1
|
Aaltio J, Euro L, Tynninen O, Vu HS, Ni M, DeBerardinis RJ, Suomalainen A, Isohanni P. Niacin supplementation in a child with novel MTTN variant m.5670A>G causing early onset mitochondrial myopathy and NAD + deficiency. Neuromuscul Disord 2024; 43:14-19. [PMID: 39173541 DOI: 10.1016/j.nmd.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Myopathy is a common manifestation in mitochondrial disorders, but the pathomechanisms are still insufficiently studied in children. Here, we report a severe, progressive mitochondrial myopathy in a four-year-old child, who died at eight years. He developed progressive loss of muscle strength with nocturnal hypoventilation and dilated cardiomyopathy. Skeletal muscle showed ragged red fibers and severe combined respiratory chain deficiency. Mitochondrial DNA sequencing revealed a novel m.5670A>G mutation in mitochondrial tRNAAsn (MTTN) with 88 % heteroplasmy in muscle. The proband also had systemic NAD+ deficiency but rescuing this with the NAD+ precursor niacin did not stop disease progression. Targeted metabolomics revealed an overall shift of metabolism towards controls after niacin supplementation, with normalized tryptophan metabolites and lipid-metabolic markers, but most amino acids did not respond to niacin therapy. To conclude, we report a new MTTN mutation, secondary NAD+ deficiency in childhood-onset mitochondrial myopathy with metabolic but meager clinical response to niacin supplementation.
Collapse
Affiliation(s)
- Juho Aaltio
- Research Programs Unit, Stem Cells and Metabolism Research, University of Helsinki, Helsinki, Finland.
| | - Liliya Euro
- Research Programs Unit, Stem Cells and Metabolism Research, University of Helsinki, Helsinki, Finland
| | - Olli Tynninen
- Department of Pathology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Hieu S Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Min Ni
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Anu Suomalainen
- Research Programs Unit, Stem Cells and Metabolism Research, University of Helsinki, Helsinki, Finland; HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland; HiLife, University of Helsinki, Helsinki, Finland
| | - Pirjo Isohanni
- Research Programs Unit, Stem Cells and Metabolism Research, University of Helsinki, Helsinki, Finland; Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
2
|
Nava AA, Arboleda VA. The omics era: a nexus of untapped potential for Mendelian chromatinopathies. Hum Genet 2024; 143:475-495. [PMID: 37115317 PMCID: PMC11078811 DOI: 10.1007/s00439-023-02560-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
The OMICs cascade describes the hierarchical flow of information through biological systems. The epigenome sits at the apex of the cascade, thereby regulating the RNA and protein expression of the human genome and governs cellular identity and function. Genes that regulate the epigenome, termed epigenes, orchestrate complex biological signaling programs that drive human development. The broad expression patterns of epigenes during human development mean that pathogenic germline mutations in epigenes can lead to clinically significant multi-system malformations, developmental delay, intellectual disabilities, and stem cell dysfunction. In this review, we refer to germline developmental disorders caused by epigene mutation as "chromatinopathies". We curated the largest number of human chromatinopathies to date and our expanded approach more than doubled the number of established chromatinopathies to 179 disorders caused by 148 epigenes. Our study revealed that 20.6% (148/720) of epigenes cause at least one chromatinopathy. In this review, we highlight key examples in which OMICs approaches have been applied to chromatinopathy patient biospecimens to identify underlying disease pathogenesis. The rapidly evolving OMICs technologies that couple molecular biology with high-throughput sequencing or proteomics allow us to dissect out the causal mechanisms driving temporal-, cellular-, and tissue-specific expression. Using the full repertoire of data generated by the OMICs cascade to study chromatinopathies will provide invaluable insight into the developmental impact of these epigenes and point toward future precision targets for these rare disorders.
Collapse
Affiliation(s)
- Aileen A Nava
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Thymidine Kinase 2 and Mitochondrial Protein COX I in the Cerebellum of Patients with Spinocerebellar Ataxia Type 31 Caused by Penta-nucleotide Repeats (TTCCA) n. CEREBELLUM (LONDON, ENGLAND) 2023; 22:70-84. [PMID: 35084690 PMCID: PMC9883315 DOI: 10.1007/s12311-021-01364-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 02/01/2023]
Abstract
Spinocerebellar ataxia type 31 (SCA31), an autosomal-dominant neurodegenerative disorder characterized by progressive cerebellar ataxia with Purkinje cell degeneration, is caused by a heterozygous 2.5-3.8 kilobase penta-nucleotide repeat of (TTCCA)n in intron 11 of the thymidine kinase 2 (TK2) gene. TK2 is an essential mitochondrial pyrimidine-deoxyribonucleoside kinase. Bi-allelic loss-of-function mutations of TK2 lead to mitochondrial DNA depletion syndrome (MDS) in humans through severe (~ 70%) reduction of mitochondrial electron-transport-chain activity, and tk2 knockout mice show Purkinje cell degeneration and ataxia through severe mitochondrial cytochrome-c oxidase subunit I (COX I) protein reduction. To clarify whether TK2 function is altered in SCA31, we investigated TK2 and COX I expression in human postmortem SCA31 cerebellum. We confirmed that canonical TK2 mRNA is transcribed from exons far upstream of the repeat site, and demonstrated that an extended version of TK2 mRNA ("TK2-EXT"), transcribed from exons spanning the repeat site, is expressed in human cerebellum. While canonical TK2 was conserved among vertebrates, TK2-EXT was specific to primates. Reverse transcription-PCR demonstrated that both TK2 mRNAs were preserved in SCA31 cerebella compared with control cerebella. The TK2 proteins, assessed with three different antibodies including our original polyclonal antibody against TK2-EXT, were detected as ~ 26 kilodalton proteins on western blot; their levels were similar in SCA31 and control cerebella. COX I protein level was preserved in SCA31 compared to nuclear DNA-encoded protein. We conclude that the expression and function of TK2 are preserved in SCA31, suggesting a mechanism distinct from that of MDS.
Collapse
|
4
|
Uusimaa J, Kettunen J, Varilo T, Järvelä I, Kallijärvi J, Kääriäinen H, Laine M, Lapatto R, Myllynen P, Niinikoski H, Rahikkala E, Suomalainen A, Tikkanen R, Tyynismaa H, Vieira P, Zarybnicky T, Sipilä P, Kuure S, Hinttala R. The Finnish genetic heritage in 2022 – from diagnosis to translational research. Dis Model Mech 2022; 15:278566. [PMID: 36285626 PMCID: PMC9637267 DOI: 10.1242/dmm.049490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isolated populations have been valuable for the discovery of rare monogenic diseases and their causative genetic variants. Finnish disease heritage (FDH) is an example of a group of hereditary monogenic disorders caused by single major, usually autosomal-recessive, variants enriched in the population due to several past genetic drift events. Interestingly, distinct subpopulations have remained in Finland and have maintained their unique genetic repertoire. Thus, FDH diseases have persisted, facilitating vigorous research on the underlying molecular mechanisms and development of treatment options. This Review summarizes the current status of FDH, including the most recently discovered FDH disorders, and introduces a set of other recently identified diseases that share common features with the traditional FDH diseases. The Review also discusses a new era for population-based studies, which combine various forms of big data to identify novel genotype–phenotype associations behind more complex conditions, as exemplified here by the FinnGen project. In addition to the pathogenic variants with an unequivocal causative role in the disease phenotype, several risk alleles that correlate with certain phenotypic features have been identified among the Finns, further emphasizing the broad value of studying genetically isolated populations.
Collapse
Affiliation(s)
- Johanna Uusimaa
- Children and Adolescents, Oulu University Hospital 1 , 90029 Oulu , Finland
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 2 , 90014 Oulu , Finland
| | - Johannes Kettunen
- Computational Medicine, Center for Life Course Health Research, University of Oulu 3 , 90014 Oulu , Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare 4 , 00271 Helsinki
- Finland 4 , 00271 Helsinki
- Biocenter Oulu, University of Oulu 5 , 90014 Oulu , Finland
| | - Teppo Varilo
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare 4 , 00271 Helsinki
- Finland 4 , 00271 Helsinki
- Department of Medical Genetics, University of Helsinki 6 , 00251 Helsinki , Finland
| | - Irma Järvelä
- Department of Medical Genetics, University of Helsinki 6 , 00251 Helsinki , Finland
| | - Jukka Kallijärvi
- Folkhälsan Institute of Genetics, Folkhälsan Research Center 7 , 00014 Helsinki , Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki 8 , 00014 Helsinki , Finland
| | - Helena Kääriäinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare 4 , 00271 Helsinki
- Finland 4 , 00271 Helsinki
| | - Minna Laine
- Department of Pediatric Neurology, Helsinki University Hospital and University of Helsinki 9 , 00029 Helsinki , Finland
| | - Risto Lapatto
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital 10 , 00029 Helsinki , Finland
| | - Päivi Myllynen
- Department of Clinical Chemistry, Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu and Northern Finland Laboratory Centre NordLab, Oulu University Hospital 11 , 90029 Oulu , Finland
| | - Harri Niinikoski
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku 12 , 20014 Turku , Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku 13 , 20014 Turku , Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital 14 , 20014 Turku , Finland
- Department of Pediatrics, Turku University Hospital 15 , 20014 Turku , Finland
| | - Elisa Rahikkala
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 2 , 90014 Oulu , Finland
- Department of Clinical Genetics, Oulu University Hospital 16 , 90029 Oulu , Finland
| | - Anu Suomalainen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki 8 , 00014 Helsinki , Finland
- HUS Diagnostics, Helsinki University Hospital 17 , 00014 Helsinki , Finland
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen 18 , D-35392 Giessen , Germany
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki 8 , 00014 Helsinki , Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki 19 , 00014 Helsinki , Finland
| | - Päivi Vieira
- Children and Adolescents, Oulu University Hospital 1 , 90029 Oulu , Finland
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 2 , 90014 Oulu , Finland
| | - Tomas Zarybnicky
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki 8 , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki 20 , 00014 Helsinki , Finland
| | - Petra Sipilä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku 12 , 20014 Turku , Finland
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku 21 , 20014 Turku , Finland
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki 8 , 00014 Helsinki , Finland
- GM-Unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki 22 , 00014 Helsinki , Finland
| | - Reetta Hinttala
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 2 , 90014 Oulu , Finland
- Biocenter Oulu, University of Oulu 5 , 90014 Oulu , Finland
| |
Collapse
|
5
|
Berardo A, Engelstad K, Hirano M. Advances in Thymidine Kinase 2 Deficiency: Clinical Aspects, Translational Progress, and Emerging Therapies. J Neuromuscul Dis 2022; 9:225-235. [PMID: 35094997 PMCID: PMC9028656 DOI: 10.3233/jnd-210786] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Defects in the replication, maintenance, and repair of mitochondrial DNA (mtDNA) constitute a growing and genetically heterogeneous group of mitochondrial disorders. Multiple genes participate in these processes, including thymidine kinase 2 (TK2) encoding the mitochondrial matrix protein TK2, a critical component of the mitochondrial nucleotide salvage pathway. TK2 deficiency (TK2d) causes mtDNA depletion, multiple deletions, or both, which manifest predominantly as mitochondrial myopathy. A wide clinical spectrum phenotype includes a severe, rapidly progressive, early onset form (median survival: < 2 years); a less severe childhood-onset form; and a late-onset form with a variably slower rate of progression. Clinical presentation typically includes progressive weakness of limb, neck, facial, oropharyngeal, and respiratory muscle, whereas limb myopathy with ptosis, ophthalmoparesis, and respiratory involvement is more common in the late-onset form. Deoxynucleoside monophosphates and deoxynucleosides that can bypass the TK2 enzyme defect have been assessed in a mouse model, as well as under open-label compassionate use (expanded access) in TK2d patients, indicating clinical efficacy with a favorable side-effect profile. This treatment is currently undergoing testing in clinical trials intended to support approval in the US and European Union (EU). In the early expanded access program, growth differentiation factor 15 (GDF-15) appears to be a useful biomarker that correlates with therapeutic response. With the advent of a specific treatment and given the high morbidity and mortality associated with TK2d, clinicians need to know how to recognize and diagnose this disorder. Here, we summarize translational research about this rare condition emphasizing clinical aspects.
