1
|
Jiao D, Xu L, Gu Z, Yan H, Shen D, Gu X. Pathogenesis, diagnosis, and treatment of epilepsy: electromagnetic stimulation-mediated neuromodulation therapy and new technologies. Neural Regen Res 2025; 20:917-935. [PMID: 38989927 PMCID: PMC11438347 DOI: 10.4103/nrr.nrr-d-23-01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 07/12/2024] Open
Abstract
Epilepsy is a severe, relapsing, and multifactorial neurological disorder. Studies regarding the accurate diagnosis, prognosis, and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy. The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression, protein expression, ion channel activity, energy metabolites, and gut microbiota composition. Satisfactory results are lacking for conventional treatments for epilepsy. Surgical resection of lesions, drug therapy, and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy. Non-pharmacological treatments, such as a ketogenic diet, gene therapy for nerve regeneration, and neural regulation, are currently areas of research focus. This review provides a comprehensive overview of the pathogenesis, diagnostic methods, and treatments of epilepsy. It also elaborates on the theoretical basis, treatment modes, and effects of invasive nerve stimulation in neurotherapy, including percutaneous vagus nerve stimulation, deep brain electrical stimulation, repetitive nerve electrical stimulation, in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation. Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures. Additionally, many new technologies for the diagnosis and treatment of epilepsy are being explored. However, current research is mainly focused on analyzing patients' clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level, which has led to a lack of consensus regarding the mechanisms related to the disease.
Collapse
Affiliation(s)
- Dian Jiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Lai Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hua Yan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dingding Shen
- Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Obaid S, Guberman GI, St-Onge E, Campbell E, Edde M, Lamsam L, Bouthillier A, Weil AG, Daducci A, Rheault F, Nguyen DK, Descoteaux M. Progressive remodeling of structural networks following surgery for operculo-insular epilepsy. Front Neurol 2024; 15:1400601. [PMID: 39144703 PMCID: PMC11322451 DOI: 10.3389/fneur.2024.1400601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Operculo-insular epilepsy (OIE) is a rare condition amenable to surgery in well-selected cases. Despite the high rate of neurological complications associated with OIE surgery, most postoperative deficits recover fully and rapidly. We provide insights into this peculiar pattern of functional recovery by investigating the longitudinal reorganization of structural networks after surgery for OIE in 10 patients. Methods Structural T1 and diffusion-weighted MRIs were performed before surgery (t0) and at 6 months (t1) and 12 months (t2) postoperatively. These images were processed with an original, comprehensive structural connectivity pipeline. Using our method, we performed comparisons between the t0 and t1 timepoints and between the t1 and t2 timepoints to characterize the progressive structural remodeling. Results We found a widespread pattern of postoperative changes primarily in the surgical hemisphere, most of which consisted of reductions in connectivity strength (CS) and regional graph theoretic measures (rGTM) that reflect local connectivity. We also observed increases in CS and rGTMs predominantly in regions located near the resection cavity and in the contralateral healthy hemisphere. Finally, most structural changes arose in the first six months following surgery (i.e., between t0 and t1). Discussion To our knowledge, this study provides the first description of postoperative structural connectivity changes following surgery for OIE. The ipsilateral reductions in connectivity unveiled by our analysis may result from the reversal of seizure-related structural alterations following postoperative seizure control. Moreover, the strengthening of connections in peri-resection areas and in the contralateral hemisphere may be compatible with compensatory structural plasticity, a process that could contribute to the recovery of functions seen following operculo-insular resections for focal epilepsy.
Collapse
Affiliation(s)
- Sami Obaid
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Division of Neurosurgery, Department of Surgery, University of Montreal Hospital Center (CHUM), Montreal, QC, Canada
- Sherbrooke Connectivity Imaging Lab (SCIL), Sherbrooke University, Sherbrooke, QC, Canada
| | - Guido I. Guberman
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Etienne St-Onge
- Department of Computer Science and Engineering, Université du Québec en Outaouais, Montreal, QC, Canada
| | - Emma Campbell
- Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - Manon Edde
- Sherbrooke Connectivity Imaging Lab (SCIL), Sherbrooke University, Sherbrooke, QC, Canada
| | - Layton Lamsam
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Alain Bouthillier
- Division of Neurosurgery, Department of Surgery, University of Montreal Hospital Center (CHUM), Montreal, QC, Canada
| | - Alexander G. Weil
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Montreal, QC, Canada
| | | | - François Rheault
- Medical Imaging and Neuroimaging (MINi) Lab, Sherbrooke University, Sherbrooke, QC, Canada
| | - Dang K. Nguyen
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Division of Neurology, University of Montreal Hospital Center (CHUM), Montreal, QC, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Sherbrooke University, Sherbrooke, QC, Canada
| |
Collapse
|
3
|
Eze P, Omorotionmwan E, Cummine J. Moving towards an Understanding of the Role of the Inferior Fronto-Occipital Fasciculus in Language Processing. NEUROSCI 2024; 5:39-58. [PMID: 39483812 PMCID: PMC11523719 DOI: 10.3390/neurosci5010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 11/03/2024] Open
Abstract
Evidence has been provided for a clear structural distinction between the dorsal and ventral portions of the inferior frontal occipital fasciculus (IFOF). As such, there is reason to propose that there might also be a functional differentiation of the dorsal and ventral components of the IFOF. Here, we explored three main hypotheses/schools of thought with regards to the functional frameworks of the dorsal and ventral components of the IFOF: (1) the phonological vs. semantic processing hypothesis, (2) the difficult vs. non-difficult task processing hypothesis and (3) the automatic vs. non-automatic processing hypothesis. Methods: Participants (N = 32) completed a series of behavioral tasks that aligned with each of the main hypotheses. Using a regression-based approach, we assessed the unique contribution of behavioral performance to dorsal and ventral IFOF white matter indicators (i.e., fractional anisotropy and mean diffusivity). Results: We found significant relationships between ventral IFOF indices and orthographic awareness (p = 0.018) and accuracy (p = 0.009). Overall, our results provide converging evidence that the IFOF primarily operates as a ventral language tract in adults. Thus, the structural distinction between dorsal and ventral IFOF does not manifest as a parallel functional distinction.
Collapse
Affiliation(s)
- Princess Eze
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6A 2G4, Canada; (P.E.)
| | - Efrem Omorotionmwan
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6A 2G4, Canada; (P.E.)
| | - Jacqueline Cummine
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6A 2G4, Canada; (P.E.)
- Communication Sciences and Disorders, University of Alberta, Edmonton, AB T6A2 G4, Canada
| |
Collapse
|
4
|
Stasenko A, Lin C, Bonilha L, Bernhardt BC, McDonald CR. Neurobehavioral and Clinical Comorbidities in Epilepsy: The Role of White Matter Network Disruption. Neuroscientist 2024; 30:105-131. [PMID: 35193421 PMCID: PMC9393207 DOI: 10.1177/10738584221076133] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Epilepsy is a common neurological disorder associated with alterations in cortical and subcortical brain networks. Despite a historical focus on gray matter regions involved in seizure generation and propagation, the role of white matter (WM) network disruption in epilepsy and its comorbidities has sparked recent attention. In this review, we describe patterns of WM alterations observed in focal and generalized epilepsy syndromes and highlight studies linking WM disruption to cognitive and psychiatric comorbidities, drug resistance, and poor surgical outcomes. Both tract-based and connectome-based approaches implicate the importance of extratemporal and temporo-limbic WM disconnection across a range of comorbidities, and an evolving literature reveals the utility of WM patterns for predicting outcomes following epilepsy surgery. We encourage new research employing advanced analytic techniques (e.g., machine learning) that will further shape our understanding of epilepsy as a network disorder and guide individualized treatment decisions. We also address the need for research that examines how neuromodulation and other treatments (e.g., laser ablation) affect WM networks, as well as research that leverages larger and more diverse samples, longitudinal designs, and improved magnetic resonance imaging acquisitions. These steps will be critical to ensuring generalizability of current research and determining the extent to which neuroplasticity within WM networks can influence patient outcomes.
Collapse
Affiliation(s)
- Alena Stasenko
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Christine Lin
- School of Medicine, University of California, San Diego, CA, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Boris C Bernhardt
- Departments of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Carrie R McDonald
- Department of Psychiatry, University of California, San Diego, CA, USA
- Department of Radiation Medicine & Applied Sciences, University of California, San Diego, CA, USA
- Center for Multimodal Imaging and Genetics (CMIG), University of California, San Diego, CA, USA
| |
Collapse
|
5
|
Stasenko A, Kaestner E, Arienzo D, Schadler AJ, Helm JL, Shih JJ, Ben-Haim S, McDonald CR. Preoperative white matter network organization and memory decline after epilepsy surgery. J Neurosurg 2023; 139:1576-1587. [PMID: 37178024 PMCID: PMC10640663 DOI: 10.3171/2023.4.jns23347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE Risk for memory decline is a common concern for individuals with temporal lobe epilepsy (TLE) undergoing surgery. Global and local network abnormalities are well documented in TLE. However, it is less known whether network abnormalities predict postsurgical memory decline. The authors examined the role of preoperative global and local white matter network organization and risk of postoperative memory decline in TLE. METHODS One hundred one individuals with TLE (n = 51 with left TLE and 50 with right TLE) underwent preoperative T1-weighted MRI, diffusion MRI, and neuropsychological memory testing in a prospective longitudinal study. Fifty-six age- and sex-matched controls completed the same protocol. Forty-four patients (22 with left TLE and 22 with right TLE) subsequently underwent temporal lobe surgery and postoperative memory testing. Preoperative structural connectomes were generated via diffusion tractography and analyzed using measures of global and local (i.e., medial temporal lobe [MTL]) network organization. Global metrics measured network integration and specialization. The local metric was calculated as an asymmetry of the mean local efficiency between the ipsilateral and contralateral MTLs (i.e., MTL network asymmetry). RESULTS Higher preoperative global network integration and specialization were associated with higher preoperative verbal memory function in patients with left TLE. Higher preoperative global network integration and specialization, as well as greater leftward MTL network asymmetry, predicted greater postoperative verbal memory decline for patients with left TLE. No significant effects were observed in right TLE. Accounting for preoperative memory score and hippocampal volume asymmetry, MTL network asymmetry uniquely explained 25%-33% of the variance in verbal memory decline for left TLE and outperformed hippocampal volume asymmetry and global network metrics. MTL network asymmetry alone produced good diagnostic classification of memory decline in left TLE (i.e., an area under the receiver operating characteristic curve of 0.80-0.84 and correct classification of 65%-76% of cases with cross-validation). CONCLUSIONS These preliminary data suggest that global white matter network disruption contributes to verbal memory impairment preoperatively and predicts postsurgical verbal memory outcomes in left TLE. However, a leftward asymmetry of MTL white matter network organization may confer the highest risk for verbal memory decline. Although this requires replication in a larger sample, the authors demonstrate the importance of characterizing preoperative local white matter network properties within the to-be-operated hemisphere and the reserve capacity of the contralateral MTL network, which may eventually be useful in presurgical planning.
Collapse
Affiliation(s)
- Alena Stasenko
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
- Departments of Psychiatry, San Diego State University, San Diego, California
| | - Erik Kaestner
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
- Departments of Psychiatry, San Diego State University, San Diego, California
| | - Donatello Arienzo
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
- Departments of Psychiatry, San Diego State University, San Diego, California
| | - Adam J. Schadler
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
- Departments of Psychiatry, San Diego State University, San Diego, California
| | - Jonathan L. Helm
- Department of Psychology, San Diego State University, San Diego, California
| | - Jerry J. Shih
- Neurosciences, University of California, San Diego, California
| | | | - Carrie R. McDonald
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
- Departments of Psychiatry, San Diego State University, San Diego, California
- Radiation Medicine & Applied Sciences, University of California, San Diego, California
| |
Collapse
|
6
|
D’Onofrio G, Icolaro N, Fazzari E, Catapano D, Curcio A, Izzi A, Manuali A, Bisceglia G, Tancredi A, Marchello V, Recchia A, Tonti MP, Pazienza L, Carotenuto V, Bonis CD, Savarese L, Gaudio AD, Gorgoglione LP. Real-Time Neuropsychological Testing (RTNT) and Music Listening during Glioblastoma Excision in Awake Surgery: A Case Report. J Clin Med 2023; 12:6086. [PMID: 37763026 PMCID: PMC10531570 DOI: 10.3390/jcm12186086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In this case report, real-time neuropsychological testing (RTNT) and music listening were applied for resections in the left temporal-parietal lobe during awake surgery (AS). The case is based on a 66-year-old with glioblastoma and alterations in expressive language and memory deficit. Neuropsychological assessment was run at baseline (2-3 days before surgery), discharge from hospital (2-3 days after surgery), and follow-up (1 month and 3 months). RTNT was started before beginning the anesthetic approach (T0) and during tumor excision (T1 and T2). At T0, T1, and T2 (before performing neuropsychological tests), music listening was applied. Before AS and after music listening, the patient reported a decrease in depression and anxiety. During AS, an improvement was shown in all cognitive parameters collected at T0, T1, and T2. After the excision and music listening, the patient reported a further decrease in depression and anxiety. Three days post surgery, and at follow-ups of one month and three months, the patient reported a further improvement in cognitive aspects, the absence of depression, and a reduction in anxiety symptoms. In conclusion, RTNT has been useful in detecting cognitive function levels during tumor excision. Music listening during AS decreased the patient's anxiety and depression symptoms.
Collapse
Affiliation(s)
- Grazia D’Onofrio
- Clinical Psychology Service, Health Department, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Nadia Icolaro
- Complex Unit of Neurosurgery, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (N.I.); (E.F.); (D.C.); (V.C.); (C.D.B.); (L.S.); (L.P.G.)
| | - Elena Fazzari
- Complex Unit of Neurosurgery, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (N.I.); (E.F.); (D.C.); (V.C.); (C.D.B.); (L.S.); (L.P.G.)
| | - Domenico Catapano
- Complex Unit of Neurosurgery, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (N.I.); (E.F.); (D.C.); (V.C.); (C.D.B.); (L.S.); (L.P.G.)
| | - Antonello Curcio
- Division of Neurosurgery, BIOMORF Department, University of Messina, 98122 Messina, Italy;
| | - Antonio Izzi
- Complex Unit of Anesthesia-2, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (A.I.); (A.M.); (G.B.); (A.T.); (V.M.); (A.R.); (M.P.T.); (A.D.G.)
| | - Aldo Manuali
- Complex Unit of Anesthesia-2, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (A.I.); (A.M.); (G.B.); (A.T.); (V.M.); (A.R.); (M.P.T.); (A.D.G.)
| | - Giuliano Bisceglia
- Complex Unit of Anesthesia-2, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (A.I.); (A.M.); (G.B.); (A.T.); (V.M.); (A.R.); (M.P.T.); (A.D.G.)
| | - Angelo Tancredi
- Complex Unit of Anesthesia-2, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (A.I.); (A.M.); (G.B.); (A.T.); (V.M.); (A.R.); (M.P.T.); (A.D.G.)
| | - Vincenzo Marchello
- Complex Unit of Anesthesia-2, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (A.I.); (A.M.); (G.B.); (A.T.); (V.M.); (A.R.); (M.P.T.); (A.D.G.)
| | - Andreaserena Recchia
- Complex Unit of Anesthesia-2, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (A.I.); (A.M.); (G.B.); (A.T.); (V.M.); (A.R.); (M.P.T.); (A.D.G.)
| | - Maria Pia Tonti
- Complex Unit of Anesthesia-2, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (A.I.); (A.M.); (G.B.); (A.T.); (V.M.); (A.R.); (M.P.T.); (A.D.G.)
| | - Luca Pazienza
- Complex Unit of Radiology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Vincenzo Carotenuto
- Complex Unit of Neurosurgery, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (N.I.); (E.F.); (D.C.); (V.C.); (C.D.B.); (L.S.); (L.P.G.)
| | - Costanzo De Bonis
- Complex Unit of Neurosurgery, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (N.I.); (E.F.); (D.C.); (V.C.); (C.D.B.); (L.S.); (L.P.G.)
