1
|
Moon S, Park J, Lim S, Suh SY, Le A, Demer JL. Scanning Laser Ophthalmoscopy Demonstrates Pediatric Optic Disc and Peripapillary Strain During Horizontal Eye Rotation. Curr Eye Res 2024; 49:437-445. [PMID: 38185657 DOI: 10.1080/02713683.2023.2295789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024]
Abstract
Purpose: We employed automated analysis of scanning laser ophthalmoscopy (SLO) to determine if mechanical strains imposed on disc, and retinal and choroidal vessels during horizontal duction in children differ from those of adults.Methods: Thirty-one children aged 11.3 ± 2.7 (standard deviation) years underwent SLO in central gaze, and 35° ab- and adduction. Automated registration with deep learning-based optical flow analysis quantified vessel deformations as horizontal, vertical, shear, and equivalent strains. Choroidal vessel displacements in lightly pigmented fundi, and central disc vessel displacements, were also observed.Results: As in adults, strain in vessels during horizontal duction was greatest at the disc and decreased with distance from it. Strain in the pediatric disc was similar to published values in young adults,1 but in the peripapillary region was greater and propagated significantly more peripherally to at least three disc radii from it. During adduction in children, the nasal disc was compressed and disc vessels distorted, but the temporal half experienced tensile strain, while peripapillary tissues were compressed. The pattern was similar but strains were less in abduction (p < .001). Choroidal vessels were visualized in 24 of the 62 eyes and shifted directionally opposite overlying retinal vessels.Conclusions: Horizontal duction deforms the normal pediatric optic disc, central retinal vessels, peripapillary retina, and choroid, shearing the inner retina over the choroid. These mechanical effects occur at the sites of remodeling of the disc, sclera, and choroid associated with typical adult features that later emerge later, including optic cup enlargement, temporal disc tilting, and peripapillary atrophy.
Collapse
Affiliation(s)
- Sunghyuk Moon
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, CA, USA
- Department of Ophthalmology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Joseph Park
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, CA, USA
| | - Seongjin Lim
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, CA, USA
- Department of Mechanical Engineering, University of California, Los Angeles, CA, USA
| | - Soh Youn Suh
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, CA, USA
| | - Alan Le
- Alcon Research, Ltd, Lake Forest, CA, USA
| | - Joseph L Demer
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, CA, USA
- Bioengineering Department, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Neurology, University of California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Sadoc M, Clairembault T, Coron E, Berthomier C, Le Dily S, Vavasseur F, Pavageau A, St Louis EK, Péréon Y, Neunlist M, Derkinderen P, Leclair-Visonneau L. Wake and non-rapid eye movement sleep dysfunction is associated with colonic neuropathology in Parkinson's disease. Sleep 2024; 47:zsad310. [PMID: 38156524 DOI: 10.1093/sleep/zsad310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/04/2023] [Indexed: 12/30/2023] Open
Abstract
STUDY OBJECTIVES The body-first Parkinson's disease (PD) hypothesis suggests initial gut Lewy body pathology initially propagates to the pons before reaching the substantia nigra, and subsequently progresses to the diencephalic and cortical levels, a disease course presumed to likely occur in PD with rapid eye movement sleep behavior disorder (RBD). We aimed to explore the potential association between colonic phosphorylated alpha-synuclein histopathology (PASH) and diencephalic or cortical dysfunction evidenced by non-rapid eye movement (NREM) sleep and wakefulness polysomnographic markers. METHODS In a study involving 43 patients with PD who underwent clinical examination, rectosigmoidoscopy, and polysomnography, we detected PASH on colonic biopsies using whole-mount immunostaining. We performed a visual semi-quantitative analysis of NREM sleep and wake electroencephalography (EEG), confirmed it with automated quantification of spindle and slow wave features of NREM sleep, and the wake dominant frequency, and then determined probable Arizona PD stage classifications based on sleep and wake EEG features. RESULTS The visual analysis aligned with the automated quantified spindle characteristics and the wake dominant frequency. Altered NREM sleep and wake parameters correlated with markers of PD severity, colonic PASH, and RBD diagnosis. Colonic PASH frequency also increased in parallel to probable Arizona PD stage classifications. CONCLUSIONS Colonic PASH is strongly associated with widespread brain sleep and wake dysfunction, suggesting an extensive diffusion of the pathologic process in PD. Visual and automated analyses of polysomnography signals provide useful markers to gauge covert brain dysfunction in PD. CLINICAL TRIAL Name: SYNAPark, URL: https://clinicaltrials.gov/study/NCT01748409, registration: NCT01748409.
Collapse
Affiliation(s)
- Mathilde Sadoc
- Laboratoire d'Explorations Fonctionnelles, CHU Nantes, Nantes, France
- Department of Neurology, CHU Nantes, Nantes, France
| | - Thomas Clairembault
- INSERM, TENS The Enteric Nervous System in Gut and Brain Diseases, Nantes, France
- Nantes Université, Nantes, France
- CHU Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Emmanuel Coron
- INSERM, TENS The Enteric Nervous System in Gut and Brain Diseases, Nantes, France
- Nantes Université, Nantes, France
- CHU Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Inserm, CIC-04, Nantes, France
| | | | | | - Fabienne Vavasseur
- CHU Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Inserm, CIC-04, Nantes, France
| | - Albane Pavageau
- Laboratoire d'Explorations Fonctionnelles, CHU Nantes, Nantes, France
| | - Erik K St Louis
- Mayo Sleep Behavior and Neurophysiology Research Laboratory, Department of Neurology, Rochester, MN, USA
- Mayo Center for Sleep Medicine, Department of Neurology, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Yann Péréon
- Laboratoire d'Explorations Fonctionnelles, CHU Nantes, Nantes, France
- Nantes Université, Nantes, France
| | - Michel Neunlist
- INSERM, TENS The Enteric Nervous System in Gut and Brain Diseases, Nantes, France
- Nantes Université, Nantes, France
- CHU Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Pascal Derkinderen
- Department of Neurology, CHU Nantes, Nantes, France
- INSERM, TENS The Enteric Nervous System in Gut and Brain Diseases, Nantes, France
- Nantes Université, Nantes, France
- Inserm, CIC-04, Nantes, France
| | - Laurène Leclair-Visonneau
- Laboratoire d'Explorations Fonctionnelles, CHU Nantes, Nantes, France
- INSERM, TENS The Enteric Nervous System in Gut and Brain Diseases, Nantes, France
- Nantes Université, Nantes, France
- Inserm, CIC-04, Nantes, France
| |
Collapse
|
3
|
Bergmann M, Högl B, Stefani A. Clinical neurophysiology of REM parasomnias: Diagnostic aspects and insights into pathophysiology. Clin Neurophysiol Pract 2024; 9:53-62. [PMID: 38328386 PMCID: PMC10847011 DOI: 10.1016/j.cnp.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/17/2023] [Accepted: 10/22/2023] [Indexed: 02/09/2024] Open
Abstract
Parasomnias are due to a transient unstable state dissociation during entry into sleep, within sleep, or during arousal from sleep, and manifest with abnormal sleep related behaviors, perceptions, emotions, dreams, and autonomic nervous system activity. Rapid eye movement (REM) parasomnias include REM sleep behavior disorder (RBD), isolated recurrent sleep paralysis and nightmare disorder. Neurophysiology is key for diagnosing these disorders and provides insights into their pathophysiology. RBD is very well characterized from a neurophysiological point of view, also thank to the fact that polysomnography is needed for the diagnosis. Diagnostic criteria are provided by the American Academy of Sleep Medicine and video-polysomnography guidelines for the diagnosis by the International REM Sleep Behavior Disorder Study Group. Differences between the two sets of criteria are presented and discussed. Availability of polysomnography in RBD provides data on sleep electroencephalography (EEG), electrooculography (EOG) and electromyography (EMG). Sleep EEG in RBD shows e.g. changes in delta and theta power, in sleep spindles and K complexes. EMG during REM sleep is essential for RBD diagnosis and is an important neurodegeneration biomarker. RBD patients present alterations also in wake EEG, autonomic function, evoked potentials, and transcranial magnetic stimulation. Clinical neurophysiological data on recurrent isolated sleep paralysis and nightmare disorder are scant. The few available data provide insights into the pathophysiology of these disorders, demonstrating a state dissociation in recurrent isolated sleep paralysis and suggesting alterations in sleep macro- and microstructure as well as autonomic changes in nightmare disorder.
Collapse
Affiliation(s)
- Melanie Bergmann
- Department of Neurology, Sleep Laboratory, Medical University Innsbruck, Austria
| | - Birgit Högl
- Department of Neurology, Sleep Laboratory, Medical University Innsbruck, Austria
| | - Ambra Stefani
- Department of Neurology, Sleep Laboratory, Medical University Innsbruck, Austria
- Neurological Clinical Research Institute, Massachusetts General Hospital, Boston, USA
| |
Collapse
|
4
|
Yoshizawa M, Tamura Y, Yasuda-Ohata A, Yoshihara S, Takasaki H, Hashioka S. Video polysomnographic analysis of elevated EMG activity and rapid eye movements before abnormal behaviors in REM sleep behavior disorder. Sleep Biol Rhythms 2023; 21:455-460. [PMID: 38476183 PMCID: PMC10899964 DOI: 10.1007/s41105-023-00472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/12/2023] [Indexed: 03/14/2024]
Abstract
The pathogenesis of rapid eye movement (REM) sleep behavior disorder (RBD) is unclear. According to the cortical hypothesis, severe RBD episode (RBDE) occurs when spinal motoneurons are less inhibited and cortical and limbic systems are more active. We made this study to prove the hypothesis for the development of RBDE using video-polysomnography (VPSG). VPSG records of 35 patients with RBD were analyzed. According to severity, RBDEs were classified into three motor events (MEs): ME 1; small movements or jerks, ME 2; proximal movements including violent behavior, and ME 3; axial movements including bed falls. For each ME, we measured the number of MEs preceded or not preceded by both REM sleep without atonia (RWA) and REMs during the 10-s-period immediately before ME onset. In severe RBDE (ME 3), the number of MEs preceded by both RWA and REMs was significantly higher than that of MEs not preceded by both (0.8 vs. 0.2, P = 0.033). This was not the case for mild RBDE (ME 1) and moderate RBDE (ME 2). Our results suggest that both RWA and REMs are associated with the development of severe RBDE.
Collapse
Affiliation(s)
- Mondo Yoshizawa
- Department of Psychiatry, School of Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, Hokkaido 078-8510 Japan
| | - Yoshiyuki Tamura
- Department of Psychiatry, School of Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, Hokkaido 078-8510 Japan
| | - Asami Yasuda-Ohata
- Department of Psychiatry, School of Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, Hokkaido 078-8510 Japan
| | - Shinsuke Yoshihara
- Department of Psychiatry, School of Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, Hokkaido 078-8510 Japan
| | - Hideki Takasaki
- Department of Psychiatry, School of Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, Hokkaido 078-8510 Japan
| | - Sadayuki Hashioka
- Department of Psychiatry, School of Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, Hokkaido 078-8510 Japan
| |
Collapse
|
5
|
Siegel JM. REM sleep function: Mythology vs. reality. Rev Neurol (Paris) 2023; 179:643-648. [PMID: 37625974 PMCID: PMC10725301 DOI: 10.1016/j.neurol.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
Since the discovery of REM (Rapid Eye Movement) sleep in 1953, misconceptions have arisen as to the evidence for its adaptive function and its relation to dreams. Eye movements recorded during REM sleep have not been consistently reported to mirror the eye movements predicted by dream reports. But evidence on eye movement and somatic motor expression from patients with REM sleep behavior disorder (RBD) is consistent with dream enacting behavior. The assumption that dreaming occurs only in REM sleep is incorrect, with numerous reports of nonREM dreaming. However, there may be qualitative differences between REM and nonREM dreams. Early studies that suggested a vital role for REM sleep in psychological well-being are refuted by studies of pharmacologically induced partial or complete REM sleep suppression. Studies of sleep across species show that the primitive monotreme mammals, platypus and echidna, have far more REM sleep than any other homeotherm group, whereas birds have far less REM sleep than any other homeotherm group. Human REM sleep amounts are not unusual, are correlated with nonREM sleep durations but are not correlated with intelligence. Across groups of homeotherms, REM sleep time is highly and inversely correlated (r=-0.975, P=0.02) with average core body temperature, suggesting that REM sleep cycles with nonREM sleep to regulate brain temperature during sleep. Cetacean mammals (dolphins and whales) do not have REM sleep despite their very large brain sizes and impressive cognitive abilities. Reports of "REM sleep-like states" in arachnids, cephalopods and in zebrafish larvae are lacking critical evidence that the observed behaviors are occurring during sleep and that the behaviors are homologous to mammalian REM sleep.
