1
|
Ye XF, Huang ZP, Li MM, Liu SF, Huang WL, Hamud AMS, Ye LC, Li LY, Wu SJ, Zhuang JL, Chen YH, Chen XR, Lin S, Wei XF, Chen CN. Update on aquaporin-4 antibody detection: the early diagnosis of neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2024; 90:105803. [PMID: 39128164 DOI: 10.1016/j.msard.2024.105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/06/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune-mediated primary inflammatory myelinopathy of the central nervous system that primarily affects the optic nerve and spinal cord. The aquaporin 4 antibody (AQP4-Ab) is a specific autoantibody marker for NMOSD. Most patients with NMOSD are seropositive for AQP4-Ab, thus aiding physicians in identifying ways to treat NMOSD. AQP4-Ab has been tested in many clinical and laboratory studies, demonstrating effectiveness in diagnosing NMOSD. Recently, novel assays have been developed for the rapid and accurate detection of AQP4-Ab, providing further guidance for the diagnosis and treatment of NMOSD. This article summarizes the importance of rapid and accurate diagnosis for treating NMOSD based on a review of the latest relevant literature. We discussed current challenges and methods for improvement to offer new ideas for exploring rapid and accurate AQP4-Ab detection methods, aiming for early diagnosis of NMOSD.
Collapse
Affiliation(s)
- Xiao-Fang Ye
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Zheng-Ping Huang
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Mi-Mi Li
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Shu-Fen Liu
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Wan-Li Huang
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Abdullahi Mukhtar Sheik Hamud
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Li-Chao Ye
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Lin-Yi Li
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Shu-Juan Wu
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Jian-Long Zhuang
- Prenatal Diagnosis Centre, Quanzhou Women's and Children's Hospital, Quanzhou 362000, Fujian China
| | - Yan-Hong Chen
- Department of Neurology, Shishi General Hospital, Quanzhou 362000, Fujian Province, China
| | - Xiang-Rong Chen
- The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China; Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Xiao-Feng Wei
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, Fujian Province, China.
| | - Chun-Nuan Chen
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China.
| |
Collapse
|
2
|
Mireles-Ramírez MA, Pacheco-Moises FP, González-Usigli HA, Sánchez-Rosales NA, Hernández-Preciado MR, Delgado-Lara DLC, Hernández-Cruz JJ, Ortiz GG. Neuromyelitis optica spectrum disorder: pathophysiological approach. Int J Neurosci 2024; 134:826-838. [PMID: 36453541 DOI: 10.1080/00207454.2022.2153046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
Aim: To review the main pathological findings of Neuromyelitis Optica Spectrum Disorder (NMOSD) associated with the presence of autoantibodies to aquaporin-4 (AQP4) as well as the mechanisms of astrocyte dysfunction and demyelination. Methods: An comprehensive search of the literature in the field was carried out using the database of The National Center for Biotechnology Information from . Systematic searches were performed until July 2022. Results: NMOSD is an inflammatory and demyelinating disease of the central nervous system mainly in the areas of the optic nerves and spinal cord, thus explaining mostly the clinical findings. Other areas affected in NMOSD are the brainstem, hypothalamus, and periventricular regions. Relapses in NMOSD are generally severe and patients only partially recover. NMOSD includes clinical conditions where autoantibodies to aquaporin-4 (AQP4-IgG) of astrocytes are detected as well as similar clinical conditions where such antibodies are not detected. AQP4 are channel-forming integral membrane proteins of which AQ4 isoforms are able to aggregate in supramolecular assemblies termed orthogonal arrays of particles (OAP) and are essential in the regulation of water homeostasis and the adequate modulation of neuronal activity and circuitry. AQP4 assembly in orthogonal arrays of particles is essential for AQP4-IgG pathogenicity since AQP4 autoantibodies bind to OAPs with higher affinity than for AQP4 tetramers. NMOSD has a complex background with prominent roles for genes encoding cytokines and cytokine receptors. AQP4 autoantibodies activate the complement-mediated inflammatory demyelination and the ensuing damage to AQP4 water channels, leading to water influx, necrosis and axonal loss. Conclusions: NMOSD as an astrocytopathy is a nosological entity different from multiple sclerosis with its own serological marker: immunoglobulin G-type autoantibodies against the AQP4 protein which elicits a complement-dependent cytotoxicity and neuroinflammation. Some patients with typical manifestations of NMSOD are AQP4 seronegative and myelin oligodendrocyte glycoprotein positive. Thus, the detection of autoantibodies against AQP4 or other autoantibodies is crucial for the correct treatment of the disease and immunosuppressant therapy is the first choice.
Collapse
Affiliation(s)
- Mario A Mireles-Ramírez
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - Fermín P Pacheco-Moises
- Department of Chemistry, University Center of Exact Sciences and Engineering; University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Héctor A González-Usigli
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - Nayeli A Sánchez-Rosales
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - Martha R Hernández-Preciado
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | | | - José J Hernández-Cruz
- Department of Philosophical and Methodological Disciplines and Service of Molecular Biology in medicine HC, University Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Genaro Gabriel Ortiz
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
- Department of Philosophical and Methodological Disciplines and Service of Molecular Biology in medicine HC, University Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
3
|
Zhao M, Li X, Li F, Hu X, Wang J, Liu Y, Zhang C, Bai J, Edden RAE, Gao F, Su M, Ren F. Identification of neurotransmitter imbalances in the cingulate cortex of NMOSD patients using magnetic resonance spectroscopy. Cereb Cortex 2024; 34:bhae304. [PMID: 39073381 DOI: 10.1093/cercor/bhae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Cognitive impairment affects 29-67% of patients with neuromyelitis optica spectrum disorder. Previous studies have reported glutamate homeostasis disruptions in astrocytes, leading to imbalances in gamma-aminobutyric acid levels. However, the association between these neurotransmitter changes and cognitive deficits remains inadequately elucidated. Point RESolved Spectroscopy and Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy techniques were utilized to evaluate gamma-aminobutyric acid, glutamate, glutathione levels, and excitation/inhibition balance in the anterior cingulate cortex, posterior cingulate cortex, and occipital cortex of 39 neuromyelitis optica spectrum disorder patients and 41 healthy controls. Cognitive function was assessed using neurocognitive scales. Results showed decreased gamma-aminobutyric acid levels alongside increased glutamate, glutathione, and excitation/inhibition ratio in the anterior cingulate cortex and posterior cingulate cortex of neuromyelitis optica spectrum disorder patients. Specifically, within the posterior cingulate cortex of neuromyelitis optica spectrum disorder patients, decreased gamma-aminobutyric acid levels and increased excitation/inhibition ratio correlated significantly with anxiety scores, whereas glutathione levels predicted diminished executive function. The results suggest that neuromyelitis optica spectrum disorder patients exhibit dysregulation in the GABAergic and glutamatergic systems in their brains, where the excitation/inhibition imbalance potentially acts as a neuronal metabolic factor contributing to emotional disorders. Additionally, glutathione levels in the posterior cingulate cortex region may serve as predictors of cognitive decline, highlighting the potential benefits of reducing oxidative stress to safeguard cognitive function in neuromyelitis optica spectrum disorder patients.
Collapse
Affiliation(s)
- Min Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Radiology, Linyi Central Hospital, Linyi, China
| | - Xiao Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Fuyan Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Xin Hu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Jing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yuxi Liu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Chuanchen Zhang
- Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Jie Bai
- Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Meixia Su
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Fuxin Ren
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| |
Collapse
|
4
|
Li Z, Zhang Y, Ji M, Wu C, Zhang Y, Ji S. Targeting ferroptosis in neuroimmune and neurodegenerative disorders for the development of novel therapeutics. Biomed Pharmacother 2024; 176:116777. [PMID: 38795640 DOI: 10.1016/j.biopha.2024.116777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Neuroimmune and neurodegenerative ailments impose a substantial societal burden. Neuroimmune disorders involve the intricate regulatory interactions between the immune system and the central nervous system. Prominent examples of neuroimmune disorders encompass multiple sclerosis and neuromyelitis optica. Neurodegenerative diseases result from neuronal degeneration or demyelination in the brain or spinal cord, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. The precise underlying pathogenesis of these conditions remains incompletely understood. Ferroptosis, a programmed form of cell death characterised by lipid peroxidation and iron overload, plays a pivotal role in neuroimmune and neurodegenerative diseases. In this review, we provide a detailed overview of ferroptosis, its mechanisms, pathways, and regulation during the progression of neuroimmune and neurodegenerative diseases. Furthermore, we summarise the impact of ferroptosis on neuroimmune-related cells (T cells, B cells, neutrophils, and macrophages) and neural cells (glial cells and neurons). Finally, we explore the potential therapeutic implications of ferroptosis inhibitors in diverse neuroimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Zihao Li
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China
| | - Ye Zhang
- Department of Forensic Medicine, Shantou University Medical College (SUMC), Shantou, Guangdong, China
| | - Meiling Ji
- Department of Emergency, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Chenglong Wu
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China
| | - Yanxing Zhang
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China.
| | - Senlin Ji
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Translational Medicine Institute of Brain Disorders, Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
5
|
Chen H, Zheng K, Qiu M, Yang J. Preparation of astrocytes by directed differentiation of pluripotent stem cells and somatic cell transdifferentiation. Dev Neurobiol 2023; 83:282-292. [PMID: 37789524 DOI: 10.1002/dneu.22929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/01/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Astrocytes (ACs) are the most widely distributed cells in the mammalian central nervous system, which are essential for the function and homeostasis of nervous system. Increasing evidence indicates that ACs also participate in the development of many neurological diseases and repair after nerve injury. ACs cultured in vitro provide a cellular model for studying astrocytic development, function, and the pathogenesis of associated diseases. The preparation of primary ACs (pACs) faces many limitations, so it is important to obtain high-quality ACs by the differentiation of pluripotent stem cell (PSC) or somatic cell transdifferentiation. Initially, researchers mainly tried to induce embryonic stem cells to differentiate into ACs via embryoid body (EB) and then turned to employ induced PSCs as seed cells to explore more simple and efficient directed differentiation strategies, and serum-free culture was delved to improve the quality of induced ACs. While exploring the induction of ACs by the overexpression of AC-specific transcription factors, researchers also began to investigate small molecule-mediated somatic cell transdifferentiation. Here, we provide an updated review on the research progresses in this field.
Collapse
Affiliation(s)
- Hangjie Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Kang Zheng
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junlin Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Bigotte M, Groh AMR, Marignier R, Stratton JA. Pathogenic role of autoantibodies at the ependyma in autoimmune disorders of the central nervous system. Front Cell Neurosci 2023; 17:1257000. [PMID: 37771929 PMCID: PMC10525373 DOI: 10.3389/fncel.2023.1257000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
Ependymal cells make up the epithelial monolayer that lines the brain ventricles and the spinal cord central canal that are filled with cerebrospinal fluid. The ependyma has several functions, including regulating solute exchange between the cerebrospinal fluid and parenchyma, controlling microcirculation of cerebrospinal fluid via coordinated ciliary beating, and acting as a partial barrier. Dysregulation of these functions can lead to waste clearance impairment, cerebrospinal fluid accumulation, hydrocephalus, and more. A role for ependymal cells in a variety of neurological disorders has been proposed, including in neuromyelitis optica and multiple sclerosis, two autoimmune demyelinating diseases of the central nervous system, where periventricular damage is common. What is not known is the mechanisms behind how ependymal cells become dysregulated in these diseases. In neuromyelitis optica, it is well established that autoantibodies directed against Aquaporin-4 are drivers of disease, and it has been shown recently that these autoantibodies can drive ependymal cell dysregulation. We propose a similar mechanism is at play in multiple sclerosis, where autoantibodies targeting a glial cell protein called GlialCAM on ependymal cells are contributing to disease. GlialCAM shares high molecular similarities with the Epstein-Barr virus (EBV) protein EBNA1. EBV has recently been shown to be necessary for multiple sclerosis initiation, yet how EBV mediates pathogenesis, especially in the periventricular area, remains elusive. In this perspective article, we discuss how ependymal cells could be targeted by antibody-related autoimmune mechanisms in autoimmune demyelinating diseases and how this is implicated in ventricular/periventricular pathology.
Collapse
Affiliation(s)
- Maxime Bigotte
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Adam M. R. Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Romain Marignier
- Forgetting Team—Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, Claude Bernard Lyon 1 University, Bron, France
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuroinflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Qin D, Li D, Wang C, Guo S. Ferroptosis and central nervous system demyelinating diseases. J Neurochem 2023; 165:759-771. [PMID: 37095635 DOI: 10.1111/jnc.15831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
Ferroptosis is a newly discovered programmed cell death caused by intracellular iron excess and glutathione (GSH) system imbalance, resulting in fatal lipid peroxidation. It is different from necrosis, apoptosis, autophagy, and other forms of cell death. Accumulating evidences suggest that brain iron overload is involved in the pathogenesis of demyelinating diseases of the central nervous system (CNS), such as multiple sclerosis (MS), neuromyelitis optica (NMO), and acute disseminated encephalomyelitis (ADEM). The study of ferroptosis may provide a new understanding of demyelinating diseases and provide a novel therapeutic target for clinical treatment. Herein, we reviewed recent discoveries on mechanisms of ferroptosis, the effects of metabolic pathways on ferroptosis, and its involvement in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Danqing Qin
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Li
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunjuan Wang
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Shougang Guo
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
8
|
Gradisnik L, Velnar T. Astrocytes in the central nervous system and their functions in health and disease: A review. World J Clin Cases 2023; 11:3385-3394. [PMID: 37383914 PMCID: PMC10294192 DOI: 10.12998/wjcc.v11.i15.3385] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/19/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Astrocytes are key cells in the central nervous system. They are involved in many important functions under physiological and pathological conditions. As part of neuroglia, they have been recognised as cellular elements in their own right. The name astrocyte was first proposed by Mihaly von Lenhossek in 1895 because of the finely branched processes and star-like appearance of these particular cells. As early as the late 19th and early 20th centuries, Ramon y Cajal and Camillo Golgi had noted that although astrocytes have stellate features, their morphology is extremely diverse. Modern research has confirmed the morphological diversity of astrocytes both in vitro and in vivo and their complex, specific, and important roles in the central nervous system. In this review, the functions of astrocytes and their roles are described.