| | - Luciano Savarese
- Complex Unit of Neurosurgery, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (N.I.); (E.F.); (D.C.); (V.C.); (C.D.B.); (L.S.); (L.P.G.)
| | - Alfredo Del Gaudio
- Complex Unit of Anesthesia-2, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (A.I.); (A.M.); (G.B.); (A.T.); (V.M.); (A.R.); (M.P.T.); (A.D.G.)
| | - Leonardo Pio Gorgoglione
- Complex Unit of Neurosurgery, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (N.I.); (E.F.); (D.C.); (V.C.); (C.D.B.); (L.S.); (L.P.G.)
| |
Collapse
|
7
|
Leiberg K, de Tisi J, Duncan JS, Little B, Taylor PN, Vos SB, Winston GP, Mota B, Wang Y. Effects of anterior temporal lobe resection on cortical morphology. Cortex 2023; 166:233-242. [PMID: 37399617 DOI: 10.1016/j.cortex.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 07/05/2023]
Abstract
Neuroimaging can capture brain restructuring after anterior temporal lobe resection (ATLR), a surgical procedure to treat drug-resistant temporal lobe epilepsy (TLE). Here, we examine the effects of this surgery on brain morphology measured in recently-proposed independent variables. We studied 101 individuals with TLE (55 left, 46 right onset) who underwent ATLR. For each individual we considered one pre-surgical MRI and one follow-up MRI 2-13 months after surgery. We used a surface-based method to locally compute traditional morphological variables, and the independent measures K, I, and S, where K measures white matter tension, I captures isometric scaling, and S contains the remaining information about cortical shape. A normative model trained on data from 924 healthy controls was used to debias the data and account for healthy ageing effects occurring during scans. A SurfStat random field theory clustering approach assessed changes across the cortex caused by ATLR. Compared to preoperative data, surgery had marked effects on all morphological measures. Ipsilateral effects were located in the orbitofrontal and inferior frontal gyri, the pre- and postcentral gyri and supramarginal gyrus, and the lateral occipital gyrus and lingual cortex. Contralateral effects were in the lateral occipital gyrus, and inferior frontal gyrus and frontal pole. The restructuring following ATLR is reflected in widespread morphological changes, mainly in regions near the resection, but also remotely in regions that are structurally connected to the anterior temporal lobe. The causes could include mechanical effects, Wallerian degeneration, or compensatory plasticity. The study of independent measures revealed additional effects compared to traditional measures.
Collapse
Affiliation(s)
- Karoline Leiberg
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK.
| | - Jane de Tisi
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - John S Duncan
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Bethany Little
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK; Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Peter N Taylor
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK; Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom; Queen Square Institute of Neurology, University College London, Queen Square, London, UK
| | - Sjoerd B Vos
- Queen Square Institute of Neurology, University College London, Queen Square, London, UK; Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL, UK; Centre for Medical Image Computing, University College London, London, UK; Centre for Microscopy, Characterisation, And Analysis, The University of Western Australia, Nedlands, Australia
| | - Gavin P Winston
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; MRI Unit, Epilepsy Society, Buckinghamshire, UK; Division of Neurology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Bruno Mota
- MetaBIO Lab, Instituto de Física, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Yujiang Wang
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK; Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom; Queen Square Institute of Neurology, University College London, Queen Square, London, UK.
| |
Collapse
|
8
|
Charbonneau JA, Bennett JL, Chau K, Bliss-Moreau E. Reorganization in the macaque interoceptive-allostatic network following anterior cingulate cortex damage. Cereb Cortex 2023; 33:4334-4349. [PMID: 36066407 PMCID: PMC10110454 DOI: 10.1093/cercor/bhac346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
Accumulating evidence indicates that the adult brain is capable of significant structural change following damage-a capacity once thought to be largely limited to developing brains. To date, most existing research on adult plasticity has focused on how exteroceptive sensorimotor networks compensate for damage to preserve function. Interoceptive networks-those that represent and process sensory information about the body's internal state-are now recognized to be critical for a wide range of physiological and psychological functions from basic energy regulation to maintaining a sense of self, but the extent to which these networks remain plastic in adulthood has not been established. In this report, we used detailed histological analyses to pinpoint precise changes to gray matter volume in the interoceptive-allostatic network in adult rhesus monkeys (Macaca mulatta) who received neurotoxic lesions of the anterior cingulate cortex (ACC) and neurologically intact control monkeys. Relative to controls, monkeys with ACC lesions had significant and selective unilateral expansion of the ventral anterior insula and significant relative bilateral expansion of the lateral nucleus of the amygdala. This work demonstrates the capacity for neuroplasticity in the interoceptive-allostatic network which, given that changes included expansion rather than atrophy, is likely to represent an adaptive response following damage.
Collapse
Affiliation(s)
- Joey A Charbonneau
- Neuroscience Graduate Program, University of California Davis, 1544 Newton Court, Davis, CA 95618, United States
- California National Primate Research Center, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Jeffrey L Bennett
- California National Primate Research Center, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, 2230 Stockton Blvd, Sacramento, CA 95817, United States
- The MIND Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, United States
| | - Kevin Chau
- California National Primate Research Center, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Eliza Bliss-Moreau
- California National Primate Research Center, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
- Department of Psychology, University of California Davis, 135 Young Hall One Shields Avenue, Davis, CA 95616, United States
| |
Collapse
|
9
|
Zhang Y, Liu Z, Dou W, Wei J, Lv Y, Hou B, You H, Feng F. Study of the microstructure of brain white matter in medial temporal lobe epilepsy based on diffusion tensor imaging. Brain Behav 2023; 13:e2919. [PMID: 36880299 PMCID: PMC10097073 DOI: 10.1002/brb3.2919] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVES To compare the white matter (WM) asymmetry in left and right medial temporal lobe epilepsy (mTLE) with and without hippocampal sclerosis (HS+, HS-) and assess the correlation of preoperative asymmetry and the dynamics of WM fibers with surgical outcomes. MATERIALS AND METHODS Preoperative MRI scans were collected from 58 mTLE patients (40 HS+, 18 HS-); 15 (11 HS+, 4 HS-) then underwent postoperative MRI scans. DTI parameters, including the fractional anisotropy (FA), mean diffusion coefficient (MD), axial diffusion coefficient (AD), and radial diffusion coefficient (RD), were extracted from 20 paired WM tracts by PANDA based on the JHU WM tractography atlas. The bilateral cerebral parameters and the pre- to postoperative changes in the DTI parameters of specific fiber tracts were compared. The asymmetry indexes (AIs) of paired fibers were also analyzed. RESULTS There were fewer asymmetrical WM fibers in HS- patients than in HS+ patients. The pattern of WM asymmetry differed between left and right mTLE patients. Differences in the FA AI of the inferior fronto-occipital fasciculus and inferior longitudinal fasciculus (ILF) were found in left HS+ patients with different surgical outcomes. All mTLE patients exhibited decreases in FA and increases in MD and RD in specific ipsilateral WM fibers. In International League Against Epilepsy (ILAE) grade 1 patients, the MD values in the ipsilateral CGH increased over time, whereas the RD values in the ipsilateral ILF and the AD values in the ipsilateral ILF and UNC decreased. In ILAE grade 2-5 patients, the FA values in the ipsilateral cingulate gyrus part of the cingulum (CGC) increased over time. CONCLUSION The WM tract asymmetry was more extensive in HS+ patients than in HS- patients. The preoperative WM fiber AIs in left HS+ patients may be useful for surgical prognosis. Additionally, pre- to postoperative changes in WM fibers may help predict surgical outcomes.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Radiology, Peking University First Hospital, Beijing, China.,Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaoxi Liu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanchen Dou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Juan Wei
- GE Healthcare, MR Research China, Beijing, China
| | - Yuelei Lv
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Radiology, Beijing CHAO-YANG Hospital, Capital Medical University, Beijing, China
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui You
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Difficult, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Constrained spherical deconvolution -based tractography of major language tracts reveals post-stroke bilateral white matter changes correlated to aphasia. Magn Reson Imaging 2023; 95:19-26. [PMID: 36252694 DOI: 10.1016/j.mri.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Using constrained spherical deconvolution (CSD)-based tractography, we aimed to obtain conjoint analysis of diffusion measures of major language white matter (WM) tracts in post-stroke aphasic patients bilaterally, and to correlate the measures of each tract to the different language deficits. MATERIAL AND METHODS 17 aphasic patients with left hemispheric stroke, at the subacute stage, and ten age- matched controls underwent diffusion MRI examination. CSD-based tractography was performed. Diffusion measures [fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD)] were extracted after dissection of major language tracts bilaterally. Aphasia was assessed using language subset of hemispheric stroke scale. Comparisons of diffusion measures, for all tracts, between the two groups were performed. Partial correlations between the diffusion measures and different language components were obtained. RESULTS In the left hemisphere, significant lower FA and or higher MD with higher RD of patients' WM tracts compared to the control group. Significant differences of diffusion measures were also evident in the right hemisphere yet, less prominent. All changes reflected damage of the tracts' integrity. Significant correlations were found between comprehension and FA of the left arcuate fasciculus (AF) and left inferior longitudinal fasciculus. Additionally, a significant correlation was found between MD of the right AF and repetition. CONCLUSION Conjoint analysis of diffusion measures, based on CSD tractography, can provide important markers for the underlying WM changes bilaterally. Moreover, our findings emphasize that language processing can be mediated by both ventral and dorsal streams and further highlight the contribution of the right AF in repetition.
Collapse
|
11
|
Bernstock JD, Gary SE, Klinger N, Valdes PA, Ibn Essayed W, Olsen HE, Chagoya G, Elsayed G, Yamashita D, Schuss P, Gessler FA, Peruzzi PP, Bag A, Friedman GK. Standard clinical approaches and emerging modalities for glioblastoma imaging. Neurooncol Adv 2022; 4:vdac080. [PMID: 35821676 PMCID: PMC9268747 DOI: 10.1093/noajnl/vdac080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary adult intracranial malignancy and carries a dismal prognosis despite an aggressive multimodal treatment regimen that consists of surgical resection, radiation, and adjuvant chemotherapy. Radiographic evaluation, largely informed by magnetic resonance imaging (MRI), is a critical component of initial diagnosis, surgical planning, and post-treatment monitoring. However, conventional MRI does not provide information regarding tumor microvasculature, necrosis, or neoangiogenesis. In addition, traditional MRI imaging can be further confounded by treatment-related effects such as pseudoprogression, radiation necrosis, and/or pseudoresponse(s) that preclude clinicians from making fully informed decisions when structuring a therapeutic approach. A myriad of novel imaging modalities have been developed to address these deficits. Herein, we provide a clinically oriented review of standard techniques for imaging GBM and highlight emerging technologies utilized in disease characterization and therapeutic development.
Collapse
Affiliation(s)
- Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Sam E Gary
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham , AL, USA
| | - Neil Klinger
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Pablo A Valdes
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Walid Ibn Essayed
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Hannah E Olsen
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Gustavo Chagoya
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham , AL, USA
| | - Galal Elsayed
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham , AL, USA
| | - Daisuke Yamashita
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham , AL, USA
| | - Patrick Schuss
- Department of Neurosurgery, Unfallkrankenhaus Berlin , Berlin, Germany
| | | | - Pier Paolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Asim Bag
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital , Memphis, TN USA
| | - Gregory K Friedman
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham , AL, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham , Birmingham, AL, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham , AL, USA
| |
Collapse
|
12
|
Millán AP, van Straaten ECW, Stam CJ, Nissen IA, Idema S, Baayen JC, Van Mieghem P, Hillebrand A. Epidemic models characterize seizure propagation and the effects of epilepsy surgery in individualized brain networks based on MEG and invasive EEG recordings. Sci Rep 2022; 12:4086. [PMID: 35260657 PMCID: PMC8904850 DOI: 10.1038/s41598-022-07730-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 02/24/2022] [Indexed: 11/08/2022] Open
Abstract
Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients. However, seizure-freedom is currently achieved in only 2/3 of the patients after surgery. In this study we have developed an individualized computational model based on MEG brain networks to explore seizure propagation and the efficacy of different virtual resections. Eventually, the goal is to obtain individualized models to optimize resection strategy and outcome. We have modelled seizure propagation as an epidemic process using the susceptible-infected (SI) model on individual brain networks derived from presurgical MEG. We included 10 patients who had received epilepsy surgery and for whom the surgery outcome at least one year after surgery was known. The model parameters were tuned in in order to reproduce the patient-specific seizure propagation patterns as recorded with invasive EEG. We defined a personalized search algorithm that combined structural and dynamical information to find resections that maximally decreased seizure propagation for a given resection size. The optimal resection for each patient was defined as the smallest resection leading to at least a 90% reduction in seizure propagation. The individualized model reproduced the basic aspects of seizure propagation for 9 out of 10 patients when using the resection area as the origin of epidemic spreading, and for 10 out of 10 patients with an alternative definition of the seed region. We found that, for 7 patients, the optimal resection was smaller than the resection area, and for 4 patients we also found that a resection smaller than the resection area could lead to a 100% decrease in propagation. Moreover, for two cases these alternative resections included nodes outside the resection area. Epidemic spreading models fitted with patient specific data can capture the fundamental aspects of clinically observed seizure propagation, and can be used to test virtual resections in silico. Combined with optimization algorithms, smaller or alternative resection strategies, that are individually targeted for each patient, can be determined with the ultimate goal to improve surgery outcome. MEG-based networks can provide a good approximation of structural connectivity for computational models of seizure propagation, and facilitate their clinical use.
Collapse
Affiliation(s)
- Ana P Millán
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Elisabeth C W van Straaten
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ida A Nissen
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sander Idema
- Department of Neurosurgery, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Johannes C Baayen
- Department of Neurosurgery, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Piet Van Mieghem
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Yeske B, Hou J, Adluru N, Nair VA, Prabhakaran V. Differences in Diffusion Tensor Imaging White Matter Integrity Related to Verbal Fluency Between Young and Old Adults. Front Aging Neurosci 2021; 13:750621. [PMID: 34880746 PMCID: PMC8647802 DOI: 10.3389/fnagi.2021.750621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
Throughout adulthood, the brain undergoes an array of structural and functional changes during the typical aging process. These changes involve decreased brain volume, reduced synaptic density, and alterations in white matter (WM). Although there have been some previous neuroimaging studies that have measured the ability of adult language production and its correlations to brain function, structural gray matter volume, and functional differences between young and old adults, the structural role of WM in adult language production in individuals across the life span remains to be thoroughly elucidated. This study selected 38 young adults and 35 old adults for diffusion tensor imaging (DTI) and performed the Controlled Oral Word Association Test to assess verbal fluency (VF). Tract-Based Spatial Statistics were employed to evaluate the voxel-based group differences of diffusion metrics for the values of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and local diffusion homogeneity (LDH) in 12 WM regions of interest associated with language production. To investigate group differences on each DTI metric, an analysis of covariance (ANCOVA) controlling for sex and education level was performed, and the statistical threshold was considered at p < 0.00083 (0.05/60 labels) after Bonferroni correction for multiple comparisons. Significant differences in DTI metrics identified in the ANCOVA were used to perform correlation analyses with VF scores. Compared to the old adults, the young adults had significantly (1) increased FA values on the bilateral anterior corona radiata (ACR); (2) decreased MD values on the right ACR, but increased MD on the left uncinate fasciculus (UF); and (3) decreased RD on the bilateral ACR. There were no significant differences between the groups for AD or LDH. Moreover, the old adults had only a significant correlation between the VF score and the MD on the left UF. There were no significant correlations between VF score and DTI metrics in the young adults. This study adds to the growing body of research that WM areas involved in language production are sensitive to aging.