Collapse
Affiliation(s)
- Andres Berardo
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kristin Engelstad
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Preferent Diaphragmatic Involvement in TK2 Deficiency: An Autopsy Case Study. Int J Mol Sci 2021; 22:ijms22115598. [PMID: 34070501 PMCID: PMC8199166 DOI: 10.3390/ijms22115598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
Our goal was to analyze postmortem tissues of an adult patient with late-onset thymidine kinase 2 (TK2) deficiency who died of respiratory failure. Compared with control tissues, we found a low mtDNA content in the patient’s skeletal muscle, liver, kidney, small intestine, and particularly in the diaphragm, whereas heart and brain tissue showed normal mtDNA levels. mtDNA deletions were present in skeletal muscle and diaphragm. All tissues showed a low content of OXPHOS subunits, and this was especially evident in diaphragm, which also exhibited an abnormal protein profile, expression of non-muscular β-actin and loss of GAPDH and α-actin. MALDI-TOF/TOF mass spectrometry analysis demonstrated the loss of the enzyme fructose-bisphosphate aldolase, and enrichment for serum albumin in the patient’s diaphragm tissue. The TK2-deficient patient’s diaphragm showed a more profound loss of OXPHOS proteins, with lower levels of catalase, peroxiredoxin 6, cytosolic superoxide dismutase, p62 and the catalytic subunits of proteasome than diaphragms of ventilated controls. Strong overexpression of TK1 was observed in all tissues of the patient with diaphragm showing the highest levels. TK2 deficiency induces a more profound dysfunction of the diaphragm than of other tissues, which manifests as loss of OXPHOS and glycolytic proteins, sarcomeric components, antioxidants and overactivation of the TK1 salvage pathway that is not attributed to mechanical ventilation.
Collapse
|
7
|
Saneto RP. Mitochondrial diseases: expanding the diagnosis in the era of genetic testing. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2020; 4:384-428. [PMID: 33426505 PMCID: PMC7791531 DOI: 10.20517/jtgg.2020.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are clinically and genetically heterogeneous. These diseases were initially described a little over three decades ago. Limited diagnostic tools created disease descriptions based on clinical, biochemical analytes, neuroimaging, and muscle biopsy findings. This diagnostic mechanism continued to evolve detection of inherited oxidative phosphorylation disorders and expanded discovery of mitochondrial physiology over the next two decades. Limited genetic testing hampered the definitive diagnostic identification and breadth of diseases. Over the last decade, the development and incorporation of massive parallel sequencing has identified approximately 300 genes involved in mitochondrial disease. Gene testing has enlarged our understanding of how genetic defects lead to cellular dysfunction and disease. These findings have expanded the understanding of how mechanisms of mitochondrial physiology can induce dysfunction and disease, but the complete collection of disease-causing gene variants remains incomplete. This article reviews the developments in disease gene discovery and the incorporation of gene findings with mitochondrial physiology. This understanding is critical to the development of targeted therapies.
Collapse
Affiliation(s)
- Russell P. Saneto
- Center for Integrative Brain Research, Neuroscience Institute, Seattle, WA 98101, USA
- Department of Neurology/Division of Pediatric Neurology, Seattle Children’s Hospital/University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
8
|
Chinopoulos C. Quantification of mitochondrial DNA from peripheral tissues: Limitations in predicting the severity of neurometabolic disorders and proposal of a novel diagnostic test. Mol Aspects Med 2019; 71:100834. [PMID: 31740079 DOI: 10.1016/j.mam.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 11/25/2022]
Abstract
Neurometabolic disorders stem from errors in metabolic processes yielding a neurological phenotype. A subset of those disorders encompasses mitochondrial abnormalities partially due to mitochondrial DNA (mtDNA) depletion. mtDNA depletion can be attributed to inheritance, spontaneous mutations or acquired from drug-related toxicities. In the armamentarium of diagnostic procedures, mtDNA quantification is a standard for disease classification. However, alterations in mtDNA obtained from peripheral tissues such as skin fibroblasts and blood cells do not often reflect the severity of the affected organ, in this case, the brain. The purpose of this review is to highlight the pitfalls of quantitating mtDNA from peripheral -and not limited to-tissues for diagnosing patients suffering from a variety of mtDNA depletion syndromes exhibiting neurologic abnormalities. In lieu, a qualitative test of mitochondrial substrate-level phosphorylation -even from peripheral tissues-reflecting the ability of mitochondria to rely on glutaminolysis in the presence of respiratory chain defects is proposed as a novel diagnostic assessment of mitochondrial functionality.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Tuzolto St. 37-47, Budapest, 1094, Hungary.
| |
Collapse
|
9
|
Blázquez-Bermejo C, Molina-Granada D, Vila-Julià F, Jiménez-Heis D, Zhou X, Torres-Torronteras J, Karlsson A, Martí R, Cámara Y. Age-related metabolic changes limit efficacy of deoxynucleoside-based therapy in thymidine kinase 2-deficient mice. EBioMedicine 2019; 46:342-355. [PMID: 31351931 PMCID: PMC6711114 DOI: 10.1016/j.ebiom.2019.07.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023] Open
Abstract
Background Thymidine kinase 2 (TK2) catalyses the phosphorylation of deoxythymidine (dThd) and deoxycytidine (dCtd) within mitochondria. TK2 deficiency leads to mtDNA depletion or accumulation of multiple deletions. In patients, TK2 mutations typically manifest as a rapidly progressive myopathy with infantile onset, leading to respiratory insufficiency and encephalopathy in the most severe clinical presentations. TK2-deficient mice develop the most severe form of the disease and die at average postnatal day 16. dThd+dCtd administration delayed disease progression and expanded lifespan of a knockin murine model of the disease. Methods We daily administered TK2 knockout mice (Tk2KO) from postnatal day 4 with equimolar doses of dThd+dCtd, dTMP+dCMP, dThd alone or dCtd alone. We monitored body weight and survival and studied different variables at 12 or 29 days of age. We determined metabolite levels in plasma and target tissues, mtDNA copy number in tissues, and the expression and activities of enzymes with a relevant role in mitochondrial dNTP anabolism or catabolism. Findings dThd+dCtd treatment extended average lifespan of Tk2KO mice from 16 to 34 days, attenuated growth retardation, and rescued mtDNA depletion in skeletal muscle and other target tissues of 12-day-old mice, except in brain. However, the treatment was ineffective in 29-day-old mice that still died prematurely. Bioavailability of dThd and dCtd markedly decreased during mouse development. Activity of enzymes catabolizing dThd and dCtd increased with age in small intestine. Conversely, the activity of the anabolic enzymes decreased in target tissues during mouse development. We also found that administration of dThd alone had the same impact on survival to that of dThd+dCtd, whereas dCtd alone had no influence on lifespan. Interpretation dThd+dCtd treatment recruits alternative cytosolic salvage pathways for dNTP synthesis, suggesting that this therapy would be of benefit for any Tk2 mutation. dThd accounts for the therapeutic effect of the combined treatment in mice. During the first weeks after birth, mice experience marked tissue-specific metabolic regulations and ontogenetic changes in dNTP metabolism-related enzymes that limit therapeutic efficacy to early developmental stages. Fund This study was funded by grants from the Spanish Ministry of Industry, Economy and Competitiveness, the Spanish Instituto de Salud Carlos III, the Fundación Inocente, Inocente, AFM Téléthon and the Generalitat de Catalunya. The disclosed funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Cora Blázquez-Bermejo
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - David Molina-Granada
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ferran Vila-Julià
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Jiménez-Heis
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xiaoshan Zhou
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Domínguez-González C, Madruga-Garrido M, Mavillard F, Garone C, Aguirre-Rodríguez FJ, Donati MA, Kleinsteuber K, Martí I, Martín-Hernández E, Morealejo-Aycinena JP, Munell F, Nascimento A, Kalko SG, Sardina MD, Álvarez Del Vayo C, Serrano O, Long Y, Tu Y, Levin B, Thompson JLP, Engelstad K, Uddin J, Torres-Torronteras J, Jimenez-Mallebrera C, Martí R, Paradas C, Hirano M. Deoxynucleoside Therapy for Thymidine Kinase 2-Deficient Myopathy. Ann Neurol 2019; 86:293-303. [PMID: 31125140 DOI: 10.1002/ana.25506] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Thymidine kinase 2, encoded by the nuclear gene TK2, is required for mitochondrial DNA maintenance. Autosomal recessive TK2 mutations cause depletion and multiple deletions of mtDNA that manifest predominantly as a myopathy usually beginning in childhood and progressing relentlessly. We investigated the safety and efficacy of deoxynucleoside monophosphate and deoxynucleoside therapies. METHODS We administered deoxynucleoside monophosphates and deoxynucleoside to 16 TK2-deficient patients under a compassionate use program. RESULTS In 5 patients with early onset and severe disease, survival and motor functions were better than historically untreated patients. In 11 childhood and adult onset patients, clinical measures stabilized or improved. Three of 8 patients who were nonambulatory at baseline gained the ability to walk on therapy; 4 of 5 patients who required enteric nutrition were able to discontinue feeding tube use; and 1 of 9 patients who required mechanical ventilation became able to breathe independently. In motor functional scales, improvements were observed in the 6-minute walk test performance in 7 of 8 subjects, Egen Klassifikation in 2 of 3, and North Star Ambulatory Assessment in all 5 tested. Baseline elevated serum growth differentiation factor 15 levels decreased with treatment in all 7 patients tested. A side effect observed in 8 of the 16 patients was dose-dependent diarrhea, which did not require withdrawal of treatment. Among 12 other TK2 patients treated with deoxynucleoside, 2 adults developed elevated liver enzymes that normalized following discontinuation of therapy. INTERPRETATION This open-label study indicates favorable side effect profiles and clinical efficacy of deoxynucleoside monophosphate and deoxynucleoside therapies for TK2 deficiency. ANN NEUROL 2019;86:293-303.
