo K, Soltys Z, Rajfur Z, Setkowicz ZK. The Impact of the Ketogenic Diet on Glial Cells Morphology. A Quantitative Morphological Analysis. Neuroscience 2019; 413:239-251. [PMID: 31220541 DOI: 10.1016/j.neuroscience.2019.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022]
Abstract
Ketogenic diet is reported to protect against cognitive decline, drug-resistant epilepsy, Alzheimer's Disease, damaging effect of ischemic stroke and many neurological diseases. Despite mounting evidence that this dietary treatment works, the exact mechanism of its protective activity is largely unknown. Ketogenic diet acts systemically, not only changing GABA signaling in neurons, but also influencing the reliance on mitochondrial respiration, known to be disrupted in many neurological diseases. Normally, human body is driven by glucose while ketogenic diet mimics starvation and energy required for proper functioning comes from fatty acids oxidation. In the brain astrocytes are believed to be the sole neural cells capable of fatty oxidation. Here we try to explain that not exclusively neurons, but also morphological changes of astroglia and/or microglia due to different metabolic state are important for the mechanism underlying the protective role of ketogenic diet. By quantifying different parameters describing cellular morphology like ramification index or fractal dimension and using Principal Component Analysis to discover the regularities between them, we demonstrate that in normal adult rat brain, ketogenic diet itself is able to change glial morphology, indicating an important role of these underappreciated cells in the brain metabolism.
Collapse
Affiliation(s)
- K Gzielo
- Department of Neuroanatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| | - Z Soltys
- Department of Neuroanatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Z Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Z K Setkowicz
- Department of Neuroanatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
40
|
Huyghe D, Denninger AR, Voss CM, Frank P, Gao N, Brandon N, Waagepetersen HS, Ferguson AD, Pangalos M, Doig P, Moss SJ. Phosphorylation of Glutamine Synthetase on Threonine 301 Contributes to Its Inactivation During Epilepsy. Front Mol Neurosci 2019; 12:120. [PMID: 31178690 PMCID: PMC6536897 DOI: 10.3389/fnmol.2019.00120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
The astrocyte-specific enzyme glutamine synthetase (GS), which catalyzes the amidation of glutamate to glutamine, plays an essential role in supporting neurotransmission and in limiting NH4+ toxicity. Accordingly, deficits in GS activity contribute to epilepsy and neurodegeneration. Despite its central role in brain physiology, the mechanisms that regulate GS activity are poorly defined. Here, we demonstrate that GS is directly phosphorylated on threonine residue 301 (T301) within the enzyme’s active site by cAMP-dependent protein kinase (PKA). Phosphorylation of T301 leads to a dramatic decrease in glutamine synthesis. Enhanced T301 phosphorylation was evident in a mouse model of epilepsy, which may contribute to the decreased GS activity seen during this trauma. Thus, our results highlight a novel molecular mechanism that determines GS activity under both normal and pathological conditions.
Collapse
Affiliation(s)
- Deborah Huyghe
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Andrew R Denninger
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Caroline M Voss
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Frank
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ning Gao
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Nicholas Brandon
- Neuroscience, IMED Biotech Unit, AstraZeneca, Boston, MA, United States.,AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA, United States
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew D Ferguson
- Structure & Biophysics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | | | - Peter Doig
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,Department of Neuroscience, Physiology and Pharmacology, University College, London, United Kingdom
| |
Collapse
|
41
|
A. Quinteros D, Witt Hansen A, Bellaver B, Bobermin LD, R. Pulcinelli R, Bandiera S, Caletti G, Bitencourt PER, Quincozes-Santos A, Gomez R. Combined Exposure to Alcohol and Tobacco Smoke Changes Oxidative, Inflammatory, and Neurotrophic Parameters in Different Areas of the Brains of Rats. ACS Chem Neurosci 2019; 10:1336-1346. [PMID: 30653286 DOI: 10.1021/acschemneuro.8b00412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Devastating effects of exposure to alcohol and tobacco smoke on health are extensively reported in the literature. However, few studies have attempted to elucidate the consequences of their combined use on the central nervous system. Here we studied the effect of this combined use on some oxidative, inflammatory, and neurotrophic parameters in the hippocampus, striatum, and frontal cortex of rats. Adult Wistar rats were allocated into control (CT), alcohol (AL), tobacco smoke (TB), or combined (ALTB) groups. Rats were exposed to environmental air (CT and AL groups) or to the smoke from six cigarettes (TB and ALTB groups) immediately after tap water (CT and TB) or 2 g of alcohol/kg (AL and ALTB) oral gavage administration, twice a day, for 4 weeks. On day 28, rats were euthanized and areas of the brain were dissected to evaluate some cellular redox parameters, pro-inflammatory cytokine levels, and brain-derived neurotrophic factor (BDNF) levels. A one-way analysis of variance showed that the ALTB combined treatment significantly increased oxidative stress levels in the hippocampus. ALTB also increased interleukin-1β levels in the striatum and frontal cortex and tumoral necrosis factor-α levels in the frontal cortex compared with those of AL, TB, and CT rats. Combined treatment also decreased the BDNF levels in the frontal cortex of rats. Oxidative damage was found, more importantly, in the hippocampus, and inflammatory parameters were extended to all areas of the brain that were studied. Our results showed an interaction between alcohol and tobacco smoke according to the area of the brain, suggesting an additional risk of neural damage in alcoholics who smoke.