Collapse
Affiliation(s)
- Lidija Gradisnik
- Institute of Biomedical Sciences, Medical Faculty Maribor, Maribor 2000, Slovenia
| | - Tomaz Velnar
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
- AMEU ECM Maribor, Maribor 2000, Slovenia
| |
Collapse
|
9
|
Corbali O, Chitnis T. Pathophysiology of myelin oligodendrocyte glycoprotein antibody disease. Front Neurol 2023; 14:1137998. [PMID: 36925938 PMCID: PMC10011114 DOI: 10.3389/fneur.2023.1137998] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
Myelin Oligodendrocyte Glycoprotein Antibody Disease (MOGAD) is a spectrum of diseases, including optic neuritis, transverse myelitis, acute disseminated encephalomyelitis, and cerebral cortical encephalitis. In addition to distinct clinical, radiological, and immunological features, the infectious prodrome is more commonly reported in MOGAD (37-70%) than NMOSD (15-35%). Interestingly, pediatric MOGAD is not more aggressive than adult-onset MOGAD, unlike in multiple sclerosis (MS), where annualized relapse rates are three times higher in pediatric-onset MS. MOGAD pathophysiology is driven by acute attacks during which T cells and MOG antibodies cross blood brain barrier (BBB). MOGAD lesions show a perivenous confluent pattern around the small veins, lacking the radiological central vein sign. Initial activation of T cells in the periphery is followed by reactivation in the subarachnoid/perivascular spaces by MOG-laden antigen-presenting cells and inflammatory CSF milieu, which enables T cells to infiltrate CNS parenchyma. CD4+ T cells, unlike CD8+ T cells in MS, are the dominant T cell type found in lesion histology. Granulocytes, macrophages/microglia, and activated complement are also found in the lesions, which could contribute to demyelination during acute relapses. MOG antibodies potentially contribute to pathology by opsonizing MOG, complement activation, and antibody-dependent cellular cytotoxicity. Stimulation of peripheral MOG-specific B cells through TLR stimulation or T follicular helper cells might help differentiate MOG antibody-producing plasma cells in the peripheral blood. Neuroinflammatory biomarkers (such as MBP, sNFL, GFAP, Tau) in MOGAD support that most axonal damage happens in the initial attack, whereas relapses are associated with increased myelin damage.
Collapse
Affiliation(s)
- Osman Corbali
- Harvard Medical School, Boston, MA, United States
- Department of Neurology, Brigham and Women's Hospital, Ann Romney Center for Neurologic Diseases, Boston, MA, United States
| | - Tanuja Chitnis
- Harvard Medical School, Boston, MA, United States
- Department of Neurology, Brigham and Women's Hospital, Ann Romney Center for Neurologic Diseases, Boston, MA, United States
| |
Collapse
|
10
|
Bigotte M, Gimenez M, Gavoille A, Deligiannopoulou A, El Hajj A, Croze S, Goumaidi A, Malleret G, Salin P, Giraudon P, Ruiz A, Marignier R. Ependyma: a new target for autoantibodies in neuromyelitis optica? Brain Commun 2022; 4:fcac307. [PMID: 36751497 PMCID: PMC9897195 DOI: 10.1093/braincomms/fcac307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/26/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Neuromyelitis optica (NMO) is an autoimmune demyelinating disease of the central nervous system characterized by the presence of autoantibodies (called NMO-IgG) targeting aquaporin-4. Aquaporin-4 is expressed at the perivascular foot processes of astrocytes, in the glia limitans, but also at the ependyma. Most studies have focused on studying the pathogenicity of NMO-IgG on astrocytes, and NMO is now considered an astrocytopathy. However, periependymal lesions are observed in NMO suggesting that ependymal cells could also be targeted by NMO-IgG. Ependymal cells regulate CSF-parenchyma molecular exchanges and CSF flow, and are a niche for sub-ventricular neural stem cells. Our aim was to examine the effect of antibodies from NMO patients on ependymal cells. We exposed two models, i.e. primary cultures of rat ependymal cells and explant cultures of rat lateral ventricular wall whole mounts, to purified IgG of NMO patients (NMO-IgG) for 24 hours. We then evaluated the treatment effect using immunolabelling, functional assays, ependymal flow analysis and bulk RNA sequencing. For each experiment, the effects were compared with those of purified IgG from a healthy donors and non-treated cells. We found that: (i) NMO-IgG induced aquaporin-4 agglomeration at the surface of ependymal cells and induced cell enlargement in comparison to controls. In parallel, it induced an increase in gap junction connexin-43 plaque size; (ii) NMO-IgG altered the orientation of ciliary basal bodies and functionally impaired cilia motility; (iii) NMO-IgG activated the proliferation of sub-ventricular neural stem cells; (iv) treatment with NMO-IgG up-regulated the expression of pro-inflammatory cytokines and chemokines in the transcriptomic analysis. Our study showed that NMO-IgG can trigger an early and specific reactive phenotype in ependymal cells, with functional alterations of intercellular communication and cilia, activation of sub-ventricular stem cell proliferation and the secretion of pro-inflammatory cytokines. These findings suggest a key role for ependymal cells in the early phase of NMO lesion formation.
Collapse
Affiliation(s)
- Maxime Bigotte
- FORGETTING Team—Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, Claude Bernard Lyon 1 University, 69675 Bron, France
| | - Marie Gimenez
- FORGETTING Team—Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, Claude Bernard Lyon 1 University, 69675 Bron, France
| | - Antoine Gavoille
- Service de neurologie, sclérose en plaques, pathologies de la myéline et neuroinflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69500 Bron, France,Service de Biostatistique-Bioinformatique, Hospices Civils de Lyon, 69495 Pierre-Bénitem, France
| | - Adamantia Deligiannopoulou
- FORGETTING Team—Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, Claude Bernard Lyon 1 University, 69675 Bron, France
| | - Aseel El Hajj
- FORGETTING Team—Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, Claude Bernard Lyon 1 University, 69675 Bron, France
| | - Severine Croze
- Profilexpert, Genomic and Microgenomic Service, Claude Bernard Lyon 1 University, SFR santé LYON-EST, UCBL-INSERM US 7-CNRS UMS 3453, 69008 Lyon, France
| | | | - Gael Malleret
- FORGETTING Team—Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, Claude Bernard Lyon 1 University, 69675 Bron, France
| | - Paul Salin
- FORGETTING Team—Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, Claude Bernard Lyon 1 University, 69675 Bron, France
| | - Pascale Giraudon
- FORGETTING Team—Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, Claude Bernard Lyon 1 University, 69675 Bron, France
| | - Anne Ruiz
- FORGETTING Team—Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, Claude Bernard Lyon 1 University, 69675 Bron, France
| | - Romain Marignier
- Correspondence to: Romain Marignier Centre de référence des maladies inflammatoires rares du cerveau et de la moelle Service de neurologie, sclérose en plaques pathologies de la myéline et neuro-inflammation Hôpital Neurologique Pierre Wertheimer 59 boulevard Pinel, 69677 Bron cedex, France E-mail:
| |
Collapse
|
11
|
Song H, Ruan Z, Gao L, Lv D, Sun D, Li Z, Zhang R, Zhou X, Xu H, Zhang J. Structural network efficiency mediates the association between glymphatic function and cognition in mild VCI: a DTI-ALPS study. Front Aging Neurosci 2022; 14:974114. [PMID: 36466598 PMCID: PMC9708722 DOI: 10.3389/fnagi.2022.974114] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/27/2022] [Indexed: 09/03/2023] Open
Abstract
Background and objective: Vascular cognitive impairment (VCI) can be caused by multiple types of cerebrovascular pathology and is considered a network disconnection disorder. The heterogeneity hinders research progress in VCI. Glymphatic failure has been considered as a key common pathway to dementia recently. The emergence of a new method, Diffusion Tensor Image Analysis Along the Perivascular Space (DTI-ALPS), makes it possible to investigate the changes of the glymphatic function in humans non-invasively. We aimed to investigate alterations of glymphatic function in VCI and its potential impact on network connectivity. Methods: We recruited 79 patients with mild VCI, including 40 with cerebral small vessel disease cognitive impairment (SVCI) and 39 with post-stroke cognitive impairment (PSCI); and, 77 normal cognitive (NC) subjects were recruited. All subjects received neuropsychological assessments and multimodal magnetic resonance imaging scans. ALPS-index was calculated and structural networks were constructed by deterministic tractography, and then, the topological metrics of these structural connectivity were evaluated. Results: The ALPS-index of VCI patients was significantly lower than that of NC subjects (P < 0.001). Multiple linear regression analysis showed that ALPS-index affects cognitive function independently (β = 0.411, P < 0.001). The results of correlation analysis showed that the ALPS-index was correlated with overall vascular risk factor burden (r = -0.263, P = 0.001) and multiple cerebrovascular pathologies (P < 0.05). In addition, global efficiency (Eg) of network was correlated with ALPS-index in both SVCI (r = 0.348, P = 0.028) and PSCI (r = 0.732, P < 0.001) patients. Finally, the results of mediation analysis showed that Eg partially mediated in the impact of glymphatic dysfunction on cognitive impairment (indirect effect = 7.46, 95% CI 4.08-11.48). Conclusion: In both major subtypes of VCI, the ALPS-index was decreased, indicating impaired glymphatic function in VCI. Glymphatic dysfunction may affect cognitive function in VCI by disrupting network connectivity, and, may be a potential common pathological mechanism of VCI. ALPS-index is expected to become an emerging imaging marker for VCI.
Collapse
Affiliation(s)
- Hao Song
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Ruan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dongwei Lv
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dong Sun
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zeng Li
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ran Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Tabansky I, Tanaka AJ, Wang J, Zhang G, Dujmovic I, Mader S, Jeganathan V, DeAngelis T, Funaro M, Harel A, Messina M, Shabbir M, Nursey V, DeGouvia W, Laurent M, Blitz K, Jindra P, Gudesblatt M, King A, Drulovic J, Yunis E, Brusic V, Shen Y, Keskin DB, Najjar S, Stern JNH. Rare variants and HLA haplotypes associated in patients with neuromyelitis optica spectrum disorders. Front Immunol 2022; 13:900605. [PMID: 36268024 PMCID: PMC9578444 DOI: 10.3389/fimmu.2022.900605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) are rare, debilitating autoimmune diseases of the central nervous system. Many NMOSD patients have antibodies to Aquaporin-4 (AQP4). Prior studies show associations of NMOSD with individual Human Leukocyte Antigen (HLA) alleles and with mutations in the complement pathway and potassium channels. HLA allele associations with NMOSD are inconsistent between populations, suggesting complex relationships between the identified alleles and risk of disease. We used a retrospective case-control approach to identify contributing genetic variants in patients who met the diagnostic criteria for NMOSD and their unaffected family members. Potentially deleterious variants identified in NMOSD patients were compared to members of their families who do not have the disease and to existing databases of human genetic variation. HLA sequences from patients from Belgrade, Serbia, were compared to the frequency of HLA haplotypes in the general population in Belgrade. We analyzed exome sequencing on 40 NMOSD patients and identified rare inherited variants in the complement pathway and potassium channel genes. Haplotype analysis further detected two haplotypes, HLA-A*01, B*08, DRB1*03 and HLA-A*01, B*08, C*07, DRB1*03, DQB1*02, which were more prevalent in NMOSD patients than in unaffected individuals. In silico modeling indicates that HLA molecules within these haplotypes are predicted to bind AQP4 at several sites, potentially contributing to the development of autoimmunity. Our results point to possible autoimmune and neurodegenerative mechanisms that cause NMOSD, and can be used to investigate potential NMOSD drug targets.
Collapse
Affiliation(s)
- Inna Tabansky
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Akemi J. Tanaka
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Jiayao Wang
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, United States
- Department of Biomedical Informatics and Department of Systems Biology, Columbia University, New York, NY, United States
| | - Guanglan Zhang
- Department of Computer Science, Boston University, Boston, MA, United States
| | - Irena Dujmovic
- Clinical Center of Serbia University School of Medicine, Belgrade, Serbia
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Simone Mader
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Biomedical Center and University Hospitals, Ludwig Maximilian University Munich, Munich, Germany
| | - Venkatesh Jeganathan
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Tracey DeAngelis
- Department of Neurology, Neurological Associates of Long Island, New Hyde Park, NY, United States
| | - Michael Funaro
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Asaff Harel
- Department of Neurology, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Mark Messina
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Maya Shabbir
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Vishaan Nursey
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - William DeGouvia
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Micheline Laurent
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Karen Blitz
- Department of Neurology, South Shore Neurologic Associates, Patchogue, NY, United States
| | - Peter Jindra
- Division of Abdominal Transplantation, Baylor College of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Mark Gudesblatt
- Biomedical Center and University Hospitals, Ludwig Maximilian University Munich, Munich, Germany
| | | | - Alejandra King
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, United States
| | - Jelena Drulovic
- Clinical Center of Serbia University School of Medicine, Belgrade, Serbia
| | - Edmond Yunis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Vladimir Brusic
- School of Computer Science, University of Nottingham Ningbo China, Ningbo, China
| | - Yufeng Shen
- Department of Biomedical Informatics and Department of Systems Biology, Columbia University, New York, NY, United States
| | - Derin B. Keskin
- Department of Translational Immuno-Genomics for Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Souhel Najjar
- Department of Neurology, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Joel N. H. Stern
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- *Correspondence: Joel N. H. Stern, ;
| |
Collapse
|
13
|
Zhang Y, Lei L, Zhou H, Lu X, Cai F, Li T. Roles of Micro Ribonucleic Acids in Astrocytes After Cerebral Stroke. Front Cell Neurosci 2022; 16:890762. [PMID: 35755778 PMCID: PMC9218061 DOI: 10.3389/fncel.2022.890762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral stroke is one of the highest-ranking causes of death and the leading cause of disability globally, particularly with an increasing incidence and prevalence in developing countries. Steadily more evidence has indicated that micro ribonucleic acids (miRNAs) have important regulatory functions in gene transcription and translation in the course of cerebral stroke. It is beyond arduous to understand the pathophysiology of cerebral stroke, due in part to the perplexity of influencing the network of the inflammatory response, brain edema, autophagy and neuronal apoptosis. The recent research shows miRNA plays a key role in regulating aquaporin 4 (AQP4), and many essential pathological processes after cerebral stroke. This article reviews the recent knowledge on how miRNA influences the inflammatory response, brain edema, infarction size, and neuronal injury after cerebral stroke. In addition, some miRNAs may serve as potential biomarkers in stroke diagnosis and therapy since the expression of some miRNAs in the blood is stable after cerebral stroke.