Collapse
Affiliation(s)
- Cristina Domínguez-González
- Neuromuscular Disorders Unit, Neurology Department, Hospital 12 de Octubre, Madrid, Spain.,Instituto de Investigación i + 12, Hospital 12 de Octubre, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Marcos Madruga-Garrido
- Neuromuscular Disorders Unit, Pediatric Neurology Department, Instituto de Biomedicina de Sevilla, Hospital U. Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, Seville, Spain
| | - Fabiola Mavillard
- Neuromuscular Disorders Unit, Neurology Department, Instituto de Biomedicina de Sevilla, Hospital U. Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, Seville, Spain.,Center for Biomedical Network Research on Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Caterina Garone
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | | | - M Alice Donati
- Metabolic and Neuromuscular Unit, Meyer Hospital, Florence, Italy
| | - Karin Kleinsteuber
- Pediatric Neurology Department, Faculty of Medicine, University of Chile, Las Condes Clinic, Santiago, Chile
| | - Itxaso Martí
- Pediatric Neurology Department, Donostia University Hospital, San Sebastian, Spain
| | - Elena Martín-Hernández
- Instituto de Investigación i + 12, Hospital 12 de Octubre, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Hereditary Metabolic and Mitochondrial Disorders Unit, Pediatric Department, October 12 Hospital, Madrid, Spain
| | | | - Francina Munell
- Pediatric Department, Vall d'Hebron Hospital, Barcelona, Spain
| | - Andrés Nascimento
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Neuromuscular Unit, Neurology Department, Sant Joan de Déu Research Institute, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Susana G Kalko
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Neuromuscular Unit, Neurology Department, Sant Joan de Déu Research Institute, Sant Joan de Déu Hospital, Barcelona, Spain
| | - M Dolores Sardina
- Pediatric Neurology Department, Badajoz Hospital Complex, Badajoz, Spain
| | - Concepcion Álvarez Del Vayo
- Center for Biomedical Network Research on Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain.,Pharmacy Department, Virgin of el Rocío University Hospital, Seville, Spain
| | - Olga Serrano
- Pharmacy Department, October 12 Hospital, Madrid, Spain
| | - Yuelin Long
- Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York, NY
| | - Yuqi Tu
- Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York, NY
| | - Bruce Levin
- Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York, NY
| | - John L P Thompson
- Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York, NY
| | - Kristen Engelstad
- Neurology Department, H. Houston Merritt Center, Columbia University Medical Center, New York, NY
| | - Jasim Uddin
- Neurology Department, H. Houston Merritt Center, Columbia University Medical Center, New York, NY
| | - Javier Torres-Torronteras
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Cecilia Jimenez-Mallebrera
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Neuromuscular Unit, Neurology Department, Sant Joan de Déu Research Institute, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Ramon Martí
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Carmen Paradas
- Neuromuscular Disorders Unit, Neurology Department, Instituto de Biomedicina de Sevilla, Hospital U. Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, Seville, Spain.,Center for Biomedical Network Research on Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Michio Hirano
- Neurology Department, H. Houston Merritt Center, Columbia University Medical Center, New York, NY
| |
Collapse
|
11
|
Finsterer J, Scorza FA, Fiorini AC, de Almeida ACG, Scorza CA. TK2-related mitochondrial disorder is not restricted to the skeletal muscle. Mol Genet Metab Rep 2018; 16:13-14. [PMID: 29988795 PMCID: PMC6031889 DOI: 10.1016/j.ymgmr.2018.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 11/30/2022] Open
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Veterinary University of Vienna, Vienna, Austria
| | - Fulvio A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil.,Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Minas Gerais, Brazil
| | - Ana C Fiorini
- Programa de Estudos Pós-Graduado em Fonoaudiologia, Pontifícia Universidade Católica de São Paulo (PUC-SP), Departamento de Fonoaudiologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Antonio-Carlos G de Almeida
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Minas Gerais, Brazil
| | - Carla A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| |
Collapse
|
12
|
Wang J, Kim E, Dai H, Stefans V, Vogel H, Al Jasmi F, Schrier Vergano SA, Castro D, Bernes S, Bhambhani V, Long C, El-Hattab AW, Wong LJ. Clinical and molecular spectrum of thymidine kinase 2-related mtDNA maintenance defect. Mol Genet Metab 2018; 124:124-130. [PMID: 29735374 DOI: 10.1016/j.ymgme.2018.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 11/29/2022]
Abstract
Mitochondrial DNA maintenance (mtDNA) defects have a wide range of causes, each with a set of phenotypes that overlap with many other neurological or muscular diseases. Clinicians face the challenge of narrowing down a long list of differential diagnosis when encountered with non-specific neuromuscular symptoms. Biallelic pathogenic variants in the Thymidine Kinase 2 (TK2) gene cause a myopathic form of mitochondrial DNA maintenance defect. Since the first description in 2001, there have been 71 patients reported with 42 unique pathogenic variants. Here we are reporting 11 new cases with 5 novel pathogenic variants. We describe and analyze a total of 82 cases with 47 unique TK2 pathogenic variants in effort to formulate a comprehensive molecular and clinical spectrum of TK2-related mtDNA maintenance disorders.
Collapse
Affiliation(s)
- Julia Wang
- Medical Scientist Training Program, Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States.
| | - Emily Kim
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Honzheng Dai
- Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Vikki Stefans
- UAMS College of Medicine, Arkansas Children's Hospital, 1 Children's Way, Little Rock, AR 72202, United States
| | - Hannes Vogel
- Pathology, Stanford University School of Medicine, R241 Edwards Building, 300 Pasteur Drive, Palo Alto, CA 94305, United States
| | - Fatma Al Jasmi
- Division of Clinical Genetics and Metabolic Disorders, Pediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Samantha A Schrier Vergano
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, 601 Children's Lane, Norfolk, VA 23507, United States
| | - Diana Castro
- Department of Pediatric, Neurology and Neurotherapeutics, Children's Health Dallas, University of Texas Southwestern, 2350 N Stemmons Freeway, Dallas, TX 75207, United States
| | - Saunder Bernes
- Department of Neurology, Phoenix Children's Hospital, Barrows Neurological Institute, 1919 East Thomas Road, Phoenix, AZ 85016, United States
| | - Vikas Bhambhani
- Genomics Medicine Program, Children's Hospital Minnesota, 2525 Chicago Ave S, Minneapolis, MN 55404, United States
| | - Catherine Long
- Genomics Medicine Program, Children's Hospital Minnesota, 2525 Chicago Ave S, Minneapolis, MN 55404, United States
| | - Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Pediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Lee-Jun Wong
- Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States.
| |
Collapse
|
13
|
Garone C, Taylor RW, Nascimento A, Poulton J, Fratter C, Domínguez-González C, Evans JC, Loos M, Isohanni P, Suomalainen A, Ram D, Hughes MI, McFarland R, Barca E, Lopez Gomez C, Jayawant S, Thomas ND, Manzur AY, Kleinsteuber K, Martin MA, Kerr T, Gorman GS, Sommerville EW, Chinnery PF, Hofer M, Karch C, Ralph J, Cámara Y, Madruga-Garrido M, Domínguez-Carral J, Ortez C, Emperador S, Montoya J, Chakrapani A, Kriger JF, Schoenaker R, Levin B, Thompson JLP, Long Y, Rahman S, Donati MA, DiMauro S, Hirano M. Retrospective natural history of thymidine kinase 2 deficiency. J Med Genet 2018; 55:515-521. [PMID: 29602790 PMCID: PMC6073909 DOI: 10.1136/jmedgenet-2017-105012] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/02/2018] [Accepted: 03/11/2018] [Indexed: 12/21/2022]
Abstract
Background Thymine kinase 2 (TK2) is a mitochondrial matrix protein encoded in nuclear DNA and phosphorylates the pyrimidine nucleosides: thymidine and deoxycytidine. Autosomal recessive TK2 mutations cause a spectrum of disease from infantile onset to adult onset manifesting primarily as myopathy. Objective To perform a retrospective natural history study of a large cohort of patients with TK2 deficiency. Methods The study was conducted by 42 investigators across 31 academic medical centres. Results We identified 92 patients with genetically confirmed diagnoses of TK2 deficiency: 67 from literature review and 25 unreported cases. Based on clinical and molecular genetics findings, we recognised three phenotypes with divergent survival: (1) infantile-onset myopathy (42.4%) with severe mitochondrial DNA (mtDNA) depletion, frequent neurological involvement and rapid progression to early mortality (median post-onset survival (POS) 1.00, CI 0.58 to 2.33 years); (2) childhood-onset myopathy (40.2%) with mtDNA depletion, moderate-to-severe progression of generalised weakness and median POS at least 13 years; and (3) late-onset myopathy (17.4%) with mild limb weakness at onset and slow progression to respiratory insufficiency with median POS of 23 years. Ophthalmoparesis and facial weakness are frequent in adults. Muscle biopsies show multiple mtDNA deletions often with mtDNA depletion. Conclusions In TK2 deficiency, age at onset, rate of weakness progression and POS are important variables that define three clinical subtypes. Nervous system involvement often complicates the clinical course of the infantile-onset form while extraocular muscle and facial involvement are characteristic of the late-onset form. Our observations provide essential information for planning future clinical trials in this disorder.
Collapse
Affiliation(s)
- Caterina Garone
- Department of Neurology, Columbia University Medical Center, New York City, New York, USA.,MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Andrés Nascimento
- Neuromuscular Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Joanna Poulton
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - Carl Fratter
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Cristina Domínguez-González
- Neuromuscular Unit, Hospital Universitario 12 de Octubre, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Julie C Evans
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Mariana Loos
- Neurology Department, Hospital de Pediatría 'Prof. Dr JP Garrahan', Buenos Aires, Argentina
| | - Pirjo Isohanni
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Department of Child Neurology, Children's Hospital, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Anu Suomalainen
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland.,Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Dipak Ram
- Department of Paediatric Neurology, Royal Manchester Children's Hospital, Manchester, UK
| | - M Imelda Hughes
- Department of Paediatric Neurology, Royal Manchester Children's Hospital, Manchester, UK
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Emanuele Barca
- Department of Neurology, Columbia University Medical Center, New York City, New York, USA.,UOC Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Carlos Lopez Gomez
- Department of Neurology, Columbia University Medical Center, New York City, New York, USA
| | - Sandeep Jayawant
- Paediatric Neurology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Neil D Thomas
- Paediatric Neurology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Adnan Y Manzur
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Karin Kleinsteuber
- Pediatric Neurology, Faculty of Medicine, Universidad de Chile, Clínica Las Condes, Santiago, Chile
| | - Miguel A Martin
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Timothy Kerr
- Paediatric Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Grainne S Gorman
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Ewen W Sommerville
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick F Chinnery
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK.,Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Monika Hofer
- Department of Neuropathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christoph Karch
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey Ralph
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Barcelona, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Marcos Madruga-Garrido
- Sección de Neuropediatría, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Seville, Spain
| | - Jana Domínguez-Carral
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, CIBERER, ISCIII, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Sonia Emperador
- Department of Biochemistry and Molecular Biology, University of Zaragoza-CIBERER-Instituto de investigaciones Sanitarias de Aragón, Zaragoza, Spain
| | - Julio Montoya
- Department of Biochemistry and Molecular Biology, University of Zaragoza-CIBERER-Instituto de investigaciones Sanitarias de Aragón, Zaragoza, Spain
| | - Anupam Chakrapani
- Metabolic Unit, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Joshua F Kriger
- Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York City, New York, USA
| | - Robert Schoenaker
- Department of Neurology, Columbia University Medical Center, New York City, New York, USA
| | - Bruce Levin
- Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York City, New York, USA
| | - John L P Thompson
- Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York City, New York, USA
| | - Yuelin Long
- Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York City, New York, USA
| | - Shamima Rahman
- Metabolic Unit, Great Ormond Street Hospital NHS Foundation Trust, London, UK.,Mitochondrial Research Group, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, New York City, New York, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York City, New York, USA
| |
Collapse
|
14
|
Abstract
Mitochondria are intracellular organelles responsible for adenosine triphosphate production. The strict control of intracellular energy needs require proper mitochondrial functioning. The mitochondria are under dual controls of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mitochondrial dysfunction can arise from changes in either mtDNA or nDNA genes regulating function. There are an estimated ∼1500 proteins in the mitoproteome, whereas the mtDNA genome has 37 proteins. There are, to date, ∼275 genes shown to give rise to disease. The unique physiology of mitochondrial functioning contributes to diverse gene expression. The onset and range of phenotypic expression of disease is diverse, with onset from neonatal to seventh decade of life. The range of dysfunction is heterogeneous, ranging from single organ to multisystem involvement. The complexity of disease expression has severely limited gene discovery. Combining phenotypes with improvements in gene sequencing strategies are improving the diagnosis process. This chapter focuses on the interplay of the unique physiology and gene discovery in the current knowledge of genetically derived mitochondrial disease.
