1
|
Scheffer IE, Zuberi S, Mefford HC, Guerrini R, McTague A. Developmental and epileptic encephalopathies. Nat Rev Dis Primers 2024; 10:61. [PMID: 39237642 DOI: 10.1038/s41572-024-00546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Developmental and epileptic encephalopathies, the most severe group of epilepsies, are characterized by seizures and frequent epileptiform activity associated with developmental slowing or regression. Onset typically occurs in infancy or childhood and includes many well-defined epilepsy syndromes. Patients have wide-ranging comorbidities including intellectual disability, psychiatric features, such as autism spectrum disorder and behavioural problems, movement and musculoskeletal disorders, gastrointestinal and sleep problems, together with an increased mortality rate. Problems change with age and patients require substantial support throughout life, placing a high psychosocial burden on parents, carers and the community. In many patients, the aetiology can be identified, and a genetic cause is found in >50% of patients using next-generation sequencing technologies. More than 900 genes have been identified as monogenic causes of developmental and epileptic encephalopathies and many cell components and processes have been implicated in their pathophysiology, including ion channels and transporters, synaptic proteins, cell signalling and metabolism and epigenetic regulation. Polygenic risk score analyses have shown that common variants also contribute to phenotypic variability. Holistic management, which encompasses antiseizure therapies and care for multimorbidities, is determined both by epilepsy syndrome and aetiology. Identification of the underlying aetiology enables the development of precision medicines to improve the long-term outcome of patients with these devastating diseases.
Collapse
Affiliation(s)
- Ingrid E Scheffer
- Epilepsy Research Centre, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
- Florey and Murdoch Children's Research Institutes, Melbourne, Victoria, Australia.
- Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Sameer Zuberi
- Paediatric Neurosciences Research Group, School of Health & Wellbeing, University of Glasgow, Glasgow, UK
- Paediatric Neurosciences, Royal Hospital for Children, Glasgow, UK
| | - Heather C Mefford
- Center for Paediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Meyer IRCCS, Florence, Italy
- University of Florence, Florence, Italy
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
2
|
Kurekci F, Akif Kilic M, Akbas S, Avci R, Oney C, Dilruba Aslanger A, Maras Genc H, Aydinli N, Pembegul Yildiz E. Voltage-gated sodium channel epilepsies in a tertiary care center: Phenotypic spectrum with correlation to predicted functional effects. Epilepsy Behav 2024; 158:109930. [PMID: 38964184 DOI: 10.1016/j.yebeh.2024.109930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Variants in sodium channel genes (SCN) are strongly associated with epilepsy phenotypes. Our aim in this study to evaluate the genotype and phenotype correlation of patients with SCN variants in our tertiary care center. METHODS In this retrospective study, patients with SCN variants and epilepsy who were followed up at our clinic between 2018 and 2022 were evaluated. Our study discussed the demographics of the patients, the seizure types, the age of seizure onset, the SCN variants, the domains and the functions of the variants, the magnetic resonance imaging findings, the motor, cognitive, and psychiatric comorbidities, and the response to anti-seizure medication. Genetic testing was conducted using a next-generation sequencing gene panel (epilepsy panel) or a whole-exome sequencing. For evaluating variant function, we used a prediction tool (https://funnc.shinyapps.io/shinyappweb/ site). To assess protein domains, we used the PER viewer (http://per.broadinstitute.org/). RESULTS Twenty-three patients with SCN variants and epilepsy have been identified. Sixteen patients had variants in the SCN1A, six patients had variants in the SCN2A, and one patient had a variant in the SCN3A. Two novel SCN1A variants and two novel SCN2A variants were identified. The analysis revealed 14/23 missense, 6/23 nonsense, 2/23 frameshift, and 1/23 splice site variants in the SCN. There are seven variants predicted to be gain-of-function and 13 predicted to be loss-of-function. Among 23 patients; 11 had Dravet Syndrome, 6 had early infantile developmental and epileptic encephalopathy, three had genetic epilepsy with febrile seizures plus spectrum disorder, one had self-limited familial neonatal-infantile epilepsy, one had self-limited infantile epilepsy and one had infantile childhood development epileptic encephalopathy. CONCLUSION Our cohort consists of mainly SCN1 variants, most of them were predicted to be loss of function. Dravet syndrome was the most common phenotype. The prediction tool used in our study demonstrated overall compatibility with clinical findings. Due to the diverse clinical manifestations of variant functions, it may assist in guiding medication selection and predicting outcomes. We believe that such a tool will help the clinician in both prognosis prediction and solving therapeutic challenges in this group where refractory seizures are common.