Collapse
Affiliation(s)
- Yuansheng Zhang
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Li Lei
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Hu Zhou
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xiaoyang Lu
- Translational Neurosurgery and Neurobiology, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| | - Feifei Cai
- Department of Radiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Tao Li
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
14
|
Abe Y, Yasui M. Aquaporin-4 in Neuromyelitis Optica Spectrum Disorders: A Target of Autoimmunity in the Central Nervous System. Biomolecules 2022; 12:biom12040591. [PMID: 35454180 PMCID: PMC9030581 DOI: 10.3390/biom12040591] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Since the discovery of a specific autoantibody in patients with neuromyelitis optica spectrum disorder (NMOSD) in 2004, the water channel aquaporin-4 (AQP4) has attracted attention as a target of autoimmune diseases of the central nervous system. In NMOSD, the autoantibody (NMO-IgG) binds to the extracellular loops of AQP4 as expressed in perivascular astrocytic end-feet and disrupts astrocytes in a complement-dependent manner. NMO-IgG is an excellent marker for distinguishing the disease from other inflammatory demyelinating diseases, such as multiple sclerosis. The unique higher-order structure of AQP4—called orthogonal arrays of particles (OAPs)—as well as its subcellular localization may play a crucial role in the pathogenesis of the disease. Recent studies have also demonstrated complement-independent cytotoxic effects of NMO-IgG. Antibody-induced endocytosis of AQP4 has been suggested to be involved in this mechanism. This review focuses on the binding properties of antibodies that recognize the extracellular region of AQP4 and the characteristics of AQP4 that are implicated in the pathogenesis of NMOSD.
Collapse
Affiliation(s)
- Yoichiro Abe
- Department of Pharmacology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University Global Research Institute, Tokyo 108-8345, Japan
- Correspondence: (Y.A.); (M.Y.); Tel.: +81-3-5363-3751 (M.Y.)
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University Global Research Institute, Tokyo 108-8345, Japan
- Correspondence: (Y.A.); (M.Y.); Tel.: +81-3-5363-3751 (M.Y.)
| |
Collapse
|
15
|
Enrich-Bengoa J, Manich G, Valente T, Sanchez-Molina P, Almolda B, Solà C, Saura J, González B, Castellano B, Perálvarez-Marín A. TRPV2: A Key Player in Myelination Disorders of the Central Nervous System. Int J Mol Sci 2022; 23:ijms23073617. [PMID: 35408977 PMCID: PMC8999035 DOI: 10.3390/ijms23073617] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
Transient potential receptor vanilloid 2 (TRPV2) is widely expressed through the nervous system and specifically found in neuronal subpopulations and some glial cells. TRPV2 is known to be sensitized by methionine oxidation, which results from inflammation. Here we aim to characterize the expression and regulation of TRPV2 in myelination pathologies, such as hypomyelination and demyelination. We validated the interaction between TRPV2 and its putative interactor Opalin, an oligodendrocyte marker, in mixed glial cultures under pro- and anti-inflammatory conditions. Then, we characterized TRPV2 time-course expression in experimental animal models of hypomyelination (jimpy mice) and de-/remyelination (cuprizone intoxication and experimental autoimmune encephalomyelitis (EAE)). TRPV2 showed upregulation associated with remyelination, inflammation in cuprizone and EAE models, and downregulation in hypomyelinated jimpy mice. TRPV2 expression was altered in human samples of multiple sclerosis (MS) patients. Additionally, we analyzed the expression of methionine sulfoxide reductase A (MSRA), an enzyme that reduces oxidated methionines in TRPV2, which we found increased in inflammatory conditions. These results suggest that TRPV2 may be a key player in myelination in accordance with the recapitulation hypothesis, and that it may become an interesting clinical target in the treatment of demyelination disorders.
Collapse
Affiliation(s)
- Jennifer Enrich-Bengoa
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain;
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain; (G.M.); (T.V.); (P.S.-M.); (B.A.); (B.G.); (B.C.)
| | - Gemma Manich
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain; (G.M.); (T.V.); (P.S.-M.); (B.A.); (B.G.); (B.C.)
- Medical Histology Unit, Department of Cell Biology, Physiology and Immunology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Tony Valente
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain; (G.M.); (T.V.); (P.S.-M.); (B.A.); (B.G.); (B.C.)
- Medical Histology Unit, Department of Cell Biology, Physiology and Immunology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
- Research Group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M3O), Experimental Sciences and Methodological Department, Faculty of Health Sciences and Welfare, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Catalonia, Spain
| | - Paula Sanchez-Molina
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain; (G.M.); (T.V.); (P.S.-M.); (B.A.); (B.G.); (B.C.)
- Medical Histology Unit, Department of Cell Biology, Physiology and Immunology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Beatriz Almolda
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain; (G.M.); (T.V.); (P.S.-M.); (B.A.); (B.G.); (B.C.)
- Medical Histology Unit, Department of Cell Biology, Physiology and Immunology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Carme Solà
- Department of Cerebral Ischemia and Neurodegeneration, Institut D’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut D’Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), 08036 Barcelona, Catalonia, Spain;
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, Institut D’Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Catalonia, Spain;
| | - Berta González
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain; (G.M.); (T.V.); (P.S.-M.); (B.A.); (B.G.); (B.C.)
- Medical Histology Unit, Department of Cell Biology, Physiology and Immunology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Bernardo Castellano
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain; (G.M.); (T.V.); (P.S.-M.); (B.A.); (B.G.); (B.C.)
- Medical Histology Unit, Department of Cell Biology, Physiology and Immunology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Alex Perálvarez-Marín
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain;
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain; (G.M.); (T.V.); (P.S.-M.); (B.A.); (B.G.); (B.C.)
- Correspondence: ; Tel.: +34-93-581-4504
| |
Collapse
|
16
|
Yang Y, Rui Q, Han S, Wu X, Wang X, Wu P, Shen Y, Dai H, Xue Q, Li Y. Reduced GABA levels in the medial prefrontal cortex are associated with cognitive impairment in patients with NMOSD. Mult Scler Relat Disord 2022; 58:103496. [PMID: 35032882 DOI: 10.1016/j.msard.2022.103496] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/02/2021] [Accepted: 01/01/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cognitive impairment is a symptom present in part of patients with neuromyelitis optica spectrum disorder (NMOSD) and its pathophysiology is unknown. Dysfunction of the GABAergic/glutamatergic pathways involving inhibitory and excitatory neurotransmitters have been implicated in several neurological disorders. This study aimed to investigate the changes in inhibitory gamma-aminobutyric acid (GABA) and excitatory glutamate and glutamine (Glx) neurotransmitter levels and their correlations with cognitive functions in patients with NMOSD. METHODS A total of 29 patients with NMOSD and 28 sex-, age-, and education-matched healthy controls (HCs) were included in the study. All participants underwent clinical and cognitive assessments and proton magnetic resonance spectroscopy scanning. Meshcher-Garwood point-resolved spectroscopy was used to measure GABA and Glx levels in the medial prefrontal cortex (mPFC) and left thalamus. Total creatine (tCr) was applied as an internal reference. The GABA and Glx levels in the patient group were compared with those in HCs and correlated with cognitive scores and clinical variables. RESULTS Patients with NMOSD showed lower GABA+/tCr levels in the mPFC compared with HCs (P = 0.028). The GABA+/tCr levels in the mPFC were significantly associated with verbal memory performance (r = 0.462, P = 0.027) and overall cognition (r = 0.440, P = 0.035) in the NMOSD group. The GABA+/tCr levels in the left thalamus or Glx/tCr levels in both regions were not significantly different between groups, nor were they related to any cognitive domain in patients with NMOSD (all P values > 0.05). CONCLUSION The GABA+ levels in the mPFC decreased and correlated with cognitive dysfunction in patients with NMOSD, suggesting that the changes in regional GABA+ levels might be a potential metabolic feature of cognitive decline in patients with NMOSD.
Collapse
Affiliation(s)
- Yang Yang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Qianyun Rui
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Shuting Han
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Xiaojuan Wu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Xiaoyuan Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Peng Wu
- Philips Healthcare, Shanghai 200072, China
| | - Yueping Shen
- Department of Statistics, Soochow University, Suzhou, Jiangsu 215000, China
| | - Hui Dai
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China; Institute of Medical Imaging, Soochow University, Suzhou, Jiangsu 215000, China.
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China; Clinical Research Center of Neurology, Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China; Institute of Medical Imaging, Soochow University, Suzhou, Jiangsu 215000, China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China.
| |
Collapse
|
17
|
AQP4-IgG-seronegative patient outcomes in the N-MOmentum trial of inebilizumab in neuromyelitis optica spectrum disorder. Mult Scler Relat Disord 2021; 57:103356. [DOI: 10.1016/j.msard.2021.103356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023]
|
18
|
Peric M, Nikolic L, Andjus PR, Bataveljic D. Dysfunction of oligodendrocyte inwardly rectifying potassium channel in a rat model of amyotrophic lateral sclerosis. Eur J Neurosci 2021; 54:6339-6354. [PMID: 34510584 DOI: 10.1111/ejn.15451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/24/2021] [Accepted: 09/05/2021] [Indexed: 01/13/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by the death of motor neurons in the spinal cord and the brain. Although this disease is characterized by motoneuron degeneration, non-neuronal cells such as oligodendrocytes play an important role in the disease onset and progression. The aim of our study was to examine functional properties of oligodendrocytes in the SOD1G93A rat model of ALS with a particular focus on the inwardly rectifying potassium channel Kir4.1 that is abundantly expressed in these glial cells and plays a role in the regulation of extracellular K+ . First, we demonstrate that the expression of Kir4.1 is diminished in the spinal cord oligodendrocytes of the SOD1G93A rat. Moreover, our data show an elevated number of dysmorphic oligodendrocytes in the ALS spinal cord that is indicative of a degenerative phenotype. In order to assess physiological properties of oligodendrocytes, we prepared cell cultures from the rat spinal cord. Oligodendrocytes isolated from the SOD1G93A spinal cord display similar ramification of the processes as the control but express a lower level of Kir4.1. We further demonstrate an impairment of oligodendrocyte functional properties in ALS. Remarkably, whole-cell patch-clamp recordings revealed compromised membrane biophysical properties and diminished inward currents in the SOD1G93A oligodendrocytes. In addition, the Ba2+ -sensitive Kir currents were decreased in ALS oligodendrocytes. Altogether, our findings provide the evidence of impaired Kir4.1 expression and function in oligodendrocytes of the SOD1G93A spinal cord, suggesting oligodendrocyte Kir4.1 channel as a potential contributor to the ALS pathophysiology.
Collapse
Affiliation(s)
- Mina Peric
- Institute of Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Nikolic
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Pavle R Andjus
- Institute of Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Danijela Bataveljic
- Institute of Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
19
|
Giovannelli J, Ciron J, Cohen M, Kim HJ, Kim SH, Stellmann JP, Kleiter I, McCreary M, Greenberg BM, Deschamps R, Audoin B, Maillart E, Papeix C, Collongues N, Bourre B, Laplaud D, Ayrignac X, Durand-Dubief F, Ruet A, Vukusic S, Marignier R, Dauchet L, Zephir H. A meta-analysis comparing first-line immunosuppressants in neuromyelitis optica. Ann Clin Transl Neurol 2021; 8:2025-2037. [PMID: 34505407 PMCID: PMC8528466 DOI: 10.1002/acn3.51451] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
Objective As phase III trials have shown interest in innovative but expensive drugs in the treatment of neuromyelitis optica spectrum disorder (NMOSD), data are needed to clarify strategies in the treatment of neuromyelitis optica (NMO). This meta‐analysis compares the efficacy of first‐line strategies using rituximab (RTX), mycophenolate mofetil (MMF), or azathioprine (AZA), which are still widely used. Methods Studies identified by the systematic review of Huang et al. (2019) were selected if they considered at least two first‐line immunosuppressants among RTX, MMF, and AZA. We updated this review. The Medline, Cochrane Central Register of Controlled Trials, Embase, and ClinicalTrials databases were queried between November 2018 and April 2020. To be included, the hazard ratio (HR) [95% CI] for the time to first relapse after first‐line immunosuppression had to be available, calculable, or provided by the authors. Results We gathered data from 919 NMO patients (232 RTX‐, 294 MMF‐, and 393 AZA‐treated patients). The risk of first relapse after first‐line immunosuppression was 1.55 [1.04, 2.31] (p = 0.03) for MMF compared with RTX, 1.42 [0.87, 2.30] (p = 0.16) for AZA compared with RTX, and 0.94 [0.58, 1.54] (p = 0.08) for MMF compared with AZA. Interpretation The findings suggest that RTX is more efficient than MMF as a first‐line therapy. Even if the results of our meta‐analysis cannot conclude that RTX has a better efficacy in delaying the first relapse than AZA, the observed effect difference between both treatments combined with the results of previous studies using as outcome the annualized relapse rate may be in favor of RTX.