Collapse
Affiliation(s)
- Russell P Saneto
- Seattle Children's Hospital/University of Washington, Seattle, WA, United States.
| |
Collapse
|
15
|
Thymidine kinase 2 and alanyl-tRNA synthetase 2 deficiencies cause lethal mitochondrial cardiomyopathy: case reports and review of the literature. Cardiol Young 2017; 27:936-944. [PMID: 27839525 DOI: 10.1017/s1047951116001876] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cardiomyopathy is a common manifestation in neonates and infants with mitochondrial disorders. In this study, we report two cases manifesting with fatal mitochondrial hypertrophic cardiomyopathy, which include the third known patient with thymidine kinase 2 deficiency and the ninth patient with alanyl-tRNA synthetase 2 deficiency. The girl with thymidine kinase 2 deficiency had hypertrophic cardiomyopathy together with regression of gross motor development at the age of 13 months. Neurological symptoms and cardiac involvement progressed into severe myopathy, psychomotor arrest, and cardiorespiratory failure at the age of 22 months. The imaging methods and autoptic studies proved that she suffered from unique findings of leucoencephalopathy, severe, mainly cerebellar neuronal degeneration, and hepatic steatosis. The girl with alanyl-tRNA synthetase 2 deficiency presented with cardiac failure and underlying hypertrophic cardiomyopathy within 12 hours of life and subsequently died at 9 weeks of age. Muscle biopsy analyses demonstrated respiratory chain complex I and IV deficiencies, and histological evaluation revealed massive mitochondrial accumulation and cytochrome c oxidase-negative fibres in both cases. Exome sequencing in the first case revealed compound heterozygozity for one novel c.209T>C and one previously published c.416C>T mutation in the TK2 gene, whereas in the second case homozygozity for the previously described mutation c.1774C>T in the AARS2 gene was determined. The thymidine kinase 2 mutations resulted in severe mitochondrial DNA depletion (to 12% of controls) in the muscle. We present, for the first time, severe leucoencephalopathy and hepatic steatosis in a patient with thymidine kinase 2 deficiency and the finding of a ragged red fibre-like image in the muscle biopsy in a patient with alanyl-tRNA synthetase 2 deficiency.
Collapse
|
16
|
Nascimento A, Ortez C, Jou C, O'Callaghan M, Ramos F, Garcia-Cazorla À. Neuromuscular Manifestations in Mitochondrial Diseases in Children. Semin Pediatr Neurol 2016; 23:290-305. [PMID: 28284391 DOI: 10.1016/j.spen.2016.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mitochondrial diseases exhibit significant clinical and genetic heterogeneity. Mitochondria are highly dynamic organelles that are the major contributor of adenosine triphosphate, through oxidative phosphorylation. These disorders may be developed at any age, with isolated or multiple system involvement, and in any pattern of inheritance. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle and peripheral nerves, causing exercise intolerance, cramps, recurrent myoglobinuria, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis), progressive external ophthalmoplegia, peripheral ataxia, and peripheral polyneuropathy. This review describes the main neuromuscular symptomatology through different syndromes reported in the literature and from our experience. We want to highlight the importance of searching for the "clue clinical signs" associated with inheritance pattern as key elements to guide the complex diagnosis process and genetic studies in mitochondrial diseases.
Collapse
Affiliation(s)
- Andrés Nascimento
- Department of Neurology, Neuromuscular Units, Hospital Sant Joan de Déu, Instituto de Salud Carlos III, Barcelona, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), Institute of Pediatric Research Sant Joan de Déu, Madrid, Spain.
| | - Carlos Ortez
- Department of Neurology, Neuromuscular Units, Hospital Sant Joan de Déu, Instituto de Salud Carlos III, Barcelona, Spain
| | - Cristina Jou
- Department of Neurology, Neuromuscular Units, Hospital Sant Joan de Déu, Instituto de Salud Carlos III, Barcelona, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), Institute of Pediatric Research Sant Joan de Déu, Madrid, Spain
| | - Mar O'Callaghan
- Center for Biomedical Research on Rare Diseases (CIBERER), Institute of Pediatric Research Sant Joan de Déu, Madrid, Spain; Department of Neurology, Neurometabolic Units, Hospital Sant Joan de Déu, Instituto de Salud Carlos III, Barcelona, Spain
| | - Federico Ramos
- Center for Biomedical Research on Rare Diseases (CIBERER), Institute of Pediatric Research Sant Joan de Déu, Madrid, Spain; Department of Neurology, Neurometabolic Units, Hospital Sant Joan de Déu, Instituto de Salud Carlos III, Barcelona, Spain
| | - Àngels Garcia-Cazorla
- Center for Biomedical Research on Rare Diseases (CIBERER), Institute of Pediatric Research Sant Joan de Déu, Madrid, Spain; Department of Neurology, Neurometabolic Units, Hospital Sant Joan de Déu, Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
17
|
Zsurka G, Kunz WS. Mitochondrial dysfunction and seizures: the neuronal energy crisis. Lancet Neurol 2015; 14:956-66. [PMID: 26293567 DOI: 10.1016/s1474-4422(15)00148-9] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/19/2015] [Accepted: 06/24/2015] [Indexed: 12/21/2022]
Abstract
Seizures are often the key manifestation of neurological diseases caused by pathogenic mutations in 169 of the genes that have so far been identified to affect mitochondrial function. Mitochondria are the main producers of ATP needed for normal electrical activities of neurons and synaptic transmission. Additionally, they have a central role in neurotransmitter synthesis, calcium homoeostasis, redox signalling, production and modulation of reactive oxygen species, and neuronal death. Hypotheses link mitochondrial failure to seizure generation through changes in calcium homoeostasis, oxidation of ion channels and neurotransmitter transporters by reactive oxygen species, a decrease in neuronal plasma membrane potential, and reduced network inhibition due to interneuronal dysfunction. Seizures, irrespective of their origin, represent an excessive acute energy demand in the brain. Accordingly, secondary mitochondrial dysfunction has been described in various epileptic disorders, including disorders that are mainly of non-mitochondrial origin. An understanding of the reciprocal relation between mitochondrial dysfunction and epilepsy is crucial to select appropriate anticonvulsant treatment and has the potential to open up new therapeutic approaches in the subset of epileptic disorders caused by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Gábor Zsurka
- Division of Neurochemistry, Department of Epileptology, and Life & Brain Center, University of Bonn, Bonn, Germany
| | - Wolfram S Kunz
- Division of Neurochemistry, Department of Epileptology, and Life & Brain Center, University of Bonn, Bonn, Germany.
| |
Collapse
|
18
|
Bindu PS, Arvinda H, Taly AB, Govindaraju C, Sonam K, Chiplunkar S, Kumar R, Gayathri N, Bharath Mm S, Nagappa M, Sinha S, Khan NA, Govindaraj P, Nunia V, Paramasivam A, Thangaraj K. Magnetic resonance imaging correlates of genetically characterized patients with mitochondrial disorders: A study from south India. Mitochondrion 2015; 25:6-16. [PMID: 26341968 DOI: 10.1016/j.mito.2015.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/16/2015] [Accepted: 08/21/2015] [Indexed: 01/31/2023]
Abstract
BACKGROUND Large studies analyzing magnetic resonance imaging correlates in different genotypes of mitochondrial disorders are far and few. This study sought to analyze the pattern of magnetic resonance imaging findings in a cohort of genetically characterized patients with mitochondrial disorders. METHODS The study cohort included 33 patients (age range 18 months-50 years, M:F - 0.9:1) with definite mitochondrial disorders seen over a period of 8 yrs. (2006-2013). Their MR imaging findings were analyzed retrospectively. RESULTS The patients were classified into three groups according to the genotype, Mitochondrial point mutations and deletions (n=21), SURF1 mutations (n=7) and POLG1 (n=5). The major findings included cerebellar atrophy (51.4%), cerebral atrophy (24.2%), signal changes in basal ganglia (45.7%), brainstem (34.2%) & white matter (18.1%) and stroke like lesions (25.7%). Spinal cord imaging showed signal changes in 4/6 patients. Analysis of the special sequences revealed, basal ganglia mineralization (7/22), lactate peak on magnetic resonance spectrometry (10/15), and diffusion restriction (6/22). Follow-up images in six patients showed that the findings are dynamic. Comparison of the magnetic resonance imaging findings in the three groups showed that cerebral atrophy and cerebellar atrophy, cortical signal changes and basal ganglia mineralization were seen mostly in patients with mitochondrial mutation. Brainstem signal changes with or without striatal lesions were characteristically noted in SURF1 group. There was no consistent imaging pattern in POLG1 group. CONCLUSION Magnetic resonance imaging findings in mitochondrial disorders are heterogeneous. Definite differences were noted in the frequency of anatomical involvement in the three groups. Familiarity with the imaging findings in different genotypes of mitochondrial disorders along with careful analysis of the family history, clinical presentation, biochemical findings, histochemical and structural analysis will help the physician for targeted metabolic and genetic testing.
Collapse
Affiliation(s)
- Parayil Sankaran Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Hanumanthapura Arvinda
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Arun B Taly
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| | - Chikanna Govindaraju
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Kothari Sonam
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Shwetha Chiplunkar
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rakesh Kumar
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Srinivas Bharath Mm
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Nahid Akthar Khan
- Centre for Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Periyasamy Govindaraj
- Centre for Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Vandana Nunia
- Centre for Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Arumugam Paramasivam
- Centre for Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Kumarasamy Thangaraj
- Centre for Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| |
Collapse
|
19
|
Ripolone M, Ronchi D, Violano R, Vallejo D, Fagiolari G, Barca E, Lucchini V, Colombo I, Villa L, Berardinelli A, Balottin U, Morandi L, Mora M, Bordoni A, Fortunato F, Corti S, Parisi D, Toscano A, Sciacco M, DiMauro S, Comi GP, Moggio M. Impaired Muscle Mitochondrial Biogenesis and Myogenesis in Spinal Muscular Atrophy. JAMA Neurol 2015; 72:666-75. [PMID: 25844556 PMCID: PMC4944827 DOI: 10.1001/jamaneurol.2015.0178] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE The important depletion of mitochondrial DNA (mtDNA) and the general depression of mitochondrial respiratory chain complex levels (including complex II) have been confirmed, implying an increasing paucity of mitochondria in the muscle from patients with types I, II, and III spinal muscular atrophy (SMA-I, -II, and -III, respectively). OBJECTIVE To investigate mitochondrial dysfunction in a large series of muscle biopsy samples from patients with SMA. DESIGN, SETTING, AND PARTICIPANTS We studied quadriceps muscle samples from 24 patients with genetically documented SMA and paraspinal muscle samples from 3 patients with SMA-II undergoing surgery for scoliosis correction. Postmortem muscle samples were obtained from 1 additional patient. Age-matched controls consisted of muscle biopsy specimens from healthy children aged 1 to 3 years who had undergone analysis for suspected myopathy. Analyses were performed at the Neuromuscular Unit, Istituto di Ricovero e Cura a Carattere Scientifico Foundation Ca' Granda Ospedale Maggiore Policlinico-Milano, from April 2011 through January 2015. EXPOSURES We used histochemical, biochemical, and molecular techniques to examine the muscle samples. MAIN OUTCOMES AND MEASURES Respiratory chain activity and mitochondrial content. RESULTS Results of histochemical analysis revealed that cytochrome-c oxidase (COX) deficiency was more evident in muscle samples from patients with SMA-I and SMA-II. Residual activities for complexes I, II, and IV in muscles from patients with SMA-I were 41%, 27%, and 30%, respectively, compared with control samples (P < .005). Muscle mtDNA content and cytrate synthase activity were also reduced in all 3 SMA types (P < .05). We linked these alterations to downregulation of peroxisome proliferator-activated receptor coactivator 1α, the transcriptional activators nuclear respiratory factor 1 and nuclear respiratory factor 2, mitochondrial transcription factor A, and their downstream targets, implying depression of the entire mitochondrial biogenesis. Results of Western blot analysis confirmed the reduced levels of the respiratory chain subunits that included mitochondrially encoded COX1 (47.5%; P = .004), COX2 (32.4%; P < .001), COX4 (26.6%; P < .001), and succinate dehydrogenase complex subunit A (65.8%; P = .03) as well as the structural outer membrane mitochondrial porin (33.1%; P < .001). Conversely, the levels of expression of 3 myogenic regulatory factors-muscle-specific myogenic factor 5, myoblast determination 1, and myogenin-were higher in muscles from patients with SMA compared with muscles from age-matched controls (P < .05). CONCLUSIONS AND RELEVANCE Our results strongly support the conclusion that an altered regulation of myogenesis and a downregulated mitochondrial biogenesis contribute to pathologic change in the muscle of patients with SMA. Therapeutic strategies should aim at counteracting these changes.