Collapse
Affiliation(s)
- Benjamin Yeske
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
| | - Jiancheng Hou
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
- Center for Cross-Strait Cultural Development, Fujian Normal University, Fuzhou, China
| | - Nagesh Adluru
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Veena A. Nair
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
| | - Vivek Prabhakaran
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
- Department of Psychology, Department of Psychiatry, University of Wisconsin–Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
14
|
Zhao Y, Zhang C, Yang H, Liu C, Yu T, Lu J, Chen N, Li K. Recovery of cortical atrophy in patients with temporal lobe epilepsy after successful anterior temporal lobectomy. Epilepsy Behav 2021; 123:108272. [PMID: 34500432 DOI: 10.1016/j.yebeh.2021.108272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 11/30/2022]
Abstract
The aims of this study were to investigate whether the cortical atrophy caused by temporal lobe epilepsy (TLE) was reversible after successful anterior temporal lobectomy (ATL) and to further observe whether possible changes are related to age at surgery and cognitive changes. Twelve patients with unilateral mesial TLE who received ATL and remained seizure free in one year follow-up were included. They underwent two MRI scans few days before and oneyear after surgery. Thirty age- and sex-matched healthy participants were recruited as controls. Group comparisons were used to test the differences in cortical thickness (CTh) between the pre-/postsurgical patients and controls. Longitudinal test was used to directly show postsurgical changes of the patients. Besides, the correlations between regional cortical volume (CVo) changes and age at surgery or cognitive changes were also tested. Compared with controls, the patients with TLE showed dispersed cortical thinning especially in the bilateral frontal lobes before surgery and no significant cortical thinning except for cortices near the resected areas after surgery. The longitudinal analysis showed CTh increment in the ipsilateral precentral and postcentral gyrus, cuneus and widespread in the contralateral cortex. In the volumetric analysis, the CVo changes in the contralateral hemisphere were negatively correlated with age at surgery and positively correlated with MoCA score changes. This study suggests that the cortical atrophy caused by TLE could recover after successful ATL. The recovery ability is greater in younger subjects and is positively related to cognitive recovery. These findings could serve as new clues that patients with TLE can benefit from timely and successful ATL.
Collapse
Affiliation(s)
- Yongxiang Zhao
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, PR China
| | - Chao Zhang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, PR China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221006, PR China
| | - Hongyu Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, PR China; Department of Radiology, Luhe Hospital, Capital Medical University, Beijing 101100, PR China
| | - Chang Liu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
| | - Tao Yu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, PR China
| | - Nan Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, PR China.
| | - Kuncheng Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, PR China.
| |
Collapse
|
15
|
Yan R, Zhang H, Wang J, Zheng Y, Luo Z, Zhang X, Xu Z. Application value of molecular imaging technology in epilepsy. IBRAIN 2021; 7:200-210. [PMID: 37786793 PMCID: PMC10528966 DOI: 10.1002/j.2769-2795.2021.tb00084.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 10/04/2023]
Abstract
Epilepsy is a common neurological disease with various seizure types, complicated etiologies, and unclear mechanisms. Its diagnosis mainly relies on clinical history, but an electroencephalogram is also a crucial auxiliary examination. Recently, brain imaging technology has gained increasing attention in the diagnosis of epilepsy, and conventional magnetic resonance imaging can detect epileptic foci in some patients with epilepsy. However, the results of brain magnetic resonance imaging are normal in some patients. New molecular imaging has gradually developed in recent years and has been applied in the diagnosis of epilepsy, leading to enhanced lesion detection rates. However, the application of these technologies in epilepsy patients with negative brain magnetic resonance must be clarified. Thus, we reviewed the relevant literature and summarized the information to improve the understanding of the molecular imaging application value of epilepsy.
Collapse
Affiliation(s)
- Rong Yan
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Hai‐Qing Zhang
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Jing Wang
- Prevention and Health Care, The Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yong‐Su Zheng
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhong Luo
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xia Zhang
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zu‐Cai Xu
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
16
|
Luna-Munguia H, Marquez-Bravo L, Concha L. Longitudinal changes in gray and white matter microstructure during epileptogenesis in pilocarpine-induced epileptic rats. Seizure 2021; 90:130-140. [DOI: 10.1016/j.seizure.2021.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
|
17
|
Foesleitner O, Sigl B, Schmidbauer V, Nenning KH, Pataraia E, Bartha-Doering L, Baumgartner C, Pirker S, Moser D, Schwarz M, Hainfellner JA, Czech T, Dorfer C, Langs G, Prayer D, Bonelli S, Kasprian G. Language network reorganization before and after temporal lobe epilepsy surgery. J Neurosurg 2021; 134:1694-1702. [PMID: 32619977 DOI: 10.3171/2020.4.jns193401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/07/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Epilepsy surgery is the recommended treatment option for patients with drug-resistant temporal lobe epilepsy (TLE). This method offers a good chance of seizure freedom but carries a considerable risk of postoperative language impairment. The extremely variable neurocognitive profiles in surgical epilepsy patients cannot be fully explained by extent of resection, fiber integrity, or current task-based functional MRI (fMRI). In this study, the authors aimed to investigate pathology- and surgery-triggered language organization in TLE by using fMRI activation and network analysis as well as considering structural and neuropsychological measures. METHODS Twenty-eight patients with unilateral TLE (16 right, 12 left) underwent T1-weighted imaging, diffusion tensor imaging, and task-based language fMRI pre- and postoperatively (n = 15 anterior temporal lobectomy, n = 11 selective amygdalohippocampectomy, n = 2 focal resection). Twenty-two healthy subjects served as the control cohort. Functional connectivity, activation maps, and laterality indices for language dominance were analyzed from fMRI data. Postoperative fractional anisotropy values of 7 major tracts were calculated. Naming, semantic, and phonematic verbal fluency scores before and after surgery were correlated with imaging parameters. RESULTS fMRI network analysis revealed widespread, bihemispheric alterations in language architecture that were not captured by activation analysis. These network changes were found preoperatively and proceeded after surgery with characteristic patterns in the left and right TLEs. Ipsilesional fronto-temporal connectivity decreased in both left and right TLE. In left TLE specifically, preoperative atypical language dominance predicted better postoperative verbal fluency and naming function. In right TLE, left frontal language dominance correlated with good semantic verbal fluency before and after surgery, and left fronto-temporal language laterality predicted good naming outcome. Ongoing seizures after surgery (Engel classes ID-IV) were associated with naming deterioration irrespective of seizure side. Functional findings were not explained by the extent of resection or integrity of major white matter tracts. CONCLUSIONS Functional connectivity analysis contributes unique insight into bihemispheric remodeling processes of language networks after epilepsy surgery, with characteristic findings in left and right TLE. Presurgical contralateral language recruitment is associated with better postsurgical language outcome in left and right TLE.
Collapse
Affiliation(s)
| | - Benjamin Sigl
- Departments of1Biomedical Imaging and Image-guided Therapy
| | | | | | | | | | | | - Susanne Pirker
- 4General Hospital Hietzing with Neurological Center Rosenhuegel, Vienna; and
| | | | | | | | - Thomas Czech
- 6Department of Neurosurgery, Medical University of Vienna, Austria
| | - Christian Dorfer
- 6Department of Neurosurgery, Medical University of Vienna, Austria
| | - Georg Langs
- Departments of1Biomedical Imaging and Image-guided Therapy
| | - Daniela Prayer
- Departments of1Biomedical Imaging and Image-guided Therapy
| | | | | |
Collapse
|
18
|
David B, Eberle J, Delev D, Gaubatz J, Prillwitz CC, Wagner J, Schoene-Bake JC, Luechters G, Radbruch A, Wabbels B, Schramm J, Weber B, Surges R, Elger CE, Rüber T. Multi-scale image analysis and prediction of visual field defects after selective amygdalohippocampectomy. Sci Rep 2021; 11:1444. [PMID: 33446810 PMCID: PMC7809286 DOI: 10.1038/s41598-020-80751-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/24/2020] [Indexed: 01/29/2023] Open
Abstract
Selective amygdalohippocampectomy is an effective treatment for patients with therapy-refractory temporal lobe epilepsy but may cause visual field defect (VFD). Here, we aimed to describe tissue-specific pre- and postoperative imaging correlates of the VFD severity using whole-brain analyses from voxel- to network-level. Twenty-eight patients with temporal lobe epilepsy underwent pre- and postoperative MRI (T1-MPRAGE and Diffusion Tensor Imaging) as well as kinetic perimetry according to Goldmann standard. We probed for whole-brain gray matter (GM) and white matter (WM) correlates of VFD using voxel-based morphometry and tract-based spatial statistics, respectively. We furthermore reconstructed individual structural connectomes and conducted local and global network analyses. Two clusters in the bihemispheric middle temporal gyri indicated a postsurgical GM volume decrease with increasing VFD severity (FWE-corrected p < 0.05). A single WM cluster showed a fractional anisotropy decrease with increasing severity of VFD in the ipsilesional optic radiation (FWE-corrected p < 0.05). Furthermore, patients with (vs. without) VFD showed a higher number of postoperative local connectivity changes. Neither in the GM, WM, nor in network metrics we found preoperative correlates of VFD severity. Still, in an explorative analysis, an artificial neural network meta-classifier could predict the occurrence of VFD based on presurgical connectomes above chance level.
Collapse
Affiliation(s)
- Bastian David
- grid.15090.3d0000 0000 8786 803XDepartment of Epileptology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Jasmine Eberle
- grid.15090.3d0000 0000 8786 803XDepartment of Epileptology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany ,Clinic for Neurology and Palliative Medicine, Municipal Hospital Köln-Merheim, Cologne, Germany
| | - Daniel Delev
- grid.1957.a0000 0001 0728 696XDepartment of Neurosurgery, RWTH University Aachen, Aachen, Germany
| | - Jennifer Gaubatz
- grid.15090.3d0000 0000 8786 803XDepartment of Epileptology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Conrad C. Prillwitz
- grid.15090.3d0000 0000 8786 803XDepartment of Epileptology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Jan Wagner
- grid.488560.70000 0000 9188 2870Department of Neurology, University of Ulm and Universitäts- and Rehabilitationskliniken Ulm, Ulm, Germany
| | - Jan-Christoph Schoene-Bake
- grid.10423.340000 0000 9529 9877Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Guido Luechters
- grid.10388.320000 0001 2240 3300Center for Development Research, University of Bonn, Bonn, Germany
| | - Alexander Radbruch
- grid.15090.3d0000 0000 8786 803XDepartment of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Bettina Wabbels
- grid.15090.3d0000 0000 8786 803XDepartment of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Johannes Schramm
- grid.15090.3d0000 0000 8786 803XMedical Faculty, University Hospital Bonn, Bonn, Germany
| | - Bernd Weber
- grid.15090.3d0000 0000 8786 803XInstitute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Bonn, Germany
| | - Rainer Surges
- grid.15090.3d0000 0000 8786 803XDepartment of Epileptology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Christian E. Elger
- grid.15090.3d0000 0000 8786 803XDepartment of Epileptology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Theodor Rüber
- grid.15090.3d0000 0000 8786 803XDepartment of Epileptology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany ,grid.7839.50000 0004 1936 9721Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe University Frankfurt, Frankfurt am Main, Germany ,grid.7839.50000 0004 1936 9721Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Galovic M, de Tisi J, McEvoy AW, Miserocchi A, Vos SB, Borzi G, Cueva Rosillo J, Vuong KA, Nachev P, Duncan JS, Koepp MJ. Resective surgery prevents progressive cortical thinning in temporal lobe epilepsy. Brain 2020; 143:3262-3272. [PMID: 33179036 PMCID: PMC7719024 DOI: 10.1093/brain/awaa284] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/25/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Focal epilepsy in adults is associated with progressive atrophy of the cortex at a rate more than double that of normal ageing. We aimed to determine whether successful epilepsy surgery interrupts progressive cortical thinning. In this longitudinal case-control neuroimaging study, we included subjects with unilateral temporal lobe epilepsy (TLE) before (n = 29) or after (n = 56) anterior temporal lobe resection and healthy volunteers (n = 124) comparable regarding age and sex. We measured cortical thickness on paired structural MRI scans in all participants and compared progressive thinning between groups using linear mixed effects models. Compared to ageing-related cortical thinning in healthy subjects, we found progressive cortical atrophy on vertex-wise analysis in TLE before surgery that was bilateral and localized beyond the ipsilateral temporal lobe. In these regions, we observed accelerated annualized thinning in left (left TLE 0.0192 ± 0.0014 versus healthy volunteers 0.0032 ± 0.0013 mm/year, P < 0.0001) and right (right TLE 0.0198 ± 0.0016 versus healthy volunteers 0.0037 ± 0.0016 mm/year, P < 0.0001) presurgical TLE cases. Cortical thinning in these areas was reduced after surgical resection of the left (0.0074 ± 0.0016 mm/year, P = 0.0006) or right (0.0052 ± 0.0020 mm/year, P = 0.0006) anterior temporal lobe. Directly comparing the post- versus presurgical TLE groups on vertex-wise analysis, the areas of postoperatively reduced thinning were in both hemispheres, particularly, but not exclusively, in regions that were affected preoperatively. Participants who remained completely seizure-free after surgery had no more progressive thinning than that observed during normal ageing. Those with postoperative seizures had small areas of continued accelerated thinning after surgery. Thus, successful epilepsy surgery prevents progressive cortical atrophy that is observed in TLE and may be potentially neuroprotective. This effect was more pronounced in those who remained seizure-free after temporal lobe resection, normalizing the rate of atrophy to that of normal ageing. These results provide evidence of epilepsy surgery preventing further cerebral damage and provide incentives for offering early surgery in refractory TLE.
Collapse
Affiliation(s)
- Marian Galovic
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Andrew W McEvoy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Anna Miserocchi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
- Centre for Medical Image Computing, University College London, London, UK
| | - Giuseppe Borzi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Institute of Neurology, University of Catanzaro, Italy
- Neurology Unit, Ospedale Civile San’Agostino Estense, Azienda Ospedaliero-Universitaria Modena, Modena Italy
| | - Juana Cueva Rosillo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Khue Anh Vuong
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Parashkev Nachev
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| |
Collapse
|
20
|
Patterns and predictors of language representation and the influence of epilepsy surgery on language reorganization in children and young adults with focal lesional epilepsy. PLoS One 2020; 15:e0238389. [PMID: 32898166 PMCID: PMC7478845 DOI: 10.1371/journal.pone.0238389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/14/2020] [Indexed: 11/19/2022] Open
Abstract
Mapping brain functions is crucial for neurosurgical planning in patients with drug-resistant seizures. However, presurgical language mapping using either functional or structural networks can be challenging, especially in children. In fact, most of the evidence on this topic derives from cross-sectional or retrospective studies in adults submitted to anterior temporal lobectomy. In this prospective study, we used fMRI and DTI to explore patterns of language representation, their predictors and impact on cognitive performances in 29 children and young adults (mean age at surgery: 14.6 ± 4.5 years) with focal lesional epilepsy. In 20 of them, we also assessed the influence of epilepsy surgery on language lateralization. All patients were consecutively enrolled at a single epilepsy surgery center between 2009 and 2015 and assessed with preoperative structural and functional 3T brain MRI during three language tasks: Word Generation (WG), Rhyme Generation (RG) and a comprehension task. We also acquired DTI data on arcuate fasciculus in 24 patients. We first assessed patterns of language representation (relationship of activations with the epileptogenic lesion and Laterality Index (LI)) and then hypothesized a causal model to test whether selected clinical variables would influence the patterns of language representation and the ensuing impact of the latter on cognitive performances. Twenty out of 29 patients also underwent postoperative language fMRI. We analyzed possible changes of fMRI and DTI LIs and their clinical predictors. Preoperatively, we found atypical language lateralization in four patients during WG task, in one patient during RG task and in seven patients during the comprehension task. Diffuse interictal EEG abnormalities predicted a more atypical language representation on fMRI (p = 0.012), which in turn correlated with lower attention (p = 0.036) and IQ/GDQ scores (p = 0.014). Postoperative language reorganization implied shifting towards atypical language representation. Abnormal postoperative EEG (p = 0.003) and surgical failures (p = 0.015) were associated with more atypical language lateralization, in turn correlating with worsened fluency. Neither preoperative asymmetry nor postoperative DTI LI changes in the arcuate fasciculus were observed. Focal lesional epilepsy associated with diffuse EEG abnormalities may favor atypical language lateralization and worse cognitive performances, which are potentially reversible after successful surgery.