Collapse
Affiliation(s)
- J M Siegel
- Psychiatry and Biobehavioral Sciences, UCLA Center for Sleep Research, Los Angeles, CA 90095, United States; Neurobiology Research 151A3, North Hills, CA 91343, United States.
| |
Collapse
|
6
|
Park J, Moon S, Lim S, Demer JL. Scanning Laser Ophthalmoscopy Demonstrates Disc and Peripapillary Strain During Horizontal Eye Rotation in Adults. Am J Ophthalmol 2023; 254:114-127. [PMID: 37343739 PMCID: PMC11407688 DOI: 10.1016/j.ajo.2023.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
PURPOSE We used automated image analysis of scanning laser ophthalmoscopy (SLO) to investigate mechanical strains imposed on disc, and retinal and choroidal vessels during horizontal duction in adults. DESIGN Deep learning analysis of optical images. METHODS The peripapillary region was imaged by SLO in central gaze, and 35° abduction and adduction, in younger and older healthy adults. Automated image registration was followed by deep learning-based optical flow analysis to track determine local tissue deformations quantified as horizontal, vertical, and shear strain maps relative to central gaze. Choroidal vessel displacements were observed when fundus pigment was light. RESULTS Strains in the retina and disc could be quantified in 22 younger (mean ± SEM, 26 ± 5 years) and 19 older (64 ± 10 years) healthy volunteers. Strains were predominantly horizontal and greater for adduction than for abduction. During adduction, maximum horizontal strain was tensile in the nasal hemi-disc, and declined progressively with distance from it. Strain in the temporal hemi-retina during adduction was minimal, except for compressive strain on the disc of older subjects. In abduction, horizontal strains were less and largely confined to the disc, greater in older subjects, and generally tensile. Vertical and shear strains were small. Nasal to the disc, choroidal vessels shifted nasally relative to overlying peripapillary retinal vessels. CONCLUSIONS Strain analysis during horizontal duction suggests that the optic nerve displaces the optic canal, choroid, and peripapillary sclera relative to the overlying disc and retina. This peripapillary shearing of the optic nerve relative to the choroid and sclera may be a driver of disc tilting and peripapillary atrophy.
Collapse
Affiliation(s)
- Joseph Park
- From the Department of Ophthalmology (J.P., S.M., S.L., J.L.D.), Stein Eye Institute, Los Angeles, California, USA
| | - Sunghyuk Moon
- From the Department of Ophthalmology (J.P., S.M., S.L., J.L.D.), Stein Eye Institute, Los Angeles, California, USA; Department of Ophthalmology (S.M.), Busan Paik Hospital, Inje University, Busan, Republic of Korea
| | - Seongjin Lim
- From the Department of Ophthalmology (J.P., S.M., S.L., J.L.D.), Stein Eye Institute, Los Angeles, California, USA; Department of Mechanical Engineering (S.L.), University of California Los Angeles, Los Angeles, California, USA
| | - Joseph L Demer
- From the Department of Ophthalmology (J.P., S.M., S.L., J.L.D.), Stein Eye Institute, Los Angeles, California, USA; Neuroscience Interdepartmental Program (J.L.D.), University of California Los Angeles, Los Angeles, California, USA; Department of Neurology (J.L.D.), University of California Los Angeles, Los Angeles, California, USA; Department of Bioengineering (J.L.D.), University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
7
|
Song D, Lim S, Park J, Demer JL. Linear viscoelasticity of human sclera and posterior ocular tissues during tensile creep. J Biomech 2023; 151:111530. [PMID: 36933327 PMCID: PMC11407690 DOI: 10.1016/j.jbiomech.2023.111530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023]
Abstract
PURPOSE Despite presumed relevance to ocular diseases, the viscoelastic properties of the posterior human eye have not been evaluated in detail. We performed creep testing to characterize the viscoelastic properties of ocular regions, including the sclera, optic nerve (ON) and ON sheath. METHODS We tested 10 pairs of postmortem human eyes of average age 77 ± 17 years, consisting of 5 males and 5 females. Except for the ON that was tested in native shape, tissues were trimmed into rectangles. With physiologic temperature and constant wetting, tissues were rapidly loaded to tensile stress that was maintained by servo feedback as length was monitored for 1,500 sec. Relaxation modulus was computed using Prony series, and Deborah numbers estimated for times scales of physiological eye movements. RESULTS Correlation between creep rate and applied stress level was negligible for all tissues, permitting description as linear viscoelastic materials characterized by lumped parameter compliance equations for limiting behaviors. The ON was the most compliant, and anterior sclera least compliant, with similar intermediate values for posterior sclera and ON sheath. Sensitivity analysis demonstrated that linear behavior eventually become dominant after long time. For the range of typical pursuit tracking, all tissues exhibit Debora numbers less than 75, and should be regarded as viscoelastic. With a 6.7 Deborah number, this is especially so for the ON during pursuit and convergence. CONCLUSIONS Posterior ocular tissues exhibit creep consistent with linear viscoelasticity necessary for describing biomechanical behavior of the ON, its sheath, and sclera during physiological eye movements and eccentric ocular fixations. Running Head: Tensile Creep of Human Ocular Tissues.
Collapse
Affiliation(s)
- Dooseop Song
- Department of Mechanical Engineering, University of California, Los Angeles, United States; Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, United States
| | - Seongjin Lim
- Department of Mechanical Engineering, University of California, Los Angeles, United States; Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, United States
| | - Joseph Park
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, United States
| | - Joseph L Demer
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, United States; Department of Bioengineering, University of California, Los Angeles, United States; Department of Neurology, University of California, Los Angeles, United States.
| |
Collapse
|
8
|
Zhang Y, Song B, Zhu J. The relationship between different bispectral index and the occurrence of dreams in elective surgery under general anesthesia: protocol for a randomized controlled clinical trial. Trials 2023; 24:205. [PMID: 36941648 PMCID: PMC10026450 DOI: 10.1186/s13063-023-07222-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 03/06/2023] [Indexed: 03/22/2023] Open
Abstract
INTRODUCTION Dreaming reported after anesthesia remains a poorly understood phenomenon. At present, there is a hypothesis that dreaming occurs intraoperatively and is related to light or inadequate anesthesia; thus, in order to further verify the hypothesis, we choose elective surgery under general anesthesia to observe whether the generation of dreams is related to the dose of general anesthetics maintenance. METHODS AND ANALYSIS This randomized, double-blind controlled trial to observe whether the generation of dreams is related to the dose of general anesthetics maintenance in the elective surgery under general anesthesia. A total of 124 participants will be randomly allocated to a low bispectral index or high bispectral index group at a ratio of 1:1. The Hospital Anxiety and Depression Scale (HADS) is used to assess the anxiety and depression status of participants during the perioperative period. Ramsay score is used to assess patients' sedation level after surgery in the PACU. Modified Brice questionnaire and awareness classification are used to assess whether patients experienced dreaming during the surgery. ETHICS AND DISSEMINATION This randomized, double-blind controlled trial received prospective ethics committee approval at the Human Research Ethical Committee of Shengjing Hospital, Shenyang, Liaoning Province, China (Institutional Review Board registration number 2021PS664K), and was compliant with the Declaration of Helsinki. Written informed consent was obtained from all subjects participating in the trial.
Collapse
Affiliation(s)
- Yufei Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Bijia Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Junchao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
9
|
Northoff G, Scalabrini A, Fogel S. Topographic-dynamic reorganisation model of dreams (TRoD) - A spatiotemporal approach. Neurosci Biobehav Rev 2023; 148:105117. [PMID: 36870584 DOI: 10.1016/j.neubiorev.2023.105117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/13/2022] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Dreams are one of the most bizarre and least understood states of consciousness. Bridging the gap between brain and phenomenology of (un)conscious experience, we propose the Topographic-dynamic Re-organization model of Dreams (TRoD). Topographically, dreams are characterized by a shift towards increased activity and connectivity in the default-mode network (DMN) while they are reduced in the central executive network, including the dorsolateral prefrontal cortex (except in lucid dreaming). This topographic re-organization is accompanied by dynamic changes; a shift towards slower frequencies and longer timescales. This puts dreams dynamically in an intermediate position between awake state and NREM 2/SWS sleep. TRoD proposes that the shift towards DMN and slower frequencies leads to an abnormal spatiotemporal framing of input processing including both internally- and externally-generated inputs (from body and environment). In dreams, a shift away from temporal segregation to temporal integration of inputs results in the often bizarre and highly self-centric mental contents as well as hallucinatory-like states. We conclude that topography and temporal dynamics are core features of the TroD, which may provide the connection of neural and mental activity, e.g., brain and experience during dreams as their "common currency".
Collapse
Affiliation(s)
- Georg Northoff
- Faculty of Medicine, Centre for Neural Dynamics, The Royal's Institute of Mental Health Research, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada; Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, China; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.
| | - Andrea Scalabrini
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy.
| | - Stuart Fogel
- Sleep and Neuroscience, The Royal's Institute of Mental Health Research, Brain and Mind Research Institute and Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
10
|
Masset L, Nigam M, Ladarre A, Vidailhet M, Leu-Semenescu S, Fossati P, Arnulf I, Maranci JB. The dynamics of emotional behaviors in rapid eye movement sleep. Sleep 2023; 46:6852875. [PMID: 36445852 DOI: 10.1093/sleep/zsac285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
Dream's emotions could exert a major role in desensitizing negative emotions. Studying emotional dynamics (how emotions fluctuate across time) during rapid eye movement (REM) sleep could provide some insight into this function. However, studies so far have been limited to dream reports. To bypass this limit, REM sleep behavior disorder (RBD), in which participants enact their dreams, enables direct access to overt emotional dream behaviors (such as facial expressions and speeches). In total, 17 participants with RBD, and 39.7 h of REM sleep video were analyzed. The frequency of emotional behaviors did not differ between REM sleep episodes of early and late night. Within individual REM sleep episodes, emotional behaviors exhibited a biphasic temporal course, including an increased frequency for the first 10 min, followed by a progressive decrease. The negative emotional behaviors occurred earlier (mean time: 11.3 ± 10 min) than positive (14.4 ± 10.7 min) and neutral behaviors (16.4 ± 11.8 min). Emotional behaviors of opposing (negative and positive) valences were observed in 31% (N = 14) of episodes containing at least one emotional behavior, and were separated by a median time of 4.2 [1.1-10.9] min. The biphasic temporal course of behaviors in REM sleep could include the generation reactivation of emotional content during the ascending phase, followed by processing and extinction during the descending phase. The earlier occurrence time of negative emotional behavior suggests that negative emotions may need to be processed first. The rapid succession of emotions of opposite valence could prevent prolonged periods of negative emotions and eventually nightmares.