Collapse
Affiliation(s)
- Michela Ripolone
- Neuromuscular Unit, Dino Ferrari Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Dario Ronchi
- Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Raffaella Violano
- Neuromuscular Unit, Dino Ferrari Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Dionis Vallejo
- Sien-Servicios Integrales en Neurologia, Universidad de Antioquia, Medellin, Colombia
| | - Gigliola Fagiolari
- Neuromuscular Unit, Dino Ferrari Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Emanuele Barca
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Valeria Lucchini
- Neuromuscular Unit, Dino Ferrari Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Irene Colombo
- Neuromuscular Unit, Dino Ferrari Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Luisa Villa
- Neuromuscular Unit, Dino Ferrari Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Angela Berardinelli
- Child Neuropsychiatry Unit, C. Mondino National Neurological Institute, Pavia, Italy
| | - Umberto Balottin
- Child Neuropsychiatry Unit, C. Mondino National Neurological Institute, Pavia, Italy
| | - Lucia Morandi
- Neuromuscular Diseases and Neuroimmunology Unit, Department of Clinical Neurosciences, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Department of Clinical Neurosciences, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Andreina Bordoni
- Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Francesco Fortunato
- Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Stefania Corti
- Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Daniela Parisi
- Reference Center for Rare Neuromuscular Disorders, Department of Neurosciences, University of Messina, Azienda Ospedaliera Universitaria Policlinico G. Martino, Messina, Italy
| | - Antonio Toscano
- Reference Center for Rare Neuromuscular Disorders, Department of Neurosciences, University of Messina, Azienda Ospedaliera Universitaria Policlinico G. Martino, Messina, Italy
| | - Monica Sciacco
- Neuromuscular Unit, Dino Ferrari Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Giacomo P Comi
- Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Maurizio Moggio
- Neuromuscular Unit, Dino Ferrari Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
20
|
Thomas M, Salpietro V, Canham N, Ruggieri M, Phadke R, Kinali M. Mitochondria DNA depletion syndrome in a infant with multiple congenital malformations, severe myopathy, and prolonged postoperative paralysis. J Child Neurol 2015; 30:654-8. [PMID: 24789116 DOI: 10.1177/0883073814532546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondrial DNA depletion syndromes are an important cause of mitochondrial cytopathies in both children and adults. We describe a newborn with multiple congenital malformations including a right aberrant subclavian artery and a trachea-oesophageal fistula in whom mitochondrial depletion syndrome was unmasked by perioperative muscle relaxation. After vecuronium infusion, the infant developed an irreversible postoperative paralysis, leading to death 32 days after surgery. The present case highlights (a) the clinical heterogeneity of mitochondrial depletion syndrome; (b) the importance of rigorous antemortem and postmortem investigations when the cause of a severe myopathy is uncertain; (c) the possible coexistence of mitochondrial depletion syndrome and congenital malformations as a result of a likely abnormal antenatal embryofetal development and (d) the importance of a careful anaesthetic management of children with mitochondrial depletion syndrome, which could be prone to complications related to the possible depressive effects on mitochondrial electron transport chain mediated by some anaesthetic agents.
Collapse
Affiliation(s)
- Mark Thomas
- Department of Neonatal Medicine, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom
| | - Vincenzo Salpietro
- Department of Paediatric Neurology, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom Department of Pediatrics, University of Messina, Messina, Italy
| | - Natalie Canham
- North West Thames Regional Genetics Service, Kennedy Galton Centre, North West London Hospitals NHS, Trust, Northwick Park Hospital, London, United Kingdom
| | - Martino Ruggieri
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Rahul Phadke
- Dubowitz Neuromuscular Centre, UCLH, London, United Kingdom
| | - Maria Kinali
- Department of Paediatric Neurology, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
21
|
Garone C, Garcia-Diaz B, Emmanuele V, Lopez LC, Tadesse S, Akman HO, Tanji K, Quinzii CM, Hirano M. Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency. EMBO Mol Med 2015; 6:1016-27. [PMID: 24968719 PMCID: PMC4154130 DOI: 10.15252/emmm.201404092] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autosomal recessive mutations in the thymidine kinase 2 gene (TK2) cause mitochondrial DNA depletion, multiple deletions, or both due to loss of TK2 enzyme activity and ensuing unbalanced deoxynucleotide triphosphate (dNTP) pools. To bypass Tk2 deficiency, we administered deoxycytidine and deoxythymidine monophosphates (dCMP+dTMP) to the Tk2 H126N (Tk2(-/-)) knock-in mouse model from postnatal day 4, when mutant mice are phenotypically normal, but biochemically affected. Assessment of 13-day-old Tk2(-/-) mice treated with dCMP+dTMP 200 mg/kg/day each (Tk2(-/-200dCMP/) (dTMP)) demonstrated that in mutant animals, the compounds raise dTTP concentrations, increase levels of mtDNA, ameliorate defects of mitochondrial respiratory chain enzymes, and significantly prolong their lifespan (34 days with treatment versus 13 days untreated). A second trial of dCMP+dTMP each at 400 mg/kg/day showed even greater phenotypic and biochemical improvements. In conclusion, dCMP/dTMP supplementation is the first effective pharmacologic treatment for Tk2 deficiency.
Collapse
Affiliation(s)
- Caterina Garone
- Department of Neurology, Columbia University Medical Center, New York, NY, USA Human Genetics Joint PhD Program, University of Bologna and Turin, Turin, Italy
| | - Beatriz Garcia-Diaz
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Valentina Emmanuele
- Department of Neurology, Columbia University Medical Center, New York, NY, USA Pediatric Clinic University of Genoa IRCCS G. Gaslini Institute, Genoa, Italy
| | - Luis C Lopez
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada Parque Tecnológico de Ciencias de la Salud, Armilla, Spain
| | - Saba Tadesse
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Hasan O Akman
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Kurenai Tanji
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
22
|
Iommarini L, Peralta S, Torraco A, Diaz F. Mitochondrial Diseases Part II: Mouse models of OXPHOS deficiencies caused by defects in regulatory factors and other components required for mitochondrial function. Mitochondrion 2015; 22:96-118. [PMID: 25640959 DOI: 10.1016/j.mito.2015.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 01/21/2023]
Abstract
Mitochondrial disorders are defined as defects that affect the oxidative phosphorylation system (OXPHOS). They are characterized by a heterogeneous array of clinical presentations due in part to a wide variety of factors required for proper function of the components of the OXPHOS system. There is no cure for these disorders owing to our poor knowledge of the pathogenic mechanisms of disease. To understand the mechanisms of human disease numerous mouse models have been developed in recent years. Here we summarize the features of several mouse models of mitochondrial diseases directly related to those factors affecting mtDNA maintenance, replication, transcription, translation as well as other proteins that are involved in mitochondrial dynamics and quality control which affect mitochondrial OXPHOS function without being intrinsic components of the system. We discuss how these models have contributed to our understanding of mitochondrial diseases and their pathogenic mechanisms.
Collapse
Affiliation(s)
- Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40128 Bologna, Italy.
| | - Susana Peralta
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | - Alessandra Torraco
- Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo, 15 - 00146, Rome, Italy.
| | - Francisca Diaz
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
23
|
Knierim E, Seelow D, Gill E, von Moers A, Schuelke M. Clinical application of whole exome sequencing reveals a novel compound heterozygous TK2-mutation in two brothers with rapidly progressive combined muscle-brain atrophy, axonal neuropathy, and status epilepticus. Mitochondrion 2014; 20:1-6. [PMID: 25446393 DOI: 10.1016/j.mito.2014.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 10/05/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
Mutations in several genes cause mtDNA depletion associated with encephalomyopathy. Due to phenotypic overlap, it is difficult to conclude from clinical phenotype to genetic defect. Here we report on two brothers who presented with rapid fatty muscle degeneration, axonal neuropathy, rapid loss of supratentorial white and gray matter, and status epilepticus. Whole exome sequencing coupled with 'identity-by-state' (IBS) analysis revealed a compound heterozygous missense mutation (p.M117V, p.A139V) in the thymidine kinase 2 (TK2) gene that segregated with the phenotype. Both mutations were located in the thymidine binding pouch of the enzyme. Residual mtDNA copy numbers in muscle were 8.5%, but normal in blood and fibroblasts. Our results broaden the clinical phenotype spectrum of TK2 mutations and promote WES as a useful method in the clinical setting for mutation detection, even in untypical cases. If two or more affected siblings from a non-consanguineous family can be investigated, IBS-analysis provides a powerful tool to narrow the number of disease candidates, similarly to autozygosity mapping in consanguineous families.
Collapse
Affiliation(s)
- Ellen Knierim
- NeuroCure Clinical Research Center (NCRC), Charité-Universitätsmedizin Berlin, Germany; Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Germany
| | - Dominik Seelow
- NeuroCure Clinical Research Center (NCRC), Charité-Universitätsmedizin Berlin, Germany; Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Germany
| | - Esther Gill
- NeuroCure Clinical Research Center (NCRC), Charité-Universitätsmedizin Berlin, Germany
| | | | - Markus Schuelke
- NeuroCure Clinical Research Center (NCRC), Charité-Universitätsmedizin Berlin, Germany; Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Germany.
| |
Collapse
|
24
|
Sun R, Wang L. Thymidine Kinase 2 Enzyme Kinetics Elucidate the Mechanism of Thymidine-Induced Mitochondrial DNA Depletion. Biochemistry 2014; 53:6142-50. [DOI: 10.1021/bi5006877] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ren Sun
- Department
of Anatomy, Physiology
and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, SE-750 07 Uppsala, Sweden
| | - Liya Wang
- Department
of Anatomy, Physiology
and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, SE-750 07 Uppsala, Sweden
| |
Collapse
|
25
|
Roos S, Lindgren U, Ehrstedt C, Moslemi A, Oldfors A. Mitochondrial DNA depletion in single fibers in a patient with novel TK2 mutations. Neuromuscul Disord 2014; 24:713-20. [DOI: 10.1016/j.nmd.2014.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/09/2014] [Accepted: 05/20/2014] [Indexed: 11/30/2022]
|
26
|
Mitochondrial encephalomyopathy and retinoblastoma explained by compound heterozygosity of SUCLA2 point mutation and 13q14 deletion. Eur J Hum Genet 2014; 23:325-30. [PMID: 24986829 DOI: 10.1038/ejhg.2014.128] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/26/2014] [Accepted: 05/30/2014] [Indexed: 11/08/2022] Open
Abstract
Mutations in SUCLA2, encoding the ß-subunit of succinyl-CoA synthetase of Krebs cycle, are one cause of mitochondrial DNA depletion syndrome. Patients have been reported to have severe progressive childhood-onset encephalomyopathy, and methylmalonic aciduria, often leading to death in childhood. We studied two families, with children manifesting with slowly progressive mitochondrial encephalomyopathy, hearing impairment and transient methylmalonic aciduria, without mtDNA depletion. The other family also showed dominant inheritance of bilateral retinoblastoma, which coexisted with mitochondrial encephalomyopathy in one patient. We found a variant in SUCLA2 leading to Asp333Gly change, homozygous in one patient and compound heterozygous in one. The latter patient also carried a deletion of 13q14 of the other allele, discovered with molecular karyotyping. The deletion spanned both SUCLA2 and RB1 gene regions, leading to manifestation of both mitochondrial disease and retinoblastoma. We made a homology model for human succinyl-CoA synthetase and used it for structure-function analysis of all reported pathogenic mutations in SUCLA2. On the basis of our model, all previously described mutations were predicted to result in decreased amounts of incorrectly assembled protein or disruption of ADP phosphorylation, explaining the severe early lethal manifestations. However, the Asp333Gly change was predicted to reduce the activity of the otherwise functional enzyme. On the basis of our findings, SUCLA2 mutations should be analyzed in patients with slowly progressive encephalomyopathy, even in the absence of methylmalonic aciduria or mitochondrial DNA depletion. In addition, an encephalomyopathy in a patient with retinoblastoma suggests mutations affecting SUCLA2.