Collapse
Affiliation(s)
- Fulya Kurekci
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye.
| | - Mehmet Akif Kilic
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Sinan Akbas
- Department of Medical Genetics, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Rıdvan Avci
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Ceyda Oney
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Ayca Dilruba Aslanger
- Department of Medical Genetics, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Hulya Maras Genc
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Nur Aydinli
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Edibe Pembegul Yildiz
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| |
Collapse
|
3
|
Lee S, Kang M, So KH, Jang R, Shin YW, Jang SS, Yoon JG, Kim S, Kim M, Chu K, Lee SK, Kim KJ, Baek ST, Lim BC, Moon J. Broadening the scope of multigene panel analysis for adult epilepsy patients. Epilepsia Open 2024; 9:1538-1549. [PMID: 38946282 PMCID: PMC11296137 DOI: 10.1002/epi4.12993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
OBJECTIVE Epilepsy is a suitable target for gene panel sequencing because a considerable portion of epilepsy is now explained by genetic components, especially in syndromic cases. However, previous gene panel studies on epilepsy have mostly focused on pediatric patients. METHODS We enrolled adult epilepsy patients meeting any of the following criteria: family history of epilepsy, seizure onset age ≤ 19 years, neuronal migration disorder, and seizure freedom not achieved by dual anti-seizure medications. We sequenced the exonic regions of 211 epilepsy genes in these patients. To confirm the pathogenicity of a novel MTOR truncating variant, we electroporated vectors with different MTOR variants into developing mouse brains. RESULTS A total of 92 probands and 4 affected relatives were tested, and the proportion of intellectual disability (ID) and/or developmental disability (DD) was 21.7%. As a result, twelve probands (13.0%) had pathogenic or likely pathogenic variants in the following genes or regions: DEPDC5, 15q12-q13 duplication (n = 2), SLC6A1, SYNGAP1, EEF1A2, LGI1, MTOR, KCNQ2, MEF2C, and TSC1 (n = 1). We confirmed the functional impact of a novel truncating mutation in the MTOR gene (c.7570C > T, p.Gln2524Ter) that disrupted neuronal migration in a mouse model. The diagnostic yield was higher in patients with ID/DD or childhood-onset seizures. We also identified additional candidate variants in 20 patients that could be reassessed by further studies. SIGNIFICANCE Our findings underscore the clinical utility of gene panel sequencing in adult epilepsy patients suspected of having genetic etiology, especially those with ID/DD or early-onset seizures. Gene panel sequencing could not only lead to genetic diagnosis in a substantial portion of adult epilepsy patients but also inform more precise therapeutic decisions based on their genetic background. PLAIN LANGUAGE SUMMARY This study demonstrated the effectiveness of gene panel sequencing in adults with epilepsy, revealing pathogenic or likely pathogenic variants in 13.0% of patients. Higher diagnostic yields were observed in those with neurodevelopmental disorders or childhood-onset seizures. Additionally, we have shown that expanding genetic studies into adult patients would uncover new types of pathogenic variants for epilepsy, contributing to the advancement of precision medicine for individuals with epilepsy. In conclusion, our results highlight the practical value of employing gene panel sequencing in adult epilepsy patients, particularly when genetic etiology is clinically suspected.