Collapse
Affiliation(s)
- Dayane A. Quinteros
- Programa de Pós-Graduação em Ciência Biológicas: Farmacologia e Terapêutica (PPGFT), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
| | - Alana Witt Hansen
- Programa de Pós-Graduação em Ciência Biológicas: Farmacologia e Terapêutica (PPGFT), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
| | - Bruna Bellaver
- Programa de Pós-Graduação em Ciência Biológicas: Bioquímica, UFRGS, Porto Alegre 90050-170, Brazil
| | - Larissa D. Bobermin
- Programa de Pós-Graduação em Ciência Biológicas: Bioquímica, UFRGS, Porto Alegre 90050-170, Brazil
| | - Rianne R. Pulcinelli
- Programa de Pós-Graduação em Ciência Biológicas: Farmacologia e Terapêutica (PPGFT), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
| | - Solange Bandiera
- Programa de Pós-Graduação em Ciência Biológicas: Farmacologia e Terapêutica (PPGFT), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
| | - Greice Caletti
- Programa de Pós-Graduação em Ciência Biológicas: Farmacologia e Terapêutica (PPGFT), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
| | - Paula E. R. Bitencourt
- Programa de Pós-Graduação em Ciência Biológicas: Farmacologia e Terapêutica (PPGFT), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciência Biológicas: Bioquímica, UFRGS, Porto Alegre 90050-170, Brazil
| | - Rosane Gomez
- Programa de Pós-Graduação em Ciência Biológicas: Farmacologia e Terapêutica (PPGFT), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
| |
Collapse
|
42
|
Skowrońska K, Obara-Michlewska M, Czarnecka A, Dąbrowska K, Zielińska M, Albrecht J. Persistent Overexposure to N-Methyl-D-Aspartate (NMDA) Calcium-Dependently Downregulates Glutamine Synthetase, Aquaporin 4, and Kir4.1 Channel in Mouse Cortical Astrocytes. Neurotox Res 2018; 35:271-280. [PMID: 30220059 PMCID: PMC6313349 DOI: 10.1007/s12640-018-9958-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 11/25/2022]
Abstract
Astrocytes express N-methyl-d-aspartate (NMDA) receptor (NMDAR) but its functions in these cells are not well defined. This study shows that the sustained exposure (8–72 h) of mouse astrocytes to NMDA decreases the expression of the functional astroglia-specific proteins, glutamine synthetase (GS), and the water channel protein aquaporin-4 (AQP4) and also reduces GS activity. Similar to rat astrocytes (Obara-Michlewska et al. Neurochem Int 88:20–25, 2015), the exposure of mouse astrocytes to NMDA also decreased the expression of the inward rectifying potassium channel Kir4.1. NMDA failed to elicit the effects in those cells incubated in the absence of Ca2+ and in those in which the GluN1 subunit of the NMDAR was silenced with GluN1 siRNA. The downregulation of GS, AQP4, and Kir4.1 observed in vitro may reflect NMDAR-mediated alterations of astrocytic functions noted in central nervous system pathologies associated with increased glutamate (Glu) release and excitotoxic tissue damage.