Collapse
|
27
|
Chaussenot A, Paquis-Flucklinger V. An overview of neurological and neuromuscular signs in mitochondrial diseases. Rev Neurol (Paris) 2014; 170:323-38. [DOI: 10.1016/j.neurol.2014.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/24/2014] [Indexed: 01/10/2023]
|
28
|
Genetics of mitochondrial respiratory chain deficiencies. Rev Neurol (Paris) 2014; 170:309-22. [DOI: 10.1016/j.neurol.2013.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/27/2013] [Indexed: 01/21/2023]
|
29
|
Abstract
To highlight differences between early-onset and adult mitochondrial depletion syndromes (MDS) concerning etiology and genetic background, pathogenesis, phenotype, clinical presentation and their outcome. MDSs most frequently occur in neonates, infants, or juveniles and more rarely in adolescents or adults. Mutated genes phenotypically presenting with adult-onset MDS include POLG1, TK2, TyMP, RRM2B, or PEO1/twinkle. Adult MDS manifest similarly to early-onset MDS, as myopathy, encephalo-myopathy, hepato-cerebral syndrome, or with chronic progressive external ophthalmoplegia (CPEO), fatigue, or only minimal muscular manifestations. Diagnostic work-up or treatment is not at variance from early-onset cases. Histological examination of muscle may be normal but biochemical investigations may reveal multiple respiratory chain defects. The outcome appears to be more favorable in adult than in early-onset forms. Mitochondrial depletion syndromes is not only a condition of neonates, infants, or juveniles but rarely also occurs in adults, presenting with minimal manifestations or manifestations like in the early-onset forms. Outcome of adult-onset MDS appears more favorable than early-onset MDS.
Collapse
|
30
|
Chanprasert S, Wang J, Weng SW, Enns GM, Boué DR, Wong BL, Mendell JR, Perry DA, Sahenk Z, Craigen WJ, Alcala FJC, Pascual JM, Melancon S, Zhang VW, Scaglia F, Wong LJC. Molecular and clinical characterization of the myopathic form of mitochondrial DNA depletion syndrome caused by mutations in the thymidine kinase (TK2) gene. Mol Genet Metab 2013; 110:153-61. [PMID: 23932787 DOI: 10.1016/j.ymgme.2013.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/10/2013] [Accepted: 07/10/2013] [Indexed: 11/26/2022]
Abstract
Mitochondrial DNA (mtDNA) depletion syndromes (MDSs) are a clinically and molecularly heterogeneous group of mitochondrial cytopathies characterized by severe mtDNA copy number reduction in affected tissues. Clinically, MDSs are mainly categorized as myopathic, encephalomyopathic, hepatocerebral, or multi-systemic forms. To date, the myopathic form of MDS is mainly caused by mutations in the TK2 gene, which encodes thymidine kinase 2, the first and rate limiting step enzyme in the phosphorylation of pyrimidine nucleosides. We analyzed 9 unrelated families with 11 affected subjects exhibiting the myopathic form of MDS, by sequencing the TK2 gene. Twelve mutations including 4 novel mutations were detected in 9 families. Skeletal muscle specimens were available from 7 out of 11 subjects. Respiratory chain enzymatic activities in skeletal muscle were measured in 6 subjects, and enzymatic activities were reduced in 3 subjects. Quantitative analysis of mtDNA content in skeletal muscle was performed in 5 subjects, and marked mtDNA content reduction was observed in each. In addition, we outline the molecular and clinical characteristics of this syndrome in a total of 52 patients including those previously reported, and a total of 36 TK2 mutations are summarized. Clinically, hypotonia and proximal muscle weakness are the major phenotypes present in all subjects. In summary, our study expands the molecular and clinical spectrum associated with TK2 deficiency.
Collapse
Affiliation(s)
- Sirisak Chanprasert
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Finsterer J, Zarrouk Mahjoub S. Mitochondrial epilepsy in pediatric and adult patients. Acta Neurol Scand 2013; 128:141-52. [PMID: 23480231 DOI: 10.1111/ane.12122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2013] [Indexed: 01/04/2023]
Abstract
Few data are available about the difference between epilepsy in pediatric mitochondrial disorders (MIDs) and adult MIDs. This review focuses on the differences between pediatric and adult mitochondrial epilepsy with regard to seizure type, seizure frequency, and underlying MID. A literature search via Pubmed using the keywords 'mitochondrial', 'epilepsy', 'seizures', 'adult', 'pediatric', and all MID acronyms, was carried out. Frequency of mitochondrial epilepsy strongly depends on the type of MID included and is higher in pediatric compared to adult patients. In pediatric patients, mitochondrial epilepsy is more frequent due to mutations in nDNA-located than mtDNA-located genes and vice versa in adults. In pediatric patients, mitochondrial epilepsy is associated with a syndromic phenotype in half of the patients and in adults more frequently with a non-syndromic phenotype. In pediatric patients, focal seizures are more frequent than generalized seizures and vice versa in adults. Electro-clinical syndromes are more frequent in pediatric MIDs compared to adult MIDs. Differences between pediatric and adult mitochondrial epilepsy concern the onset of epilepsy, frequency of epilepsy, seizure type, type of electro-clinical syndrome, frequency of syndromic versus non-syndromic MIDs, and the outcome. To optimize management of mitochondrial epilepsy, it is essential to differentiate between early and late-onset forms.
Collapse
Affiliation(s)
| | - S. Zarrouk Mahjoub
- Laboratory of Biochemistry; UR ‘Human Nutrition and Metabolic Disorders’ Faculty of Medicine Monastir; Tunisia
| |
Collapse
|
32
|
Sarig O, Goldsher D, Nousbeck J, Fuchs-Telem D, Cohen-Katsenelson K, Iancu TC, Manov I, Saada A, Sprecher E, Mandel H. Infantile mitochondrial hepatopathy is a cardinal feature of MEGDEL syndrome (3-methylglutaconic aciduria type IV with sensorineural deafness, encephalopathy and Leigh-like syndrome) caused by novel mutations in SERAC1. Am J Med Genet A 2013; 161A:2204-15. [PMID: 23918762 DOI: 10.1002/ajmg.a.36059] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 04/19/2013] [Indexed: 12/17/2022]
Abstract
3-Methylglutaconic aciduria (3-MGCA) type IV is defined as a heterogeneous group of inborn errors featuring in common 3-MGCA and associated with primary mitochondrial dysfunction leading to a spectrum of multisystem conditions. We studied four patients who presented at birth with a clinical picture simulating a primary mitochondrial hepatic disorder consistent with the MEGDEL syndrome including 3-MGCA, sensorineural deafness, encephalopathy and a brain magnetic resonance imaging with signs of Leigh disease. All affected children displayed biochemical features consistent with mitochondrial OXPHOS dysfunction including hepatic mitochondrial DNA depletion in one patient. Homozygosity mapping identified a candidate locus on 6q25.2-6q26. Using whole exome sequencing, we identified two novel homozygous mutations in SERAC1 recently reported to harbor mutations in MEGDEL syndrome. Both mutations were found to lead to decreased or absent expression of SERAC1. The present findings indicate that infantile hepatopathy is a cardinal feature of MEGDEL syndrome. We thus propose to rename the disease MEGDHEL syndrome.
Collapse
Affiliation(s)
- Ofer Sarig
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Suomalainen A. Fibroblast growth factor 21: a novel biomarker for human muscle-manifesting mitochondrial disorders. ACTA ACUST UNITED AC 2013; 7:313-7. [PMID: 23782039 DOI: 10.1517/17530059.2013.812070] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Diagnosis of mitochondrial disorders is challenging, because of their highly variable clinical manifestations and age-of-onset and the shortage of specific diagnostic tools. Recent molecular studies have found that serum fibroblast growth factor 21 (FGF21) has potential to be a biomarker for muscle-manifesting mitochondrial disease, as well as for follow-up of disease progression and effect of intervention. AREAS COVERED Serum FGF21 as a biomarker is compared to conventional serum diagnostic tools for mitochondrial disorders. EXPERT OPINION Mitochondrial disorders are a large group of different progressive disorders, with the age-of-onset from neonatal life to late adulthood, and symptoms originating from any organ system but sharing an underlying cause of mitochondrial dysfunction. The prevalence of these disorders is about 1:2000, varying somewhat between different countries. Serum diagnostic tools include lactate, pyruvate, their ratio, creatine kinase and amino acids. However, none of these markers are both sensitive and specific. Increased levels of FGF21 cytokine were recently found in the serum of patients, who have a muscle-manifesting mitochondrial disease, thus providing a promising, novel, sensitive and specific biomarker for these disorders.
Collapse
Affiliation(s)
- Anu Suomalainen
- University of Helsinki, Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland.
| |
Collapse
|
34
|
Scheibye-Knudsen M, Croteau DL, Bohr VA. Mitochondrial deficiency in Cockayne syndrome. Mech Ageing Dev 2013; 134:275-83. [PMID: 23435289 PMCID: PMC3663877 DOI: 10.1016/j.mad.2013.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/24/2013] [Accepted: 02/08/2013] [Indexed: 01/05/2023]
Abstract
Cockayne syndrome is a rare inherited disorder characterized by accelerated aging, cachectic dwarfism and many other features. Recent work has implicated mitochondrial dysfunction in the pathogenesis of this disease. This is particularly interesting since mitochondrial deficiencies are believed to be important in the aging process. In this review, we discuss recent findings of mitochondrial pathology in Cockayne syndrome and suggest possible mechanisms for the mitochondrial dysfunction.
Collapse
Affiliation(s)
| | - Deborah L. Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, USA
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, USA
| |
Collapse
|
35
|
El-Hattab AW, Scaglia F. Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics 2013; 10:186-98. [PMID: 23385875 PMCID: PMC3625391 DOI: 10.1007/s13311-013-0177-6] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a genetically and clinically heterogeneous group of autosomal recessive disorders that are characterized by a severe reduction in mtDNA content leading to impaired energy production in affected tissues and organs. MDS are due to defects in mtDNA maintenance caused by mutations in nuclear genes that function in either mitochondrial nucleotide synthesis (TK2, SUCLA2, SUCLG1, RRM2B, DGUOK, and TYMP) or mtDNA replication (POLG and C10orf2). MDS are phenotypically heterogeneous and usually classified as myopathic, encephalomyopathic, hepatocerebral or neurogastrointestinal. Myopathic MDS, caused by mutations in TK2, usually present before the age of 2 years with hypotonia and muscle weakness. Encephalomyopathic MDS, caused by mutations in SUCLA2, SUCLG1, or RRM2B, typically present during infancy with hypotonia and pronounced neurological features. Hepatocerebral MDS, caused by mutations in DGUOK, MPV17, POLG, or C10orf2, commonly have an early-onset liver dysfunction and neurological involvement. Finally, TYMP mutations have been associated with mitochondrial neurogastrointestinal encephalopathy (MNGIE) disease that typically presents before the age of 20 years with progressive gastrointestinal dysmotility and peripheral neuropathy. Overall, MDS are severe disorders with poor prognosis in the majority of affected individuals. No efficacious therapy is available for any of these disorders. Affected individuals should have a comprehensive evaluation to assess the degree of involvement of different systems. Treatment is directed mainly toward providing symptomatic management. Nutritional modulation and cofactor supplementation may be beneficial. Liver transplantation remains controversial. Finally, stem cell transplantation in MNGIE disease shows promising results.