Collapse
Affiliation(s)
| | - Jonathan Ciron
- Department of Neurology, CRC-SEP, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Mikael Cohen
- CRCRSEP Nice, UR2CA URRIS, Université Nice Côte d'Azur, Neurologie, CHU Pasteur 2, Nice, France
| | - Ho-Jin Kim
- Department of Neurology, Research Institute & Hospital of National Cancer Center, Goyang, Korea
| | - Su-Hyun Kim
- Department of Neurology, Research Institute & Hospital of National Cancer Center, Goyang, Korea
| | - Jan-Patrik Stellmann
- Aix-Marseille University, CNRS, CRMBM, UMR 7339, APHM, Hôpital de la Timone, CEMEREM, Marseille, 13005, France
| | - Ingo Kleiter
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany.,Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke, Berg, Germany
| | - Morgan McCreary
- Department of Neurology, University of Texas Southwestern, Dallas, Texas, USA
| | | | - Romain Deschamps
- Department of Neurology, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Bertrand Audoin
- Aix-Marseille Université, Service de Neurologie, Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Marseille, France
| | - Elisabeth Maillart
- Department of Neurology, Hôpital Pitié Salpêtrière, AP-HP, Paris, France.,National Referral Center of Rare Inflammatory Brain and Spinal Diseases (MIRCEM), Paris, France
| | - Caroline Papeix
- Department of Neurology, Hôpital Pitié Salpêtrière, AP-HP, Paris, France.,National Referral Center of Rare Inflammatory Brain and Spinal Diseases (MIRCEM), Paris, France
| | - Nicolas Collongues
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, U1119, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | | | - David Laplaud
- Université de Nantes, CHU Nantes, Inserm Centre de Recherche en Transplantation et Immunologie, UMR 1064, Nantes, F-44000, France
| | - Xavier Ayrignac
- Department of Neurology CHU Montpellier, INM, University of Montpellier, Inserm, Montpellier, France
| | | | - Aurélie Ruet
- University of Bordeaux, Inserm U1215 - Neurocentre Magendie, CHU de Bordeaux, Neurologie et Maladies inflammatoires du système nerveux central, Bordeaux, F-33000, France
| | - Sandra Vukusic
- Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
| | - Romain Marignier
- Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France.,Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuroinflammation, Centre de Référence des maladies Inflammatoires Rares du Cerveau et de la Moelle, U1028, CNRS, UMR 5292, Center for Research in Neuroscience of Lyon, Lyon 1 University, Lyon, France
| | - Luc Dauchet
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, F-59000, France
| | - Hélène Zephir
- Department of Neurology, CRCSEP Lille, CHU de Lille, University of Lille, Inserm U1172, Lille, France
| | | |
Collapse
|
20
|
Treatment of Neuromyelitis Optica Spectrum Disorders. Int J Mol Sci 2021; 22:ijms22168638. [PMID: 34445343 PMCID: PMC8395403 DOI: 10.3390/ijms22168638] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune central nervous system (CNS) inflammatory disorder that can lead to serious disability and mortality. Females are predominantly affected, including those within the reproductive age. Most patients develop relapsing attacks of optic neuritis; longitudinally extensive transverse myelitis; and encephalitis, especially brainstem encephalitis. The majority of NMOSD patients are seropositive for IgG autoantibodies against the water channel protein aquaporin-4 (AQP4-IgG), reflecting underlying aquaporin-4 autoimmunity. Histological findings of the affected CNS tissues of patients from in-vitro and in-vivo studies support that AQP4-IgG is directly pathogenic in NMOSD. It is believed that the binding of AQP4-IgG to CNS aquaporin-4 (abundantly expressed at the endfoot processes of astrocytes) triggers astrocytopathy and neuroinflammation, resulting in acute attacks. These attacks of neuroinflammation can lead to pathologies, including aquaporin-4 loss, astrocytic activation, injury and loss, glutamate excitotoxicity, microglial activation, neuroinflammation, demyelination, and neuronal injury, via both complement-dependent and complement-independent pathophysiological mechanisms. With the increased understanding of these mechanisms underlying this serious autoimmune astrocytopathy, effective treatments for both active attacks and long-term immunosuppression to prevent relapses in NMOSD are increasingly available based on the evidence from retrospective observational data and prospective clinical trials. Knowledge on the indications and potential side effects of these medications are essential for a clear evaluation of the potential benefits and risks to NMOSD patients in a personalized manner. Special issues such as pregnancy and the coexistence of other autoimmune diseases require additional concern and meticulous care. Future directions include the identification of clinically useful biomarkers for the prediction of relapse and monitoring of the therapeutic response, as well as the development of effective medications with minimal side effects, especially opportunistic infections complicated by long-term immunosuppression.
Collapse
|
21
|
Lopez JA, Denkova M, Ramanathan S, Dale RC, Brilot F. Pathogenesis of autoimmune demyelination: from multiple sclerosis to neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody-associated disease. Clin Transl Immunology 2021; 10:e1316. [PMID: 34336206 PMCID: PMC8312887 DOI: 10.1002/cti2.1316] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/20/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
Autoimmunity plays a significant role in the pathogenesis of demyelination. Multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein antibody‐associated disease (MOGAD) are now recognised as separate disease entities under the amalgam of human central nervous system demyelinating disorders. While these disorders share inherent similarities, investigations into their distinct clinical presentations and lesion pathologies have aided in differential diagnoses and understanding of disease pathogenesis. An interplay of various genetic and environmental factors contributes to each disease, many of which implicate an autoimmune response. The pivotal role of the adaptive immune system has been highlighted by the diagnostic autoantibodies in NMOSD and MOGAD, and the presence of autoreactive lymphocytes in MS lesions. While a number of autoantigens have been proposed in MS, recent emphasis on the contribution of B cells has shed new light on the well‐established understanding of T cell involvement in pathogenesis. This review aims to synthesise the clinical characteristics and pathological findings, discuss existing and emerging hypotheses regarding the aetiology of demyelination and evaluate recent pathogenicity studies involving T cells, B cells, and autoantibodies and their implications in human demyelination.
Collapse
Affiliation(s)
- Joseph A Lopez
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Specialty of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Martina Denkova
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Sudarshini Ramanathan
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Sydney Medical School Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Department of Neurology Concord Hospital Sydney NSW Australia
| | - Russell C Dale
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Specialty of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Sydney Medical School Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Brain and Mind Centre The University of Sydney Sydney NSW Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Specialty of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Brain and Mind Centre The University of Sydney Sydney NSW Australia
| |
Collapse
|
22
|
Gómez-Pinedo U, García-Ávila Y, Gallego-Villarejo L, Matías-Guiu JA, Benito-Martín MS, Esteban-García N, Sanclemente-Alamán I, Pytel V, Moreno-Jiménez L, Sancho-Bielsa F, Vidorreta-Ballesteros L, Montero-Escribano P, Matías-Guiu J. Sera from Patients with NMOSD Reduce the Differentiation Capacity of Precursor Cells in the Central Nervous System. Int J Mol Sci 2021; 22:5192. [PMID: 34068922 PMCID: PMC8155872 DOI: 10.3390/ijms22105192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION AQP4 (aquaporin-4)-immunoglobulin G (IgG)-mediated neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disease that affects the central nervous system, particularly the spinal cord and optic nerve; remyelination capacity in neuromyelitis optica is yet to be determined, as is the role of AQP4-IgG in cell differentiation. MATERIAL AND METHODS We included three groups-a group of patients with AQP4-IgG-positive neuromyelitis optica, a healthy group, and a sham group. We analyzed differentiation capacity in cultures of neurospheres from the subventricular zone of mice by adding serum at two different times: early and advanced stages of differentiation. We also analyzed differentiation into different cell lines. RESULTS AND CONCLUSIONS The effect of sera from patients with NMOSD on precursor cells differs according to the degree of differentiation, and probably affects oligodendrocyte progenitor cells from NG2 cells to a lesser extent than cells from the subventricular zone; however, the resulting oligodendrocytes may be compromised in terms of maturation and possibly limited in their ability to generate myelin. Furthermore, these cells decrease in number with age. It is very unlikely that the use of drugs favoring the migration and differentiation of oligodendrocyte progenitor cells in multiple sclerosis would be effective in the context of neuromyelitis optica, but cell therapy with oligodendrocyte progenitor cells seems to be a potential alternative.
Collapse
Affiliation(s)
- Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Yolanda García-Ávila
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Lucía Gallego-Villarejo
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Jordi A. Matías-Guiu
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - María Soledad Benito-Martín
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Noelia Esteban-García
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Inmaculada Sanclemente-Alamán
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Vanesa Pytel
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Lidia Moreno-Jiménez
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Francisco Sancho-Bielsa
- Department of Physiology, Ciudad Real School of Medicine, Universidad de Castilla-La Mancha, 13001 Ciudad Real, Spain;
| | - Lucía Vidorreta-Ballesteros
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Paloma Montero-Escribano
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Jorge Matías-Guiu
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| |
Collapse
|
23
|
Sabayan B, Westendorp RGJ. Neurovascular-glymphatic dysfunction and white matter lesions. GeroScience 2021; 43:1635-1642. [PMID: 33851307 DOI: 10.1007/s11357-021-00361-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 01/09/2023] Open
Abstract
Cerebral white matter lesions (WML) represent a spectrum of age-related structural changes that are identified as areas of white matter high signal intensity on brain magnetic resonance imaging (MRI). Preservation of white matter requires proper functioning of both the cerebrovascular and glymphatic systems. The cerebrovascular safeguards adequate cerebral blood flow to supply oxygen, energy, and nutrients through a dynamic process of cerebral autoregulation and neurovascular coupling to keep up with global and regional demands of the brain. The glymphatic system maintains white matter integrity by preserving flow of interstitial fluid, exchanging metabolic waste and eventually its clearance into the venous circulation. Here, we argue that these two systems should not be considered separate entities but as one single physiologically integrated unit to preserve brain health. Due to the process of aging, damage to the neurovascular-glymphatic system accumulates over the life course. It is an insidious process that ultimately leads to the disruption of cerebral autoregulation, to the neurovascular uncoupling, and to the accumulation of metabolic waste products. As cerebral white matter is particularly vulnerable to hypoxic, inflammatory, and metabolic insults, WML are the first recognized pathologies of neurovascular-glymphatic dysfunction. A better understanding of the underlying pathophysiology will provide starting points for developing effective strategies to prevent a wide range of clinical disorders among which there are gait disturbances, functional dependence, cognitive impairment, and dementia.
Collapse
Affiliation(s)
- Behnam Sabayan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Wang ACC 739B, Boston, MA, 02114, USA.
| | - Rudi G J Westendorp
- Department of Public Health and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Richard C, Ruiz A, Cavagna S, Bigotte M, Vukusic S, Masaki K, Suenaga T, Kira JI, Giraudon P, Marignier R. Connexins in neuromyelitis optica: a link between astrocytopathy and demyelination. Brain 2021; 143:2721-2732. [PMID: 32889550 DOI: 10.1093/brain/awaa227] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/01/2020] [Accepted: 05/06/2020] [Indexed: 01/26/2023] Open
Abstract
Neuromyelitis optica, a rare neuroinflammatory demyelinating disease of the CNS, is characterized by the presence of specific pathogenic autoantibodies directed against the astrocytic water channel aquaporin 4 (AQP4) and is now considered as an astrocytopathy associated either with complement-dependent astrocyte death or with astrocyte dysfunction. However, the link between astrocyte dysfunction and demyelination remains unclear. We propose glial intercellular communication, supported by connexin hemichannels and gap junctions, to be involved in demyelination process in neuromyelitis optica. Using mature myelinated cultures, we demonstrate that a treatment of 1 h to 48 h with immunoglobulins purified from patients with neuromyelitis optica (NMO-IgG) is responsible for a complement independent demyelination, compared to healthy donors' immunoglobulins (P < 0.001). In parallel, patients' immunoglobulins induce an alteration of connexin expression characterized by a rapid loss of astrocytic connexins at the membrane followed by an increased size of gap junction plaques (+60%; P < 0.01). This was co-observed with connexin dysfunction with gap junction disruption (-57%; P < 0.001) and increased hemichannel opening (+17%; P < 0.001), associated with glutamate release. Blocking connexin 43 hemichannels with a specific peptide was able to prevent demyelination in co-treatment with patients compared to healthy donors' immunoglobulins. By contrast, the blockade of connexin 43 gap junctions with another peptide was detrimental for myelin (myelin density -48%; P < 0.001). Overall, our results suggest that dysregulation of connexins would play a pathogenetic role in neuromyelitis optica. The further identification of mechanisms leading to connexin dysfunction and soluble factors implicated, would provide interesting therapeutic strategies for demyelinating disorders.