Collapse
Affiliation(s)
- Katarzyna Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Anna Czarnecka
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Katarzyna Dąbrowska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland.
| |
Collapse
|
43
|
Zhou Y, Dhaher R, Parent M, Hu QX, Hassel B, Yee SP, Hyder F, Gruenbaum SE, Eid T, Danbolt NC. Selective deletion of glutamine synthetase in the mouse cerebral cortex induces glial dysfunction and vascular impairment that precede epilepsy and neurodegeneration. Neurochem Int 2018; 123:22-33. [PMID: 30053506 DOI: 10.1016/j.neuint.2018.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022]
Abstract
Glutamate-ammonia ligase (glutamine synthetase; Glul) is enriched in astrocytes and serves as the primary enzyme for ammonia detoxification and glutamate inactivation in the brain. Loss of astroglial Glul is reported in hippocampi of epileptic patients, but the mechanism by which Glul deficiency might cause disease remains elusive. Here we created a novel mouse model by selectively deleting Glul in the hippocampus and neocortex. The Glul deficient mice were born without any apparent malformations and behaved unremarkably until postnatal week three. There were reductions in tissue levels of aspartate, glutamate, glutamine and GABA and in mRNA encoding glutamate receptor subunits GRIA1 and GRIN2A as well as in the glutamate transporter proteins EAAT1 and EAAT2. Adult Glul-deficient mice developed progressive neurodegeneration and spontaneous seizures which increased in frequency with age. Importantly, progressive astrogliosis occurred before neurodegeneration and was first noted in astrocytes along cerebral blood vessels. The responses to CO2-provocation were attenuated at four weeks of age and dilated microvessels were observed histologically in sclerotic areas of cKO. Thus, the abnormal glutamate metabolism observed in this model appeared to cause epilepsy by first inducing gliopathy and disrupting the neurovascular coupling.
Collapse
Affiliation(s)
- Yun Zhou
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317, Oslo, Norway.
| | - Roni Dhaher
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Maxime Parent
- Magnetic Resonance Research Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Qiu-Xiang Hu
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317, Oslo, Norway
| | - Bjørnar Hassel
- Department of Complex Neurology and Neurohabilitation, Oslo University Hospital, University of Oslo, N-0450, Oslo, Norway
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Shaun E Gruenbaum
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Tore Eid
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317, Oslo, Norway; Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA.
| | - Niels Christian Danbolt
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317, Oslo, Norway.
| |
Collapse
|
44
|
Mohammad H, Sekar S, Wei Z, Moien-Afshari F, Taghibiglou C. Perampanel but Not Amantadine Prevents Behavioral Alterations and Epileptogenesis in Pilocarpine Rat Model of Status Epilepticus. Mol Neurobiol 2018; 56:2508-2523. [PMID: 30039334 DOI: 10.1007/s12035-018-1230-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/08/2018] [Indexed: 12/26/2022]
Abstract
Pilocarpine-induced status epilepticus (SE), which results in the development of spontaneous recurrent seizures (SRSs) activates glutamatergic receptors that contribute to seizure sustenance and neuronal cell death. In the current study, we evaluate whether the exposure to perampanel, an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor blocker, or amantadine, a N-methyl-D-aspartic acid (NMDA) receptor blocker would reduce the SE-induced long-term consequences. SE was induced in adult male Sprague Dawley rats with pilocarpine. Perampanel or amantadine was injected 10 or 60 min after SE onset. The efficacy of either, in overcoming pilocarpine-induced SE was assessed using electroencephalogram (EEG) recordings. In addition, alterations in cognitive function, development of spontaneous recurrent seizures (SRSs), and hippocampal damage that are generally encountered after SE were also assessed at 72 h and 5 weeks after the induction of SE. Our results indicate that both early and late treatment with perampanel but not amantadine significantly reduced seizure activity. Furthermore, perampanel but not amantadine, reversed the memory deficits in Y-maze and novel object recognition (NOR) tests and retarded the appearance of SRSs. Moreover, perampanel treatment led to reduced SE-induced caspase-3 activation in the hippocampal lysates. Taken together, the data obtained from the study reveals that blocking AMPA receptors by perampanel can modify SE-induced long-term consequences. Our results may provide a proof of principle for the potential therapeutic application of perampanel in clinical use for status epilepticus in future.