Collapse
Affiliation(s)
- Luc Masset
- Sleep Disorder Unit, Pitié-Salpêtrière University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Milan Nigam
- Sleep Disorder Unit, Pitié-Salpêtrière University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.,Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur, Montréal, Canada
| | - Anne Ladarre
- Sleep Disorder Unit, Pitié-Salpêtrière University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.,Paris Brain Institute (ICM), Paris, France.,AP-HP, Sorbonne University, Paris, France
| | - Marie Vidailhet
- Paris Brain Institute (ICM), Paris, France.,AP-HP, Sorbonne University, Paris, France
| | - Smaranda Leu-Semenescu
- Sleep Disorder Unit, Pitié-Salpêtrière University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.,Paris Brain Institute (ICM), Paris, France
| | - Philippe Fossati
- Paris Brain Institute (ICM), Paris, France.,AP-HP, Sorbonne University, Paris, France.,Department of Psychiatry, Pitié-Salpêtriere University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Isabelle Arnulf
- Sleep Disorder Unit, Pitié-Salpêtrière University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.,Paris Brain Institute (ICM), Paris, France.,AP-HP, Sorbonne University, Paris, France
| | - Jean-Baptiste Maranci
- Sleep Disorder Unit, Pitié-Salpêtrière University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.,Paris Brain Institute (ICM), Paris, France.,AP-HP, Sorbonne University, Paris, France
| |
Collapse
|
11
|
Arnulf I. Ideas that come at night: on sleep research in 2022. Lancet Neurol 2023; 22:23-24. [PMID: 36517161 DOI: 10.1016/s1474-4422(22)00481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Isabelle Arnulf
- Sleep Disorders Unit, Sorbonne University, Paris Brain Institute, Pitie-Salpetriere Hospital, Paris 75013, France.
| |
Collapse
|
12
|
Dagay A, Oz S, Katzav S, Wasserman D, Tauman R, Thaler A, Giladi N, Mirelman A. Overnight Distribution of REM Sleep Features in People with Parkinson's Disease (PD) and Non-PD Controls. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1213-1223. [PMID: 37807787 PMCID: PMC10657693 DOI: 10.3233/jpd-230116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Rapid eye movement (REM) sleep behavior disorder (RBD) is a leading predictor of Parkinson's disease (PD). Diagnosis is performed in the sleep laboratory by detecting pathological REM sleep without atonia (RSWA). The evidence on the overnight distribution of RSWA% is conflicting. OBJECTIVE To investigate the temporal distribution of the number of ocular movements per REM sleep minute (REM density), and RSWA% in people with PD and non-PD controls. METHODS All participants underwent a single overnight evaluation in a sleep laboratory. Clinical evaluation was performed on a separate day. REM density and RSWA% were compared between PD and controls both across four sleep periods and individual REM cycles. RESULTS A total of 51 participants with recorded RSWA in polysomnography laboratory were included, 28 with PD aged 64±9 years with a disease duration of 3.3±2.9 years, and 23 controls aged 55±8 years. People with PD had lower REM density and higher RSWA% compared to controls. As expected, REM density was higher towards the morning. In contrast, RSWA% was equally distributed across the night, for both PD and controls. CONCLUSIONS PD pathology affects REM sleep features, but not the overnight distribution of those features. While REM density increased towards the end of the night, RSWA% was equally distributed across the night for both PD and controls. Our findings have clinical implications for diagnosing RBD, as quantification of RSWA% in any sleep cycle is sufficient for reliably evaluating total RSWA% and reduced REM density may be a marker of PD.
Collapse
Affiliation(s)
- Andrew Dagay
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical, Tel Aviv, Israel
| | - Shani Oz
- Laboratory for Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical, Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Katzav
- Sieratzki Sagol Institute for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Danielle Wasserman
- Sieratzki Sagol Institute for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Riva Tauman
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Sieratzki Sagol Institute for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avner Thaler
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Sieratzki Sagol Institute for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Fasiello E, Scarpelli S, Gorgoni M, Alfonsi V, De Gennaro L. Dreaming in Parasomnias: REM Sleep Behavior Disorder as a Model. J Clin Med 2022; 11:6379. [PMID: 36362607 PMCID: PMC9654698 DOI: 10.3390/jcm11216379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 10/01/2023] Open
Abstract
Sleep parasomnias have drawn the interest of sleep experts because they represent a valuable window to directly monitor dream activity and sleep mentation associated with nocturnal events. Indeed, parasomnias and their manifestations are helpful in investigating dream activity and features, overcoming methodological limits that affect dream study. Specifically, REM sleep Behavior Disorder (RBD) is a parasomnia characterized by enacted dream episodes during Rapid Eye Movements (REM) sleep, caused by the loss of physiological atonia. Patients suffering from RBD report a peculiar oneiric activity associated with motor episodes characterized by high Dream Recall Frequency (DRF) and vivid dreams. Additionally, isolated RBD (iRBD) represents a prodromal stage of neurodegeneration preceding the development of α-synucleinopathies. This narrative review aims to combine evidence describing dream activity in RBD and similarities and differences with other NREM parasomnias. Moreover, a special focus has been reserved for those conditions in which RBD is associated with α-synucleinopathies to clarify the potential role of dreams in neurodegenerative processes.
Collapse
Affiliation(s)
- Elisabetta Fasiello
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Serena Scarpelli
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- Body and Action Lab IRCCS Fondazione Santa Lucia Foundation, 00179 Rome, Italy
| | - Valentina Alfonsi
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- Body and Action Lab IRCCS Fondazione Santa Lucia Foundation, 00179 Rome, Italy
| |
Collapse
|
14
|
Blumberg MS, Dooley JC, Tiriac A. Sleep, plasticity, and sensory neurodevelopment. Neuron 2022; 110:3230-3242. [PMID: 36084653 PMCID: PMC9588561 DOI: 10.1016/j.neuron.2022.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/04/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
A defining feature of early infancy is the immense neural plasticity that enables animals to develop a brain that is functionally integrated with a growing body. Early infancy is also defined as a period dominated by sleep. Here, we describe three conceptual frameworks that vary in terms of whether and how they incorporate sleep as a factor in the activity-dependent development of sensory and sensorimotor systems. The most widely accepted framework is exemplified by the visual system where retinal waves seemingly occur independent of sleep-wake states. An alternative framework is exemplified by the sensorimotor system where sensory feedback from sleep-specific movements activates the brain. We prefer a third framework that encompasses the first two but also captures the diverse ways in which sleep modulates activity-dependent development throughout the nervous system. Appreciation of the third framework will spur progress toward a more comprehensive and cohesive understanding of both typical and atypical neurodevelopment.
Collapse
Affiliation(s)
- Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA.
| | - James C Dooley
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Alexandre Tiriac
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
15
|
Abstract
Since the discovery of rapid eye movement (REM) sleep, the nature of the eye movements that characterize this sleep phase has remained elusive. Do they reveal gaze shifts in the virtual environment of dreams or simply reflect random brainstem activity? We harnessed the head direction (HD) system of the mouse thalamus, a neuronal population whose activity reports, in awake mice, their actual HD as they explore their environment and, in sleeping mice, their virtual HD. We discovered that the direction and amplitude of rapid eye movements during REM sleep reveal the direction and amplitude of the ongoing changes in virtual HD. Thus, rapid eye movements disclose gaze shifts in the virtual world of REM sleep, thereby providing a window into the cognitive processes of the sleeping brain.
Collapse
Affiliation(s)
- Yuta Senzai
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Massimo Scanziani
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Nemeth G. The route to recall a dream: theoretical considerations and methodological implications. PSYCHOLOGICAL RESEARCH 2022; 87:964-987. [PMID: 35960337 DOI: 10.1007/s00426-022-01722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022]
Abstract
The goal of this paper is to shed new light on the relation between dream recall and dream experiences by providing a thorough analysis of the process that leads to dream reports. Three crucial steps of this process will be distinguished: dream production (the generation of a conscious experience during sleep), dream encoding (storing a trace of this experience in memory) and dream retrieval (accessing the memory trace upon awakening). The first part of the paper will assess how major theories think about the relationship between dream reports and these distinct steps. The second part will systematise how trait and state factors affecting dream recall-given different theoretical assumptions-might interact with dream production, encoding and retrieval. Understanding how the distinct steps of dream recall can be modulated by different factors is crucial for getting a better grip on how to acquire information about these steps empirically and for drawing methodological conclusions with regard to the tools dream research relies on to collect subjective data about dream experiences. The third part of the paper will analyse how laboratory reports, logs and retrospective scales interact with the different factors that affect the distinct steps leading to dream reports and will argue that prospective methods provide more direct access to data regarding dream production and encoding than retrospective methods, which-due to their inability to provide systematic control over the factors affecting the retrieval stage-screen-off the variability in the production and the encoding of dreams.
Collapse
Affiliation(s)
- Georgina Nemeth
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark, Universitetsbyen 3 Building 1710, 8000, Aarhus C, Denmark.
| |
Collapse
|
17
|
Scarpelli S, Alfonsi V, Gorgoni M, De Gennaro L. What about dreams? State of the art and open questions. J Sleep Res 2022; 31:e13609. [PMID: 35417930 PMCID: PMC9539486 DOI: 10.1111/jsr.13609] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023]
Abstract
Several studies have tried to identify the neurobiological bases of dream experiences, nevertheless some questions are still at the centre of the debate. Here, we summarise the main open issues concerning the neuroscientific study of dreaming. After overcoming the rapid eye movement (REM) ‐ non‐REM (NREM) sleep dichotomy, investigations have focussed on the specific functional or structural brain features predicting dream experience. On the one hand, some results underlined that specific trait‐like factors are associated with higher dream recall frequency. On the other hand, the electrophysiological milieu preceding dream report upon awakening is a crucial state‐like factor influencing the subsequent recall. Furthermore, dreaming is strictly related to waking experiences. Based on the continuity hypothesis, some findings reveal that dreaming could be modulated through visual, olfactory, or somatosensory stimulations. Also, it should be considered that the indirect access to dreaming remains an intrinsic limitation. Recent findings have revealed a greater concordance between parasomnia‐like events and dream contents. This means that parasomnia episodes might be an expression of the ongoing mental sleep activity and could represent a viable direct access to dream experience. Finally, we provide a picture on nightmares and emphasise the possible role of oneiric activity in psychotherapy. Overall, further efforts in dream science are needed (a) to develop a uniform protocol to study dream experience, (b) to introduce and integrate advanced techniques to better understand whether dreaming can be manipulated, (c) to clarify the relationship between parasomnia events and dreaming, and (d) to determine the clinical valence of dreams.
Collapse
Affiliation(s)
- Serena Scarpelli
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
18
|
Maranci JB, Nigam M, Masset L, Msika EF, Vionnet MC, Chaumereil C, Vidailhet M, Leu-Semenescu S, Arnulf I. Eye movement patterns correlate with overt emotional behaviours in rapid eye movement sleep. Sci Rep 2022; 12:1770. [PMID: 35110651 PMCID: PMC8810754 DOI: 10.1038/s41598-022-05905-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
Growing evidence suggests that sleep plays a key role in regulating emotions. Rapid eye movements (REMs) in REM sleep could be associated with dreams emotions, but supporting evidence is indirect. To highlight this association, we studied the REM sleep during video-polysomnography of 20 subjects with REM sleep behaviour disorder (RBD), a model of enacted dreams offering direct access to the emotional content of the sleeper (face expression, speeches, behaviour). Video and the electro-oculography recordings were divided into 3 s time intervals and classified as non-behavioural, or behavioural (neutral, positive or negative emotions), and as containing no eye movements (EMs), slow eye movements (SEMs) or REMs (isolated or bursts). Compared to the absence of EMs, neutral behaviours successively increased in the presence of SEMs (odd ratio, OR = 1.4), then isolated REMs (OR = 2.8) and then REM bursts (OR = 4.6). Positive behaviours increased with SEMs (OR = 2.8) but did not increase further with isolated REMs (OR = 2.8) and REM bursts (OR = 3). Negative behaviours were absent with SEMs, increased with isolated REMs (OR = 2.6) and further with REM bursts (OR = 10.1). These results support an association between REMs and SEMs, and dream emotions.
Collapse
Affiliation(s)
- Jean-Baptiste Maranci
- Sleep Disorder Unit, Pitie-Salpetriere University Hospital, APHP, Paris, France.,Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, Canada.,Paris Brain Institute, Paris, France
| | - Milan Nigam
- Sleep Disorder Unit, Pitie-Salpetriere University Hospital, APHP, Paris, France.,Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, Canada
| | - Luc Masset
- Sleep Disorder Unit, Pitie-Salpetriere University Hospital, APHP, Paris, France
| | - Eva-Flore Msika
- Sleep Disorder Unit, Pitie-Salpetriere University Hospital, APHP, Paris, France
| | | | | | - Marie Vidailhet
- Paris Brain Institute, Paris, France.,Sorbonne University, Paris, France
| | - Smaranda Leu-Semenescu
- Sleep Disorder Unit, Pitie-Salpetriere University Hospital, APHP, Paris, France.,Paris Brain Institute, Paris, France
| | - Isabelle Arnulf
- Sleep Disorder Unit, Pitie-Salpetriere University Hospital, APHP, Paris, France. .,Paris Brain Institute, Paris, France. .,Sorbonne University, Paris, France.
| |
Collapse
|
19
|
Hong CCH, Fallon JH, Friston KJ. fMRI Evidence for Default Mode Network Deactivation Associated with Rapid Eye Movements in Sleep. Brain Sci 2021; 11:brainsci11111528. [PMID: 34827529 PMCID: PMC8615877 DOI: 10.3390/brainsci11111528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
System-specific brain responses—time-locked to rapid eye movements (REMs) in sleep—are characteristically widespread, with robust and clear activation in the primary visual cortex and other structures involved in multisensory integration. This pattern suggests that REMs underwrite hierarchical processing of visual information in a time-locked manner, where REMs index the generation and scanning of virtual-world models, through multisensory integration in dreaming—as in awake states. Default mode network (DMN) activity increases during rest and reduces during various tasks including visual perception. The implicit anticorrelation between the DMN and task-positive network (TPN)—that persists in REM sleep—prompted us to focus on DMN responses to temporally-precise REM events. We timed REMs during sleep from the video recordings and quantified the neural correlates of REMs—using functional MRI (fMRI)—in 24 independent studies of 11 healthy participants. A reanalysis of these data revealed that the cortical areas exempt from widespread REM-locked brain activation were restricted to the DMN. Furthermore, our analysis revealed a modest temporally-precise REM-locked decrease—phasic deactivation—in key DMN nodes, in a subset of independent studies. These results are consistent with hierarchical predictive coding; namely, permissive deactivation of DMN at the top of the hierarchy (leading to the widespread cortical activation at lower levels; especially the primary visual cortex). Additional findings indicate REM-locked cerebral vasodilation and suggest putative mechanisms for dream forgetting.