Collapse
|
21
|
Hatton SN, Huynh KH, Bonilha L, Abela E, Alhusaini S, Altmann A, Alvim MKM, Balachandra AR, Bartolini E, Bender B, Bernasconi N, Bernasconi A, Bernhardt B, Bargallo N, Caldairou B, Caligiuri ME, Carr SJA, Cavalleri GL, Cendes F, Concha L, Davoodi-bojd E, Desmond PM, Devinsky O, Doherty CP, Domin M, Duncan JS, Focke NK, Foley SF, Gambardella A, Gleichgerrcht E, Guerrini R, Hamandi K, Ishikawa A, Keller SS, Kochunov PV, Kotikalapudi R, Kreilkamp BAK, Kwan P, Labate A, Langner S, Lenge M, Liu M, Lui E, Martin P, Mascalchi M, Moreira JCV, Morita-Sherman ME, O’Brien TJ, Pardoe HR, Pariente JC, Ribeiro LF, Richardson MP, Rocha CS, Rodríguez-Cruces R, Rosenow F, Severino M, Sinclair B, Soltanian-Zadeh H, Striano P, Taylor PN, Thomas RH, Tortora D, Velakoulis D, Vezzani A, Vivash L, von Podewils F, Vos SB, Weber B, Winston GP, Yasuda CL, Zhu AH, Thompson PM, Whelan CD, Jahanshad N, Sisodiya SM, McDonald CR. White matter abnormalities across different epilepsy syndromes in adults: an ENIGMA-Epilepsy study. Brain 2020; 143:2454-2473. [PMID: 32814957 PMCID: PMC7567169 DOI: 10.1093/brain/awaa200] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/07/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022] Open
Abstract
The epilepsies are commonly accompanied by widespread abnormalities in cerebral white matter. ENIGMA-Epilepsy is a large quantitative brain imaging consortium, aggregating data to investigate patterns of neuroimaging abnormalities in common epilepsy syndromes, including temporal lobe epilepsy, extratemporal epilepsy, and genetic generalized epilepsy. Our goal was to rank the most robust white matter microstructural differences across and within syndromes in a multicentre sample of adult epilepsy patients. Diffusion-weighted MRI data were analysed from 1069 healthy controls and 1249 patients: temporal lobe epilepsy with hippocampal sclerosis (n = 599), temporal lobe epilepsy with normal MRI (n = 275), genetic generalized epilepsy (n = 182) and non-lesional extratemporal epilepsy (n = 193). A harmonized protocol using tract-based spatial statistics was used to derive skeletonized maps of fractional anisotropy and mean diffusivity for each participant, and fibre tracts were segmented using a diffusion MRI atlas. Data were harmonized to correct for scanner-specific variations in diffusion measures using a batch-effect correction tool (ComBat). Analyses of covariance, adjusting for age and sex, examined differences between each epilepsy syndrome and controls for each white matter tract (Bonferroni corrected at P < 0.001). Across 'all epilepsies' lower fractional anisotropy was observed in most fibre tracts with small to medium effect sizes, especially in the corpus callosum, cingulum and external capsule. There were also less robust increases in mean diffusivity. Syndrome-specific fractional anisotropy and mean diffusivity differences were most pronounced in patients with hippocampal sclerosis in the ipsilateral parahippocampal cingulum and external capsule, with smaller effects across most other tracts. Individuals with temporal lobe epilepsy and normal MRI showed a similar pattern of greater ipsilateral than contralateral abnormalities, but less marked than those in patients with hippocampal sclerosis. Patients with generalized and extratemporal epilepsies had pronounced reductions in fractional anisotropy in the corpus callosum, corona radiata and external capsule, and increased mean diffusivity of the anterior corona radiata. Earlier age of seizure onset and longer disease duration were associated with a greater extent of diffusion abnormalities in patients with hippocampal sclerosis. We demonstrate microstructural abnormalities across major association, commissural, and projection fibres in a large multicentre study of epilepsy. Overall, patients with epilepsy showed white matter abnormalities in the corpus callosum, cingulum and external capsule, with differing severity across epilepsy syndromes. These data further define the spectrum of white matter abnormalities in common epilepsy syndromes, yielding more detailed insights into pathological substrates that may explain cognitive and psychiatric co-morbidities and be used to guide biomarker studies of treatment outcomes and/or genetic research.
Collapse
Affiliation(s)
- Sean N Hatton
- Department of Neurosciences, Center for Multimodal Imaging and Genetics,
University of California San Diego, La Jolla 92093 CA, USA
| | - Khoa H Huynh
- Center for Multimodal Imaging and Genetics, University of California San
Diego, La Jolla 92093 CA, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina,
Charleston 29425 SC, USA
| | - Eugenio Abela
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry,
Psychology and Neuroscience, Kings College London, London SE5 9NU UK
| | - Saud Alhusaini
- Neurology Department, Yale School of Medicine, New Haven 6510 CT,
USA
- Molecular and Cellular Therapeutics, The Royal College of Surgeons in
Ireland, Dublin, Ireland
| | - Andre Altmann
- Centre of Medical Image Computing, Department of Medical Physics and Biomedical
Engineering, University College London, London WC1V 6LJ, UK
| | - Marina K M Alvim
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Akshara R Balachandra
- Center for Multimodal Imaging and Genetics, UCSD School of
Medicine, La Jolla 92037 CA, USA
- Boston University School of Medicine, Boston 2118 MA, USA
| | - Emanuele Bartolini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories,
Children’s Hospital A. Meyer-University of Florence, Florence, Italy
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano,
Prato, Italy
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital
Tübingen, Tübingen 72076, Germany
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill
University, Montreal H3A 2B4 QC, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill
University, Montreal H3A 2B4 QC, Canada
| | - Boris Bernhardt
- Montreal Neurological Institute, McGill University, Montreal
H3A2B4 QC, Canada
| | - Núria Bargallo
- Magnetic Resonance Image Core Facility, Institut d’Investigacions Biomèdiques
August Pi i Sunyer (IDIBAPS), Barcelona 8036 Barcelona, Spain
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill
University, Montreal H3A 2B4 QC, Canada
| | - Maria E Caligiuri
- Neuroscience Research Center, University Magna Graecia, viale Europa,
Germaneto, 88100, Catanzaro, Italy
| | - Sarah J A Carr
- Neuroscience, Institute of Psychiatry, Psychology and
Neuroscience, De Crespigny Park, London SE5 8AF, UK
| | - Gianpiero L Cavalleri
- Royal College of Surgeons in Ireland, School of Pharmacy and Biomolecular
Sciences, Dublin D02 YN77 Ireland
- FutureNeuro Research Centre, Science Foundation Ireland, Dublin
D02 YN77, Ireland
| | - Fernando Cendes
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autonoma de
Mexico, Queretaro 76230, Mexico
| | - Esmaeil Davoodi-bojd
- Radiology and Research Administration, Henry Ford Hospital, 1
Detroit 48202 MI, USA
| | - Patricia M Desmond
- Department of Radiology, Royal Melbourne Hospital, University of
Melbourne, Melbourne 3050 Victoria, Australia
| | | | - Colin P Doherty
- Division of Neurology, Trinity College Dublin, TBSI, Pearce
Street, Dublin D02 R590, Ireland
- FutureNeuro SFI Centre for Neurological Disease, RCSI, St Stephen’s
Green, Dublin D02 H903, Ireland
| | - Martin Domin
- Functional Imaging Unit, University Medicine Greifswald,
Greifswald 17475 M/V, Germany
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of
Neurology, Queen Square, London WC1N 3BG, UK
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont-St-Peter,
Buckinghamshire SL9 0RJ, UK
| | - Niels K Focke
- Clinical Neurophysiology, University Medicine Göttingen, 37099
Göttingen, Germany
- Department of Epileptology, University of Tübingen, 72076
Tübingen, Germany
| | | | - Antonio Gambardella
- Royal College of Surgeons in Ireland, School of Pharmacy and Biomolecular
Sciences, Dublin D02 YN77 Ireland
- Institute of Neurology, University Magna Graecia, 88100,
Catanzaro, Italy
| | | | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories,
Children’s Hospital A. Meyer-University of Florence, Florence, Italy
| | - Khalid Hamandi
- The Wales Epilepsy Unit, Cardiff and Vale University Health
Board, Cardiff CF144XW, UK
- Brain Research Imaging Centre, Cardiff University, Cardiff CF24
4HQ, UK
| | - Akari Ishikawa
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Simon S Keller
- Institute of Translational Medicine, University of Liverpool,
Liverpool L69 3BX, UK
- Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK
| | - Peter V Kochunov
- Maryland Psychiatric Research Center, 55 Wade Ave, Baltimore
21228, MD, USA
| | - Raviteja Kotikalapudi
- Department of Neurology and Epileptology, University Hospital
Tübingen, Tübingen 72076 BW, Germany
- Department of Diagnostic and Interventional Neuroradiology, University Hospital
Tübingen, Tübingen 72076 BW, Germany
| | - Barbara A K Kreilkamp
- Institute of Translational Medicine, University of Liverpool,
Liverpool L69 3BX, UK
- Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash
University, Melbourne 3004 Victoria, Australia
- Department of Medicine, University of Melbourne, Royal Melbourne
Hospital, Parkville 3050 Victoria, Australia
| | - Angelo Labate
- Neuroscience Research Center, University Magna Graecia, viale Europa,
Germaneto, 88100, Catanzaro, Italy
- Institute of Neurology, University Magna Graecia, 88100,
Catanzaro, Italy
| | - Soenke Langner
- Institute for Diagnostic Radiology and Neuroradiology, Ernst Moritz Arndt
University Greifswald Faculty of Medicine, Greifswald 17475, Germany
- Institute for Diagnostic and Interventional Radiology, Pediatric and
Neuroradiology, Rostock University Medical Centre, Rostock 18057, Germany
| | - Matteo Lenge
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories,
Children’s Hospital A. Meyer-University of Florence, Florence, Italy
- Functional and Epilepsy Neurosurgery Unit, Children’s Hospital A.
Meyer-University of Florence, Florence 50139, Italy
| | - Min Liu
- Department of Neurology, Montreal Neurological Institute,
Montreal H3A 2B4 QC, Canada
| | - Elaine Lui
- Department of Radiology, Royal Melbourne Hospital, University of
Melbourne, Melbourne 3050 Victoria, Australia
- Department of Medicine and Radiology, University of Melbourne,
3Parkville 3050 Victoria, Australia
| | - Pascal Martin
- Department of Epileptology, University of Tübingen, 72076
Tübingen, Germany
| | - Mario Mascalchi
- Meyer Children Hospital University of Florence, Florence 50130
Tuscany, Italy
| | - José C V Moreira
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Marcia E Morita-Sherman
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
- Cleveland Clinic, Cleveland 44195 OH, USA
| | - Terence J O’Brien
- Department of Neuroscience, Central Clinical School, Monash
University, Melbourne 3004 Victoria, Australia
- Department of Medicine, University of Melbourne, Royal Melbourne
Hospital, Parkville 3050 Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne 3004 Victoria,
Australia
| | - Heath R Pardoe
- Department of Neurology, New York University School of Medicine,
New York City 10016 NY, USA
| | - José C Pariente
- Magnetic Resonance Image Core Facility, Institut d’Investigacions Biomèdiques
August Pi i Sunyer (IDIBAPS), Barcelona 8036 Barcelona, Spain
| | - Letícia F Ribeiro
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Mark P Richardson
- Division of Neuroscience, King’s College London, Institute of
Psychiatry, London SE5 8AB, UK
| | - Cristiane S Rocha
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Raúl Rodríguez-Cruces
- Montreal Neurological Institute, McGill University, Montreal
H3A2B4 QC, Canada
- Institute of Neurobiology, Universidad Nacional Autonoma de
Mexico, Queretaro 76230, Mexico
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, University Hospital Frankfurt,
Germany, Frankfurt 60528 Hesse, Germany
- Center for Personalized Translational Epilepsy Research (CePTER),
Goethe-University Frankfurt, Frankfurt a. M. 60528, Germany
| | - Mariasavina Severino
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa 16147
Liguria, Italy
| | - Benjamin Sinclair
- Department of Medicine, University of Melbourne, Royal Melbourne
Hospital, Parkville 3050 Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne 3004 Victoria,
Australia
| | - Hamid Soltanian-Zadeh
- Radiology and Research Administration, Henry Ford Health System,
Detroit 48202-2692 MI, USA
- School of Electrical and Computer Engineering, University of
Tehran, Tehran 14399-57131, Iran
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genoa 16147 Liguria, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal
and Child Health, University of Genova, Genova, Italy
| | - Peter N Taylor
- School of Computing, Newcastle University, Urban Sciences Building, Science
Square, Newcastle upon Tyne NE4 5TG, UK
| | - Rhys H Thomas
- Translational and Clinical Research Institute, Newcastle
University, Newcastle upon Tyne NE2 4HH, UK
- Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK
| | - Domenico Tortora
- Radiology and Research Administration, Henry Ford Health System,
Detroit 48202-2692 MI, USA
| | - Dennis Velakoulis
- Royal Melbourne Hospital, Melbourne 3050 Victoria, Australia
- University of Melbourne, Parkville, Melbourne 3050 Victoria,
Australia
| | - Annamaria Vezzani
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano
20156 Italy
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Monash
University, Melbourne 3004 Victoria, Australia
- Department of Medicine, University of Melbourne, Royal Melbourne
Hospital, Parkville 3050 Victoria, Australia
| | - Felix von Podewils
- Epilepsy Center, University Medicine Greifswald, Greifswald 17489
Mecklenburg-Vorpommern, Germany
| | - Sjoerd B Vos
- Centre for Medical Image Computing, University College London,
London, WC1V 6LJ, UK
- Epilepsy Society, MRI Unit, Chalfont St Peter, Buckinghamshire,
SL9 0RJ, UK
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University of
Bonn, Venusberg Campus 1, Bonn 53127 NRW, Germany
| | - Gavin P Winston
- Epilepsy Society, MRI Unit, Chalfont St Peter, Buckinghamshire,
SL9 0RJ, UK
- Department of Medicine, Division of Neurology, Queen's
University, Kingston K7L 3N6 ON, Canada
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont-St-Peter,
Buckinghamshire, SL9 0RJ UK
| | - Clarissa L Yasuda
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Alyssa H Zhu
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and
Informatics, USC Keck School of Medicine, Los Angeles 90232 CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and
Informatics, USC Keck School of Medicine, Los Angeles 90232 CA, USA
| | - Christopher D Whelan
- Molecular and Cellular Therapeutics, The Royal College of Surgeons in
Ireland, Dublin, Ireland
- Research and Early Development (RED), Biogen Inc., Cambridge, MA
02139, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and
Informatics, USC Keck School of Medicine, Los Angeles 90232 CA, USA
| | - Sanjay M Sisodiya
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont-St-Peter,
Buckinghamshire, SL9 0RJ UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, SL9 0RJ Bucks,
UK
| | - Carrie R McDonald
- Department of Psychiatry, Center for Multimodal Imaging and Genetics,
University of California San Diego, La Jolla 92093 CA, USA
| |
Collapse
|
22
|
Gau K, Schmidt CSM, Urbach H, Zentner J, Schulze-Bonhage A, Kaller CP, Foit NA. Accuracy and practical aspects of semi- and fully automatic segmentation methods for resected brain areas. Neuroradiology 2020; 62:1637-1648. [PMID: 32691076 PMCID: PMC7666677 DOI: 10.1007/s00234-020-02481-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 06/14/2020] [Indexed: 11/28/2022]
Abstract
Purpose Precise segmentation of brain lesions is essential for neurological research. Specifically, resection volume estimates can aid in the assessment of residual postoperative tissue, e.g. following surgery for glioma. Furthermore, behavioral lesion-symptom mapping in epilepsy relies on accurate delineation of surgical lesions. We sought to determine whether semi- and fully automatic segmentation methods can be applied to resected brain areas and which approach provides the most accurate and cost-efficient results. Methods We compared a semi-automatic (ITK-SNAP) with a fully automatic (lesion_GNB) method for segmentation of resected brain areas in terms of accuracy with manual segmentation serving as reference. Additionally, we evaluated processing times of all three methods. We used T1w, MRI-data of epilepsy patients (n = 27; 11 m; mean age 39 years, range 16–69) who underwent temporal lobe resections (17 left). Results The semi-automatic approach yielded superior accuracy (p < 0.001) with a median Dice similarity coefficient (mDSC) of 0.78 and a median average Hausdorff distance (maHD) of 0.44 compared with the fully automatic approach (mDSC 0.58, maHD 1.32). There was no significant difference between the median percent volume difference of the two approaches (p > 0.05). Manual segmentation required more human input (30.41 min/subject) and therefore inferring significantly higher costs than semi- (3.27 min/subject) or fully automatic approaches (labor and cost approaching zero). Conclusion Semi-automatic segmentation offers the most accurate results in resected brain areas with a moderate amount of human input, thus representing a viable alternative compared with manual segmentation, especially for studies with large patient cohorts.