Collapse
Affiliation(s)
- Hanan Mohammad
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Sathiya Sekar
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Zelan Wei
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Farzad Moien-Afshari
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
- Department of Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
- Division of Neurology, Department of Medicine, University of British Colombia, 8247-2775 Laurel St, Vancouver, BC, V5Z 1M9, Canada.
| | - Changiz Taghibiglou
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
45
|
Flanagan B, McDaid L, Wade J, Wong-Lin K, Harkin J. A computational study of astrocytic glutamate influence on post-synaptic neuronal excitability. PLoS Comput Biol 2018; 14:e1006040. [PMID: 29659572 PMCID: PMC5919689 DOI: 10.1371/journal.pcbi.1006040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/26/2018] [Accepted: 02/15/2018] [Indexed: 11/18/2022] Open
Abstract
The ability of astrocytes to rapidly clear synaptic glutamate and purposefully release the excitatory transmitter is critical in the functioning of synapses and neuronal circuits. Dysfunctions of these homeostatic functions have been implicated in the pathology of brain disorders such as mesial temporal lobe epilepsy. However, the reasons for these dysfunctions are not clear from experimental data and computational models have been developed to provide further understanding of the implications of glutamate clearance from the extracellular space, as a result of EAAT2 downregulation: although they only partially account for the glutamate clearance process. In this work, we develop an explicit model of the astrocytic glutamate transporters, providing a more complete description of the glutamate chemical potential across the astrocytic membrane and its contribution to glutamate transporter driving force based on thermodynamic principles and experimental data. Analysis of our model demonstrates that increased astrocytic glutamate content due to glutamine synthetase downregulation also results in increased postsynaptic quantal size due to gliotransmission. Moreover, the proposed model demonstrates that increased astrocytic glutamate could prolong the time course of glutamate in the synaptic cleft and enhances astrocyte-induced slow inward currents, causing a disruption to the clarity of synaptic signalling and the occurrence of intervals of higher frequency postsynaptic firing. Overall, our work distilled the necessity of a low astrocytic glutamate concentration for reliable synaptic transmission of information and the possible implications of enhanced glutamate levels as in epilepsy. The role of astrocytes in the excitability and hyperexcitability of neurons is a subject which has gained a lot of attention, particularly in the pathology of neurological disorders including epilepsy. Although not completely understood, the control of glutamate homeostasis is believed to play a role in paroxysmal neuronal hyperexcitability known to precede seizure activity. We have developed a computational model which explores two of the astrocytic homeostatic mechanisms, namely glutamate clearance and gliotransmission, and connect them with a common controlling factor, astrocytic cytoplasmic glutamate concentration. In our model simulations we demonstrate both a slower clearance rate of synaptic glutamate and enhanced astrocytic glutamate release where cytoplasmic glutamate is elevated, both of which contribute to high frequency neuronal firing and conditions for seizure generation. We also describe a viable role for astrocytes as a “high pass” filter, where astrocytic activation in the form of intracellular calcium oscillations is possible for only a certain range of presynaptic neuronal firing rates, the lower bound of the range being reduced where astrocytic glutamate is elevated. In physiological terms this perhaps indicates not only neuronal but also astrocytic glutamate-mediated excitation in the neural-astrocytic network.
Collapse
Affiliation(s)
- Bronac Flanagan
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Derry~Londonderry, Northern Ireland, United Kingdom
- * E-mail:
| | - Liam McDaid
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Derry~Londonderry, Northern Ireland, United Kingdom
| | - John Wade
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Derry~Londonderry, Northern Ireland, United Kingdom
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Derry~Londonderry, Northern Ireland, United Kingdom
| | - Jim Harkin
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Derry~Londonderry, Northern Ireland, United Kingdom
| |
Collapse
|
46
|
Pacific Ciguatoxin Induces Excitotoxicity and Neurodegeneration in the Motor Cortex Via Caspase 3 Activation: Implication for Irreversible Motor Deficit. Mol Neurobiol 2018; 55:6769-6787. [DOI: 10.1007/s12035-018-0875-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/07/2018] [Indexed: 12/14/2022]
|
47
|
Mei YY, Wu DC, Zhou N. Astrocytic Regulation of Glutamate Transmission in Schizophrenia. Front Psychiatry 2018; 9:544. [PMID: 30459650 PMCID: PMC6232167 DOI: 10.3389/fpsyt.2018.00544] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/12/2018] [Indexed: 01/19/2023] Open
Abstract
According to the glutamate hypothesis of schizophrenia, the abnormality of glutamate transmission induced by hypofunction of NMDA receptors (NMDARs) is causally associated with the positive and negative symptoms of schizophrenia. However, the underlying mechanisms responsible for the changes in glutamate transmission in schizophrenia are not fully understood. Astrocytes, the major regulatory glia in the brain, modulate not only glutamate metabolism but also glutamate transmission. Here we review the recent progress in understanding the role of astrocytes in schizophrenia. We focus on the astrocytic mechanisms of (i) glutamate synthesis via the glutamate-glutamine cycle, (ii) glutamate clearance by excitatory amino acid transporters (EAATs), (iii) D-serine release to activate NMDARs, and (iv) glutamatergic target engagement biomarkers. Abnormality in these processes is highly correlated with schizophrenia phenotypes. These findings will shed light upon further investigation of pathogenesis as well as improvement of biomarkers and therapies for schizophrenia.