Collapse
Affiliation(s)
- Charles Chong-Hwa Hong
- Patuxent Institution, Correctional Mental Health Center—Jessup, Jessup, MD 20794, USA
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University, Baltimore, MD 21205, USA
- Correspondence: ; Tel.: +1-410-596-1956
| | - James H. Fallon
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA;
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA
| | - Karl J. Friston
- The Well Come Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK;
| |
Collapse
|
20
|
Malinowski JE, Scheel D, McCloskey M. Do animals dream? Conscious Cogn 2021; 95:103214. [PMID: 34653784 DOI: 10.1016/j.concog.2021.103214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/22/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
The understanding of biological functions of sleep has improved recently, including an understanding of the deep evolutionary roots of sleep among animals. However, dreaming as an element of sleep may be particularly difficult to address in non-human animals because in humans dreaming involves a non-wakeful form of awareness typically identified through verbal report. Here, we argue that parallels that exist between the phenomenology, physiology, and sleep behaviors during human dreaming provide an avenue to investigate dreaming in non-human animals. We review three alternative measurements of human dreaming - neural correlates of dreaming, 'replay' of newly-acquired memories, and dream-enacting behaviors - and consider how these may be applied to non-human animal models. We suggest that while animals close in brain structure to humans (such as mammals and birds) may be optimal models for the first two of these measurements, cephalopods, especially octopuses, may be particularly good candidates for the third.
Collapse
Affiliation(s)
- J E Malinowski
- School of Psychology, University of East London, Stratford, UK.
| | - D Scheel
- Institute of Culture & Environment, Alaska Pacific University, Anchorage, AK, USA.
| | - M McCloskey
- Institute of Culture & Environment, Alaska Pacific University, Anchorage, AK, USA.
| |
Collapse
|
21
|
Zeidan S, Redolfi S, Papeix C, Bodini B, Louapre C, Arnulf I, Maillart E. Unexpected REM sleep excess associated with a pontine lesion in multiple sclerosis. J Clin Sleep Med 2021; 17:1117-1119. [PMID: 33538688 DOI: 10.5664/jcsm.9114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
NONE Sleep disorders are prevalent in patients with multiple sclerosis. In contrast, a frank increase of rapid eye movement (REM) sleep time is a rare phenomenon, mostly described in the context of REM sleep rebound (after sleep deprivation, abrupt withdrawal of antidepressants or neuroleptics, and during the first night of ventilation for severe sleep apnea), but not in link with specific brain lesions. We incidentally found an isolated, marked increase in REM sleep time (200 min, 40% of total sleep time, normative values: 18.2-20.3%) and in rapid eye movements density during REM sleep in a patient with a secondary progressive multiple sclerosis, associated with an anterior pontine demyelinating lesion on magnetic resonance imaging. This result suggests that a network blocking REM sleep in the pons has been damaged.
Collapse
Affiliation(s)
- Sinéad Zeidan
- AP-HP, Pitié-Salpêtrière Hospital, Department of Neurology, Paris, France
| | - Stefania Redolfi
- AP-HP, Pitié-Salpêtrière Hospital, Centre de Référence narcolepsie et hypersomnies rares, Service des Pathologies du Sommeil, Paris, France.,Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris France
| | - Caroline Papeix
- AP-HP, Pitié-Salpêtrière Hospital, Department of Neurology, Paris, France
| | - Benedetta Bodini
- Institut du Cerveau et de la Moelle épinière, ICM, CIC Neuroscience, Paris, France.,AP-HP, Saint Antoine Hospital, Department of Neurology, Paris, France
| | - Céline Louapre
- AP-HP, Pitié-Salpêtrière Hospital, Department of Neurology, Paris, France.,Institut du Cerveau et de la Moelle épinière, ICM, CIC Neuroscience, Paris, France
| | - Isabelle Arnulf
- AP-HP, Pitié-Salpêtrière Hospital, Centre de Référence narcolepsie et hypersomnies rares, Service des Pathologies du Sommeil, Paris, France.,Institut du Cerveau et de la Moelle épinière, ICM, CIC Neuroscience, Paris, France
| | - Elisabeth Maillart
- AP-HP, Pitié-Salpêtrière Hospital, Department of Neurology, Paris, France
| |
Collapse
|
22
|
Scarpelli S, Alfonsi V, Gorgoni M, Giannini AM, De Gennaro L. Investigation on Neurobiological Mechanisms of Dreaming in the New Decade. Brain Sci 2021; 11:brainsci11020220. [PMID: 33670180 PMCID: PMC7916906 DOI: 10.3390/brainsci11020220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/05/2023] Open
Abstract
Dream research has advanced significantly over the last twenty years, thanks to the new applications of neuroimaging and electrophysiological techniques. Many findings pointed out that mental activity during sleep and wakefulness shared similar neural bases. On the other side, recent studies have highlighted that dream experience is promoted by significant brain activation, characterized by reduced low frequencies and increased rapid frequencies. Additionally, several studies confirmed that the posterior parietal area and prefrontal cortex are responsible for dream experience. Further, early results revealed that dreaming might be manipulated by sensory stimulations that would provoke the incorporation of specific cues into the dream scenario. Recently, transcranial stimulation techniques have been applied to modulate the level of consciousness during sleep, supporting previous findings and adding new information about neural correlates of dream recall. Overall, although multiple studies suggest that both the continuity and activation hypotheses provide a growing understanding of neural processes underlying dreaming, several issues are still unsolved. The impact of state-/trait-like variables, the influence of circadian and homeostatic factors, and the examination of parasomnia-like events to access dream contents are all opened issues deserving further deepening in future research.
Collapse
Affiliation(s)
- Serena Scarpelli
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (V.A.); (L.D.G.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (A.M.G.)
- Correspondence: ; Tel.: +39-06-4991-7508
| | - Valentina Alfonsi
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (V.A.); (L.D.G.)
| | - Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (A.M.G.)
| | - Anna Maria Giannini
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (A.M.G.)
| | - Luigi De Gennaro
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (V.A.); (L.D.G.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (A.M.G.)
| |
Collapse
|
23
|
Manger PR, Siegel JM. Do all mammals dream? J Comp Neurol 2020; 528:3198-3204. [PMID: 31960424 PMCID: PMC8211436 DOI: 10.1002/cne.24860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/26/2022]
Abstract
The presence of dreams in human sleep, especially in REM sleep, and the detection of physiologically similar states in mammals has led many to ponder whether animals experience similar sleep mentation. Recent advances in our understanding of the anatomical and physiological correlates of sleep stages, and thus dreaming, allow a better understanding of the possibility of dream mentation in nonhuman mammals. Here, we explore the potential for dream mentation, in both non-REM and REM sleep across mammals. If we take a hard-stance, that dream mentation only occurs during REM sleep, we conclude that it is unlikely that monotremes, cetaceans, and otariid seals while at sea, have the potential to experience dream mentation. Atypical REM sleep in other species, such as African elephants and Arabian oryx, may alter their potential to experience REM dream mentation. Alternatively, evidence that dream mentation occurs during both non-REM and REM sleep, indicates that all mammals have the potential to experience dream mentation. This non-REM dream mentation may be different in the species where non-REM is atypical, such as during unihemispheric sleep in aquatic mammals (cetaceans, sirens, and Otariid seals). In both scenarios, the cetaceans are the least likely mammalian group to experience vivid dream mentation due to the morphophysiological independence of their cerebral hemispheres. The application of techniques revealing dream mentation in humans to other mammals, specifically those that exhibit unusual sleep states, may lead to advances in our understanding of the neural underpinnings of dreams and conscious experiences.
Collapse
Affiliation(s)
- Paul R. Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Jerome M. Siegel
- Department of Psychiatry, School of Medicine, and Brain Research Institute, University of California, Los Angeles, California
- Brain Research Institute, Neurobiology Research, Sepulveda VA Medical Center, Los Angeles, California
| |
Collapse
|
24
|
Carruthers G, Carls‐diamante S, Huang L, Rosen M, Schier E. How to operationalise consciousness. AUSTRALIAN JOURNAL OF PSYCHOLOGY 2020. [DOI: 10.1111/ajpy.12264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | - Linus Huang
- Department of Philosophy, University of California at San Diego, CA & Institute of European and American Studies, Academia Sinica, Taipei,
| | - Melanie Rosen
- Department of Culture and Society, Aarhus University, Australia,
| | - Elizabeth Schier
- Department of Psychology, Charles Sturt University, Port Macquarie, Australia and Department of Philosophy, Macquarie University, Sydney, Australia,
| |
Collapse
|
25
|
Dreams and nightmares in healthy adults and in patients with sleep and neurological disorders. Lancet Neurol 2020; 19:849-859. [PMID: 32949545 DOI: 10.1016/s1474-4422(20)30275-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/24/2019] [Accepted: 07/14/2020] [Indexed: 12/16/2022]
Abstract
Dreams are experiences that occur during sleep, while we are disconnected from the environment. Thanks to recent progress in neuroimaging techniques, it is now becoming possible to relate dream features to specific patterns of brain activity. Some conditions occurring in patients with neurological disorders, such as lucid dreams and parasomnias, not only have diagnostic value, but also offer a window into the dream process. They show that dreaming is reflected in physiological signals, behaviours, and brain activity patterns, and that the body can enact dream content. Yet, the dream body can also be distinct from the real body; in their dreams, patients with congenital paraplegia can walk, those with sleep apnoea rarely suffocate, and phantom limb pain can disappear. These conditions provide valuable models for future studies investigating the mechanisms that underlie oneiric experiences.
Collapse
|
26
|
Clark RA, Suh SY, Caprioli J, Giaconi JA, Nouri-Mahdavi K, Law SK, Bonelli L, Coleman AL, Demer JL. Adduction-Induced Strain on the Optic Nerve in Primary Open Angle Glaucoma at Normal Intraocular Pressure. Curr Eye Res 2020; 46:568-578. [PMID: 32911989 DOI: 10.1080/02713683.2020.1817491] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE/AIM The optic nerve (ON) becomes taut during adduction beyond ~26° in healthy people and patients with primary open angle glaucoma (POAG), but only retracts the globe in POAG. We used magnetic resonance imaging (MRI) to investigate this difference. MATERIALS AND METHODS MRI was obtained in 2-mm quasi-coronal planes in central gaze, and smaller (~23-25°) and larger (~30-31°) adduction and abduction in 21 controls and 12 POAG subjects whose intraocular pressure never exceeded 21 mmHg. ON cross-sections were analyzed from the globe to 10 mm posteriorly. Area centroids were used to calculate ON path lengths and changes in cross-sections to calculate elongation assuming volume conservation. RESULTS For both groups, ON path was nearly straight (<102.5% of minimum path) in smaller adduction, with minimal further straightening in larger adduction. ON length was redundant in abduction, exceeding 103% of minimum path for both groups. For normals, the ON elongated 0.4 ± 0.5 mm from central gaze to smaller adduction, and 0.4 ± 0.5 mm further from smaller to larger adduction. For POAG subjects, the ON did not elongate on average from central gaze to smaller adduction and only 0.2 ± 0.4 mm from smaller to larger adduction (P = .045 vs normals). Both groups demonstrated minimal ON elongation not exceeding 0.25 mm from central gaze to smaller and larger abduction. The globe retracted significantly more during large adduction in POAG subjects than normals (0.6 ± 0.7 mm vs 0.2 ± 0.5 mm, P = .027), without appreciable retraction in abduction. For each mm increase in globe axial length, ON elongation in large adduction similarly increased by 0.2 mm in each group. CONCLUSIONS The normal ON stretches to absorb force and avert globe retraction in adduction. In POAG with mild to severe visual field loss, the relatively inelastic ON tethers and retracts the globe during adduction beyond ~26°, transfering stress to the optic disc that could contribute to progressive neuropathy during repeated eye movements.