Collapse
Affiliation(s)
- Karin Gau
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg im Breisgau, Germany.
| | - Charlotte S M Schmidt
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg im Breisgau, Germany
- Freiburg Brain Imaging, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Josef Zentner
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg im Breisgau, Germany
| | - Christoph P Kaller
- Freiburg Brain Imaging, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Niels Alexander Foit
- Freiburg Brain Imaging, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
23
|
da Silva NM, Forsyth R, McEvoy A, Miserocchi A, de Tisi J, Vos SB, Winston GP, Duncan J, Wang Y, Taylor PN. Network reorganisation following anterior temporal lobe resection and relation with post-surgery seizure relapse: A longitudinal study. NEUROIMAGE-CLINICAL 2020; 27:102320. [PMID: 32623138 PMCID: PMC7334605 DOI: 10.1016/j.nicl.2020.102320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/12/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022]
Abstract
Diffusion changes assessed at two time points following epilepsy surgery. Graph theory and connectometry revealed substantial longitudinal diffusion changes. Changes were found beyond the site of resection. Postoperative seizure freedom associated with longitudinal structural changes.
Objective To characterise temporal lobe epilepsy (TLE) surgery-induced changes in brain network properties, as measured using diffusion weighted MRI, and investigate their association with postoperative seizure-freedom. Methods For 48 patients who underwent anterior temporal lobe resection, diffusion weighted MRI was acquired pre-operatively, 3–4 months post-operatively (N = 48), and again 12 months post-operatively (N = 13). Data for 17 controls were also acquired over the same period. After registering all subjects to a common space, we performed two complementary analyses of the subjects’ quantitative anisotropy (QA) maps. 1) A connectometry analysis which is sensitive to changes in subsections of fasciculi. 2) A graph theory approach which integrates connectivity information across the wider brain network. Results We found significant postoperative alterations in QA in patients relative to controls measured over the same period. Reductions were primarily located in the uncinate fasciculus and inferior fronto-occipital fasciculus ipsilaterally for all patients. Larger reductions were associated with postoperative seizure-freedom in left TLE. Increased QA was mainly located in corona radiata and corticopontine tracts. Graph theoretic analysis revealed widespread increases in nodal betweenness centrality, which were not associated with patient outcomes. Conclusion Substantial alterations in QA occur in the months after epilepsy surgery, suggesting Wallerian degeneration and strengthening of specific white matter tracts. Greater reductions in QA were related to postoperative seizure freedom in left TLE.
Collapse
Affiliation(s)
- Nádia Moreira da Silva
- CNNP lab(1), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rob Forsyth
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew McEvoy
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Anna Miserocchi
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Jane de Tisi
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Sjoerd B Vos
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom; Centre for Medical Image Computing, University College London, London, United Kingdom; Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom
| | - Gavin P Winston
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom; Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom; Department of Medicine, Division of Neurology, Queen's University, Kingston, Canada
| | - John Duncan
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom; Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom
| | - Yujiang Wang
- CNNP lab(1), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Peter N Taylor
- CNNP lab(1), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom.
| |
Collapse
|
24
|
Lacerda LM, Clayden JD, Handley SE, Winston GP, Kaden E, Tisdall M, Cross JH, Liasis A, Clark CA. Microstructural Investigations of the Visual Pathways in Pediatric Epilepsy Neurosurgery: Insights From Multi-Shell Diffusion Magnetic Resonance Imaging. Front Neurosci 2020; 14:269. [PMID: 32322185 PMCID: PMC7158873 DOI: 10.3389/fnins.2020.00269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/10/2020] [Indexed: 01/12/2023] Open
Abstract
Background Surgery is a key approach for achieving seizure freedom in children with focal onset epilepsy. However, the resection can affect or be in the vicinity of the optic radiations. Multi-shell diffusion MRI and tractography can better characterize tissue structure and provide guidance to help minimize surgical related deficits. Whilst in adults tractography has been used to demonstrate that damage to the optic radiations leads to postoperative visual field deficits, this approach has yet to be properly explored in children. Objective To demonstrate the capabilities of multi-shell diffusion MRI and tractography in characterizing microstructural changes in children with epilepsy pre- and post-surgery affecting the occipital, parietal or temporal lobes. Methods Diffusion Tensor Imaging and the Spherical Mean Technique were used to investigate the microstructure of the optic radiations. Furthermore, tractography was used to evaluate whether pre-surgical reconstructions of the optic radiations overlap with the resection margin as measured using anatomical post-surgical T1-weighted MRI. Results Increased diffusivity in patients compared to controls at baseline was observed with evidence of decreased diffusivity, anisotropy, and neurite orientation distribution in contralateral hemisphere after surgery. Pre-surgical optic radiation tractography overlapped with post-surgical resection margins in 20/43 (46%) children, and where visual data was available before and after surgery, the presence of overlap indicated a visual field deficit. Conclusion This is the first report in a pediatric series which highlights the relevance of tractography for future pre-surgical evaluation in children undergoing epilepsy surgery and the usefulness of multi-shell diffusion MRI to characterize brain microstructure in these patients.
Collapse
Affiliation(s)
- Luís M Lacerda
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jonathan D Clayden
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Sian E Handley
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom.,Division of Neurology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Enrico Kaden
- Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Martin Tisdall
- Department of Neurosurgery, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - J Helen Cross
- Clinical Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alki Liasis
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Children's Hospital of Pittsburgh, University of Pittsburgh Medical Centre, Pittsburgh, PA, United States
| | - Chris A Clark
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
25
|
Hofer C, Kwitt R, Höller Y, Trinka E, Uhl A. An empirical assessment of appearance descriptors applied to MRI for automated diagnosis of TLE and MCI. Comput Biol Med 2019; 117:103592. [PMID: 32072961 DOI: 10.1016/j.compbiomed.2019.103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Differential diagnosis of mild cognitive impairment MCI and temporal lobe epilepsy TLE is a debated issue, specifically because these conditions may coincide in the elderly population. We evaluate automated differential diagnosis based on characteristics derived from structural brain MRI of different brain regions. METHODS In 22 healthy controls, 19 patients with MCI, and 17 patients with TLE we used scale invariant feature transform (SIFT), local binary patterns (LBP), and wavelet-based features and investigate their predictive performance for MCI and TLE. RESULTS The classification based on SIFT features resulted in an accuracy of 81% of MCI vs. TLE and reasonable generalizability. Local binary patterns yielded satisfactory diagnostic performance with up to 94.74% sensitivity and 88.24% specificity in the right Thalamus for the distinction of MCI vs. TLE, but with limited generalizable. Wavelet features yielded similar results as LPB with 94.74% sensitivity and 82.35% specificity but generalize better. SIGNIFICANCE Features beyond volume analysis are a valid approach when applied to specific regions of the brain. Most significant information could be extracted from the thalamus, frontal gyri, and temporal regions, among others. These results suggest that analysis of changes of the central nervous system should not be limited to the most typical regions of interest such as the hippocampus and parahippocampal areas. Region-independent approaches can add considerable information for diagnosis. We emphasize the need to characterize generalizability in future studies, as our results demonstrate that not doing so can lead to overestimation of classification results. LIMITATIONS The data used within this study allows for separation of MCI and TLE subjects using a simple age threshold. While we present a strong indication that the presented method is age-invariant and therefore agnostic to this situation, new data would be needed for a rigorous empirical assessment of this findings.
Collapse
Affiliation(s)
- Christoph Hofer
- Department of Computer Science, University of Salzburg, Austria.
| | - Roland Kwitt
- Department of Computer Science, University of Salzburg, Austria.
| | - Yvonne Höller
- Department of Neurology, Christian Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria; Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria.
| | - Eugen Trinka
- Spinal Cord Injury & Tissue Regeneration Centre Salzburg, Paracelsus Medical University, Salzburg, Austria; Department of Neurology, Christian Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria; Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria.
| | - Andreas Uhl
- Department of Computer Science, University of Salzburg, Austria.
| |
Collapse
|
26
|
Galovic M, Baudracco I, Wright-Goff E, Pillajo G, Nachev P, Wandschneider B, Woermann F, Thompson P, Baxendale S, McEvoy AW, Nowell M, Mancini M, Vos SB, Winston GP, Sparks R, Prados F, Miserocchi A, de Tisi J, Van Graan LA, Rodionov R, Wu C, Alizadeh M, Kozlowski L, Sharan AD, Kini LG, Davis KA, Litt B, Ourselin S, Moshé SL, Sander JWA, Löscher W, Duncan JS, Koepp MJ. Association of Piriform Cortex Resection With Surgical Outcomes in Patients With Temporal Lobe Epilepsy. JAMA Neurol 2019; 76:690-700. [PMID: 30855662 PMCID: PMC6490233 DOI: 10.1001/jamaneurol.2019.0204] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/21/2018] [Indexed: 12/23/2022]
Abstract
Importance A functional area associated with the piriform cortex, termed area tempestas, has been implicated in animal studies as having a crucial role in modulating seizures, but similar evidence is limited in humans. Objective To assess whether removal of the piriform cortex is associated with postoperative seizure freedom in patients with temporal lobe epilepsy (TLE) as a proof-of-concept for the relevance of this area in human TLE. Design, Setting, and Participants This cohort study used voxel-based morphometry and volumetry to assess differences in structural magnetic resonance imaging (MRI) scans in consecutive patients with TLE who underwent epilepsy surgery in a single center from January 1, 2005, through December 31, 2013. Participants underwent presurgical and postsurgical structural MRI and had at least 2 years of postoperative follow-up (median, 5 years; range, 2-11 years). Patients with MRI of insufficient quality were excluded. Findings were validated in 2 independent cohorts from tertiary epilepsy surgery centers. Study follow-up was completed on September 23, 2016, and data were analyzed from September 24, 2016, through April 24, 2018. Exposures Standard anterior temporal lobe resection. Main Outcomes and Measures Long-term postoperative seizure freedom. Results In total, 107 patients with unilateral TLE (left-sided in 68; 63.6% women; median age, 37 years [interquartile range {IQR}, 30-45 years]) were included in the derivation cohort. Reduced postsurgical gray matter volumes were found in the ipsilateral piriform cortex in the postoperative seizure-free group (n = 46) compared with the non-seizure-free group (n = 61). A larger proportion of the piriform cortex was resected in the seizure-free compared with the non-seizure-free groups (median, 83% [IQR, 64%-91%] vs 52% [IQR, 32%-70%]; P < .001). The results were seen in left- and right-sided TLE and after adjusting for clinical variables, presurgical gray matter alterations, presurgical hippocampal volumes, and the proportion of white matter tract disconnection. Findings were externally validated in 2 independent cohorts (31 patients; left-sided TLE in 14; 54.8% women; median age, 41 years [IQR, 31-46 years]). The resected proportion of the piriform cortex was individually associated with seizure outcome after surgery (derivation cohort area under the curve, 0.80 [P < .001]; external validation cohorts area under the curve, 0.89 [P < .001]). Removal of at least half of the piriform cortex increased the odds of becoming seizure free by a factor of 16 (95% CI, 5-47; P < .001). Other mesiotemporal structures (ie, hippocampus, amygdala, and entorhinal cortex) and the overall resection volume were not associated with outcomes. Conclusions and Relevance These results support the importance of resecting the piriform cortex in neurosurgical treatment of TLE and suggest that this area has a key role in seizure generation.
Collapse
Affiliation(s)
- Marian Galovic
- UK National Institute for Health Research, University College London (UCL) Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, United Kingdom
- Department of Neurology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Irene Baudracco
- UK National Institute for Health Research, University College London (UCL) Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Evan Wright-Goff
- UK National Institute for Health Research, University College London (UCL) Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Galo Pillajo
- UK National Institute for Health Research, University College London (UCL) Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Imaging, Hospital de Especialidades Eugenio Espejo, Quito, Ecuador
- Division of Neuroanatomy, Facultad de Medicina, Universidad Internacional del Ecuador, Quito
| | - Parashkev Nachev
- UK National Institute for Health Research, University College London (UCL) Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Britta Wandschneider
- UK National Institute for Health Research, University College London (UCL) Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, United Kingdom
| | - Friedrich Woermann
- Magnetic Resonance Imaging Unit, Klinik Mara, Bethel Epilepsy Centre, Bielefeld, Germany
| | - Pamela Thompson
- UK National Institute for Health Research, University College London (UCL) Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sallie Baxendale
- UK National Institute for Health Research, University College London (UCL) Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Institute of Cognitive Neuroscience, UCL, London, United Kingdom
| | - Andrew W. McEvoy
- UK National Institute for Health Research, University College London (UCL) Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Mark Nowell
- UK National Institute for Health Research, University College London (UCL) Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Matteo Mancini
- Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Bioengineering, UCL, London, United Kingdom
- Wellcome EPSRC Centre for Interventional and Surgical Sciences, UCL, London, United Kingdom
| | - Sjoerd B. Vos
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, United Kingdom
- Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Bioengineering, UCL, London, United Kingdom
- Wellcome EPSRC Centre for Interventional and Surgical Sciences, UCL, London, United Kingdom
| | - Gavin P. Winston
- UK National Institute for Health Research, University College London (UCL) Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, United Kingdom
| | - Rachel Sparks
- Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Bioengineering, UCL, London, United Kingdom
- Wellcome EPSRC Centre for Interventional and Surgical Sciences, UCL, London, United Kingdom
- School of Biomedical Engineering and Image Sciences, Kings College London, London, United Kingdom
| | - Ferran Prados
- Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Bioengineering, UCL, London, United Kingdom
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, United Kingdom
| | - Anna Miserocchi
- UK National Institute for Health Research, University College London (UCL) Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jane de Tisi
- UK National Institute for Health Research, University College London (UCL) Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Louis André Van Graan
- UK National Institute for Health Research, University College London (UCL) Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Roman Rodionov
- UK National Institute for Health Research, University College London (UCL) Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, United Kingdom
| | - Chengyuan Wu
- Department of Neurosurgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mahdi Alizadeh
- Department of Neurosurgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lauren Kozlowski
- medical student at Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ashwini D. Sharan
- Department of Neurosurgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lohith G. Kini
- Center for Neuroengineering and Therapeutics, Department of Bioengineering, University of Pennsylvania, Philadelphia
| | - Kathryn A. Davis
- Center for Neuroengineering and Therapeutics, Department of Bioengineering, University of Pennsylvania, Philadelphia
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia
| | - Brian Litt
- Center for Neuroengineering and Therapeutics, Department of Bioengineering, University of Pennsylvania, Philadelphia
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Bioengineering, UCL, London, United Kingdom
- Wellcome EPSRC Centre for Interventional and Surgical Sciences, UCL, London, United Kingdom
- School of Biomedical Engineering and Image Sciences, Kings College London, London, United Kingdom
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Solomon L. Moshé
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Montefiore/Einstein Epilepsy Management Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
- Dominick P. Purpura Department of Neuroscience, Montefiore/Einstein Epilepsy Management Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
- Department of Pediatrics, Montefiore/Einstein Epilepsy Management Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Josemir W. A. Sander
- UK National Institute for Health Research, University College London (UCL) Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, United Kingdom
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine, Hannover, Germany
| | - John S. Duncan
- UK National Institute for Health Research, University College London (UCL) Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, United Kingdom
| | - Matthias J. Koepp
- UK National Institute for Health Research, University College London (UCL) Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, United Kingdom
| |
Collapse
|
27
|
Balter S, Lin G, Leyden KM, Paul BM, McDonald CR. Neuroimaging correlates of language network impairment and reorganization in temporal lobe epilepsy. BRAIN AND LANGUAGE 2019; 193:31-44. [PMID: 27393391 PMCID: PMC5215985 DOI: 10.1016/j.bandl.2016.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/27/2016] [Accepted: 06/15/2016] [Indexed: 06/02/2023]
Abstract
Advanced, noninvasive imaging has revolutionized our understanding of language networks in the brain and is reshaping our approach to the presurgical evaluation of patients with epilepsy. Functional magnetic resonance imaging (fMRI) has had the greatest impact, unveiling the complexity of language organization and reorganization in patients with epilepsy both pre- and postoperatively, while volumetric MRI and diffusion tensor imaging have led to a greater appreciation of structural and microstructural correlates of language dysfunction in different epilepsy syndromes. In this article, we review recent literature describing how unimodal and multimodal imaging has advanced our knowledge of language networks and their plasticity in epilepsy, with a focus on the most frequently studied epilepsy syndrome in adults, temporal lobe epilepsy (TLE). We also describe how new analytic techniques (i.e., graph theory) are leading to a refined characterization of abnormal brain connectivity, and how subject-specific imaging profiles combined with clinical data may enhance the prediction of both seizure and language outcomes following surgical interventions.