Collapse
Affiliation(s)
- Ayman W. El-Hattab
- />Division of Medical Genetics, Department of Pediatrics, The Children’s Hospital, King Fahad Medical City and Faculty of Medicine, King Saud bin Abdulaziz University for Health Science, Riyadh, Kingdom of Saudi Arabia
| | - Fernando Scaglia
- />Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX 77030 USA
| |
Collapse
|
36
|
Zhou X, Kannisto K, Curbo S, von Döbeln U, Hultenby K, Isetun S, Gåfvels M, Karlsson A. Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect β-oxidation. PLoS One 2013; 8:e58843. [PMID: 23505564 PMCID: PMC3591375 DOI: 10.1371/journal.pone.0058843] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/07/2013] [Indexed: 02/06/2023] Open
Abstract
Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2−/−) that progressively loses its mtDNA. The TK2−/− mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2−/− mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2−/− mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2−/− mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2−/− mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoshan Zhou
- Division of Clinical Microbiology F-68, Karolinska Institutet, Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Kristina Kannisto
- Division of Clinical Chemistry, C1-72, Karolinska Institutet, Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Sophie Curbo
- Division of Clinical Microbiology F-68, Karolinska Institutet, Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Sweden
- * E-mail:
| | - Ulrika von Döbeln
- Division of Metabolic Diseases, Karolinska Institutet, Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Kjell Hultenby
- Division of Clinical Research Center, Karolinska Institutet, Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Sindra Isetun
- Division of Metabolic Diseases, Karolinska Institutet, Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Mats Gåfvels
- Division of Clinical Chemistry, C1-72, Karolinska Institutet, Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Sweden
- Division of Clinical Chemistry, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anna Karlsson
- Division of Clinical Microbiology F-68, Karolinska Institutet, Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
37
|
Lee IC, Lee NC, Lu JJ, Su PH. Mitochondrial depletion causes neonatal-onset leigh syndrome, myopathy, and renal tubulopathy. J Child Neurol 2013; 28:404-8. [PMID: 23307888 DOI: 10.1177/0883073812469722] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The authors describe a newborn with postnatal myopathy who subsequently developed feeding difficulties, ophthalmoplegia, ptosis, encephalopathy, and seizures. She became ventilator dependent after sudden apnea. The myopathy was without ragged red fibers in the muscle biopsy. An electron transport chain study showed a markedly generalized low level of enzyme activity, particularly in complexes I, I + III, and IV. An initial electroencephalogram finding was normal; subsequent electroencephalograms showed suppression bursts. The mitochondrial copy number in skeletal muscle was 2% of normal.
Collapse
Affiliation(s)
- Inn-Chi Lee
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | | | | | | |
Collapse
|
38
|
Liu K, Sun Y, Liu D, Yin J, Qiao L, Shi Y, Dong Y, Li N, Zhang F, Chen D. Mitochondrial toxicity studied with the PBMC of children from the Chinese national pediatric highly active antiretroviral therapy cohort. PLoS One 2013; 8:e57223. [PMID: 23468942 PMCID: PMC3584138 DOI: 10.1371/journal.pone.0057223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/18/2013] [Indexed: 11/18/2022] Open
Abstract
As the backbone of highly active antiretroviral therapy (HAART), nucleoside reverse transcriptase inhibitors (NRTIs) have effectively improved outcomes for HIV-infected patients. However, long-term treatment with NRTIs can cause a series of pathologies associated with mitochondrial toxicity. To date, the status and mechanism of mitochondrial toxicity induced by NRTIs are still not clear, especially in HIV-infected children. As part of the national pediatric HAART program in China, our study focused on mitochondrial toxicity and its potential mechanism in HIV-1-infected children who were divided into two groups based on their duration of treatment with NRTIs: one group received treatment for less than 36 months and one group was treated for 36 to 72 months. The control group comprised age-matched non-HIV-infected children. Blood lactic acid and ATP levels in peripheral blood mononuclear cells (PBMCs) were measured to evaluate mitochondrial function, and mtDNA copies and mutations in PBMCs were determined for detecting mtDNA lesions. Simultaneously, TK2 and P53R2 gene expression in PBMC was measured. As compared with the control group, blood lactic acid levels in both NRTI treatment groups were significantly higher, whereas ATP levels and mtDNA mutation rates in PBMCs did not differ between the control and the two NRTI treatment groups. Both NRTI treatment groups exhibited significant mtDNA loss. N Moreover, we found that P53R2 mRNA expression and protein levels were significantly reduced in both treatment groups and that TK2 mRNA expression and protein levels were induced in the long-term NRTI treatment group. These results suggest that mitochondrial toxicity occurs in long-term HAART patients and that P53R2 and TK2 levels in PBMCs are useful biomarkers for detecting mitochondrial toxicity in patients on long-term treatment with NRTIs.
Collapse
Affiliation(s)
- Kai Liu
- Department of Medicine, Beijing YouAn Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing, China
| | - Yu Sun
- Department of Medicine, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Daojie Liu
- Department of Medicine, Beijing YouAn Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing, China
| | - Jiming Yin
- Department of Medicine, Beijing YouAn Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing, China
| | - Luxin Qiao
- Beijing Institute of Hepatology, Beijing, China
| | - Ying Shi
- Department of Medicine, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Yaowu Dong
- Branch of Shang Cai, Henan Province, Division of Treatment and Care, National Center for AIDS/STD Control and Prevention, Henan, China
| | - Ning Li
- Department of Medicine, Beijing YouAn Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing, China
| | - Fujie Zhang
- Division of Treatment and Care, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail: (FZ); (DC)
| | - Dexi Chen
- Department of Medicine, Beijing YouAn Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing, China
- * E-mail: (FZ); (DC)
| |
Collapse
|
39
|
Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells. PLoS One 2013; 8:e53698. [PMID: 23341978 PMCID: PMC3544874 DOI: 10.1371/journal.pone.0053698] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/03/2012] [Indexed: 01/07/2023] Open
Abstract
Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.
Collapse
|
40
|
Paradas C, Gutiérrez Ríos P, Rivas E, Carbonell P, Hirano M, DiMauro S. TK2 mutation presenting as indolent myopathy. Neurology 2013; 80:504-6. [PMID: 23303857 DOI: 10.1212/wnl.0b013e31827f0ff7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recessive mutations in the TK2 gene typically cause fatal infantile mitochondrial DNA (mtDNA) depletion syndromes (MDS).(1-3) However, the progression of weakness may vary,(4) as shown by recently described adult patients with late-onset myopathy.(5,6) To date, only 5 adult patients with TK2-related MDS have been reported. Herein, we describe a man who had several unusual features. Clinically, he was weak as a child but sought medical attention as an adult. At the molecular level, multiple mtDNA deletions in muscle were more prominent than mtDNA depletion.
Collapse
Affiliation(s)
- Carmen Paradas
- Unidad de Enfermedades Neuromusculares, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Yiu EM, Ryan MM. Genetic axonal neuropathies and neuronopathies of pre-natal and infantile onset. J Peripher Nerv Syst 2012; 17:285-300. [DOI: 10.1111/j.1529-8027.2012.00412.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Scalais E, Francois B, Schlesser P, Stevens R, Nuttin C, Martin JJ, Van Coster R, Seneca S, Roels F, Van Goethem G, Löfgren A, De Meirleir L. Polymerase gamma deficiency (POLG): clinical course in a child with a two stage evolution from infantile myocerebrohepatopathy spectrum to an Alpers syndrome and neuropathological findings of Leigh's encephalopathy. Eur J Paediatr Neurol 2012; 16:542-8. [PMID: 22342071 DOI: 10.1016/j.ejpn.2012.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/11/2012] [Accepted: 01/26/2012] [Indexed: 11/19/2022]
Abstract
AIMS Description of the clinical course in a child compound heterozygous for POLG1 mutations, neuropathology findings and results of dietary treatment based on fasting avoidance and long chain triglycerides (LCT) restriction. RESULTS At 3(1/2) months of age the patient presented with severe hypoglycemia, hyperlactatemia, moderate ketosis and hepatic failure. Fasting hypoglycemia occurred 8 h after meals. The hypoglycemia did not respond to glucagon. She was supplemented with IV glucose and/or frequent feedings, but developed liver insufficiency which was reversed by long-chain triglyceride (LCT) restriction. Alpha-foeto-protein (AFP) levels were elevated and returned to low values after dietary treatment. Liver biopsy displayed cirrhosis, bile ductular proliferation, steatosis, isolated complex IV defect in part of the liver mitochondria, and mitochondrial DNA depletion (27% of control values). Two heterozygous mutations (p. [Ala467Thr] + p. [Gly848Ser]) were found in the POLG1 gene. At 3 years of age she progressively developed refractory mixed type seizures including a focal component and psychomotor regression which fulfilled the criteria of Alpers syndrome (AS) although the initial presentation was compatible with infantile myocerebrohepatopathy spectrum (MCHS). She died at 5 years of age of respiratory insufficiency. Neuropathologic investigation revealed lesions in the right striatal area and the inferior colliculi typical for Leigh's encephalopathy. CONCLUSION The present patient showed an evolution from infantile MCHS to AS, and dietary treatment seemed to slow the progression of liver failure. In spite of the late clinical features of AS, it extends the neuropathological spectrum of AS and polymerase gamma deficiency (POLG) to Leigh syndrome lesions.
Collapse
Affiliation(s)
- Emmanuel Scalais
- Division of Paediatric Neurology, Centre Hospitalier de Luxembourg, Luxembourg.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Götz A, Isohanni P, Liljeström B, Rummukainen J, Nikolajev K, Herrgård E, Marjavaara S, Suomalainen A. Fatal neonatal lactic acidosis caused by a novel de novo mitochondrial G7453A tRNA-Serine ((UCN)) mutation. Pediatr Res 2012; 72:90-4. [PMID: 22453297 DOI: 10.1038/pr.2012.43] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Heteroplasmic mitochondrial DNA (mtDNA) mutations are an important cause of childhood disorders, but the role of homoplasmic mtDNA mutations in severe neonatal manifestations is not well understood. METHODS The following were performed: full mtDNA sequencing for mutation detection, blue-native protein analysis of autopsy-derived tissues to detect respiratory chain (RC) deficiency, light and electron microscopy for morphologic analysis, and northern blot and computational modeling to study the effect of mtDNA mutations on transfer RNA (tRNA) stability. RESULTS We describe data from a patient with fatal neonatal lactic acidosis caused by a novel homoplasmic mutation at a highly conserved nucleotide G7453A within the tRNA(Ser (UCN)) in mtDNA. The patient's heart, skeletal muscle, brain, and liver showed severe combined complex I and IV (CI and CIV) deficiencies, accompanied by severe depletion of mature tRNA(Ser (UCN)). The mutation was absent in the patient's mother and in a placental sample from a subsequent pregnancy of the mother, suggesting a de novo mutation. DISCUSSION We conclude that the G7453A mutation of mtDNA manifests with exceptional severity as compared with other tRNA(Ser (UCN)) mutations, typically associated with sensorineural deafness. De novo homoplasmic mtDNA tRNA-mutations should be considered as a cause of fatal neonatal lactic acidosis.