Collapse
Affiliation(s)
- Robert A Clark
- Department of Ophthalmology, University of California, Los Angeles, USA.,Stein Eye Institute, University of California, Los Angeles, USA
| | - Soh Youn Suh
- Department of Ophthalmology, University of California, Los Angeles, USA.,Stein Eye Institute, University of California, Los Angeles, USA
| | - Joseph Caprioli
- Department of Ophthalmology, University of California, Los Angeles, USA.,Stein Eye Institute, University of California, Los Angeles, USA
| | - JoAnn A Giaconi
- Department of Ophthalmology, University of California, Los Angeles, USA.,Stein Eye Institute, University of California, Los Angeles, USA
| | - Kouros Nouri-Mahdavi
- Department of Ophthalmology, University of California, Los Angeles, USA.,Stein Eye Institute, University of California, Los Angeles, USA
| | - Simon K Law
- Department of Ophthalmology, University of California, Los Angeles, USA.,Stein Eye Institute, University of California, Los Angeles, USA
| | - Laura Bonelli
- Department of Ophthalmology, University of California, Los Angeles, USA.,Stein Eye Institute, University of California, Los Angeles, USA
| | - Anne L Coleman
- Department of Ophthalmology, University of California, Los Angeles, USA.,Stein Eye Institute, University of California, Los Angeles, USA.,Department of Epidemiology Fielding School of Public Health, University of California, Los Angeles, USA
| | - Joseph L Demer
- Department of Ophthalmology, University of California, Los Angeles, USA.,Stein Eye Institute, University of California, Los Angeles, USA.,Department of Neurology, University of California, Los Angeles, USA.,Neuroscience Interdepartmental Program, University of California, Los Angeles, USA.,Bioengineering Interdepartmental Program, University of California, Los Angeles, USA
| |
Collapse
|
27
|
Christensen JAE, Cesari M, Pizza F, Antelmi E, Frandsen RAV, Plazzi G, Jennum P. Nocturnal eye movements in patients with idiopathic rapid eye movement sleep behaviour disorder and patients with Parkinson's disease. J Sleep Res 2020; 30:e13125. [PMID: 32860309 DOI: 10.1111/jsr.13125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/14/2020] [Accepted: 05/23/2020] [Indexed: 12/01/2022]
Abstract
Patients with idiopathic rapid-eye-movement (REM) sleep behaviour disorder (iRBD) have a high risk of converting into manifest α-synucleinopathies. Eye movements (EMs) are controlled by neurons in the lower brainstem, midbrain and frontal areas, and may be affected by the early neurodegenerative process seen in iRBD. Studies have reported impairment of the oculomotor function in patients with Parkinson's disease (PD) during wakefulness, but no studies have investigated EMs during sleep. We aimed to evaluate nocturnal EMs in iRBD and PD, hypothesizing that these patients present abnormal EM distribution during sleep. Twenty-eight patients with periodic limb movement disorder (PLMD), 24 iRBD, 23 PD without RBD (PDwoRBD), 29 PD and RBD (PDwRBD) and 24 controls were included. A validated EM detector automatically identified EM periods between lights off and on. The EM coverage was computed as the percentage of time containing EMs during stable wake after lights off, N1, N2, N3 and REM sleep. Between-group comparisons revealed that PDwRBD had significantly less EM coverage during wake and significantly higher EM coverage during N2 compared to controls and PLMD patients. PDwoRBD showed significantly less EM coverage during wake compared to controls and higher EM coverage during N2 compared to controls and PLMD. Finally, iRBD showed less coverage of EM during wake compared to controls. The same trend was observed between iRBD and controls in N2 but was not significant. The different profiles of EM coverage in iRBD and PD with/without RBD may mirror different stages of central nervous system involvement across neurodegenerative disease progression.
Collapse
Affiliation(s)
- Julie A E Christensen
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet Glostrup, Glostrup, Denmark.,Digital Health, Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Matteo Cesari
- Digital Health, Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Institute of the Neurological Sciences of Bologna, Bologna, Italy
| | - Elena Antelmi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,Neurology Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Institute of the Neurological Sciences of Bologna, Bologna, Italy
| | - Poul Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
28
|
Bourdillon P, Hermann B, Guénot M, Bastuji H, Isnard J, King JR, Sitt J, Naccache L. Brain-scale cortico-cortical functional connectivity in the delta-theta band is a robust signature of conscious states: an intracranial and scalp EEG study. Sci Rep 2020; 10:14037. [PMID: 32820188 PMCID: PMC7441406 DOI: 10.1038/s41598-020-70447-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/22/2020] [Indexed: 11/17/2022] Open
Abstract
Long-range cortico-cortical functional connectivity has long been theorized to be necessary for conscious states. In the present work, we estimate long-range cortical connectivity in a series of intracranial and scalp EEG recordings experiments. In the two first experiments intracranial-EEG (iEEG) was recorded during four distinct states within the same individuals: conscious wakefulness (CW), rapid-eye-movement sleep (REM), stable periods of slow-wave sleep (SWS) and deep propofol anaesthesia (PA). We estimated functional connectivity using the following two methods: weighted Symbolic-Mutual-Information (wSMI) and phase-locked value (PLV). Our results showed that long-range functional connectivity in the delta-theta frequency band specifically discriminated CW and REM from SWS and PA. In the third experiment, we generalized this original finding on a large cohort of brain-injured patients. FC in the delta-theta band was significantly higher in patients being in a minimally conscious state (MCS) than in those being in a vegetative state (or unresponsive wakefulness syndrome). Taken together the present results suggest that FC of cortical activity in this slow frequency band is a new and robust signature of conscious states.
Collapse
Affiliation(s)
- Pierre Bourdillon
- Department of Neurophysiology, Hospital for Neurology and Neurosurgery, Hospices Civils de Lyon, Lyon, France.
- Faculté de médecine Claude Bernard, Université de Lyon, Lyon, France.
- Brain and Spine Institue, INSERM U1127, CNRS 7225, 47 boulevard de l'Hôpital, 75013, Paris, France.
- Sorbonne Université, Paris, France.
| | - Bertrand Hermann
- Brain and Spine Institue, INSERM U1127, CNRS 7225, 47 boulevard de l'Hôpital, 75013, Paris, France
- Sorbonne Université, Paris, France
- Neuro Intensive Care Unit, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Marc Guénot
- Department of Neurophysiology, Hospital for Neurology and Neurosurgery, Hospices Civils de Lyon, Lyon, France
- Faculté de médecine Claude Bernard, Université de Lyon, Lyon, France
- Neuropain Team, Centre de Recherche en Neurosciences de Lyon, INSERM U1028, Lyon, France
| | - Hélène Bastuji
- Neuropain Team, Centre de Recherche en Neurosciences de Lyon, INSERM U1028, Lyon, France
- Functional Neurology Department and Sleep Center, Hospices Civils de Lyon, Lyon, France
| | - Jean Isnard
- Functional Neurology Department and Sleep Center, Hospices Civils de Lyon, Lyon, France
| | - Jean-Rémi King
- Brain and Spine Institue, INSERM U1127, CNRS 7225, 47 boulevard de l'Hôpital, 75013, Paris, France
| | - Jacobo Sitt
- Brain and Spine Institue, INSERM U1127, CNRS 7225, 47 boulevard de l'Hôpital, 75013, Paris, France
| | - Lionel Naccache
- Brain and Spine Institue, INSERM U1127, CNRS 7225, 47 boulevard de l'Hôpital, 75013, Paris, France.
- Sorbonne Université, Paris, France.
- Department of Neurophysiology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Paris, France.
| |
Collapse
|
29
|
Siclari F. Sleep: The Sensory Disconnection of Dreams. Curr Biol 2020; 30:R826-R828. [PMID: 32693081 DOI: 10.1016/j.cub.2020.05.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It has been known for some time that the brain can react selectively to meaningful sensory stimuli during sleep. A recent study shows that this ability may be selectively suppressed during rapid eye movements of sleep.
Collapse
Affiliation(s)
- Francesca Siclari
- Center for Investigation and Research in Sleep, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
30
|
Rogers LL, McColley L, Dalton J, Stroner J, Hajicek D, Partin A, Burghardt GM. Behavior in Free-Living American Black Bear Dens: Parturition, Maternal Care, and Cub Behavior. Animals (Basel) 2020; 10:ani10071123. [PMID: 32630255 PMCID: PMC7401642 DOI: 10.3390/ani10071123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary We report here some of the major findings on the behavior of black bear mothers and cubs in their dens in the wild, based on observations in the state of Minnesota, USA. Wild female bears were outfitted with radio collars and their dens located as they prepared for hibernation in the fall. Cameras were installed in the dens and events in the den recorded until they and their cubs finally abandoned their dens in the spring. Although most reports of black bear cub behavior have been post den emergence, we provide intimate details of their birth, maternal behavior, and the development of the cubs from birth to emergence. Yearling cubs from the previous year sometimes remained with their mother for a second year. We discovered many aspects of mother, cub, and yearling behavior previously unknown and some of which contradict claims in the literature. Den cams are an important means of observing secretive behavior in settings previously impossible to observe unobtrusively. Abstract Denning behavior has long remained the least observed aspect of bear behavior. During 2010–2013, we used webcams, microphones, the internet, and 14,602 h of archived video to document the denning behaviors of two adult wild black bears (Ursus americanus) as they gave birth and cared for four litters through six winters in northeastern Minnesota. Observations included types of dens, labor, pre-parturient genital swelling, birthing positions, post-partum vocalizations, mothers removing amniotic tissues and warming newborn cubs in sub-freezing temperatures, frequency of nursing, cubs establishing nipple order, yearlings suckling, the ingestion of snow and icicles, the ingestion of foot pads, urination and defecation in latrine areas, toilet-licking, eye opening, reciprocal tongue-licking, play, rapid eye movement (REM) sleep and possible dreaming, and reactions to wildlife intruders. The use of this new method for observing natural bear dens allowed the identification of many behaviors undescribed for any species of wild bear in dens. We also discuss the need for future studies and how the depth and duration of black bear hibernation varies with body condition and geographic region.
Collapse
Affiliation(s)
- Lynn L. Rogers
- Wildlife Research Institute, Ely, MN 55731, USA; (L.L.R.); (L.M.); (J.D.); (J.S.)
| | - Linda McColley
- Wildlife Research Institute, Ely, MN 55731, USA; (L.L.R.); (L.M.); (J.D.); (J.S.)
| | - Janet Dalton
- Wildlife Research Institute, Ely, MN 55731, USA; (L.L.R.); (L.M.); (J.D.); (J.S.)
| | - Jim Stroner
- Wildlife Research Institute, Ely, MN 55731, USA; (L.L.R.); (L.M.); (J.D.); (J.S.)
| | | | - Adam Partin
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, USA;
| | - Gordon M. Burghardt
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, USA;
- Departments of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: ; Tel.: +1-865-974-3300
| |
Collapse
|
31
|
Shin A, Park J, Le A, Poukens V, Demer JL. Bilaminar Mechanics of the Human Optic Nerve Sheath. Curr Eye Res 2020; 45:854-863. [PMID: 31821056 PMCID: PMC7286774 DOI: 10.1080/02713683.2019.1701689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE/AIM The adult human optic nerve (ON) sheath has recently been recognized to be bilaminar, consisting of inner layer (IL) and outer layer (OL). Since the ON and sheath exert tension on the globe in large angle adduction as these structures transmit reaction force of the medial rectus muscle to the globe, this study investigated the laminar biomechanics of the human ON sheath. MATERIALS AND METHODS Biomechanical characterization was performed in ON sheath specimens from 12 pairs of fresh, post-mortem adult eyes. Some ON sheath specimens were tested completely, while others were separated into IL and OL. Uniaxial tensile loading under physiological temperature and humidity was used to characterize a linear approximation as Young's modulus, and hyperelastic non-linear behavior using the formulation of Ogden. Micro-indentation was performed by imposing small compressive deformations with small, hard spheres. Specimens of the same sheaths were paraffin embedded, sectioned at 10 micron thickness, and stained with van Gieson's stain for anatomical correlation. RESULTS Mean (± standard error of the mean, SEM) tensile Young's modulus of the inner sheath at 19.8 ± 1.6 MPa significantly exceeded that for OL at 9.7 ± 1.2 MPa; the whole sheath showed intermediate modulus of 15.4 ± 1.1 MPa. Under compression, the inner sheath was stiffer (7.9 ± 0.5 vs 5.2 ± 0.5 kPa) and more viscous (150.8 ± 10.6 vs 75.6 ± 6 kPa s) than outer sheath. The inner sheath had denser elastin fibers than outer sheath, correlating with greater stiffness. CONCLUSIONS We conclude that maximum tensile stiffness occurs in the elastin-rich ON sheath IL that inserts near the lamina cribrosa where tension in the sheath exerted during adduction tethering may be concentrated adjacent the ON head.