Collapse
Affiliation(s)
- Chloé Richard
- INSERM U1028, CNRS UMR 5292, Lyon1 University, Center for Research in Neuroscience of Lyon, Lyon, France
| | - Anne Ruiz
- INSERM U1028, CNRS UMR 5292, Lyon1 University, Center for Research in Neuroscience of Lyon, Lyon, France
| | - Sylvie Cavagna
- INSERM U1028, CNRS UMR 5292, Lyon1 University, Center for Research in Neuroscience of Lyon, Lyon, France
| | - Maxime Bigotte
- INSERM U1028, CNRS UMR 5292, Lyon1 University, Center for Research in Neuroscience of Lyon, Lyon, France
| | - Sandra Vukusic
- Service de neurologie, sclérose en plaques, pathologies de la myéline et neuro-inflammation, Hôpital Neurologique Pierre Wertheimer Hospices Civils de Lyon, Lyon, France.,Centre de référence des maladies inflammatoires rares du cerveau et de la moelle, Lyon, France
| | - Katsuhisa Masaki
- Department of Neurology, Neurological institute, Graduate School of Medical Sciences, Kyushu University
| | | | - Jun-Ichi Kira
- Department of Neurology, Neurological institute, Graduate School of Medical Sciences, Kyushu University
| | - Pascale Giraudon
- INSERM U1028, CNRS UMR 5292, Lyon1 University, Center for Research in Neuroscience of Lyon, Lyon, France
| | - Romain Marignier
- INSERM U1028, CNRS UMR 5292, Lyon1 University, Center for Research in Neuroscience of Lyon, Lyon, France.,Service de neurologie, sclérose en plaques, pathologies de la myéline et neuro-inflammation, Hôpital Neurologique Pierre Wertheimer Hospices Civils de Lyon, Lyon, France.,Centre de référence des maladies inflammatoires rares du cerveau et de la moelle, Lyon, France
| |
Collapse
|
25
|
Ravi K, Paidas MJ, Saad A, Jayakumar AR. Astrocytes in rare neurological conditions: Morphological and functional considerations. J Comp Neurol 2021; 529:2676-2705. [PMID: 33496339 DOI: 10.1002/cne.25118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 01/06/2023]
Abstract
Astrocytes are a population of central nervous system (CNS) cells with distinctive morphological and functional characteristics that differ within specific areas of the brain and are widely distributed throughout the CNS. There are mainly two types of astrocytes, protoplasmic and fibrous, which differ in morphologic appearance and location. Astrocytes are important cells of the CNS that not only provide structural support, but also modulate synaptic activity, regulate neuroinflammatory responses, maintain the blood-brain barrier, and supply energy to neurons. As a result, astrocytic disruption can lead to widespread detrimental effects and can contribute to the pathophysiology of several neurological conditions. The characteristics of astrocytes in more common neuropathologies such as Alzheimer's and Parkinson's disease have significantly been described and continue to be widely studied. However, there still exist numerous rare neurological conditions in which astrocytic involvement is unknown and needs to be explored. Accordingly, this review will summarize functional and morphological changes of astrocytes in various rare neurological conditions based on current knowledge thus far and highlight remaining neuropathologies where astrocytic involvement has yet to be investigated.
Collapse
Affiliation(s)
- Karthik Ravi
- University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, Florida, USA
| | - Ali Saad
- Pathology and Laboratory Medicine, University of Miami School of Medicine, Miami, Florida, USA
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, Florida, USA.,South Florida VA Foundation for Research and Education Inc, Miami, Florida, USA.,General Medical Research Neuropathology Section, R&D Service, Veterans Affairs Medical Centre, Miami, Florida, USA
| |
Collapse
|
26
|
Lohrberg M, Winkler A, Franz J, van der Meer F, Ruhwedel T, Sirmpilatze N, Dadarwal R, Handwerker R, Esser D, Wiegand K, Hagel C, Gocht A, König FB, Boretius S, Möbius W, Stadelmann C, Barrantes-Freer A. Lack of astrocytes hinders parenchymal oligodendrocyte precursor cells from reaching a myelinating state in osmolyte-induced demyelination. Acta Neuropathol Commun 2020; 8:224. [PMID: 33357244 PMCID: PMC7761156 DOI: 10.1186/s40478-020-01105-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022] Open
Abstract
Demyelinated lesions in human pons observed after osmotic shifts in serum have been referred to as central pontine myelinolysis (CPM). Astrocytic damage, which is prominent in neuroinflammatory diseases like neuromyelitis optica (NMO) and multiple sclerosis (MS), is considered the primary event during formation of CPM lesions. Although more data on the effects of astrocyte-derived factors on oligodendrocyte precursor cells (OPCs) and remyelination are emerging, still little is known about remyelination of lesions with primary astrocytic loss. In autopsy tissue from patients with CPM as well as in an experimental model, we were able to characterize OPC activation and differentiation. Injections of the thymidine-analogue BrdU traced the maturation of OPCs activated in early astrocyte-depleted lesions. We observed rapid activation of the parenchymal NG2+ OPC reservoir in experimental astrocyte-depleted demyelinated lesions, leading to extensive OPC proliferation. One week after lesion initiation, most parenchyma-derived OPCs expressed breast carcinoma amplified sequence-1 (BCAS1), indicating the transition into a pre-myelinating state. Cells derived from this early parenchymal response often presented a dysfunctional morphology with condensed cytoplasm and few extending processes, and were only sparsely detected among myelin-producing or mature oligodendrocytes. Correspondingly, early stages of human CPM lesions also showed reduced astrocyte numbers and non-myelinating BCAS1+ oligodendrocytes with dysfunctional morphology. In the rat model, neural stem cells (NSCs) located in the subventricular zone (SVZ) were activated while the lesion was already partially repopulated with OPCs, giving rise to nestin+ progenitors that generated oligodendroglial lineage cells in the lesion, which was successively repopulated with astrocytes and remyelinated. These nestin+ stem cell-derived progenitors were absent in human CPM cases, which may have contributed to the inefficient lesion repair. The present study points to the importance of astrocyte-oligodendrocyte interactions for remyelination, highlighting the necessity to further determine the impact of astrocyte dysfunction on remyelination inefficiency in demyelinating disorders including MS.
Collapse
|
27
|
Kleerekooper I, Houston S, Dubis AM, Trip SA, Petzold A. Optical Coherence Tomography Angiography (OCTA) in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder. Front Neurol 2020; 11:604049. [PMID: 33362705 PMCID: PMC7758345 DOI: 10.3389/fneur.2020.604049] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022] Open
Abstract
Vascular changes are increasingly recognized as important factors in the pathophysiology of neuroinflammatory disease, especially in multiple sclerosis (MS). The relatively novel technology of optical coherence tomography angiography (OCTA) images the retinal and choroidal vasculature non-invasively and in a depth-resolved manner. OCTA provides an alternative quantitative measure of retinal damage, by measuring vascular density instead of structural atrophy. Preliminary results suggest OCTA is sensitive to retinal damage in early disease stages, while also having less of a "floor-effect" compared with commonly used OCT metrics, meaning it can pick up further damage in a severely atrophied retina in later stages of disease. Furthermore, it may serve as a surrogate marker for vascular pathology in the central nervous system. Data to date consistently reveal lower densities of the retinal microvasculature in both MS and neuromyelitis optica spectrum disorder (NMOSD) compared with healthy controls, even in the absence of prior optic neuritis. Exploring the timing of vascular changes relative to structural atrophy may help answer important questions about the role of hypoperfusion in the pathophysiology of neuroinflammatory disease. Finally, qualitative characteristics of retinal microvasculature may help discriminate between different neuroinflammatory disorders. There are however still issues regarding image quality and development of standardized analysis methods before OCTA can be fully incorporated into clinical practice.
Collapse
Affiliation(s)
- Iris Kleerekooper
- Department of Neuro-Ophthalmology, Moorfields Eye Hospital, London, United Kingdom.,Queen Square MS Centre, UCL Institute of Neurology and National Hospital for Neurology & Neurosurgery, London, United Kingdom
| | - Sarah Houston
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Adam M Dubis
- National Institute for Health Research, Biomedical Resource Centre at University College London, Institute of Ophthalmology and Moorfields Eye Hospital National Health Service Trust, London, United Kingdom
| | - S Anand Trip
- Queen Square MS Centre, UCL Institute of Neurology and National Hospital for Neurology & Neurosurgery, London, United Kingdom
| | - Axel Petzold
- Department of Neuro-Ophthalmology, Moorfields Eye Hospital, London, United Kingdom.,Queen Square MS Centre, UCL Institute of Neurology and National Hospital for Neurology & Neurosurgery, London, United Kingdom.,Dutch Expertise Centre of Neuro-Ophthalmology, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
28
|
Krasnov VS, Totolyan NA, Nazarov VD, Mazing AV, Makshakov GS, Lapin SV, Evdoshenko EP, Skoromets AA. [Actual issues of serum aquaporin-4 autoantibodies evaluation in the diagnostics of neuromyelitis optica spectrum disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:24-31. [PMID: 32844626 DOI: 10.17116/jnevro202012007224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To analyze the usage and timeliness of aquaporin-4 antibodies (AQP4-IgG) serology test in the diagnostics of neuromyelitis optica spectrum disorders (NMOSD) in routine clinical practice. MATERIAL AND METHODS 27 patients with NMOSD were included in the study. All patients had a positive serum test for AQP4-IgG. A retrospective study of neurological manisfestations of attacks, timing and results of serology for AQP4-IgG was performed. The results were analyzed taking into account two types of attacks identified: a) HS (with highly specific manifestations for NMOSD), which are considered as indications for conducting the AQP4-IgG test and b) NS (with non-specific manifestations for NMOSD). RESULTS AND CONCLUSION A comparison of the time from HS attack to the AQP4-IgG test administration (T1, years), from HS attack to NMOSD diagnosis (T2, years) was undertaken as well as the number of attacks during these periods (N1, N2) were counted in three groups of patients. Group 1 - with the first HS attack before or in 2008 (n=6), group 2 - from 2009 to 2013 (n=12), group 3 - from 2014 to 2018 (n=9) accordingly. A statistically significant decrease in T1, T2, N1, N2 was found in successive time intervals of 5 years (p<0.05). In 8 of 27 (28.6%) patients the first attack of NMOSD was presented with non-specific symptoms (NS attack). In 7 patients (77.8%) of 9 misdiagnosed as multiple sclerosis (MS) an increase in attack frequency was found while on disease modifying therapies (DMTs) and increase in attack severity was found in 8 (88.9%). In all 9 cases the diagnosis was revised to NMOSD after AQP4-IgG test was performed with positive result. The time interval from disease course worsening while on DMTs until the test was 7 [4; 37] months, and the number of relapses - 2 [0; 3]. In 4 of 27 patients with suspected NMOSD, the repeated AQP4-IgG test only was positive for increased antibodies titer. The time interval between first test negative and retest administered was 20 [6.1; 47.8] months. In 3 of 4 patients (75%) one or more attacks occurred during this time period. In 4 patients the presence of AQP4-IgG in the first analysis was not followed by the diagnosis of NMOSD. In recent years, apropos AQP4-IgG test administration improved, but the problem remains with the timeliness for retest with first result negative. It is advisable to expand the indications for its use. The timeliness for serum AQP4-IgG retest in cases of unexplained deterioration in the course of proposed MS on DMTs and the lack of awareness of the test diagnostic value are still relevant.
Collapse
Affiliation(s)
- V S Krasnov
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - N A Totolyan
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - V D Nazarov
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - A V Mazing
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - G S Makshakov
- St. Petersburg Center for Multiple Sclerosis and Other Autoimmune Diseases of City Clinical Hospital No. 31, St. Petersburg, Russia
| | - S V Lapin
- St. Petersburg Center for Multiple Sclerosis and Other Autoimmune Diseases of City Clinical Hospital No. 31, St. Petersburg, Russia
| | - E P Evdoshenko
- St. Petersburg Center for Multiple Sclerosis and Other Autoimmune Diseases of City Clinical Hospital No. 31, St. Petersburg, Russia
| | - A A Skoromets
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| |
Collapse
|
29
|
Ma X, Kermode AG, Hu X, Qiu W. NMOSD acute attack: Understanding, treatment and innovative treatment prospect. J Neuroimmunol 2020; 348:577387. [PMID: 32987231 DOI: 10.1016/j.jneuroim.2020.577387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/25/2020] [Accepted: 09/05/2020] [Indexed: 01/09/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a group of severe inflammatory demyelinating disorders of the central nervous system that involves the optic nerve and spinal cord. Currently the therapeutic options for an acute attack in NMOSD are limited and rarely characterized in clinical studies. This review discussed the overall characteristics of acute attack of NMOSD, related risk factor, prognosis and management. Considering the huge unmet needs and the emergence of new therapeutic targets, we also reviewed innovative treatments that might alleviate attack damage, along with the challenges to evaluate new drug for acute attack in NMOSD.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Allan G Kermode
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Perth, WA, Australia; Department of Neurology, Sir Charles Gairdner Hospital, Queen Elizabeth II Medical Centre, Perth, WA, Australia; Institute of Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - Xueqiang Hu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
30
|
Yick LW, Tang CH, Ma OKF, Kwan JSC, Chan KH. Memantine ameliorates motor impairments and pathologies in a mouse model of neuromyelitis optica spectrum disorders. J Neuroinflammation 2020; 17:236. [PMID: 32782018 PMCID: PMC7418436 DOI: 10.1186/s12974-020-01913-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Neuromyelitis optica spectrum disorders (NMOSD) are central nervous system (CNS) autoimmune inflammatory demyelinating diseases characterized by recurrent episodes of acute optic neuritis and transverse myelitis. Aquaporin-4 immunoglobulin G (AQP4-IgG) autoantibodies, which target the water channel aquaporin-4 (AQP4) on astrocytic membrane, are pathogenic in NMOSD. Glutamate excitotoxicity, which is triggered by internalization of AQP4-glutamate transporter complex after AQP4-IgG binding to astrocytes, is involved in early NMOSD pathophysiologies. We studied the effects of memantine, a N-methyl-D-aspartate (NMDA) receptor antagonist, on motor impairments and spinal cord pathologies in mice which received human AQP4-IgG. Methods Purified IgG from AQP4-IgG-seropositive NMOSD patients were passively transferred to adult C57BL/6 mice with disrupted blood-brain barrier. Memantine was administered by oral gavage. Motor impairments of the mice were assessed by beam walking test. Spinal cords of the mice were assessed by immunofluorescence and ELISA. Results Oral administration of memantine ameliorated the motor impairments induced by AQP4-IgG, no matter the treatment was initiated before (preventive) or after (therapeutic) disease flare. Memantine profoundly reduced AQP4 and astrocyte loss, and attenuated demyelination and axonal loss in the spinal cord of mice which had received AQP4-IgG. The protective effects of memantine were associated with inhibition of apoptosis and suppression of neuroinflammation, with decrease in microglia activation and neutrophil infiltration and reduction of increase in levels of proinflammatory cytokines including interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). In addition, memantine elevated growth factors including brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and vascular endothelial growth factor (VEGF) in the spinal cord. Conclusions Our findings support that glutamate excitotoxicity and neuroinflammation play important roles in complement-independent pathophysiology during early development of NMOSD lesions, and highlight the potential of oral memantine as a therapeutic agent in NMOSD acute attacks.