Collapse
Affiliation(s)
- S Balter
- Department of Neurology, University of California, San Francisco, CA, United States; UCSF Comprehensive Epilepsy Center, United States
| | - G Lin
- Palo Alto University, Palo Alto, CA, United States
| | - K M Leyden
- Multimodal Imaging Laboratory, University of California, San Diego, CA, United States
| | - B M Paul
- Department of Neurology, University of California, San Francisco, CA, United States; UCSF Comprehensive Epilepsy Center, United States
| | - C R McDonald
- Multimodal Imaging Laboratory, University of California, San Diego, CA, United States; Department of Psychiatry, University of California, San Diego, CA, United States.
| |
Collapse
|
28
|
Tavakol S, Royer J, Lowe AJ, Bonilha L, Tracy JI, Jackson GD, Duncan JS, Bernasconi A, Bernasconi N, Bernhardt BC. Neuroimaging and connectomics of drug-resistant epilepsy at multiple scales: From focal lesions to macroscale networks. Epilepsia 2019; 60:593-604. [PMID: 30889276 PMCID: PMC6447443 DOI: 10.1111/epi.14688] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/03/2023]
Abstract
Epilepsy is among the most common chronic neurologic disorders, with 30%-40% of patients having seizures despite antiepileptic drug treatment. The advent of brain imaging and network analyses has greatly improved the understanding of this condition. In particular, developments in magnetic resonance imaging (MRI) have provided measures for the noninvasive characterization and detection of lesions causing epilepsy. MRI techniques can probe structural and functional connectivity, and network analyses have shaped our understanding of whole-brain anomalies associated with focal epilepsies. This review considers the progress made by neuroimaging and connectomics in the study of drug-resistant epilepsies due to focal substrates, particularly temporal lobe epilepsy related to mesiotemporal sclerosis and extratemporal lobe epilepsies associated with malformations of cortical development. In these disorders, there is evidence of widespread disturbances of structural and functional connectivity that may contribute to the clinical and cognitive prognosis of individual patients. It is hoped that studying the interplay between macroscale network anomalies and lesional profiles will improve our understanding of focal epilepsies and assist treatment choices.
Collapse
Affiliation(s)
- Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Alexander J Lowe
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Joseph I Tracy
- Cognitive Neuroscience and Brain Mapping Laboratory, Thomas Jefferson University Hospitals/Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Cahill V, Sinclair B, Malpas CB, McIntosh AM, Chen Z, Vivash LE, O'Shea MF, Wilson SJ, Desmond PM, Berlangieri SU, Hicks RJ, Rowe CC, Morokoff AP, King JA, Fabinyi GC, Kaye AH, Kwan P, Berkovic SF, O'Brien TJ. Metabolic patterns and seizure outcomes following anterior temporal lobectomy. Ann Neurol 2019; 85:241-250. [DOI: 10.1002/ana.25405] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Varduhi Cahill
- Departments of Medicine and Neurology; Melbourne Brain Centre, University of Melbourne, Royal Melbourne Hospital; Melbourne Victoria Australia
- Manchester Centre for Clinical Neurosciences; Salford Royal NHS Foundation Trust; Salford United Kingdom
- Division of Neuroscience and Experimental Psychology; School of Biological Sciences, University of Manchester; Manchester United Kingdom
| | - Benjamin Sinclair
- Departments of Medicine and Radiology; University of Melbourne, Royal Melbourne Hospital; Melbourne Victoria Australia
- Departments of Neuroscience and Neurology; Alfred Health, Central Clinical School, Monash University; Melbourne Victoria Australia
| | - Charles B. Malpas
- Departments of Medicine and Neurology; Melbourne Brain Centre, University of Melbourne, Royal Melbourne Hospital; Melbourne Victoria Australia
- Departments of Neuroscience and Neurology; Alfred Health, Central Clinical School, Monash University; Melbourne Victoria Australia
- Murdoch Children's Research Institute; Melbourne Victoria Australia
- Melbourne School of Psychological Sciences; University of Melbourne; Melbourne Victoria Australia
| | - Anne M. McIntosh
- Departments of Medicine and Neurology; Melbourne Brain Centre, University of Melbourne, Royal Melbourne Hospital; Melbourne Victoria Australia
- Departments of Neuroscience and Neurology; Alfred Health, Central Clinical School, Monash University; Melbourne Victoria Australia
- Epilepsy Research Centre; University of Melbourne, Austin Hospital; Melbourne Victoria Australia
| | - Zhibin Chen
- Departments of Medicine and Neurology; Melbourne Brain Centre, University of Melbourne, Royal Melbourne Hospital; Melbourne Victoria Australia
- Departments of Neuroscience and Neurology; Alfred Health, Central Clinical School, Monash University; Melbourne Victoria Australia
| | - Lucy E. Vivash
- Departments of Medicine and Neurology; Melbourne Brain Centre, University of Melbourne, Royal Melbourne Hospital; Melbourne Victoria Australia
- Departments of Neuroscience and Neurology; Alfred Health, Central Clinical School, Monash University; Melbourne Victoria Australia
| | - Marie F. O'Shea
- Comprehensive Epilepsy Program; Austin Hospital; Melbourne Victoria Australia
| | - Sarah J. Wilson
- Melbourne School of Psychological Sciences; University of Melbourne; Melbourne Victoria Australia
- Comprehensive Epilepsy Program; Austin Hospital; Melbourne Victoria Australia
| | - Patricia M. Desmond
- Departments of Medicine and Radiology; University of Melbourne, Royal Melbourne Hospital; Melbourne Victoria Australia
| | | | - Rodney J. Hicks
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology; University of Melbourne; Melbourne Victoria Australia
| | - Christopher C. Rowe
- Epilepsy Research Centre; University of Melbourne, Austin Hospital; Melbourne Victoria Australia
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Melbourne Victoria Australia
| | - Andrew P. Morokoff
- Department of Surgery; University of Melbourne, Royal Melbourne Hospital; Melbourne Victoria Australia
| | - James A. King
- Department of Surgery; University of Melbourne, Royal Melbourne Hospital; Melbourne Victoria Australia
| | - Gavin C. Fabinyi
- Department of Surgery; University of Melbourne, Austin Hospital; Melbourne Victoria Australia
| | - Andrew H. Kaye
- Department of Surgery; University of Melbourne, Royal Melbourne Hospital; Melbourne Victoria Australia
| | - Patrick Kwan
- Departments of Medicine and Neurology; Melbourne Brain Centre, University of Melbourne, Royal Melbourne Hospital; Melbourne Victoria Australia
- Departments of Neuroscience and Neurology; Alfred Health, Central Clinical School, Monash University; Melbourne Victoria Australia
| | - Samuel F. Berkovic
- Epilepsy Research Centre; University of Melbourne, Austin Hospital; Melbourne Victoria Australia
- Comprehensive Epilepsy Program; Austin Hospital; Melbourne Victoria Australia
| | - Terence J. O'Brien
- Departments of Medicine and Neurology; Melbourne Brain Centre, University of Melbourne, Royal Melbourne Hospital; Melbourne Victoria Australia
- Departments of Neuroscience and Neurology; Alfred Health, Central Clinical School, Monash University; Melbourne Victoria Australia
| |
Collapse
|
30
|
Li W, An D, Tong X, Liu W, Xiao F, Ren J, Niu R, Tang Y, Zhou B, Lei D, Jiang Y, Luo C, Yao D, Gong Q, Zhou D. Different patterns of white matter changes after successful surgery of mesial temporal lobe epilepsy. NEUROIMAGE-CLINICAL 2018; 21:101631. [PMID: 30553761 PMCID: PMC6411915 DOI: 10.1016/j.nicl.2018.101631] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Accepted: 12/07/2018] [Indexed: 02/05/2023]
Abstract
Objectives To explore the dynamic changes of white matters following anterior temporal lobectomy (ATL) in mesial temporal lobe epilepsy (MTLE) patients who achieved seizure-free at two-year follow-up. Methods Diffusion tensor imaging (DTI) was obtained in ten MTLE patients at five serial time points: before surgery, three months, six months, 12 months and 24 months after surgery, as well as in 11 age- and sex-matched healthy controls at one time point. Regions with significant postoperative fractional anisotropy (FA) changes and their dynamic changes were confirmed by comparing all preoperative and postoperative data using Tract-Based Spatial Statistics (TBSS). Results After successful ATL, significant FA changes were found in widespread ipsilateral and contralateral white matter regions (P <.05, FWE correction). Ipsilateral external capsule, cingulum, superior corona radiate, body of corpus callosum, inferior longitudinal fasciculus, optic radiation and contralateral inferior cerebellar peduncle, inferior longitudinal fasciculus showed significant FA decrease at three months after surgery, without further changes. Ipsilateral superior cerebellar peduncle and contralateral corpus callosum, anterior corona radiate, external capsule, optic radiation showed significant FA decrease at three months follow up but increase later. Ipsilateral cerebral peduncle and contralateral middle cerebellar peduncle showed significant FA decrease at three months follow up, with further decrease after that. While ipsilateral posterior limb of internal capsule, retrolenticular part of internal capsule and contralateral posterior corona radiate showed significant FA increase after surgery. Conclusions FA changes after successful ATL presented as four distinct patterns, reflecting different structural adaptions following epilepsy surgery. Some FA increases indicated the reversibility of preoperative diffusion abnormalities and the possibility of structural reorganization, especially in the contralateral hemisphere. Widespread white matter abnormalities existed in mesial temporal lobe epilepsy. We explored longitudinal DTI changes at five serial time points before and after anterior temporal lobectomy. We found four distinct patterns of diffusion changes, reflecting different structural adaptions following epilepsy surgery. Structural reorganization did occur after surgery, especially in contralateral hemisphere.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongmei An
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Tong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenyu Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fenglai Xiao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiechuan Ren
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Running Niu
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingying Tang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Baiwan Zhou
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Du Lei
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuchao Jiang
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
31
|
Tsougos I, Kousi E, Georgoulias P, Kapsalaki E, Fountas KN. Neuroimaging methods in Epilepsy of Temporal Origin. Curr Med Imaging 2018; 15:39-51. [DOI: 10.2174/1573405613666170622114920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 11/22/2022]
Abstract
Background:
Temporal Lobe Epilepsy (TLE) comprises the most common form of
symptomatic refractory focal epilepsy in adults. Accurate lateralization and localization of the
epileptogenic focus are a significant prerequisite for determining surgical candidacy once the
patient has been deemed medically intractable. Structural MR imaging, clinical,
electrophysiological, and neurophysiological data have an established role in the localization of the
epileptogenic foci. Nevertheless, hippocampal sclerosis cannot be detected on MR images in more
than 30% of patients with TLE, and the presurgical assessment remains controversial.
</P><P>
Discussion: In the last years, advanced MR imaging techniques, such as 1H-MRS, DWI, DTI,
DSCI, and fMRI, may provide valuable additional information regarding the physiological and
metabolic characterization of brain tissue. MR imaging has shifted towards functional and
molecular imaging, thus, promising to improve the accuracy regarding the lateralization and the
localization of the epileptogenic focus. Additionally, nuclear medicine studies, such as SPECT and
PET imaging modalities, have become an asset for the decoding of brain function and activity, and
can be diagnostically helpful as well, since they provide valuable data regarding the altered
metabolic activity of the seizure foci.
Conclusion:
Overall, advanced MRI, SPECT, and PET imaging techniques are increasingly
becoming an essential part of TLE diagnostics, when the epileptogenic area is not identified on
structural MRI or when structural MRI, clinical, and electrophysiological findings are not in
concordance.
Collapse
Affiliation(s)
- Ioannis Tsougos
- Department of Medical Physics, School of Medicine, University of Thessaly, Larisa, Greece
| | - Evanthia Kousi
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Panagiotis Georgoulias
- Department of Medical Physics, School of Medicine, University of Thessaly, Larisa, Greece
| | - Eftychia Kapsalaki
- Department of Medical Physics, School of Medicine, University of Thessaly, Larisa, Greece
| | - Kostas N. Fountas
- Department of Medical Physics, School of Medicine, University of Thessaly, Larisa, Greece
| |
Collapse
|
32
|
Froudist-Walsh S, Browning PG, Young JJ, Murphy KL, Mars RB, Fleysher L, Croxson PL. Macro-connectomics and microstructure predict dynamic plasticity patterns in the non-human primate brain. eLife 2018; 7:34354. [PMID: 30462609 PMCID: PMC6249000 DOI: 10.7554/elife.34354] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 09/14/2018] [Indexed: 12/12/2022] Open
Abstract
The brain displays a remarkable ability to adapt following injury by altering its connections through neural plasticity. Many of the biological mechanisms that underlie plasticity are known, but there is little knowledge as to when, or where in the brain plasticity will occur following injury. This knowledge could guide plasticity-promoting interventions and create a more accurate roadmap of the recovery process following injury. We causally investigated the time-course of plasticity after hippocampal lesions using multi-modal MRI in monkeys. We show that post-injury plasticity is highly dynamic, but also largely predictable on the basis of the functional connectivity of the lesioned region, gradients of cell densities across the cortex and the pre-lesion network structure of the brain. The ability to predict which brain areas will plastically adapt their functional connectivity following injury may allow us to decipher why some brain lesions lead to permanent loss of cognitive function, while others do not. The brain has the ability to adapt after injury, a process known as plasticity. When one area sustains damage, for example following a car accident or stroke, other areas change their activity and structure to compensate. Understanding how this happens is critical to helping people recover from brain injuries. Certain factors may affect how well the brain can repair itself. These include how much the damaged area interacts with other areas, and which cell types different areas of the brain contain. Froudist-Walsh et al. set out to determine how these factors influence recovery from brain injury in monkeys, whose brains are similar to our own. The monkeys had damage to a structure called the hippocampus. This part of the brain has a key role in memory, which is often impaired in patients with brain injuries. The hippocampus cannot repair itself because the brain has only a limited capacity to grow new neurons. Instead, the brain attempts to compensate for disruption to the hippocampus via changes in other, undamaged areas. Using brain imaging, Froudist-Walsh et al. show that the types of changes that occur depend on how much time has passed since the injury. In the first three months, many areas of the brain change how much they coordinate their activity with other areas. Highly connected areas reduce their communication with other areas the most. In the long-term, the responses of brain areas depend more on which cell types they contain. Areas with more support cells known as “glia” – which supply nutrients and energy to neurons – are better able to adapt their connectivity up to a year after the injury. These findings may ultimately benefit people who have suffered brain injuries after accidents or stroke. They suggest that stimulating intact brain areas may be helpful in the months immediately after an injury. By contrast, long-term therapy may need to focus more on structural repair. Future studies must build on these results to discover the best ways to induce successful recovery from brain injury.