Collapse
Affiliation(s)
- Andrew Shin
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles
- Wellman Center for Photomedicine, Harvard Medical School & Massachusetts General Hospital, Boston
| | - Joseph Park
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles
- Department of Bioengineering, University of California, Los Angeles
| | - Alan Le
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles
- Department of Bioengineering, University of California, Los Angeles
| | - Vadims Poukens
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles
| | - Joseph L. Demer
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles
- Biomedical Engineering Interdepartmental Program, University of California, Los Angeles
- Neuroscience Interdepartmental Program, University of California, Los Angeles
- Department of Neurology, University of California, Los Angeles
| |
Collapse
|
32
|
Reply to Comment on Age-Dependent Deformation of the Optic Nerve Head and Peripapillary Retina by Horizontal Duction. Am J Ophthalmol 2020; 215:157-159. [PMID: 32359700 DOI: 10.1016/j.ajo.2020.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 11/21/2022]
|
33
|
Koroma M, Lacaux C, Andrillon T, Legendre G, Léger D, Kouider S. Sleepers Selectively Suppress Informative Inputs during Rapid Eye Movements. Curr Biol 2020; 30:2411-2417.e3. [PMID: 32413310 DOI: 10.1016/j.cub.2020.04.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/20/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
Sleep leads to a disconnection from the external world. Even when sleepers regain consciousness during rapid eye movement (REM) sleep, little, if any, external information is incorporated into dream content [1-3]. While gating mechanisms might be at play to avoid interference on dreaming activity [4], a total disconnection from an ever-changing environment may prevent the sleeper from promptly responding to informative events (e.g., threat signals). In fact, a whole range of neural responses to external events turns out to be preserved during REM sleep [5-9]. Thus, it remains unclear whether external inputs are either processed or, conversely, gated during REM sleep. One way to resolve this issue is to consider the specific impact of eye movements (EMs) characterizing REM sleep. EMs are a reliable predictor of reporting a dream upon awakening [10, 11], and their absence is associated with a lower arousal threshold to external stimuli [12]. We thus hypothesized that the presence of EMs would selectively prevent the processing of informative stimuli, whereas periods of REM sleep devoid of EMs would be associated with the monitoring of external signals. By reconstructing speech in a multi-talker environment from electrophysiological responses, we show that informative speech is amplified over meaningless speech during REM sleep. Yet, at the precise timing of EMs, informative speech is, on the contrary, selectively suppressed. These results demonstrate the flexible amplification and suppression of sensory information during REM sleep and reveal the impact of EMs on the selective gating of informative stimuli during sleep.
Collapse
Affiliation(s)
- Matthieu Koroma
- Brain and Consciousness Group (ENS, EHESS, CNRS), Département d'Études Cognitives, École Normale Supérieure - PSL Research University, 75005 Paris, France; Sorbonne Université, École Doctorale Cerveau Cognition Comportement, Université Pierre et Marie Curie, 9 Quai Saint Bernard, 75005 Paris, France
| | - Célia Lacaux
- Sorbonne Université, École Doctorale Cerveau Cognition Comportement, Université Pierre et Marie Curie, 9 Quai Saint Bernard, 75005 Paris, France; Sorbonne University, IHU@ICM, INSERM, CNRS UMR7225, 75013 Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Service des Pathologies du Sommeil, 75013 Paris, France
| | - Thomas Andrillon
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC 3800, Australia
| | - Guillaume Legendre
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Damien Léger
- Université de Paris, Paris Descartes, APHP, Hôtel Dieu, Centre du Sommeil et de la Vigilance et EA 7330 VIFASOM, 75004 Paris, France
| | - Sid Kouider
- Brain and Consciousness Group (ENS, EHESS, CNRS), Département d'Études Cognitives, École Normale Supérieure - PSL Research University, 75005 Paris, France.
| |
Collapse
|
34
|
Mota-Rolim SA. On Moving the Eyes to Flag Lucid Dreaming. Front Neurosci 2020; 14:361. [PMID: 32351360 PMCID: PMC7174658 DOI: 10.3389/fnins.2020.00361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/24/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Sergio Arthuro Mota-Rolim
- Brain Institute, Department of Physiology and Behavior, and Onofre Lopes University Hospital - Federal University of Rio Grande Do Norte, Natal, Brazil
| |
Collapse
|
35
|
Abstract
PURPOSE/AIM We aimed to characterize the connective tissue microanatomy, elastin abundance, and fiber orientation in the human optic nerve sheath, also known as the optic nerve dura mater, for correlation with its biomechanical properties. MATERIALS AND METHODS Seven whole human orbits aged 4-93 years, and five isolated human optic nerve sheaths aged 26-75 years were formalin fixed, paraffin embedded, coronally sectioned, stained by Masson trichrome and van Gieson's elastin methods, and analyzed quantitatively for elastin fiber abundance and orientation. Elastin area fraction was defined as area stained for elastin divided by total area. RESULTS While unilaminar in children, the adult ON sheath exhibited distinct inner and outer layers. Collagen was denser and more compact in the inner layer. Elastin area fraction was significantly greater at 6.0 ± 0.4% (standard error of mean) in the inner than outer layer at 3.6 ± 0.4% (P < 10-5). Elastin fibers had three predominant orientations: longitudinal, diagonal, and circumferential. Of circumferential fibers, 63 ± 4.7% were in the inner and 37 ± 4.7% in the outer layer (P < 10-4). Longitudinal and diagonal fibers were uniformly distributed in both layers. Elastin density and sheath thickness increased significantly with age (P < .01). CONCLUSIONS The adult human optic nerve sheath is bilaminar, with each layer containing elastin fibers oriented in multiple directions consistent with isotropic properties. Differences in laminar elastin density and orientation may reflect greater tensile loading in the inner than in the outer layer.
Collapse
Affiliation(s)
- Alan Le
- Department of Bioengineering, University of California , Los Angeles, California, USA.,Department of Ophthalmology and Stein Eye Institute, University of California , Los Angeles, California, USA
| | - Andrew Shin
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital , Boston, Massachusetts, USA
| | - Joseph Park
- Department of Bioengineering, University of California , Los Angeles, California, USA.,Department of Ophthalmology and Stein Eye Institute, University of California , Los Angeles, California, USA
| | - Vadims Poukens
- Department of Ophthalmology and Stein Eye Institute, University of California , Los Angeles, California, USA
| | - Joseph L Demer
- Department of Ophthalmology and Stein Eye Institute, University of California , Los Angeles, California, USA.,Department of Neurology, University of California , Los Angeles, California, USA.,Neuroscience, University of California , Los Angeles, California, USA.,Bioengineering Interdepartmental Programs, University of California , Los Angeles, California, USA.,David Geffen Medical School, University of California , Los Angeles, California, USA
| |
Collapse
|
36
|
Sokoloff G, Hickerson MM, Wen RY, Tobias ME, McMurray B, Blumberg MS. Spatiotemporal organization of myoclonic twitching in sleeping human infants. Dev Psychobiol 2020; 62:697-710. [PMID: 32037557 DOI: 10.1002/dev.21954] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 11/11/2022]
Abstract
During the perinatal period in mammals when active sleep predominates, skeletal muscles twitch throughout the body. We have hypothesized that myoclonic twitches provide unique insight into the functional status of the human infant's nervous system. However, assessments of the rate and patterning of twitching have largely been restricted to infant rodents. Thus, here we analyze twitching in human infants over the first seven postnatal months. Using videography and behavioral measures of twitching during bouts of daytime sleep, we find at all ages that twitching across the body occurs predominantly in bursts at intervals of 10 s or less. We also find that twitching is expressed differentially across the body and with age. For example, twitching of the face and head is most prevalent shortly after birth and decreases over the first several months. In addition, twitching of the hands and feet occurs at a consistently higher rate than does twitching elsewhere in the body. Finally, the patterning of twitching becomes more structured with age, with twitches of the left and right hands and feet exhibiting the strongest coupling. Altogether, these findings support the notion that twitches can provide a unique source of information about typical and atypical sensorimotor development.
Collapse
Affiliation(s)
- Greta Sokoloff
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA.,DeLTA Center, The University of Iowa, Iowa City, IA, USA.,Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Meredith M Hickerson
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA
| | - Rebecca Y Wen
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA
| | - Megan E Tobias
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA
| | - Bob McMurray
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA.,DeLTA Center, The University of Iowa, Iowa City, IA, USA.,Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA.,DeLTA Center, The University of Iowa, Iowa City, IA, USA.,Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
37
|
Demer JL, Clark RA, Suh SY, Giaconi JA, Nouri-Mahdavi K, Law SK, Bonelli L, Coleman AL, Caprioli J. Optic Nerve Traction During Adduction in Open Angle Glaucoma with Normal versus Elevated Intraocular Pressure. Curr Eye Res 2020; 45:199-210. [PMID: 31453714 PMCID: PMC7398593 DOI: 10.1080/02713683.2019.1660371] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
Abstract
Purpose/Aim: We used magnetic resonance imaging (MRI) to investigate effects of intraocular pressure (IOP), race, and other factors on optic nerve (ON) traction in adduction, a phenomenon proposed as neuropathic in open angle glaucoma (OAG).Materials and Methods: Thirty-five patients with OAG (26 with maximal untreated IOP ≤21 mmHg, 9 with IOP >21mmHg) and 48 controls underwent axial and quasi-coronal MRI in central gaze and large (27-33°) abduction and adduction. Some underwent MRI at smaller ductions (21-28°). Effects of presence vs. absence of OAG; within OAG whether maximum IOP level was ≤21 mmHg vs. >21 mmHg; adduction angle; race; age; and gender on ON path length and globe translation were analyzed using generalized estimating equations to account for possible intereye correlations of individual subjects.Results: Average visual field mean deviation (±standard error of mean, SEM) was -8.2 ± 1.2 dB in OAG with normal IOP, and -6.1 ± 1.4 in high IOP. In central gaze, ON path in OAG was significantly more redundant than in controls but in both groups the ON became significantly and almost equally straighter in small (~21°) or large (~27°) adduction than in central gaze. With progressive adduction only, globes retracted in OAG (P < 0.005) but not in controls; this was only weakly related to globe size and not to IOP elevation. Globe retraction in adduction was significant only in OAG, and in that group was significantly greater in Asian than white patients (P < 0.02).Conclusions: Although ON tethering in adduction is normal, progressive adduction is associated with abnormal globe retraction in OAG regardless of IOP level. This phenomenon is more prominent in Asians who have OAG. Traction in adduction may cause repetitive strain injury to the ON and peripapillary sclera, thus contributing to the optic neuropathy of glaucoma independent of IOP.