Collapse
Affiliation(s)
- Leung-Wah Yick
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Neuroimmunology and Neuroinflammation Research Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Chi-Ho Tang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Neuroimmunology and Neuroinflammation Research Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Oscar Ka-Fai Ma
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Neuroimmunology and Neuroinflammation Research Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jason Shing-Cheong Kwan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Neuroimmunology and Neuroinflammation Research Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Koon-Ho Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong. .,Neuroimmunology and Neuroinflammation Research Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong. .,Department of Medicine, The University of Hong Kong, 4/F, Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, Hong Kong.
| |
Collapse
|
31
|
Shimizu M, Okuno T, Kinoshita M, Sumi H, Fujimura H, Yamashita K, Sugimoto T, Sakakibara S, Sakakibara K, Koda T, Tada S, Ishikura T, Murata H, Beppu S, Shiraishi N, Sugiyama Y, Nakatsuji Y, Kumanogoh A, Mochizuki H. Mitochondrial DNA enhance innate immune responses in neuromyelitis optica by monocyte recruitment and activation. Sci Rep 2020; 10:13274. [PMID: 32764561 PMCID: PMC7414017 DOI: 10.1038/s41598-020-70203-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/22/2020] [Indexed: 11/24/2022] Open
Abstract
Although recent studies indicate the involvement of monocytes in accelerating the lesion formation of neuromyelitis optica spectrum disorder (NMOSD), the precise mechanism of the innate immune system activation remains elusive. Thus, in this study, we aimed to clarify the mechanisms of NMOSD pathogenesis from the viewpoint of innate immunity activation. We established anti-AQP4 recombinant autoantibodies (Ab) from plasmablasts in NMOSD patient's CSF. Human astrocytes treated with anti-AQP4 Ab produced a significant amount of CCL2 and contributed to the efficient recruitment of monocytes. Moreover, mitochondrial DNA (mtDNA), which activated monocytes via Toll-like receptor 9 (TLR9), was released from astrocytes treated with anti-AQP4 Ab. MtDNA further enhanced CCL2 production by monocytes, and it was demonstrated that mtDNA concentration correlated with the efficiency of monocyte recruitment in the CSF of NMOSD patients. In conclusion, these observations highlight that mtDNA which was released from astrocytes damaged by anti-AQP4 Ab has a central role in establishing the inflammatory loop of monocyte recruitment and activation via an innate immunity pathway.
Collapse
Affiliation(s)
- Mikito Shimizu
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Makoto Kinoshita
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hisae Sumi
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Harutoshi Fujimura
- Department of Neurology, Osaka-Toneyama National Medical Center, 5-1-1, Toneyama, Toyonaka, Osaka, 560-8552, Japan
| | - Kazuya Yamashita
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoyuki Sugimoto
- Faculty of Data Science, Shiga University, 1-1-1, Baba, Hikone, Shiga, 522-8522, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kaori Sakakibara
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toru Koda
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoru Tada
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Teruyuki Ishikura
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hisashi Murata
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shohei Beppu
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naoyuki Shiraishi
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuko Sugiyama
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Nakatsuji
- Department of Neurology, Faculty of Medicine, University of Toyama, 2630, Sugitani, Toyama, 930-0194, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
32
|
Ciappelloni S, Bouchet D, Dubourdieu N, Boué-Grabot E, Kellermayer B, Manso C, Marignier R, Oliet SHR, Tourdias T, Groc L. Aquaporin-4 Surface Trafficking Regulates Astrocytic Process Motility and Synaptic Activity in Health and Autoimmune Disease. Cell Rep 2020; 27:3860-3872.e4. [PMID: 31242419 DOI: 10.1016/j.celrep.2019.05.097] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/08/2019] [Accepted: 05/23/2019] [Indexed: 01/21/2023] Open
Abstract
Astrocytes constantly adapt their ramified morphology in order to support brain cell assemblies. Such plasticity is partly mediated by ion and water fluxes, which rely on the water channel aquaporin-4 (AQP4). The mechanism by which this channel locally contributes to process dynamics has remained elusive. Using a combination of single-molecule and calcium imaging approaches, we here investigated in hippocampal astrocytes the dynamic distribution of the AQP4 isoforms M1 and M23. Surface AQP4-M1 formed small aggregates that contrast with the large AQP4-M23 clusters that are enriched near glutamatergic synapses. Strikingly, stabilizing surface AQP4-M23 tuned the motility of astrocyte processes and favors glutamate synapse activity. Furthermore, human autoantibodies directed against AQP4 from neuromyelitis optica (NMO) patients impaired AQP4-M23 dynamic distribution and, consequently, astrocyte process and synaptic activity. Collectively, it emerges that the membrane dynamics of AQP4 isoform regulate brain cell assemblies in health and autoimmune brain disease targeting AQP4.
Collapse
Affiliation(s)
- Silvia Ciappelloni
- Interdisciplinary Institute for NeuroSciences, CNRS UMR 5297, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France; INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
| | - Delphine Bouchet
- Interdisciplinary Institute for NeuroSciences, CNRS UMR 5297, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France
| | - Nadège Dubourdieu
- Université de Bordeaux, 33077 Bordeaux, France; INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
| | - Eric Boué-Grabot
- Université de Bordeaux, 33077 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Blanka Kellermayer
- Interdisciplinary Institute for NeuroSciences, CNRS UMR 5297, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France
| | - Constance Manso
- Interdisciplinary Institute for NeuroSciences, CNRS UMR 5297, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France
| | - Romain Marignier
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience of Lyon, Lyon, France
| | - Stéphane H R Oliet
- Université de Bordeaux, 33077 Bordeaux, France; INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
| | - Thomas Tourdias
- Université de Bordeaux, 33077 Bordeaux, France; INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
| | - Laurent Groc
- Interdisciplinary Institute for NeuroSciences, CNRS UMR 5297, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France.
| |
Collapse
|
33
|
Wang J, Wang S, Sun M, Xu H, Liu W, Wang D, Zhang L, Li Y, Cao J, Li F, Li M. Identification of geraldol as an inhibitor of aquaporin‑4 binding by NMO‑IgG. Mol Med Rep 2020; 22:1111-1118. [PMID: 32626958 PMCID: PMC7339707 DOI: 10.3892/mmr.2020.11212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/27/2019] [Indexed: 11/23/2022] Open
Abstract
Neuromyelitis optica (NMO) is a severe neurological demyelinating autoimmune disease that affects the optic nerves and spinal cord. There is currently no effective cure or therapy. Aquaporin-4 (AQP4) is a known target of the autoimmune antibody NMO-IgG. Therefore, binding of NMO-IgG to AQP4, and subsequent activation of antibody-mediated and complement-dependent cytotoxicity (CDC), are thought to underlie the pathogenesis of NMO. In the present study, a cell-based high-throughput screening approach was developed to identify molecular inhibitors of NMO-IgG binding to AQP4. Using this approach, extracts from the herb Petroselinum crispum were shown to have inhibitory effects on NMO-IgG binding to AQP4, and the natural compound geraldol was purified from the herb extracts. Analytical high performance liquid chromatography, electrospray ionization-mass spectrometry and nuclear magnetic resonance analyses confirmed the identity of the isolated compound as geraldol, a flavonoid. Geraldol effectively blocked binding of NMO-IgG to AQP4 in immunofluorescence assays and decreased CDC in NMO-IgG/complement-treated FRTL-AQP4 cells and primary astrocytes. Geraldol exhibited low cytotoxicity, with no effect on proliferation or apoptosis of FRTL-AQP4 cells and primary astrocytes. Permeability assays indicated that geraldol did not alter the water transport function of AQP4 in either cell system. The present study suggests the potential therapeutic value of geraldol for NMO drug development.
Collapse
Affiliation(s)
- Jie Wang
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Shuai Wang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Meiyan Sun
- Medical Examination College, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Huijing Xu
- Medical Examination College, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Wei Liu
- Medical Examination College, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Deli Wang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Lei Zhang
- Medical Examination College, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Yan Li
- Medical Examination College, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Jiaming Cao
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Fang Li
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Miao Li
- Department of Neurosurgery, The Third Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
34
|
Kleerekooper I, Herbert MK, Kuiperij HB, Sato DK, Fujihara K, Callegaro D, Marignier R, Saiz A, Senel M, Tumani H, De Jong BA, Trip SA, Nakashima I, Verbeek MM, Petzold A. CSF levels of glutamine synthetase and GFAP to explore astrocytic damage in seronegative NMOSD. J Neurol Neurosurg Psychiatry 2020; 91:605-611. [PMID: 32217788 DOI: 10.1136/jnnp-2019-322286] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To explore levels of astrocytopathy in neuromyelitis optica spectrum disorder (NMOSD) by measuring levels of the astrocytic enzyme glutamine synthetase (GS) and glial fibrillary acidic protein (GFAP), an established astrocytic biomarker known to be associated with disease activity in multiple sclerosis. METHODS Cerebrospinal fluid concentrations of GS and GFAP were measured by ELISA in patients with NMOSD (n=39, 28 aquaporin-4 (AQP4)-Ab-seropositive, 3 double-Ab-seronegative, 4 myelin oligodendrocyte glycoprotein (MOG)-Ab-seropositive and 4 AQP4-Ab-seronegative with unknown MOG-Ab-serostatus), multiple sclerosis (MS) (n=69), optic neuritis (n=5) and non-neurological controls (n=37). RESULTS GFAP and GS concentrations differed significantly across groups (both p<0.001), showing a similar pattern of elevation in patients with AQP4-Ab-seropositive NMOSD. GS and GFAP were significantly correlated, particularly in patients with AQP4-Ab-seropositive NMOSD (rs=0.70, p<0.001). Interestingly, GFAP levels in some patients with double-Ab-seronegative NMOSD were markedly increased. CONCLUSIONS Our data indicate astrocytic injury occurs in some patients with double-Ab-seronegative NMOSD, which hints at the possible existence of yet undiscovered astrocytic autoimmune targets. We hypothesise that elevated GS and GFAP levels could identify those double-Ab-seronegative patients suitable to undergo in-depth autoimmune screening for astrocytic antibodies.
Collapse
Affiliation(s)
- Iris Kleerekooper
- Department of Neuroinflammation, University College London, London, UK .,Department of Neuro-Ophthalmology, Moorfields Eye Hospital, London, UK
| | - Megan K Herbert
- Department of Neurology and Department of Laboratory Medicine, Radboud University Nijmegen Faculty of Medical Sciences, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Douglas Kazutoshi Sato
- Department of Neurology, Tohoku University School of Medicine, Sendai, The Japan.,Brain Institute, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kazuo Fujihara
- Department of Neurology, Tohoku University School of Medicine, Sendai, The Japan
| | - Dagoberto Callegaro
- Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Romain Marignier
- Service de neurologie, sclérose en plaques, pathologies de la myéline et neuro-inflammation, Centre de Référence pour les maladies inflammatoires rares du cerveau et de la moelle (MIRCEM), Hopital Neurologique et Neurochirurgical Pierre Wertheimer, Lyon, France
| | - Albert Saiz
- Service of Neurology, Hospital Clinic and Inistitut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Makbule Senel
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Hayrettin Tumani
- Department of Neurology, University of Ulm, Ulm, Germany.,Specialist Clinic of Neurology Dietenbronn, Dietenbronn, Germany
| | - Brigit A De Jong
- Department of Neurology, MS Center Amsterdam, Amsterdam UMC-Locatie VUMC, Amsterdam, The Netherlands
| | - S Anand Trip
- Department of Neuroinflammation, University College London, London, UK
| | - Ichiro Nakashima
- Department of Neurology, Tohoku University School of Medicine, Sendai, The Japan.,Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Marcel M Verbeek
- Department of Neurology and Department of Laboratory Medicine, Radboud University Nijmegen Faculty of Medical Sciences, Nijmegen, The Netherlands.,Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Axel Petzold
- Institute of Neurology, Neuroimmunology and CSF Laboratory, University College London, London, UK.,Neurology & Ophthalmology, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Tognatta R, Karl MT, Fyffe-Maricich SL, Popratiloff A, Garrison ED, Schenck JK, Abu-Rub M, Miller RH. Astrocytes Are Required for Oligodendrocyte Survival and Maintenance of Myelin Compaction and Integrity. Front Cell Neurosci 2020; 14:74. [PMID: 32300294 PMCID: PMC7142332 DOI: 10.3389/fncel.2020.00074] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Astrocytes have been implicated in regulating oligodendrocyte development and myelination in vitro, although their functions in vivo remain less well defined. Using a novel approach to locally ablate GFAP+ astrocytes, we demonstrate that astrocytes are required for normal CNS myelin compaction during development, and for maintaining myelin integrity in the adult. Transient ablation of GFAP+ astrocytes in the mouse spinal cord during the first postnatal week reduced the numbers of mature oligodendrocytes and inhibited myelin formation, while prolonged ablation resulted in myelin that lacked compaction and structural integrity. Ablation of GFAP+ astrocytes in the adult spinal cord resulted in the rapid, local loss of myelin integrity and regional demyelination. The loss of myelin integrity induced by astrocyte ablation was greatly reduced by NMDA receptor antagonists, both in vitro and in vivo, suggesting that myelin stability was affected by elevation of local glutamate levels following astrocyte ablation. Furthermore, targeted delivery of glutamate into adult spinal cord white matter resulted in reduction of myelin basic protein expression and localized disruption of myelin compaction which was also reduced by NMDA receptor blockade. The pathology induced by localized astrocyte loss and elevated exogenous glutamate, supports the concept that astrocytes are critical for maintenance of myelin integrity in the adult CNS and may be primary targets in the initiation of demyelinating diseases of the CNS, such as Neuromyelitis Optica (NMO).