Collapse
Affiliation(s)
- Sean Froudist-Walsh
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Philip Gf Browning
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, United States
| | - James J Young
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Kathy L Murphy
- Comparative Biology Centre, Medical School, Newcastle University, United Kingdom
| | - Rogier B Mars
- Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Lazar Fleysher
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Paula L Croxson
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
33
|
A Yassine I, M Eldeeb W, A Gad K, A Ashour Y, A Yassine I, O Hosny A. Cognitive functions, electroencephalographic and diffusion tensor imaging changes in children with active idiopathic epilepsy. Epilepsy Behav 2018; 84:135-141. [PMID: 29800799 DOI: 10.1016/j.yebeh.2018.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/12/2018] [Accepted: 04/29/2018] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Neurocognitive impairment represents one of the most common comorbidities occurring in children with idiopathic epilepsy. Diagnosis of the idiopathic form of epilepsy requires the absence of any macrostructural abnormality in the conventional MRI. Though changes can be seen at the microstructural level imaged using advanced techniques such as the Diffusion Tensor Imaging (DTI). AIM OF THE WORK The aim of this work is to study the correlation between the microstructural white matter DTI findings, the electroencephalographic changes and the cognitive dysfunction in children with active idiopathic epilepsy. METHODS A comparative cross-sectional study, included 60 children with epilepsy based on the Stanford-Binet 5th Edition Scores was conducted. Patients were equally assigned to normal cognitive function or cognitive dysfunction groups. The history of the epileptic condition was gathered via personal interviews. All patients underwent brain Electroencephalography (EEG) and DTI, which was analyzed using FSL. RESULTS The Fractional Anisotropy (FA) was significantly higher whereas the Mean Diffusivity (MD) was significantly lower in the normal cognitive function group than in the cognitive dysfunction group. This altered microstructure was related to the degree of the cognitive performance of the studied children with epilepsy. The microstructural alterations of the neural fibers in children with epilepsy and cognitive dysfunction were significantly related to the younger age of onset of epilepsy, the poor control of the clinical seizures, and the use of multiple antiepileptic medications. CONCLUSION Children with epilepsy and normal cognitive functions differ in white matter integrity, measured using DTI, compared with children with cognitive dysfunction. These changes have important cognitive consequences.
Collapse
Affiliation(s)
- Imane A Yassine
- Neurology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Waleed M Eldeeb
- Neurology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Khaled A Gad
- Diagnostic Radiology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Yossri A Ashour
- Neurology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Inas A Yassine
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Egypt
| | - Ahmed O Hosny
- Neurology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
34
|
Brain network alteration in patients with temporal lobe epilepsy with cognitive impairment. Epilepsy Behav 2018; 81:41-48. [PMID: 29475172 DOI: 10.1016/j.yebeh.2018.01.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 02/02/2023]
Abstract
The aims of this study were to investigate the brain network alternation in patients with temporal lobe epilepsy (TLE) with and without cognitive impairment (CI) using functional magnetic resonance imaging (fMRI) and to further explore the potential mechanisms of epilepsy-induced CI. Forty patients with TLE and nineteen healthy controls (HCs) were recruited for this study. All participants received the Montreal Cognitive Assessment (MoCA) test, and the patients were divided into CI (n=21) and cognitive nonimpairment (CNI) groups (n=19) according to MoCA performance. Functional connectivity (FC) differences of resting state networks (RSNs) were compared among the CI, CNI, and HC groups. Correlation between FC and MoCA scores was also observed. When compared with the HC group, significantly decreased FC between medial visual network (mVN) and left frontoparietal network (lFPN) as well as between visuospatial network (VSN) and the anterior default mode network (aDMN) were revealed in both CI and CNI groups. In addition, significantly decreased FC between lFPN and executive control network (ECN) and increased FC between ECN and sensorimotor-related network (SMN) were found in CNI and CI groups, respectively. When compared with the CNI group, the CI group exhibited significant increased FC between ECN and lFPN as well as between ECN and SMN. Moreover, in the CI group, FC between ECN and lFPN showed negative correlation with attention scores. Our findings suggested that cognitive networks are different from epileptic networks, and the increased FC between RSNs closely related to cognitive function changes may help us to further understand the mechanism of CI in TLE.
Collapse
|
35
|
Dutta M, Murray L, Miller W, Groves D. Effects of Epilepsy on Language Functions: Scoping Review and Data Mining Findings. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2018; 27:350-378. [PMID: 29497749 DOI: 10.1044/2017_ajslp-16-0195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 08/29/2017] [Indexed: 06/08/2023]
Abstract
PURPOSE This study involved a scoping review to identify possible gaps in the empirical description of language functioning in epilepsy in adults. With access to social network data, data mining was used to determine if individuals with epilepsy are expressing language-related concerns. METHOD For the scoping review, scientific databases were explored to identify pertinent articles. Findings regarding the nature of epilepsy etiologies, patient characteristics, tested language modalities, and language measures were compiled. Data mining focused on social network databases to obtain a set of relevant language-related posts. RESULTS The search yielded 66 articles. Epilepsy etiologies except temporal lobe epilepsy and older adults were underrepresented. Most studies utilized aphasia tests and primarily assessed single-word productions; few studies included healthy control groups. Data mining revealed several posts regarding epilepsy-related language problems, including word retrieval, reading, writing, verbal memory difficulties, and negative effects of epilepsy treatment on language. CONCLUSION Our findings underscore the need for future specification of the integrity of language in epilepsy, particularly with respect to discourse and high-level language abilities. Increased awareness of epilepsy-related language issues and understanding the patients' perspectives about their language concerns will allow researchers and speech-language pathologists to utilize appropriate assessments and improve quality of care.
Collapse
Affiliation(s)
- Manaswita Dutta
- Department of Speech and Hearing Sciences, Indiana University, Bloomington
| | - Laura Murray
- School of Communication Sciences and Disorders, Western University, London, Ontario, Canada
| | - Wendy Miller
- School of Nursing, Indiana University, Bloomington
| | - Doyle Groves
- School of Nursing, Indiana University, Bloomington
| |
Collapse
|
36
|
Longitudinal hippocampal and extra-hippocampal microstructural and macrostructural changes following temporal lobe epilepsy surgery. Epilepsy Res 2018; 140:128-137. [DOI: 10.1016/j.eplepsyres.2018.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/17/2017] [Accepted: 01/04/2018] [Indexed: 11/23/2022]
|
37
|
Taylor PN, Sinha N, Wang Y, Vos SB, de Tisi J, Miserocchi A, McEvoy AW, Winston GP, Duncan JS. The impact of epilepsy surgery on the structural connectome and its relation to outcome. Neuroimage Clin 2018; 18:202-214. [PMID: 29876245 PMCID: PMC5987798 DOI: 10.1016/j.nicl.2018.01.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/05/2017] [Accepted: 01/21/2018] [Indexed: 01/26/2023]
Abstract
Background Temporal lobe surgical resection brings seizure remission in up to 80% of patients, with long-term complete seizure freedom in 41%. However, it is unclear how surgery impacts on the structural white matter network, and how the network changes relate to seizure outcome. Methods We used white matter fibre tractography on preoperative diffusion MRI to generate a structural white matter network, and postoperative T1-weighted MRI to retrospectively infer the impact of surgical resection on this network. We then applied graph theory and machine learning to investigate the properties of change between the preoperative and predicted postoperative networks. Results Temporal lobe surgery had a modest impact on global network efficiency, despite the disruption caused. This was due to alternative shortest paths in the network leading to widespread increases in betweenness centrality post-surgery. Measurements of network change could retrospectively predict seizure outcomes with 79% accuracy and 65% specificity, which is twice as high as the empirical distribution. Fifteen connections which changed due to surgery were identified as useful for prediction of outcome, eight of which connected to the ipsilateral temporal pole. Conclusion Our results suggest that the use of network change metrics may have clinical value for predicting seizure outcome. This approach could be used to prospectively predict outcomes given a suggested resection mask using preoperative data only.
Collapse
Affiliation(s)
- Peter N Taylor
- Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University, UK; Institute of Neuroscience, Faculty of Medical Science, Newcastle University, UK; NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | - Nishant Sinha
- Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University, UK; Institute of Neuroscience, Faculty of Medical Science, Newcastle University, UK
| | - Yujiang Wang
- Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University, UK; Institute of Neuroscience, Faculty of Medical Science, Newcastle University, UK; NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sjoerd B Vos
- Translational Imaging Group, Centre for Medical Image Computing, University College London, UK; Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0LR, UK
| | - Jane de Tisi
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Anna Miserocchi
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andrew W McEvoy
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Gavin P Winston
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0LR, UK
| | - John S Duncan
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0LR, UK
| |
Collapse
|
38
|
Zygogianni A, Protopapa M, Kougioumtzopoulou A, Simopoulou F, Nikoloudi S, Kouloulias V. From imaging to biology of glioblastoma: new clinical oncology perspectives to the problem of local recurrence. Clin Transl Oncol 2018; 20:989-1003. [PMID: 29335830 DOI: 10.1007/s12094-018-1831-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022]
Abstract
GBM is one of the most common and aggressive brain tumors. Surgery and adjuvant chemoradiation have succeeded in providing a survival benefit. Although most patients will eventually experience local recurrence, the means to fight recurrence are limited and prognosis remains poor. In a disease where local control remains the major challenge, few trials have addressed the efficacy of local treatments, either surgery or radiation therapy. The present article reviews recent advances in the biology, imaging and biomarker science of GBM as well as the current treatment status of GBM, providing new perspectives to the problem of local recurrence.
Collapse
Affiliation(s)
- A Zygogianni
- Radiotherapy Unit, 1st Department of Radiology, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - M Protopapa
- Radiotherapy Unit, 1st Department of Radiology, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - A Kougioumtzopoulou
- Radiotherapy Unit, 2nd Department of Radiology, Medical School, ATTIKON University Hospital, National and Kapodistrian University of Athens, Rimini 1, 12462, Chaidari, Greece
| | - F Simopoulou
- Radiotherapy Unit, 1st Department of Radiology, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - S Nikoloudi
- Radiotherapy Unit, 1st Department of Radiology, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - V Kouloulias
- Radiotherapy Unit, 2nd Department of Radiology, Medical School, ATTIKON University Hospital, National and Kapodistrian University of Athens, Rimini 1, 12462, Chaidari, Greece.
| |
Collapse
|
39
|
López-Barroso D, de Diego-Balaguer R. Language Learning Variability within the Dorsal and Ventral Streams as a Cue for Compensatory Mechanisms in Aphasia Recovery. Front Hum Neurosci 2017; 11:476. [PMID: 29021751 PMCID: PMC5623718 DOI: 10.3389/fnhum.2017.00476] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/12/2017] [Indexed: 12/28/2022] Open
Abstract
Dorsal and ventral pathways connecting perisylvian language areas have been shown to be functionally and anatomically segregated. Whereas the dorsal pathway integrates the sensory-motor information required for verbal repetition, the ventral pathway has classically been associated with semantic processes. The great individual differences characterizing language learning through life partly correlate with brain structure and function within these dorsal and ventral language networks. Variability and plasticity within these networks also underlie inter-individual differences in the recovery of linguistic abilities in aphasia. Despite the division of labor of the dorsal and ventral streams, studies in healthy individuals have shown how the interaction of them and the redundancy in the areas they connect allow for compensatory strategies in functions that are usually segregated. In this mini-review we highlight the need to examine compensatory mechanisms between streams in healthy individuals as a helpful guide to choosing the most appropriate rehabilitation strategies, using spared functions and targeting preserved compensatory networks for brain plasticity.
Collapse
Affiliation(s)
- Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias and Instituto de Investigación Biomédica de Málaga, University of Malaga, Malaga, Spain
- Area of Psychobiology, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - Ruth de Diego-Balaguer
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Li Y, Tan Z, Wang J, Wang Y, Gan Y, Wen F, Chen Q, Abbott D, Wong KKL, Huang W. Alterations in Spontaneous Brain Activity and Functional Network Reorganization following Surgery in Children with Medically Refractory Epilepsy: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurol 2017; 8:374. [PMID: 28824531 PMCID: PMC5541057 DOI: 10.3389/fneur.2017.00374] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/17/2017] [Indexed: 11/22/2022] Open
Abstract
For some patients with medically refractory epilepsy (MRE), surgery is a safe and effective treatment for controlling epilepsy. However, the functional consequences of such surgery on brain activity and connectivity in children remain unknown. In the present study, we carried out a longitudinal study using resting-state functional magnetic resonance imaging in 10 children with MRE before and again at a mean of 79 days after surgery, as well as in a group of 28 healthy controls. Compared with the controls, children with epilepsy exhibited abnormalities in intrinsic activity in the thalamus, putamen, pallidum, insula, hippocampus, cerebellum, and cingulate gyrus both before and after surgery. Longitudinal analyses showed that the amplitude of low frequency fluctuations (ALFF) increased in the parietal–frontal cortex and decreased in the deep nuclei from pre- to post-surgery. The percentage changes in ALFF values in the deep nuclei were positively correlated with the age of epilepsy onset. Functional connectivity (FC) analyses demonstrated a reorganization of FC architecture after surgery. These changes in brain activity and FC after surgery might indicate that the previously disrupted functional interactions were reorganized after surgery. All these results provide preliminary evidence that the age of epilepsy onset may have some potential to predict the outcome of brain functional reorganization after surgery in children with MRE.
Collapse
Affiliation(s)
- Yongxin Li
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhen Tan
- Department of Pediatric Neurosurgery, Shenzhen Children's Hospital, Shenzhen, China
| | - Jianping Wang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ya Wang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yungen Gan
- Department of Pediatric Neurosurgery, Shenzhen Children's Hospital, Shenzhen, China
| | - Feiqiu Wen
- Department of Pediatric Neurosurgery, Shenzhen Children's Hospital, Shenzhen, China
| | - Qian Chen
- Department of Pediatric Neurosurgery, Shenzhen Children's Hospital, Shenzhen, China
| | - Derek Abbott
- Centre for Biomedical Engineering, School of Electrical and Electronic Engineering, University of Adelaide, Adelaide, SA, Australia
| | - Kelvin K L Wong
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Wenhua Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Essayed WI, Zhang F, Unadkat P, Cosgrove GR, Golby AJ, O'Donnell LJ. White matter tractography for neurosurgical planning: A topography-based review of the current state of the art. Neuroimage Clin 2017; 15:659-672. [PMID: 28664037 PMCID: PMC5480983 DOI: 10.1016/j.nicl.2017.06.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/17/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022]
Abstract
We perform a review of the literature in the field of white matter tractography for neurosurgical planning, focusing on those works where tractography was correlated with clinical information such as patient outcome, clinical functional testing, or electro-cortical stimulation. We organize the review by anatomical location in the brain and by surgical procedure, including both supratentorial and infratentorial pathologies, and excluding spinal cord applications. Where possible, we discuss implications of tractography for clinical care, as well as clinically relevant technical considerations regarding the tractography methods. We find that tractography is a valuable tool in variable situations in modern neurosurgery. Our survey of recent reports demonstrates multiple potentially successful applications of white matter tractography in neurosurgery, with progress towards overcoming clinical challenges of standardization and interpretation.