Collapse
Affiliation(s)
- Yu-Ying Mei
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Dong Chuan Wu
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Ning Zhou
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
48
|
Boison D, Steinhäuser C. Epilepsy and astrocyte energy metabolism. Glia 2017; 66:1235-1243. [PMID: 29044647 DOI: 10.1002/glia.23247] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/29/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022]
Abstract
Epilepsy is a complex neurological syndrome characterized by neuronal hyperexcitability and sudden, synchronized electrical discharges that can manifest as seizures. It is now increasingly recognized that impaired astrocyte function and energy homeostasis play key roles in the pathogenesis of epilepsy. Excessive neuronal discharges can only happen, if adequate energy sources are made available to neurons. Conversely, energy depletion during seizures is an endogenous mechanism of seizure termination. Astrocytes control neuronal energy homeostasis through neurometabolic coupling. In this review, we will discuss how astrocyte dysfunction in epilepsy leads to distortion of key metabolic and biochemical mechanisms. Dysfunctional glutamate metabolism in astrocytes can directly contribute to neuronal hyperexcitability. Closure of astrocyte intercellular gap junction coupling as observed early during epileptogenesis limits activity-dependent trafficking of energy metabolites, but also impairs clearance of the extracellular space from accumulation of K+ and glutamate. Dysfunctional astrocytes also increase the metabolism of adenosine, a metabolic product of ATP degradation that broadly inhibits energy-consuming processes as an evolutionary adaptation to conserve energy. Due to the critical role of astroglial energy homeostasis in the control of neuronal excitability, metabolic therapeutic approaches that prevent the utilization of glucose might represent a potent antiepileptic strategy. In particular, high fat low carbohydrate "ketogenic diets" as well as inhibitors of glycolysis and lactate metabolism are of growing interest for the therapy of epilepsy.
Collapse
Affiliation(s)
- Detlev Boison
- R.S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon
| | | |
Collapse
|
49
|
Ishii MN, Yamamoto K, Shoji M, Asami A, Kawamata Y. Human induced pluripotent stem cell (hiPSC)-derived neurons respond to convulsant drugs when co-cultured with hiPSC-derived astrocytes. Toxicology 2017; 389:130-138. [PMID: 28666936 DOI: 10.1016/j.tox.2017.06.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 12/14/2022]
Abstract
Accurate risk assessment for drug-induced seizure is expected to be performed before entering clinical studies because of its severity and fatal damage to drug development. Induced pluripotent stem cell (iPSC) technology has allowed the use of human neurons and glial cells in toxicology studies. Recently, several studies showed the advantage of co-culture system of human iPSC (hiPSC)-derived neurons with rodent/human primary astrocytes regarding neuronal functions. However, the application of hiPSC-derived neurons for seizure risk assessment has not yet been fully addressed, and not at all when co-cultured with hiPSC-derived astrocytes. Here, we characterized hiPSC-derived neurons co-cultured with hiPSC-derived astrocytes to discuss how hiPSC-derived neurons are useful to assess seizure risk of drugs. First, we detected the frequency of spikes and synchronized bursts hiPSC-derived neurons when co-cultured with hiPSC-derived astrocytes for 8 weeks. This synchronized burst was suppressed by the treatment with 6-cyano-7-nitroquinoxaline-2,3-dione, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist, and D-(-)-2-amino-5-phosphonopentanoic acid, an N-Methyl-d-aspartate (NMDA) receptor antagonist. These data suggested that co-cultured hiPSC-derived neurons formed synaptic connections mediated by AMPA and NMDA receptors. We also demonstrated that co-cultured hiPSC-derived neurons showed epileptiform activity upon treatment with gabazine or kaliotoxin. Finally, we performed single-cell transcriptome analysis in hiPSC-derived neurons and found that hiPSC-derived astrocytes activated the pathways involved in the activities of AMPA and NMDA receptor functions, neuronal polarity, and axon guidance in hiPSC-derived neurons. These data suggested that hiPSC-derived astrocytes promoted the development of action potential, synaptic functions, and neuronal networks in hiPSC-derived neurons, and then these functional alterations result in the epileptiform activity in response to convulsant drugs. Our study indicates the possibility that co-culture system of hiPSC-derived neurons with hiPSC-derived astrocytes could be useful in the risk assessment of drug-induced seizure.