Collapse
Affiliation(s)
- Reshmi Tognatta
- School of Medicine and Health Sciences, George Washington University, Washington, DC, United States.,Gladstone Institute of Neurological Diseases, San Francisco, CA, United States
| | - Molly T Karl
- School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | | | - Anastas Popratiloff
- School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Eric D Garrison
- School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Jessica K Schenck
- School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Mohammad Abu-Rub
- School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Robert H Miller
- School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
36
|
Ramakrishnan P, Nagarajan D. Neuromyelitis optica spectrum disorder: an overview. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Jarius S, Wildemann B. The history of neuromyelitis optica. Part 2: 'Spinal amaurosis', or how it all began. J Neuroinflammation 2019; 16:280. [PMID: 31883522 PMCID: PMC6935230 DOI: 10.1186/s12974-019-1594-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/23/2019] [Indexed: 01/08/2023] Open
Abstract
Neuromyelitis optica (NMO) was long considered a clinical variant of multiple sclerosis (MS). However, the discovery of a novel and pathogenic anti-astrocytic serum autoantibody targeting aquaporin-4 (termed NMO-IgG or AQP4-Ab), the most abundant water channel protein in the central nervous system, led to the recognition of NMO as a distinct disease entity in its own right and generated strong and persisting interest in the condition. NMO is now studied as a prototypic autoimmune disorder, which differs from MS in terms of immunopathogenesis, clinicoradiological presentation, optimum treatment, and prognosis. While the history of classic MS has been extensively studied, relatively little is known about the history of NMO. In Part 1 of this series we focused on the late 19th century, when the term 'neuromyelitis optica' was first coined, traced the term's origins and followed its meandering evolution throughout the 20th and into the 21st century. Here, in Part 2, we demonstrate that the peculiar concurrence of acute optic nerve and spinal cord affliction characteristic for NMO caught the attention of physicians much earlier than previously thought by re-presenting a number of very early cases of possible NMO that date back to the late 18th and early 19th century. In addition, we comprehensively discuss the pioneering concept of 'spinal amaurosis', which was introduced into the medical literature by ophthalmologists in the first half of the 19th century.
Collapse
Affiliation(s)
- S. Jarius
- Department of Neurology, Molecular Neuroimmunology Group, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - B. Wildemann
- Department of Neurology, Molecular Neuroimmunology Group, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| |
Collapse
|
38
|
Durozard P, Rico A, Boutiere C, Maarouf A, Lacroix R, Cointe S, Fritz S, Brunet C, Pelletier J, Marignier R, Audoin B. Comparison of the Response to Rituximab between Myelin Oligodendrocyte Glycoprotein and Aquaporin-4 Antibody Diseases. Ann Neurol 2019; 87:256-266. [PMID: 31725931 DOI: 10.1002/ana.25648] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To compare response to rituximab (RTX) between adult patients positive for myelin oligodendrocyte glycoprotein (MOG) and aquaporin-4 (AQP4) antibodies. METHODS We prospectively studied adult patients with MOG or AQP4 antibodies who received RTX under an individualized dosing schedule adapted to the biological effect of RTX monitored by memory B-cell measurement. Memory B cells were counted monthly and when relapse occurred. The biological effect of RTX was considered significant with <0.05% memory B cells in peripheral blood lymphocytes. RESULTS In 16 patients with MOG antibodies and 29 with AQP4 antibodies, mean follow-up was 19 (range = 9-38) and 38 (13-79) months. Under RTX, 10 relapses occurred in 6 of 16 (37.5%) patients with MOG antibodies, and 13 occurred in 7 of 29 (24%) with AQP4 antibodies. The median time of relapse after the most recent infusion was 2.6 (0.6-5.8) and 7 (0.8-13) months, respectively (p < 0.001). Memory B cells had reemerged in 2 of 10 (20%) relapses in patients with MOG antibodies and 12 of 13 (92.5%) with AQP4 antibodies (p < 0.001). INTERPRETATION In AQP4 antibody-associated disorder, relapse mostly occurs when the biological effect of RTX decreases, which argues for treatment efficacy. In MOG antibody-associated disorder, the efficacy of RTX is not constant, because one-third of patients showed relapse despite an effective biological effect of RTX. In this subpopulation, memory B-cell depletion was unable to prevent relapse, which was probably caused by different immunological mechanisms. These findings should be used to improve treatment strategies for MOG antibody-associated disorder. ANN NEUROL 2020;87:256-266.
Collapse
Affiliation(s)
- Pierre Durozard
- Public Assistance Hospitals of Marseille, Department of Neurology, Timone Hospital, Marseille.,Aix-Marseille University, Center for Magnetic Resonance in Biology and Medicine, French National Center for Scientific Research, Marseille
| | - Audrey Rico
- Public Assistance Hospitals of Marseille, Department of Neurology, Timone Hospital, Marseille.,Aix-Marseille University, Center for Magnetic Resonance in Biology and Medicine, French National Center for Scientific Research, Marseille
| | - Clémence Boutiere
- Public Assistance Hospitals of Marseille, Department of Neurology, Timone Hospital, Marseille.,Aix-Marseille University, Center for Magnetic Resonance in Biology and Medicine, French National Center for Scientific Research, Marseille
| | - Adil Maarouf
- Public Assistance Hospitals of Marseille, Department of Neurology, Timone Hospital, Marseille.,Aix-Marseille University, Center for Magnetic Resonance in Biology and Medicine, French National Center for Scientific Research, Marseille
| | - Romaric Lacroix
- Public Assistance Hospitals of Marseille, Laboratory of Hematology and Vascular Biology, La Conception Hospital, Marseille.,Aix-Marseille University, Center for Cardiovascular and Nutrition Research, French National Institute of Health, National Institute of Agricultural Research, Faculty of Pharmacy, Marseille
| | - Sylvie Cointe
- Public Assistance Hospitals of Marseille, Laboratory of Hematology and Vascular Biology, La Conception Hospital, Marseille.,Aix-Marseille University, Center for Cardiovascular and Nutrition Research, French National Institute of Health, National Institute of Agricultural Research, Faculty of Pharmacy, Marseille
| | - Shirley Fritz
- Public Assistance Hospitals of Marseille, Laboratory of Hematology and Vascular Biology, La Conception Hospital, Marseille.,Aix-Marseille University, Center for Cardiovascular and Nutrition Research, French National Institute of Health, National Institute of Agricultural Research, Faculty of Pharmacy, Marseille
| | - Corinne Brunet
- Public Assistance Hospitals of Marseille, Laboratory of Hematology and Vascular Biology, La Conception Hospital, Marseille.,Aix-Marseille University, Center for Cardiovascular and Nutrition Research, French National Institute of Health, National Institute of Agricultural Research, Faculty of Pharmacy, Marseille
| | - Jean Pelletier
- Public Assistance Hospitals of Marseille, Department of Neurology, Timone Hospital, Marseille.,Aix-Marseille University, Center for Magnetic Resonance in Biology and Medicine, French National Center for Scientific Research, Marseille
| | - Romain Marignier
- Lyon Civil Hospices, Department of Neurology, Neurologic and Neurosurgical Hospital Pierre Wertheimer, Bron, France
| | - Bertrand Audoin
- Public Assistance Hospitals of Marseille, Department of Neurology, Timone Hospital, Marseille
| |
Collapse
|
39
|
Nicolas P, Ruiz A, Cobo-Calvo A, Fiard G, Giraudon P, Vukusic S, Marignier R. The Balance in T Follicular Helper Cell Subsets Is Altered in Neuromyelitis Optica Spectrum Disorder Patients and Restored by Rituximab. Front Immunol 2019; 10:2686. [PMID: 31803192 PMCID: PMC6877601 DOI: 10.3389/fimmu.2019.02686] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 10/31/2019] [Indexed: 01/18/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare and severe auto-immune disease of the central nervous system driven by pathogenic antibodies mainly directed against aquaporin-4 (AQP4-Ab). Treatment of NMOSD currently relies on immunosuppressants (mycophenolate mofetil, azathioprine) or B-cell-depleting therapy (rituximab). B-cell differentiation into antibody-producing cells requires T follicular helper cells (Tfh). There are several Tfh subsets that differentially affect B-cell differentiation; Tfh2 and Tfh17 subsets strongly support B-cell differentiation. By contrast, Tfh1 lack this capacity and T follicular regulatory cells (Tfr), inhibit B-cell differentiation into antibody-producing cells. We performed a broad characterization of circulating Tfh subsets in 25 NMOSD patients and analyzed the impact of different treatments on these subsets. Untreated NMOSD patients presented a Tfh polarization toward excessive B-helper Tfh subsets with an increase of Tfh17 and (Tfh2+Tfh17)/Tfh1 ratio and a decrease of Tfr and Tfh1. Rituximab restored the Tfh polarization to that of healthy controls. There was a trend toward a similar result for azathioprine and mycophenolate mofetil. Our results suggest that NMOSD patients present an impaired balance in Tfh subsets favoring B-cell differentiation which may explain the sustained antibody production. These findings provide new insights into the pathophysiology of NMOSD, and further suggest that Tfh and Tfr subsets could be considered as potential therapeutic target in NMOSD because of their upstream role in antibody production.
Collapse
Affiliation(s)
- Philippe Nicolas
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, et Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (MIRCEM), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France.,Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR5292-UCBL, Bron, France
| | - Anne Ruiz
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR5292-UCBL, Bron, France
| | - Alvaro Cobo-Calvo
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, et Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (MIRCEM), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France.,Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR5292-UCBL, Bron, France
| | - Guillaume Fiard
- NeuroBioTec, Hôpital Neurologique Pierre Wertheimer, Bron, France
| | - Pascale Giraudon
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR5292-UCBL, Bron, France
| | - Sandra Vukusic
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, et Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (MIRCEM), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France.,Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR5292-UCBL, Bron, France
| | - Romain Marignier
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, et Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (MIRCEM), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France.,Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR5292-UCBL, Bron, France.,NeuroBioTec, Hôpital Neurologique Pierre Wertheimer, Bron, France
| |
Collapse
|
40
|
Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiol Rev 2019; 99:1381-1431. [PMID: 31066630 DOI: 10.1152/physrev.00031.2018] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes generate multiple layers of myelin membrane around axons of the central nervous system to enable fast and efficient nerve conduction. Until recently, saltatory nerve conduction was considered the only purpose of myelin, but it is now clear that myelin has more functions. In fact, myelinating oligodendrocytes are embedded in a vast network of interconnected glial and neuronal cells, and increasing evidence supports an active role of oligodendrocytes within this assembly, for example, by providing metabolic support to neurons, by regulating ion and water homeostasis, and by adapting to activity-dependent neuronal signals. The molecular complexity governing these interactions requires an in-depth molecular understanding of how oligodendrocytes and axons interact and how they generate, maintain, and remodel their myelin sheaths. This review deals with the biology of myelin, the expanded relationship of myelin with its underlying axons and the neighboring cells, and its disturbances in various diseases such as multiple sclerosis, acute disseminated encephalomyelitis, and neuromyelitis optica spectrum disorders. Furthermore, we will highlight how specific interactions between astrocytes, oligodendrocytes, and microglia contribute to demyelination in hereditary white matter pathologies.
Collapse
Affiliation(s)
- Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Sebastian Timmler
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Alonso Barrantes-Freer
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Mikael Simons
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| |
Collapse
|
41
|
Pharmacotherapy for Neuromyelitis Optica Spectrum Disorders: Current Management and Future Options. Drugs 2019; 79:125-142. [PMID: 30623348 DOI: 10.1007/s40265-018-1039-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuromyelitis optica (NMO) is an inflammatory and demyelinating disease of the central nervous system. Although the prevalence of NMO is low, the rapid and severe impairment observed in patients has led to extensive development of research in the fields of diagnostic criteria and therapy in the past 15 years. With improved understanding of the pathophysiology of NMO and the role of aquaporin-4 (AQP4) or myelin oligodendrocyte glycoprotein antibodies, numerous therapeutic approaches have been proposed and are currently undergoing evaluation. In this review, we describe the rationale for existing therapeutics and their benefit/risk ratio. We also discuss the pharmacological and clinical interest of future approaches targeting, among others, B or T cells, the blood-central nervous system barrier, complement, polynuclear cells, AQP4-antibody linkage and AQP4 activity. The numerous agents under development are the result of a major collaborative effort all over the world. After the considerable progress on diagnosis, we are now close to class I evidence for a therapeutic effect of several drugs in NMO spectrum disorders, most notably with the anti-interleukin-6 receptor antibody (satralizumab) and anti-complement-5 antibody (eculizumab).