Collapse
Affiliation(s)
- Joseph L. Demer
- Department of Ophthalmology, University of California, Los Angeles
- Stein Eye Institute; University of California, Los Angeles
- Biomedical Engineering Interdepartmental Program; University of California, Los Angeles
- Neuroscience Interdepartmental Program; University of California, Los Angeles
- Department of Neurology, University of California, Los Angeles
| | - Robert A. Clark
- Department of Ophthalmology, University of California, Los Angeles
- Stein Eye Institute; University of California, Los Angeles
| | - Soh Youn Suh
- Department of Ophthalmology, University of California, Los Angeles
| | - JoAnn A. Giaconi
- Department of Ophthalmology, University of California, Los Angeles
- Stein Eye Institute; University of California, Los Angeles
| | - Kouros Nouri-Mahdavi
- Department of Ophthalmology, University of California, Los Angeles
- Stein Eye Institute; University of California, Los Angeles
| | - Simon K. Law
- Department of Ophthalmology, University of California, Los Angeles
- Stein Eye Institute; University of California, Los Angeles
| | - Laura Bonelli
- Department of Ophthalmology, University of California, Los Angeles
- Stein Eye Institute; University of California, Los Angeles
| | - Anne L. Coleman
- Department of Ophthalmology, University of California, Los Angeles
- Stein Eye Institute; University of California, Los Angeles
| | - Joseph Caprioli
- Department of Ophthalmology, University of California, Los Angeles
- Stein Eye Institute; University of California, Los Angeles
| |
Collapse
|
38
|
Sunwoo JS, Cha KS, Byun JI, Kim TJ, Jun JS, Lim JA, Lee ST, Jung KH, Park KI, Chu K, Kim HJ, Kim M, Lee SK, Kim KH, Schenck CH, Jung KY. Abnormal activation of motor cortical network during phasic REM sleep in idiopathic REM sleep behavior disorder. Sleep 2019; 42:5184577. [PMID: 30445515 DOI: 10.1093/sleep/zsy227] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 11/14/2022] Open
Abstract
Study Objectives We investigated electroencephalography (EEG) power spectral density and functional connectivity during phasic and tonic rapid eye movement (REM) sleep, and examined any differences between patients with idiopathic REM sleep behavior disorder (iRBD) and controls. Methods EEG data from 13 people with iRBD (mean age, 66.3 years; men, 84.6%) and 10 controls (mean age, 62.3 years; men, 70%) were analyzed. We selected thirty 3 s miniepochs of both tonic and phasic REM sleep. We estimated relative power for six frequency bands. For functional connectivity analysis, we calculated weighted phase lag index (wPLI) and conducted pairwise comparisons between the two groups. Results EEG power spectral analysis revealed significant interactions between the REM sleep state (phasic vs. tonic) and group at sigma (p = 0.009) and beta (p = 0.002) bands. Sigma- and beta-power decrease during phasic REM sleep was more pronounced and extensive in people with iRBD than in controls. Regarding functional connectivity, there were significant interactions between the REM sleep state and group at alpha (p = 0.029), sigma (p = 0.047), beta (p = 0.015), and gamma (p = 0.046) bands. The average wPLI was significantly higher during phasic REM sleep than during tonic REM sleep, which was observed in people with iRBD but not in controls. The altered functional connections mainly involved the frontal and parietal regions at beta and gamma bands. Conclusions Our findings provide neurophysiological evidence for pathological motor cortex activation during phasic REM sleep which may be associated with generation of dream-enacting behaviors in iRBD.
Collapse
Affiliation(s)
- Jun-Sang Sunwoo
- Department of Neurology, Soonchunhyang University College of Medicine, Seoul, South Korea
| | - Kwang Su Cha
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Jung-Ick Byun
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Tae-Joon Kim
- Department of Neurology, National Center for Mental Health, Seoul, South Korea
| | - Jin-Sun Jun
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Jung-Ah Lim
- Department of Neurology, Gangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Program in Neuroscience, Seoul National University College of Medicine, Seoul, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Program in Neuroscience, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung-Il Park
- Department of Neurology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Program in Neuroscience, Seoul National University College of Medicine, Seoul, South Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Program in Neuroscience, Seoul National University College of Medicine, Seoul, South Korea.,Protein Metabolism Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Program in Neuroscience, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung Hwan Kim
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, South Korea
| | - Carlos H Schenck
- Minnesota Regional Sleep Disorders Center, and Department of Psychiatry, Hennepin County Medical Center and University of Minnesota Medical School, Minneapolis, MN
| | - Ki-Young Jung
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Program in Neuroscience, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
39
|
van Wyk M, Solms M, Lipinska G. Increased Awakenings From Non-rapid Eye Movement Sleep Explain Differences in Dream Recall Frequency in Healthy Individuals. Front Hum Neurosci 2019; 13:370. [PMID: 31680920 PMCID: PMC6803546 DOI: 10.3389/fnhum.2019.00370] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/30/2019] [Indexed: 11/28/2022] Open
Abstract
Background Dreaming is a universal experience, yet there is considerable inter-individual variability in dream recall frequency (DRF). One dominant model, the “arousal-retrieval” model, posits that intra-sleep wakefulness is required for dream traces to be encoded into long-term storage, essentially proposing that a better memory for dreams underlie increased DRF. A recent study utilizing polysomnography combined with an event-related potentials paradigm, provides direct support for this model by demonstrating increased intra-sleep wakefulness in a healthy population by comparing high frequency recallers (HFRs) and low frequency recallers (LFRs). Another study by the same group demonstrated increased regional cerebral blood flow in regions associated with dream production, supporting the premise that HFRs also may produce more dreams. Hypotheses This study investigated the profile of nocturnal awakenings and dream production in healthy HFRs and LFRs. Hypothesis (1a): HFRs will spend significantly more time awake after sleep onset; (1b): HFRs will experience significantly more awakenings across the night, and from rapid eye movement (REM) sleep in particular; (2) HFRs will have significantly higher rates of dream production across the night as measured by REM density. Methods We studied two groups of healthy adults: HFRs (n = 19) and LFRs (n = 17) who underwent polysomnographic recordings on two non-consecutive nights. Results Hypothesis (1a) was confirmed: HFRs spent significantly more time awake after sleep onset. Hypothesis (1b) was partially confirmed: HFRs experienced significantly more awakenings across the night; however, awakenings from REM sleep were comparable. Interestingly, HFRs had significantly more awakenings, as well as a higher number of longer awakenings, from non-rapid eye movement (NREM) stage 2 sleep. Hypothesis (2) was not confirmed: There was no significant difference in rates of REM density between groups. Conclusion This is the first study to provide evidence that awakenings from NREM 2 sleep might underlie increased DRF in HFRs. This finding coupled with null findings in relation to REM sleep variables, support the premise that inter-individual variability in DRF cannot be ascribed to differences in REM sleep parameters in healthy individuals. Instead, the data indicates that awakenings from NREM sleep is of particular importance in relation to DRF in a healthy population.
Collapse
Affiliation(s)
- Mariza van Wyk
- UCT Sleep Sciences, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Mark Solms
- UCT Sleep Sciences, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Gosia Lipinska
- UCT Sleep Sciences, Department of Psychology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
40
|
Gonfalone AA. Hypothetical role of gravity in Rapid Eye Movements during sleep. Med Hypotheses 2019; 127:63-65. [PMID: 31088650 DOI: 10.1016/j.mehy.2019.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/26/2019] [Indexed: 11/29/2022]
Abstract
Dream periods during sleep have been observed in most mammals as early in history as antiquity. Sleep researchers at the University of Chicago, discovered the phase of rapid eye movement (REM) during sleep and connected it to the dream period. During this period, called the REM phase (after the American terminology), although the brain shows electrical activity, it is insensitive to external stimulations, including light, sound, contact and, a little unexpectedly, gravity. However, since this discovery was mаde there has been no definitive explanation of the rapid eye movements Many possible explanations have been offered, and yet, the causes and contributing factors of the REM sleep phase are inadequately understood. It has often been proposed that the eyes observe the images produced during dreams, but researchers are not convinced. It is proposed here that the movements of the eyes during REM sleep are due to a feeling of disorientation and a subjective loss of landmarks. During the REM sleep phase, the brain has a reduced sensation of gravity, and the sleeper is in a state similar to weightlessness. The instinctive search for the vertical or horizontal direction triggers movements of the eyes, looking for usual points of reference. This hypothesis is reinforced by an original experiment that was conducted in space. The frequency of the eye movements of astronauts during their first night in space is 10 times more than what is experienced on the ground, and that moment in time is when the feeling or the sensation of weightlessness is certainly the most disturbing. Upon the return to Earth, the frequency of the eye movements increases again the first night after landing. These two moments are when the effects of gravity are felt most drastically. The present assumption needs to be validated experimentally and may necessitate further research.
Collapse
|
41
|
Christensen JAE, Aubin S, Nielsen T, Ptito M, Kupers R, Jennum P. Rapid eye movements are reduced in blind individuals. J Sleep Res 2019; 28:e12866. [DOI: 10.1111/jsr.12866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/20/2019] [Accepted: 04/01/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Julie A. E. Christensen
- Danish Center for Sleep Medicine Department of Clinical Neurophysiology Rigshospitalet Glostrup Denmark
- Biomedical Engineering Department of Health Technology Technical University of Denmark Kongens Lyngby Denmark
| | - Sébrina Aubin
- Department of Neuroscience University of Montreal Montreal Quebec Canada
- Brain Research and Integrative Neuroscience Laboratory Danish Center for Sleep Medicine Department of Clinical Neurophysiology Rigshospitalet Glostrup Denmark
- Harland Sanders Chair in Visual ScienceSchool of Optometry University of Montreal Montreal Quebec Canada
| | - Tore Nielsen
- Dream and Nightmare Laboratory Center for Advanced Research in Sleep Medicine Department of Psychiatry University of Montreal Montreal Quebec Canada
| | - Maurice Ptito
- Brain Research and Integrative Neuroscience Laboratory Danish Center for Sleep Medicine Department of Clinical Neurophysiology Rigshospitalet Glostrup Denmark
- Harland Sanders Chair in Visual ScienceSchool of Optometry University of Montreal Montreal Quebec Canada
- Laboratory of Neuropsychiatry and Psychiatric Centre Copenhagen University of Copenhagen Copenhagen Denmark
| | - Ron Kupers
- Brain Research and Integrative Neuroscience Laboratory Danish Center for Sleep Medicine Department of Clinical Neurophysiology Rigshospitalet Glostrup Denmark
- Department of Radiology and Biomedical Imaging Yale University New Haven Connecticut USA
| | - Poul Jennum
- Danish Center for Sleep Medicine Department of Clinical Neurophysiology Rigshospitalet Glostrup Denmark
| |
Collapse
|
42
|
Stefani A, Holzknecht E, Högl B. Clinical neurophysiology of REM parasomnias. HANDBOOK OF CLINICAL NEUROLOGY 2019; 161:381-396. [DOI: 10.1016/b978-0-444-64142-7.00062-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
43
|
Hong CCH, Fallon JH, Friston KJ, Harris JC. Rapid Eye Movements in Sleep Furnish a Unique Probe Into Consciousness. Front Psychol 2018; 9:2087. [PMID: 30429814 PMCID: PMC6220670 DOI: 10.3389/fpsyg.2018.02087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/10/2018] [Indexed: 01/07/2023] Open
Abstract
The neural correlates of rapid eye movements (REMs) in sleep are extraordinarily robust; including REM-locked multisensory-motor integration and accompanying activation in the retrosplenial cortex, the supplementary eye field and areas encompassing cholinergic basal nucleus (Hong et al., 2009). The phenomenology of REMs speaks to the notion that perceptual experience in both sleep and wakefulness is a constructive process - in which we generate predictions of sensory inputs and then test those predictions through actively sampling the sensorium with eye movements. On this view, REMs during sleep may index an internalized active sampling or 'scanning' of self-generated visual constructs that are released from the constraints of visual input. If this view is correct, it renders REMs an ideal probe to study consciousness as "an exclusively internal affair" (Metzinger, 2009). In other words, REMs offer a probe of active inference - in the sense of predictive coding - when the brain is isolated from the sensorium in virtue of the natural blockade of sensory afferents during REM sleep. Crucially, REMs are temporally precise events that enable powerful inferences based on time series analyses. As a natural, task-free probe, (REMs) could be used in non-compliant subjects, including infants and animals. In short, REMs constitute a promising probe to study the ontogenetic and phylogenetic development of consciousness and perhaps the psychopathology of schizophrenia and autism, which have been considered in terms of aberrant predictive coding.