Collapse
Affiliation(s)
- Misawa Niki Ishii
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome Fujisawa, Kanagawa 251-8555, Japan.
| | - Koji Yamamoto
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome Fujisawa, Kanagawa 251-8555, Japan
| | - Masanobu Shoji
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome Fujisawa, Kanagawa 251-8555, Japan
| | - Asano Asami
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome Fujisawa, Kanagawa 251-8555, Japan
| | - Yuji Kawamata
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
50
|
Setkowicz Z, Kosonowska E, Janeczko K. Inflammation in the developing rat modulates astroglial reactivity to seizures in the mature brain. J Anat 2017; 231:366-379. [PMID: 28597918 DOI: 10.1111/joa.12636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2017] [Indexed: 11/29/2022] Open
Abstract
Astrocytes participate in neuronal development and excitability, and produce factors enhancing or suppressing inflammatory processes occurring due to neurodegenerative diseases, such as epilepsy. Seizures, in turn, trigger the release of inflammatory mediators, causing structural and functional changes in the brain. Therefore, it appears reasonable to determine whether generalized inflammation at developmental periods can affect astrocyte reactivity to epileptic seizures occurring in the adult brain. Lipopolysaccharide (LPS) was injected in 6- or 30-day-old rats (P6 or P30, respectively). At the age of 2 months, seizures were induced, and pilocarpine and morphological changes of astrocytes located within the hippocampal formation were assessed. Additionally, expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), aquaporin 4 (AQP4), and inwardly rectifying potassium channel Kir 4.1 (Kir4.1) was determined using Western blots. The animal group given LPS on P6 displayed maximal susceptibility to pilocarpine-induced seizures, significantly higher than the group that received LPS on P30. In the immunohistologically examined hippocampal formation, the GFAP-immunoreactive area was not affected by LPS alone. However, it was reduced following seizures in naïve controls but not in LPS-pretreated rats. Increases in the ramification of astrocytic processes were detected only in adult rats given LPS on P30, not on P6. Seizures abolished the effects. Following seizures, the process ramification showed no significant change in the two LPS-treated rat groups, whereas it was significantly reduced in the dentate gyrus of LPS-untreated controls. Glial fibrillary acidic protein (GFAP) expression showed no changes induced with LPS alone and rose slightly after seizures. AQP4 content was lower in rats given LPS on P6 and was seizure-resistant in the two LPS-treated groups, contrary to a decrease in untreated controls. GS expression was not affected by LPS treatments and was reduced after seizures without an intergroup difference. Kir4.1 underwent highly significant increases in all groups experiencing seizures, but LPS alone had no effect. It can be concluded that the generalized inflammatory status led to some important changes in astrocytes reflected, in part at least by permanent modifications of their morphology and molecular profile. Moreover, the previously experienced inflammation prevented the cells from much stronger changes in response to seizures observed in adult untreated controls. The obtained results point to a link between the activation of astrocytes by transient systemic inflammation occurring during the developmental period and their subsequent reactivity to seizures, which may play an important role in the functional features of the brain, including its susceptibility to seizures.
Collapse
Affiliation(s)
- Zuzanna Setkowicz
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Emilia Kosonowska
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Janeczko
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Krakow, Poland
| |
Collapse
|