Collapse
Affiliation(s)
- Alexandra Götz
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Sun R, Eriksson S, Wang L. Oxidative stress induced S-glutathionylation and proteolytic degradation of mitochondrial thymidine kinase 2. J Biol Chem 2012; 287:24304-12. [PMID: 22661713 DOI: 10.1074/jbc.m112.381996] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Protein glutathionylation in response to oxidative stress can affect both the stability and activity of target proteins. Mitochondrial thymidine kinase 2 (TK2) is a key enzyme in mitochondrial DNA precursor synthesis. Using an antibody specific for glutathione (GSH), S-glutathionylated TK2 was detected after the addition of glutathione disulfide (GSSG) but not GSH. This was reversed by the addition of dithiothreitol, suggesting that S-glutathionylation of TK2 is reversible. Site-directed mutagenesis of the cysteine residues and subsequent analysis of mutant enzymes demonstrated that Cys-189 and Cys-264 were specifically glutathionylated by GSSG. These cysteine residues do not appear to be part of the active site, as demonstrated by kinetic studies of the mutant enzymes. Treatment of isolated rat mitochondria with hydrogen peroxide resulted in S-glutathionylation of added recombinant TK2. Treatment of intact cells with hydrogen peroxide led to reduction of mitochondrial TK2 activity and protein levels, as well as S-glutathionylation of TK2. Furthermore, the addition of S-glutathionylated recombinant TK2 to mitochondria isolated from hydrogen peroxide-treated cells led to degradation of the S-glutathionylated TK2, which was not observed with unmodified TK2. S-Glutathionylation on Cys-189 was responsible for the observed selective degradation of TK2 in mitochondria. These results strongly suggest that oxidative damage-induced S-glutathionylation and degradation of TK2 have significant impact on mitochondrial DNA precursor synthesis.
Collapse
Affiliation(s)
- Ren Sun
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, Box 575, SE-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
45
|
McCann KA, Williams DW, McKee EE. Metabolism of deoxypyrimidines and deoxypyrimidine antiviral analogs in isolated brain mitochondria. J Neurochem 2012; 122:126-37. [PMID: 22530558 DOI: 10.1111/j.1471-4159.2012.07765.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The goal of this project was to characterize deoxypyrimidine salvage pathways used to maintain deoxynucleoside triphosphate pools in isolated brain mitochondria and to determine the extent that antiviral pyrimidine analogs utilize or affect these pathways. Mitochondria from rat brains were incubated in media with labeled and unlabeled deoxynucleosides and deoxynucleoside analogs. Products were analyzed by HPLC coupled to an inline UV monitor and liquid scintillation counter. Isolated mitochondria transported thymidine and deoxycytidine into the matrix, and readily phosphorylated both of these to mono-, di-, and tri-phosphate nucleotides. Rates of phosphorylation were much higher than rates observed in mitochondria from heart and liver. Deoxyuridine was phosphorylated much more slowly than thymidine and only to dUMP. 3'-azido-3'-deoxythymidine, zidovudine (AZT), an antiviral thymidine analog, was phosphorylated to AZT-MP as readily as thymidine was phosphorylated to TMP, but little if any AZT-DP or AZT-TP was observed. AZT at 5.5 ± 1.7 μM was shown to inhibit thymidine phosphorylation by 50%, but was not observed to inhibit deoxycytidine phosphorylation except at levels > 100 μM. Stavudine and lamivudine were inert when incubated with isolated brain mitochondria. The kinetics of phosphorylation of thymidine, dC, and AZT were significantly different in brain mitochondria compared to mitochondria from liver and heart.
Collapse
Affiliation(s)
- Kathleen A McCann
- Indiana University School of Medicine - South Bend, South Bend, IN, USA.
| | | | | |
Collapse
|
46
|
Abstract
Mitochondrial DNA (mtDNA) is replicated by the DNA polymerase g in concert with accessory proteins such as the mtDNA helicase, single stranded DNA binding protein, topoisomerase, and initiating factors. Nucleotide precursors for mtDNA replication arise from the mitochondrial salvage pathway originating from transport of nucleosides, or alternatively from cytoplasmic reduction of ribonucleotides. Defects in mtDNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mtDNA deletions, point mutations, or depletion which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mtDNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mtDNA deletion disorders, such as progressive external ophthalmoplegia (PEO), ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). This review focuses on our current knowledge of genetic defects of mtDNA replication (POLG, POLG2, C10orf2) and nucleotide metabolism (TYMP, TK2, DGOUK, and RRM2B) that cause instability of mtDNA and mitochondrial disease.
Collapse
Affiliation(s)
- William C Copeland
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, USA.
| |
Collapse
|
47
|
Tyynismaa H, Sun R, Ahola-Erkkilä S, Almusa H, Pöyhönen R, Korpela M, Honkaniemi J, Isohanni P, Paetau A, Wang L, Suomalainen A. Thymidine kinase 2 mutations in autosomal recessive progressive external ophthalmoplegia with multiple mitochondrial DNA deletions. Hum Mol Genet 2011; 21:66-75. [PMID: 21937588 DOI: 10.1093/hmg/ddr438] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Autosomal-inherited progressive external ophthalmoplegia (PEO) is an adult-onset disease characterized by the accumulation of multiple mitochondrial DNA (mtDNA) deletions in post-mitotic tissues. Mutations in six different genes have been described to cause the autosomal dominant form of the disease, but only mutations in the DNA polymerase gamma gene are known to cause autosomal recessive PEO (arPEO), leaving the genetic background of arPEO mostly unknown. Here we used whole-exome sequencing and identified compound heterozygous mutations, leading to two amino acid alterations R225W and a novel T230A in thymidine kinase 2 (TK2) in arPEO patients. TK2 is an enzyme of the mitochondrial nucleotide salvage pathway and its loss-of-function mutations have previously been shown to underlie the early-infantile myopathic form of mtDNA depletion syndrome (MDS). Our TK2 activity measurements of patient fibroblasts and mutant recombinant proteins show that the combination of the identified arPEO variants, R225W and T230A, leads to a significant reduction in TK2 activity, consistent with the late-onset phenotype, whereas homozygosity for R225W, previously associated with MDS, leads to near-total loss of activity. Our finding identifies a new genetic cause of arPEO with multiple mtDNA deletions. Furthermore, MDS and multiple mtDNA deletion disorders are manifestations of the same pathogenic pathways affecting mtDNA replication and repair, indicating that MDS-associated genes should be studied when searching for genetic background of PEO disorders.
Collapse
Affiliation(s)
- Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Enzyme kinetics of the mitochondrial deoxyribonucleoside salvage pathway are not sufficient to support rapid mtDNA replication. PLoS Comput Biol 2011; 7:e1002078. [PMID: 21829339 PMCID: PMC3150320 DOI: 10.1371/journal.pcbi.1002078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/19/2011] [Indexed: 11/19/2022] Open
Abstract
Using a computational model, we simulated mitochondrial deoxynucleotide metabolism and mitochondrial DNA replication. Our results indicate that the output from the mitochondrial salvage enzymes alone is inadequate to support a mitochondrial DNA replication duration of as long as 10 hours. We find that an external source of deoxyribonucleoside diphosphates or triphosphates (dNTPs), in addition to those supplied by mitochondrial salvage, is essential for the replication of mitochondrial DNA to complete in the experimentally observed duration of approximately 1 to 2 hours. For meeting a relatively fast replication target of 2 hours, almost two-thirds of the dNTP requirements had to be externally supplied as either deoxyribonucleoside di- or triphosphates, at about equal rates for all four dNTPs. Added monophosphates did not suffice. However, for a replication target of 10 hours, mitochondrial salvage was able to provide for most, but not all, of the total substrate requirements. Still, additional dGTPs and dATPs had to be supplied. Our analysis of the enzyme kinetics also revealed that the majority of enzymes of this pathway prefer substrates that are not precursors (canonical deoxyribonucleosides and deoxyribonucleotides) for mitochondrial DNA replication, such as phosphorylated ribonucleotides, instead of the corresponding deoxyribonucleotides. The kinetic constants for reactions between mitochondrial salvage enzymes and deoxyribonucleotide substrates are physiologically unreasonable for achieving efficient catalysis with the expected in situ concentrations of deoxyribonucleotides. The powerhouses of human cells, mitochondria, contain DNA that is distinct from the primary genome, the DNA in the nucleus of cells. The mitochondrial genome needs to be replicated often to ensure continued generation of ATP (adenosine triphosphate) which is the energy currency of the cell. Problems with maintenance of mitochondrial DNA, arising from genetic mutations as well as from antiviral drugs, can lead to debilitating diseases that are often fatal in early life and childhood, or reduced compliance to therapy from patients suffering drug toxicity. It is therefore important to understand the processes that contribute to the upkeep of mitochondrial DNA. The activities of a set of enzymes, which together generate the chemical building blocks of mitochondrial DNA, are important in this regard. We used computational methods to analyze the properties of these enzymes. Results from our approach of treating these enzymes as a system rather than studying them one at a time suggest that in most conditions, the activities of the enzymes are not sufficient for completing replication of mitochondrial DNA in the observed duration of around 2 hours. We propose that a source of building blocks in addition to this set of enzymes appears to be essential.
Collapse
|
49
|
Abstract
During the last decade rapid development has occurred in defining nuclear gene mutations causing mitochondrial disease. Some of these newly defined gene mutations cause neonatal or early infantile onset of disease, often associated with severe progressive encephalomyopathy combined with other multi-organ involvement such as cardiomyopathy or hepatopathy and with early death. Findings suggesting myopathy in neonates are hypotonia, muscle weakness and wasting, and arthrogryposis. We aim to describe the clinical findings of patients with mitochondrial disease presenting with muscular manifestations in the neonatal period or in early infancy and in whom the genetic defect has been characterized. The majority of patients with neonatal onset of mitochondrial disease have mutations in nuclear genes causing dysfunction of the mitochondrial respiratory chain, leading to defective oxidative phosphorylation.
Collapse
Affiliation(s)
- Már Tulinius
- Department of Pediatrics, University of Gothenburg, The Queen Silvia Children's Hospital, S-416 85 Göteborg, Sweden.
| | | |
Collapse
|
50
|
Dorado B, Area E, Akman HO, Hirano M. Onset and organ specificity of Tk2 deficiency depends on Tk1 down-regulation and transcriptional compensation. Hum Mol Genet 2010; 20:155-64. [PMID: 20940150 PMCID: PMC3000681 DOI: 10.1093/hmg/ddq453] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Deficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2-/-). Although normal until postnatal day 8, Tk2-/- mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13. We have observed that wild-type Tk2 activity is constant in the second week of life, while Tk1 activity decreases significantly between postnatal days 8 and 13. The down-regulation of Tk1 activity unmasks Tk2 deficiency in Tk2-/- mice and correlates with the onset of mtDNA depletion in the brain and the heart. Resistance to pathology in Tk2 mutant organs depends on compensatory mechanisms to the reduced mtDNA level. Our analyses at postnatal day 13 have revealed that Tk2-/- heart significantly increases mitochondrial transcript levels relative to the mtDNA content. This transcriptional compensation allows the heart to maintain normal levels of mtDNA-encoded proteins. The up-regulation in mitochondrial transcripts is not due to increased expression of the master mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and nuclear respiratory factors 1 and 2, or to enhanced expression of the mitochondrial transcription factors A, B1 or B2. Instead, Tk2-/- heart compensates for mtDNA depletion by down-regulating the expression of the mitochondrial transcriptional terminator transcription factor 3 (MTERF3). Understanding the molecular mechanisms that allow Tk2 mutant organs to be spared may help design therapies for Tk2 deficiency.
Collapse
Affiliation(s)
- Beatriz Dorado
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | |
Collapse
|