Collapse
|
42
|
Imaging the execution phase of neuroinflammatory disease models. Exp Neurol 2019; 320:112968. [PMID: 31152743 DOI: 10.1016/j.expneurol.2019.112968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022]
Abstract
In vivo imaging of the rodent spinal cord has advanced our understanding of how resident cells of the central nervous system (CNS) respond to neuroinflammation. By combining two-photon imaging and experimental autoimmune encephalomyelitis (EAE), the most widely used rodent model of multiple sclerosis (MS), it has been possible, for example, to study how axons degenerate when confronted with inflammatory cells, how oligodendrocytes get damaged in inflammatory lesions, and how immune cells themselves adapt their phenotype and functionality to the changing lesion environment. Similar approaches are now increasingly used to study other forms of neuroinflammation, such as antibody/complement-mediated neuromyelitis optica spectrum disease (NMOSD). To tackle the most pressing open questions in the field, new biosensors and indicator mice that report the metabolic state and interaction of cells in neuroinflammatory lesions are being developed. Moreover, the field is moving towards new anatomical sites of inflammation, such as the cortical gray matter, but also towards longer observation intervals to reveal the chronic perturbations and adaptations that characterize advanced stages of MS.
Collapse
|
43
|
da Silva APB, Souza DG, Souza DO, Machado DC, Sato DK. Role of Glutamatergic Excitotoxicity in Neuromyelitis Optica Spectrum Disorders. Front Cell Neurosci 2019; 13:142. [PMID: 31031597 PMCID: PMC6473164 DOI: 10.3389/fncel.2019.00142] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/21/2019] [Indexed: 01/12/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disorder mediated by immune-humoral responses directed against central nervous system (CNS) antigens. Most patients are positive for specific immunoglobulin G (IgG) auto-antibodies for aquaporin-4 (AQP4), a water channel present in astrocytes. Antigen-antibody binding promotes complement system cascade activation, immune system cell infiltration, IgG deposition, loss of AQP4 and excitatory amino acid transporter 2 (EAAT2) expression on the astrocytic plasma membrane, triggering necrotic destruction of spinal cord tissue and optic nerves. Astrocytes are very important cells in the CNS and, in addition to supporting other nerve cells, they also regulate cerebral homeostasis and control glutamatergic synapses by modulating neurotransmission in the cleft through the high-affinity glutamate transporters present in their cell membrane. Specific IgG binding to AQP4 in astrocytes blocks protein functions and reduces EAAT2 activity. Once compromised, EAAT2 cannot take up free glutamate from the extracellular space, triggering excitotoxicity in the cells, which is characterized by overactivation of glutamate receptors in postsynaptic neurons. Therefore, the longitudinally extensive myelitis and optic neuritis lesions observed in patients with NMOSD may be the result of primary astrocytic damage triggered by IgG binding to AQP4, which can activate the immune-system cascade and, in addition, downregulate EAAT2. All these processes may explain the destructive lesions in NMOSD secondary to neuroinflammation and glutamatergic excitotoxicity. New or repurposed existing drugs capable of controlling glutamatergic excitotoxicity may provide new therapeutic options to reduce tissue damage and permanent disability after NMOSD attacks.
Collapse
Affiliation(s)
- Ana Paula Bornes da Silva
- Molecular and Cellular Biology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Medical School, Institute of Geriatrics and Gerontology, Graduate Program in Biomedical Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Débora Guerini Souza
- Graduate Program in Biological Sciences: Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo Onofre Souza
- Graduate Program in Biological Sciences: Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Denise Cantarelli Machado
- Molecular and Cellular Biology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Medical School, Institute of Geriatrics and Gerontology, Graduate Program in Biomedical Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Douglas Kazutoshi Sato
- Molecular and Cellular Biology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
44
|
Häusser-Kinzel S, Weber MS. The Role of B Cells and Antibodies in Multiple Sclerosis, Neuromyelitis Optica, and Related Disorders. Front Immunol 2019; 10:201. [PMID: 30800132 PMCID: PMC6375838 DOI: 10.3389/fimmu.2019.00201] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
Our pathophysiological concept of the most common central nervous system demyelinating disease, multiple sclerosis, strikingly evolved by recent discoveries suggesting that B lymphocytes substantially contribute in its initiation and chronic propagation. In this regard, activated B cells are nowadays considered to act as important antigen-presenting cells for the activation of T cells and as essential source of pro-inflammatory cytokines. Hereby, they create a milieu in which other immune cells differentiate and join an orchestrated inflammatory infiltration of the CNS. Without a doubt, this scientific leap was critically pioneered by the empirical use of anti-CD20 antibodies in recent clinical MS trials, which revealed that the therapeutic removal of immature and mature B cells basically halted development of new inflammatory flares in otherwise relapsing MS patients. This stabilization occurred largely independent of any indirect effect on plasma cell-produced antibody levels. On the contrary, peripherally produced autoantibodies are probably the most important B cell component in two other CNS demyelinating diseases which are currently in the process of being delineated as separate disease entities. The first one is neuromyelitis optica in which an antibody response against aquaporin-4 targets and destroys astrocytes, the second, likely distinct entity embraces a group of patients containing antibodies against myelin oligodendrocyte glycoprotein. In this review, we will describe and summarize pro-inflammatory B cell properties in these three CNS demyelinating disorders; we will however also provide an overview on the emerging concept that B cells or B cell subsets may exert immunologically counterbalancing properties, which may be therapeutically desirable to maintain and foster in inflammatory CNS demyelination. In an outlook, we will discuss accordingly, how this potentially important aspect can be harnessed to advance future B cell-directed therapeutic approaches in multiple sclerosis and related diseases.
Collapse
Affiliation(s)
| | - Martin S Weber
- Institute of Neuropathology, University Medical Center, Göttingen, Germany.,Department of Neurology, University Medical Center, Göttingen, Germany
| |
Collapse
|
45
|
Piven VD, Krasnov VS, Novikova AS, Piven FM, Kushnir YB, Totolian NA. NEUROMYELITIS OPTICA SPECTRUM DISORDERS: DIAGNOSIS AND TREATMENT, THE EXPERIENCE OF CLINICAL OBSERVATIONS. ACTA ACUST UNITED AC 2018. [DOI: 10.24884/1607-4181-2018-25-3-7-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an aggregate of inflammatory and autoimmune disorders of the central nervous system characterized by recurrent, disabling clinical course and damages predominantly targeting optic nerves, brain stem and spinal cord. NMOSD is stratified into two types: seropositive for aquaporin-4 antibodies (AQP4-IgG) and seronegative, which is reported in 25 % of cases. This article presents modern conceptualizations of NMOSD and describes authors’ own experience of clinical observation of patients.
Collapse
|
46
|
Yang Q, Zhou J. Neuroinflammation in the central nervous system: Symphony of glial cells. Glia 2018; 67:1017-1035. [DOI: 10.1002/glia.23571] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Qiao‐qiao Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai China
| | - Jia‐wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Shanghai 200031 China
| |
Collapse
|
47
|
Alves Do Rego C, Collongues N. Neuromyelitis optica spectrum disorders: Features of aquaporin-4, myelin oligodendrocyte glycoprotein and double-seronegative-mediated subtypes. Rev Neurol (Paris) 2018; 174:458-470. [PMID: 29685427 DOI: 10.1016/j.neurol.2018.02.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 01/27/2023]
Abstract
The new diagnostic classification of neuromyelitis optica spectrum disorder (NMOSD) in 2015 highlights the central role of biomarkers, such as antibodies against aquaporin-4 (AQP4-Ab), in diagnosis. Also, in approximately 20-25% of patients without AQP4-Ab (NMOSDAQP4-) the presence of an antibody directed against myelin oligodendrocyte glycoprotein (MOG) characterizes a specific population of NMOSD patients (NMOSDMOG+), according to their demographic and clinical data and prognoses. While double-seronegative cases (NMOSDNEG) have not been fully described, they may correspond to the very first patients with opticospinal demyelination reported by Devic and Gault in 1894. The present report reviews the current knowledge of the pathophysiology and clinical features of NMOSDAQP4+, NMOSDMOG+ and NMOSDNEG patients, and also discusses the relationship between the extended spectrum of MOG disease and NMOSDMOG+. Finally, the current treatments for acute relapses and relapse prevention are described, with a focus on serological-based therapeutic responses and the promising new therapeutic targets.
Collapse
Affiliation(s)
- C Alves Do Rego
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
| | - N Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France; Clinical Investigation Center, INSERM U1434, University Hospital of Strasbourg, Strasbourg, France; Biopathology of Myelin, Neuroprotection and Therapeutic Strategies, INSERM U1119, University Hospital of Strasbourg, Strasbourg, France.
| |
Collapse
|
48
|
Disruption of blood-brain barrier integrity associated with brain lesions in Chinese neuromyelitis optica spectrum disorder patients. Mult Scler Relat Disord 2018; 27:254-259. [PMID: 30419511 DOI: 10.1016/j.msard.2018.10.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 10/28/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The aims of this study were to report brain characteristic abnormalities and to evaluate the relationship of blood-brain barrier (BBB) disruption and brain lesions in Chinese patients with NMOSD. METHODS Brain magnetic resonance imaging characteristics and cerebrospinal fluid (CSF) laboratory tests of 121 patients with NMOSD at acute attack were reviewed retrospectively. Qalb (CSF albumin/serum albumin) was used for assessment of disruption of BBB. RESULTS Brain MRI abnormalities were observed in 36.4% (44/121) of the NMOSD patients. Thirty patients (25%) showed typical-NMOSD abnormalities, including dorsal medulla lesions (n = 16, 13.2%), brainstem/cerebellum (n = 11, 9.1%), thalamus/hypothalamus (n = 3, 2.5%), periventricular white matter lesions (n = 4, 3.3%) hemispheric white matter (n = 4, 3.3%). Twenty-five patients (20.7%) had nonspecific lesions. Compared to the NMOSD patients without brain lesion, the proportion of patients who had abnormal BBB permeability was significantly higher in the abnormal brain MRI group (47.7% vs. 27.3%, P < 0.05). BBB permeability was not correlated to distribution of brain lesions or enhancement lesions. Qalb was associated with higher Expanded Disability Status Scale scores (r = 0.689, P < 0.05). CONCLUSIONS Brain lesions are common in NMOSD patients. Marker of BBB permeability is associated with brain lesion and EDSS scores of NMOSD.
Collapse
|
49
|
Duan T, Smith AJ, Verkman AS. Complement-dependent bystander injury to neurons in AQP4-IgG seropositive neuromyelitis optica. J Neuroinflammation 2018; 15:294. [PMID: 30348195 PMCID: PMC6198534 DOI: 10.1186/s12974-018-1333-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/15/2018] [Indexed: 01/14/2023] Open
Abstract
Background Aquaporin-4-immunoglobulin G (AQP4-IgG) seropositive neuromyelitis optica spectrum disorder (herein called NMO) is an autoimmune disease of the central nervous system in which AQP4-IgG binding to AQP4 on astrocytes results in complement-dependent astrocyte injury and secondary inflammation, demyelination, and neuron loss. We previously reported evidence for a complement bystander mechanism for early oligodendrocyte injury in NMO. Herein, we tested the hypothesis that complement bystander injury, which involves diffusion to nearby cells of activated soluble complement components from complement-injured astrocytes, is a general phenomenon that may contribute to neuronal injury in NMO. Methods Primary cocultures of rat astrocytes and cortical neurons were established to study complement-dependent cell death after exposure to AQP4-IgG and complement. In animal experiments, AQP4-IgG was delivered to adult rats by intracerebral injection. Cell cultures and rat brain were studied by immunofluorescence. Results In primary astrocyte-neuron cocultures, addition of AQP4-IgG and complement resulted in death of neurons nearby astrocytes. Deposition of complement membrane attack complex C5b-9 was seen on neurons nearby astrocytes, whereas C1q, the initiating protein in the complement pathway, was seen only on astrocytes. Neuron death was not seen with a complement inhibitor, with C1q- or C6-depleted complement, in pure neuron cultures exposed to AQP4-IgG and complement or in cocultures exposed to an astrocyte toxin. Intracerebral injection in rats of AQP4-IgG and a fixable dead cell fluorescent marker produced death of neurons near astrocytes, with C5b-9 deposition. Neuron death was not seen in rats receiving a complement inhibitor or in AQP4-IgG-injected AQP4 knockout rats. Conclusion These results support a novel mechanism for early neuron injury in NMO and provide evidence that complement bystander injury may be a general phenomenon for brain cell injury following AQP4-IgG-targeted astrocyte death. Electronic supplementary material The online version of this article (10.1186/s12974-018-1333-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tianjiao Duan
- Departments of Medicine and Physiology, University of California, 1246 Health Sciences East Tower, 513 Parnassus Ave, San Francisco, CA, 94143-0521, USA.,Department of Neurology, Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Alex J Smith
- Departments of Medicine and Physiology, University of California, 1246 Health Sciences East Tower, 513 Parnassus Ave, San Francisco, CA, 94143-0521, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, 1246 Health Sciences East Tower, 513 Parnassus Ave, San Francisco, CA, 94143-0521, USA.
| |
Collapse
|
50
|
Castelli V, d'Angelo M, Antonosante A, Catanesi M, Benedetti E, Desideri G, Cimini A. Physiology and Pathophysiology of PPARs in the Eye. NUCLEAR RECEPTOR RESEARCH 2018. [DOI: 10.11131/2018/101370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | | | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, USA
| |
Collapse
|