Collapse
Affiliation(s)
- Charles C.-H. Hong
- Patuxent Institution, Correctional Mental Health Center — Jessup, Jessup, MD, United States
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins Hospital, Baltimore, MD, United States
| | - James H. Fallon
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, United States
| | - Karl J. Friston
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - James C. Harris
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
44
|
LaBerge S, Baird B, Zimbardo PG. Smooth tracking of visual targets distinguishes lucid REM sleep dreaming and waking perception from imagination. Nat Commun 2018; 9:3298. [PMID: 30120229 PMCID: PMC6098118 DOI: 10.1038/s41467-018-05547-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/11/2018] [Indexed: 11/21/2022] Open
Abstract
Humans are typically unable to engage in sustained smooth pursuit for imagined objects. However, it is unknown to what extent smooth tracking occurs for visual imagery during REM sleep dreaming. Here we examine smooth pursuit eye movements during tracking of a slow-moving visual target during lucid dreams in REM sleep. Highly similar smooth pursuit tracking was observed during both waking perception and lucid REM sleep dreaming, in contrast to the characteristically saccadic tracking observed during visuomotor imagination. Our findings suggest that, in this respect, the visual imagery that occurs during REM sleep is more similar to perception than imagination. The data also show that the neural circuitry of smooth pursuit can be driven by a visual percept in the absence of retinal stimulation and that specific voluntary shifts in the direction of experienced gaze within REM sleep dreams are accompanied by corresponding rotations of the physical eyes. When tracking a moving object, our eyes make smooth pursuit movements; however, tracking an imaginary object produces jerky saccadic eye movements. Here, the authors show that during lucid dreams, the eyes smoothly follow dreamed objects. In this respect, dream imagery is more similar to perception than imagination.
Collapse
Affiliation(s)
- Stephen LaBerge
- Department of Psychology, Stanford University, Stanford, CA, 94305-2130, USA.,Lucidity Institute
| | - Benjamin Baird
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA.
| | - Philip G Zimbardo
- Department of Psychology, Stanford University, Stanford, CA, 94305-2130, USA
| |
Collapse
|
45
|
Shin A, Yoo L, Park J, Demer JL. Finite Element Biomechanics of Optic Nerve Sheath Traction in Adduction. J Biomech Eng 2018; 139:2648719. [PMID: 28787473 DOI: 10.1115/1.4037562] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Indexed: 02/01/2023]
Abstract
Historical emphasis on increased intraocular pressure (IOP) in the pathogenesis of glaucoma has been challenged by the recognition that many patients lack abnormally elevated IOP. We employed finite element analysis (FEA) to infer contribution to optic neuropathy from tractional deformation of the optic nerve head (ONH) and lamina cribrosa (LC) by extraocular muscle (EOM) counterforce exerted when optic nerve (ON) redundancy becomes exhausted in adduction. We characterized assumed isotropic Young's modulus of fresh adult bovine ON, ON sheath, and peripapillary and peripheral sclera by tensile elongation in arbitrary orientations of five specimens of each tissue to failure under physiological temperature and humidity. Physical dimensions of the FEA were scaled to human histological and magnetic resonance imaging (MRI) data and used to predict stress and strain during adduction 6 deg beyond ON straightening at multiple levels of IOP. Young's modulus of ON sheath of 44.6 ± 5.6 MPa (standard error of mean) greatly exceeded that of ON at 5.2 ± 0.4 MPa, peripapillary sclera at 5.5 ± 0.8 MPa, and peripheral sclera at 14.0 ± 2.3 MPa. FEA indicated that adduction induced maximum stress and strain in the temporal ONH. In the temporal LC, the maximum stress was 180 kPa, and the maximum strain was ninefold larger than produced by IOP elevation to 45 mm Hg. The simulation suggests that ON sheath traction by adduction concentrates far greater mechanical stress and strain in the ONH region than does elevated IOP, supporting the novel concept that glaucomatous optic neuropathy may result at least partly from external traction on the ON, rather than exclusively on pressure on the ON exerted from within the eye.
Collapse
Affiliation(s)
- Andrew Shin
- Department of Ophthalmology, Stein Eye Institute, Los Angeles, CA 90095
| | - Lawrence Yoo
- Department of Ophthalmology, Stein Eye Institute, Los Angeles, CA 90095; Intelon Optics Inc., Cambridge, MA 02138-4430
| | - Joseph Park
- Department of Ophthalmology, Stein Eye Institute, Los Angeles, CA 90095; Department of Mechanical Engineering, University of California, Los Angeles, CA 90095
| | - Joseph L Demer
- Arthur L. Rosenbaum Professor of Pediatric Ophthalmology Department of Ophthalmology, Stein Eye Institute, Los Angeles, CA 90095 e-mail: ; Biomedical Engineering Interdepartmental Program, University of California, Los Angeles, CA 90095;Neuroscience Interdepartmental Program, University of California, Los Angeles, CA 90095; Department of Neurology, University of California, Los Angeles, CA 90095
| |
Collapse
|
46
|
Liu ZX, Grady C, Moscovitch M. The effect of prior knowledge on post-encoding brain connectivity and its relation to subsequent memory. Neuroimage 2017; 167:211-223. [PMID: 29158201 DOI: 10.1016/j.neuroimage.2017.11.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/08/2017] [Accepted: 11/16/2017] [Indexed: 02/02/2023] Open
Abstract
It is known that prior knowledge can facilitate memory acquisition. It is unclear, however, whether prior knowledge can affect post-encoding brain activity to facilitate memory consolidation. In this fMRI study, we asked participants to associate novel houses with famous/nonfamous faces and investigated how associative-encoding tasks with/without prior knowledge differentially affected post-encoding brain connectivity during rest. Besides memory advantages in the famous condition, we found that post-encoding hippocampal connectivity with the fusiform face area (FFA) and ventral-medial-prefrontal cortex (vmPFC) was stronger following encoding of associations with famous than non-famous faces. Importantly, post-encoding functional connectivity between the hippocampus (HPC) and FFA, and between the anterior temporal pole region (aTPL) and posterior perceptual regions (i.e., FFA and the parahippocampal place area), together predicted a large proportion of the variance in subsequent memory performance. This prediction was specific for face-house associative memory, not face/house item memory, and only in the famous condition where prior knowledge was involved. These results support the idea that when prior knowledge is involved, the HPC, vmPFC, and aTPL, which support prior episodic, social-evaluative/schematic, and semantic memories, respectively, continue to interact with each other and posterior perceptual brain regions during the post-encoding rest to facilitate off-line processing of the newly formed memory, and enhance memory consolidation.
Collapse
Affiliation(s)
- Zhong-Xu Liu
- Rotman Research Institute, Baycrest Health Sciences, University of Toronto, Canada.
| | - Cheryl Grady
- Rotman Research Institute, Baycrest Health Sciences, University of Toronto, Canada; Department of Psychology, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Canada
| | - Morris Moscovitch
- Rotman Research Institute, Baycrest Health Sciences, University of Toronto, Canada; Department of Psychology, University of Toronto, Canada
| |
Collapse
|
47
|
Demer JL, Clark RA, Suh SY, Giaconi JA, Nouri-Mahdavi K, Law SK, Bonelli L, Coleman AL, Caprioli J. Magnetic Resonance Imaging of Optic Nerve Traction During Adduction in Primary Open-Angle Glaucoma With Normal Intraocular Pressure. Invest Ophthalmol Vis Sci 2017; 58:4114-4125. [PMID: 28829843 PMCID: PMC5566384 DOI: 10.1167/iovs.17-22093] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose We used magnetic resonance imaging (MRI) to ascertain effects of optic nerve (ON) traction in adduction, a phenomenon proposed as neuropathic in primary open-angle glaucoma (POAG). Methods Seventeen patients with POAG and maximal IOP ≤ 20 mm Hg, and 31 controls underwent MRI in central gaze and 20° to 30° abduction and adduction. Optic nerve and sheath area centroids permitted computation of midorbital lengths versus minimum paths. Results Average mean deviation (±SEM) was −8.2 ± 1.2 dB in the 15 patients with POAG having interpretable perimetry. In central gaze, ON path length in POAG was significantly more redundant (104.5 ± 0.4% of geometric minimum) than in controls (102.9 ± 0.4%, P = 2.96 × 10−4). In both groups the ON became significantly straighter in adduction (28.6 ± 0.8° in POAG, 26.8 ± 1.1° in controls) than central gaze and abduction. In adduction, the ON in POAG straightened to 102.0% ± 0.2% of minimum path length versus 104.5% ± 0.4% in central gaze (P = 5.7 × 10−7), compared with controls who straightened to 101.6% ± 0.1% from 102.9% ± 0.3% in central gaze (P = 8.7 × 10−6); and globes retracted 0.73 ± 0.09 mm in POAG, but only 0.07 ± 0.08 mm in controls (P = 8.8 × 10−7). Both effects were confirmed in age-matched controls, and remained significant after correction for significant effects of age and axial globe length (P = 0.005). Conclusions Although tethering and elongation of ON and sheath are normal in adduction, adduction is associated with abnormally great globe retraction in POAG without elevated IOP. Traction in adduction may cause mechanical overloading of the ON head and peripapillary sclera, thus contributing to or resulting from the optic neuropathy of glaucoma independent of IOP.
Collapse
Affiliation(s)
- Joseph L Demer
- Department of Ophthalmology, University of California, Los Angeles, California, United States.,Stein Eye Institute, University of California, Los Angeles, California, United States.,Biomedical Engineering Interdepartmental Program, University of California, Los Angeles, California, United States.,Neuroscience Interdepartmental Program, University of California, Los Angeles, California, United States.,Department of Neurology, University of California, Los Angeles, California, United States
| | - Robert A Clark
- Department of Ophthalmology, University of California, Los Angeles, California, United States.,Stein Eye Institute, University of California, Los Angeles, California, United States
| | - Soh Youn Suh
- Department of Ophthalmology, University of California, Los Angeles, California, United States
| | - JoAnn A Giaconi
- Department of Ophthalmology, University of California, Los Angeles, California, United States.,Stein Eye Institute, University of California, Los Angeles, California, United States
| | - Kouros Nouri-Mahdavi
- Department of Ophthalmology, University of California, Los Angeles, California, United States.,Stein Eye Institute, University of California, Los Angeles, California, United States
| | - Simon K Law
- Department of Ophthalmology, University of California, Los Angeles, California, United States.,Stein Eye Institute, University of California, Los Angeles, California, United States
| | - Laura Bonelli
- Department of Ophthalmology, University of California, Los Angeles, California, United States.,Stein Eye Institute, University of California, Los Angeles, California, United States
| | - Anne L Coleman
- Department of Ophthalmology, University of California, Los Angeles, California, United States.,Stein Eye Institute, University of California, Los Angeles, California, United States
| | - Joseph Caprioli
- Department of Ophthalmology, University of California, Los Angeles, California, United States.,Stein Eye Institute, University of California, Los Angeles, California, United States
| |
Collapse
|
48
|
|
49
|
Speth C, Speth J. A New Measure of Hallucinatory States and a Discussion of REM Sleep Dreaming as a Virtual Laboratory for the Rehearsal of Embodied Cognition. Cogn Sci 2017; 42:311-333. [PMID: 28585737 DOI: 10.1111/cogs.12491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 10/30/2016] [Accepted: 12/01/2016] [Indexed: 11/26/2022]
Abstract
Hallucinatory states are experienced not only in connection with drugs and psychopathologies but occur naturally and spontaneously across the human circadian cycle: Our nightly dreams bring multimodal experiences in the absence of adequate external stimuli. The current study proposes a new, tighter measure of these hallucinatory states: Sleep onset, REM sleep, and non-REM sleep are shown to differ with regard to (a) motor imagery indicating interactions with a rich imaginative world, and (b) cognitive agency that could enable sleepers to recognize their hallucinatory state. Mentation reports from the different states were analysed quantitatively with regard to two grammatical-semantic constructs, motor agency and cognitive agency. The present results support earlier physiological and psychological evidence in revealing a decline in cognitive functions and an increase in simulated interactions with a hallucinatory world, en route to normal REM sleep. This leads us to introduce the hypothesis that REM sleep, which exhibits remarkably high levels of (simulated) sensorimotor processes, may have evolved to serve as a virtual laboratory for the development and rehearsal of embodied cognition. The new measure of hallucinatory states presented here may also hold implications for the study of executive functions and (meta-)cognitions, which might be interesting, for example, for the investigation of lucid dreaming.
Collapse
|
50
|
Pizza F, Chokroverty S. What can we learn from eye movements distribution during sleep? Sleep Med 2017; 33:181-182. [DOI: 10.1016/j.sleep.2017.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 11/24/2022]
|