Collapse
Affiliation(s)
- Walid I Essayed
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Fan Zhang
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prashin Unadkat
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - G Rees Cosgrove
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra J Golby
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren J O'Donnell
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Pujar SS, Seunarine KK, Martinos MM, Neville BGR, Scott RC, Chin RFM, Clark CA. Long-term white matter tract reorganization following prolonged febrile seizures. Epilepsia 2017; 58:772-780. [PMID: 28332711 PMCID: PMC5484997 DOI: 10.1111/epi.13724] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
Objective Diffusion magnetic resonance imaging (MRI) studies have demonstrated acute white matter changes following prolonged febrile seizures (PFS), but their longer‐term evolution is unknown. We investigated a population‐based cohort to determine white matter diffusion properties 8 years after PFS. Methods We used diffusion tensor imaging (DTI) and applied Tract‐Based Spatial Statistics for voxel‐wise comparison of white matter microstructure between 26 children with PFS and 27 age‐matched healthy controls. Age, gender, handedness, and hippocampal volumes were entered as covariates for voxel‐wise analysis. Results Mean duration between the episode of PFS and follow‐up was 8.2 years (range 6.7–9.6). All children were neurologically normal, and had normal conventional neuroimaging. On voxel‐wise analysis, compared to controls, the PFS group had (1) increased fractional anisotropy in early maturing central white matter tracts, (2) increased mean and axial diffusivity in several peripheral white matter tracts and late‐maturing central white matter tracts, and (3) increased radial diffusivity in peripheral white matter tracts. None of the tracts had reduced fractional anisotropy or diffusivity indices in the PFS group. Significance In this homogeneous, population‐based sample, we found increased fractional anisotropy in early maturing central white matter tracts and increased mean and axial diffusivity with/without increased radial diffusivity in several late‐maturing peripheral white matter tracts 8 years post‐PFS. We propose disruption in white matter maturation secondary to seizure‐induced axonal injury, with subsequent neuroplasticity and microstructural reorganization as a plausible explanation.
Collapse
Affiliation(s)
- Suresh S Pujar
- Neurosciences Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Young Epilepsy, Lingfield, Surrey, United Kingdom
| | - Kiran K Seunarine
- Imaging and Biophysics Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Marina M Martinos
- Developmental Cognitive Neuroscience Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Brian G R Neville
- Neurosciences Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Young Epilepsy, Lingfield, Surrey, United Kingdom
| | - Rod C Scott
- Neurosciences Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Young Epilepsy, Lingfield, Surrey, United Kingdom.,Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, U.S.A
| | - Richard F M Chin
- Neurosciences Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Muir Maxwell Epilepsy Centre, Department of Child Life and Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Chris A Clark
- Imaging and Biophysics Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
43
|
Liu A, Thesen T, Barr W, Morrison C, Dugan P, Wang X, Meager M, Doyle W, Kuzniecky R, Devinsky O, Blackmon K. Parahippocampal and Entorhinal Resection Extent Predicts Verbal Memory Decline in an Epilepsy Surgery Cohort. J Cogn Neurosci 2016; 29:869-880. [PMID: 27991184 DOI: 10.1162/jocn_a_01089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The differential contribution of medial-temporal lobe regions to verbal declarative memory is debated within the neuroscience, neuropsychology, and cognitive psychology communities. We evaluate whether the extent of surgical resection within medial-temporal regions predicts longitudinal verbal learning and memory outcomes. This single-center retrospective observational study involved patients with refractory temporal lobe epilepsy undergoing unilateral anterior temporal lobe resection from 2007 to 2015. Thirty-two participants with Engel Class 1 and 2 outcomes were included (14 left, 18 right) and followed for a mean of 2.3 years after surgery (±1.5 years). Participants had baseline and postsurgical neuropsychological testing and high-resolution T1-weighted MRI scans. Postsurgical lesions were manually traced and coregistered to presurgical scans to precisely quantify resection extent of medial-temporal regions. Verbal learning and memory change scores were regressed on hippocampal, entorhinal, and parahippocampal resection volume after accounting for baseline performance. Overall, there were no significant differences in learning and memory change between patients who received left and right anterior temporal lobe resection. After controlling for baseline performance, the extent of left parahippocampal resection accounted for 27% (p = .021) of the variance in verbal short delay free recall. The extent of left entorhinal resection accounted for 37% (p = .004) of the variance in verbal short delay free recall. Our findings highlight the critical role that the left parahippocampal and entorhinal regions play in recall for verbal material.
Collapse
Affiliation(s)
- Anli Liu
- New York University School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dinkelacker V, Dupont S, Samson S. The new approach to classification of focal epilepsies: Epileptic discharge and disconnectivity in relation to cognition. Epilepsy Behav 2016; 64:322-328. [PMID: 27765519 DOI: 10.1016/j.yebeh.2016.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 12/23/2022]
Abstract
The new classification of epilepsy stratifies the disease into an acute level, based on seizures, and an overarching chronic level of epileptic syndromes (Berg et al., 2010). In this new approach, seizures are considered either to originate and evolve in unilateral networks or to rapidly encompass both hemispheres. This concept extends the former vision of focal and generalized epilepsies to a genuine pathology of underlying networks. These key aspects of the new classification can be linked to the concept of cognitive curtailing in focal epilepsy. The present review will discuss the conceptual implications for acute and chronic cognitive deficits with special emphasis on transient and structural disconnectivity. Acute transient disruption of brain function is the hallmark of focal seizures. Beyond seizures, however, interictal epileptic discharges (IEDs) are increasingly recognized to interfere with physiological brain circuitry. Both concomitant EEG and high-precision neuropsychological testing are necessary to detect these subtle effects, which may concern task-specific or default-mode networks. More recent data suggest that longstanding IEDs may affect brain maturation and eventually be considered as a biomarker of pathological wiring. This brings us to the overarching level of chronic cognitive and behavioral comorbidity. We will discuss alterations in structural connectivity measured with diffusion-weighted imaging and tractography. Among focal epilepsies, much of our current insights are derived from temporal lobe epilepsy and its impact on neuropsychological and psychiatric functioning. Structural disconnectivity is maximal in the temporal lobe but also concerns widespread language circuitry. Eventually, pathological wiring may contribute to the clinical picture of cognitive dysfunction. We conclude with the extrapolation of these concepts to current research topics and to the necessity of establishing individual patient profiles of network pathology with EEG, high-precision neuropsychological testing, and state-of-the-art neuroimaging. This article is part of a Special Issue entitled "The new approach to classification: Rethinking cognition and behavior in epilepsy".
Collapse
Affiliation(s)
- Vera Dinkelacker
- Neurology Unit, Rothschild Foundation, 25 Rue Manin, 75019, Paris, France; Centre de Recherche de l'Institut du Cerveau et de la Moëlle Épinière (CRICM), UPMC-UMR 7225 CNRS-UMRS 975 INSERM, Paris, France.
| | - Sophie Dupont
- Centre de Recherche de l'Institut du Cerveau et de la Moëlle Épinière (CRICM), UPMC-UMR 7225 CNRS-UMRS 975 INSERM, Paris, France; Epilepsy Unit, Pitié-Salpêtrière Hospital, 47-83 boulevard de l'Hôpital, 75013, Paris, France
| | - Séverine Samson
- Epilepsy Unit, Pitié-Salpêtrière Hospital, 47-83 boulevard de l'Hôpital, 75013, Paris, France; Laboratoire PSITEC (EA 4072), Université de Lille 3, France
| |
Collapse
|
45
|
Oliveira FFD, Marin SDMC, Bertolucci PHF. Neurological impressions on the organization of language networks in the human brain. Brain Inj 2016; 31:140-150. [PMID: 27740867 DOI: 10.1080/02699052.2016.1199914] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND More than 95% of right-handed individuals, as well as almost 80% of left-handed individuals, have left hemisphere dominance for language. The perisylvian networks of the dominant hemisphere tend to be the most important language systems in human brains, usually connected by bidirectional fibres originated from the superior longitudinal fascicle/arcuate fascicle system and potentially modifiable by learning. Neuroplasticity mechanisms take place to preserve neural functions after brain injuries. Language is dependent on a hierarchical interlinkage of serial and parallel processing areas in distinct brain regions considered to be elementary processing units. Whereas aphasic syndromes typically result from injuries to the dominant hemisphere, the extent of the distribution of language functions seems to be variable for each individual. METHOD Review of the literature Results: Several theories try to explain the organization of language networks in the human brain from a point of view that involves either modular or distributed processing or sometimes both. The most important evidence for each approach is discussed under the light of modern theories of organization of neural networks. CONCLUSIONS Understanding the connectivity patterns of language networks may provide deeper insights into language functions, supporting evidence-based rehabilitation strategies that focus on the enhancement of language organization for patients with aphasic syndromes.
Collapse
Affiliation(s)
- Fabricio Ferreira de Oliveira
- a Department of Neurology and Neurosurgery , Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP) , São Paulo , SP , Brazil
| | - Sheilla de Medeiros Correia Marin
- a Department of Neurology and Neurosurgery , Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP) , São Paulo , SP , Brazil
| | - Paulo Henrique Ferreira Bertolucci
- a Department of Neurology and Neurosurgery , Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP) , São Paulo , SP , Brazil
| |
Collapse
|
46
|
Fujii M, Maesawa S, Ishiai S, Iwami K, Futamura M, Saito K. Neural Basis of Language: An Overview of An Evolving Model. Neurol Med Chir (Tokyo) 2016; 56:379-86. [PMID: 27087195 PMCID: PMC4945596 DOI: 10.2176/nmc.ra.2016-0014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neural basis of language had been considered as a simple model consisting of the Broca’s area, the Wernicke’s area, and the arcuate fasciculus (AF) connecting the above two cortical areas. However, it has grown to a larger and more complex model based upon recent advancements in neuroscience such as precise imaging studies of aphasic patients, diffusion tensor imaging studies, functional magnetic resonance imaging studies, and electrophysiological studies with cortical and subcortical stimulation during awake surgery. In the present model, language is considered to be processed through two distinct pathways, the dorsal stream and the ventral stream. The core of the dorsal stream is the superior longitudinal fasciculus/AF, which is mainly associated with phonological processing. On the other hand, semantic processing is done mainly with the ventral stream consisting of the inferior fronto-occipital fasciculus and the intratemporal networks. The frontal aslant tract has recently been named the deep frontal tract connecting the supplementary motor area and the Broca’s area and it plays an important role in driving and initiating speech. It is necessary for every neurosurgeon to have basic knowledge of the neural basis of language. This knowledge is essential to plan safer surgery and preserve the above neural structures during surgery.
Collapse
Affiliation(s)
- Masazumi Fujii
- Department of Neurosurgery, Fukushima Medical University
| | | | | | | | | | | |
Collapse
|
47
|
Imamura H, Matsumoto R, Takaya S, Nakagawa T, Shimotake A, Kikuchi T, Sawamoto N, Kunieda T, Mikuni N, Miyamoto S, Fukuyama H, Takahashi R, Ikeda A. Network specific change in white matter integrity in mesial temporal lobe epilepsy. Epilepsy Res 2016; 120:65-72. [DOI: 10.1016/j.eplepsyres.2015.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 11/17/2015] [Accepted: 12/07/2015] [Indexed: 12/23/2022]
|
48
|
Chiang S, Levin HS, Wilde E, Haneef Z. White matter structural connectivity changes correlate with epilepsy duration in temporal lobe epilepsy. Epilepsy Res 2015; 120:37-46. [PMID: 26709881 DOI: 10.1016/j.eplepsyres.2015.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 10/29/2015] [Accepted: 12/04/2015] [Indexed: 11/27/2022]
Abstract
PURPOSE Temporal lobe epilepsy (TLE) is thought to be a network disease and structural changes using diffusion tensor imaging (DTI) have been shown. However, lateralized differences in the structural integrity of TLE, as well as changes in structural integrity with longer disease duration, have not been well defined. METHODS We examined the fractional anisotropy (FA) and mean diffusivity (MD) in the hippocampus, as well as its primary (cingulum and fornix) and remote (uncinate and external capsule) connections in both right and left TLE. Changes in diffusion measures over the disease course were examined by correlating FA and MD in the various structures with epilepsy duration. The potential for each measure of anisotropy and diffusivity as a marker of TLE laterality was investigated using random forest (RF) analysis. RESULTS MD was increased in the bilateral hippocampus, cingulum, fornix and the right external capsule in both left and right TLE compared to controls. In addition, left TLE exhibited an increased MD in the ipsilateral uncinate fasciculus and bilateral external capsules. A decrease in FA was seen in the left cingulum in left TLE. RF analysis demonstrated that MD of the right hippocampus and FA of the left external capsule were important predictors of TLE laterality. An association of increased MD with epilepsy duration was seen in the left hippocampus in left TLE. CONCLUSION Evidence of disrupted white matter architecture in the hippocampus and its primary and remote connections were demonstrated in TLE. While changes in the hippocampus and cingulum were more prominent in right TLE, remote changes were more prominent in left TLE. MD of the right hippocampus and FA of the left external capsule were found to be the strongest structural predictors of TLE laterality. Changes associated with duration of epilepsy indicated that changes in structural integrity may be progressive over the disease course. This study illustrates the potential of structural diffusion tensor imaging in elucidating pathophysiology, enhancing diagnosis and assisting prognostication.
Collapse
Affiliation(s)
- Sharon Chiang
- Department of Statistics, Rice University, Houston, TX, United States.
| | - Harvey S Levin
- Department of Physical Medicine, Baylor College of Medicine, Houston, TX, United States; Michael E. De Bakey Veterans Affairs Medical Center, Houston, TX, United States.
| | - Elisabeth Wilde
- Department of Physical Medicine, Baylor College of Medicine, Houston, TX, United States.
| | - Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States; Neurology Care Line, Michael E. DeBakey VA Medical Center, Houston, TX, United States.
| |
Collapse
|
49
|
Barr W. Prediction of Postsurgical Neuropsychological Outcome: Increasing Options. Epilepsy Curr 2015; 15:319-20. [PMID: 26633948 PMCID: PMC4657777 DOI: 10.5698/1535-7511-15.6.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
50
|
Szmuda M, Szmuda T, Springer J, Rogowska M, Sabisz A, Dubaniewicz M, Mazurkiewicz-Bełdzińska M. Diffusion tensor tractography imaging in pediatric epilepsy - A systematic review. Neurol Neurochir Pol 2015; 50:1-6. [PMID: 26851683 DOI: 10.1016/j.pjnns.2015.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 10/12/2015] [Indexed: 11/26/2022]
Abstract
PURPOSE Recent years brought several experimental and clinical reports applying diffusion tensor tractography imaging (DTI) of the brain in epilepsy. This study was aimed to evaluate current evidence for adding the DTI sequence to the standard diagnostic magnetic resonance imaging (MRI) protocol in pediatric epilepsy. MATERIAL AND METHODS Rapid and qualitative systematic review (RAE, Rapid Evidence Assessment), aggregating relevant studies from the recent 7 years. The PubMed database was hand searched for records containing terms "tractography AND epilepsy." Only studies referring to children were included; studies were rated using "final quality of evidence." RESULTS Out of 144 screened records, relevant 101 were aggregated and reviewed. The synthesis was based on 73 studies. Case-control clinical studies were the majority of the material and comprised 43.8% of the material. Low 'confirmability' and low 'applicability' referred to 18 and 17 articles (29.5% and 27.9%), respectively. The sufficient quality of evidence supported performing DTI in temporal lobe epilepsy, malformations of cortical development and prior to a neurosurgery of epilepsy. CONCLUSIONS The qualitative RAE provides an interim estimate of the clinical relevance of quickly developing diagnostic methods. Based on the critical appraisal of current knowledge, adding the DTI sequence to the standard MRI protocol may be clinically beneficial in selected patient groups with childhood temporal lobe epilepsy or as a part of planning for an epilepsy surgery.
Collapse
Affiliation(s)
- Marta Szmuda
- Department of Developmental Neurology, Medical University of Gdańsk, Gdańsk, Poland.
| | - Tomasz Szmuda
- Department of Neurosurgery, Medical University of Gdańsk, Gdańsk, Poland.
| | - Janusz Springer
- Department of Preventive Medicine and Education, Medical University of Gdańsk, Gdańsk, Poland.
| | - Marianna Rogowska
- Department of Neurosurgery, Medical University of Gdańsk, Gdańsk, Poland.
| | - Agnieszka Sabisz
- Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland.
| | | | | |
Collapse
|