Collapse
Affiliation(s)
- Seungbok Lee
- Department of Genomic MedicineSeoul National University HospitalSeoulKorea
- Department of PediatricsSeoul National University College of Medicine, Seoul National University Children's HospitalSeoulKorea
| | - Mi‐Kyoung Kang
- Department of NeurologySeoul National University College of Medicine, Seoul National University HospitalSeoulKorea
| | - Ki Hurn So
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangKorea
| | - Riyul Jang
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangKorea
| | - Yong Woo Shin
- Department of NeurologySeoul National University College of Medicine, Seoul National University HospitalSeoulKorea
| | - Se Song Jang
- Department of PediatricsSeoul National University College of Medicine, Seoul National University Children's HospitalSeoulKorea
| | - Jihoon G. Yoon
- Department of Genomic MedicineSeoul National University HospitalSeoulKorea
| | - Sheehyun Kim
- Department of Genomic MedicineSeoul National University HospitalSeoulKorea
| | - Manjin Kim
- Department of Genomic MedicineSeoul National University HospitalSeoulKorea
- Department of Laboratory MedicineSeoul National University College of Medicine, Seoul National University HospitalSeoulKorea
| | - Kon Chu
- Department of NeurologySeoul National University College of Medicine, Seoul National University HospitalSeoulKorea
| | - Sang Kun Lee
- Department of NeurologySeoul National University College of Medicine, Seoul National University HospitalSeoulKorea
| | - Ki Joong Kim
- Department of PediatricsSeoul National University College of Medicine, Seoul National University Children's HospitalSeoulKorea
| | - Seung Tae Baek
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangKorea
| | - Byung Chan Lim
- Department of PediatricsSeoul National University College of Medicine, Seoul National University Children's HospitalSeoulKorea
| | - Jangsup Moon
- Department of Genomic MedicineSeoul National University HospitalSeoulKorea
- Department of NeurologySeoul National University College of Medicine, Seoul National University HospitalSeoulKorea
| |
Collapse
|
4
|
Sánchez Marco N, Giorgi S, Aibar JÁ. The social and emotional burden of Dravet syndrome on Spanish caregivers. Heliyon 2024; 10:e34771. [PMID: 39149084 PMCID: PMC11324968 DOI: 10.1016/j.heliyon.2024.e34771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Background Dravet syndrome (DS) is a rare developmental and epileptic encephalopathy that presents with frequent and prolonged seizures resistant to treatment as well as cognitive problems such as behavioral and developmental delays. However, there is a lack of scientific literature on the impact of this condition on caregivers and the family unit. Objectives To find out the social and emotional impact of DS on the family unit, to provide a comprehensive understanding of the disease's effects on both the family and caregivers. Materials and methods A tailored online survey was administered to Spanish DS families, collecting data on the employment, financial, emotional, and social status of patients and caregivers. Results A total of 112 Spanish caregivers participated in the study. The mean age of the 112 parents was 46.61 years, and 77.68 % of them were mothers. The majority of caregivers had to quit their jobs or reduce their working hours to take care of their child with DS, being the most of them mothers. Most of the caregivers felt that they were not well-informed by healthcare professionals (HCPs) and the Spanish National Health System (NHS). Despite access to resources, families often face financial strain and challenges in obtaining sufficient support, highlighting the need for enhanced social, economic, and psychological backing. In addition, both sentimental and social relationships were negatively impacted in the vast majority of respondents. Conclusions The study advocates for policy reforms, integrated social services, community programs, and multidisciplinary efforts to improve the quality of life and social integration for those affected by DS.
Collapse
Affiliation(s)
- Naiara Sánchez Marco
- Dravet Syndrome Foundation Spain, Madrid, Spain, C/ Toledo, 46, 1°, 28005, Madrid, Spain
| | - Simona Giorgi
- Dravet Syndrome Foundation Spain, Madrid, Spain, C/ Toledo, 46, 1°, 28005, Madrid, Spain
| | - José Ángel Aibar
- Dravet Syndrome Foundation Spain, Madrid, Spain, C/ Toledo, 46, 1°, 28005, Madrid, Spain
| |
Collapse
|
5
|
Clayton LM, Azadi B, Eldred C, Wilson G, Robinson R, Sisodiya SM. Feeding Difficulties and Gastrostomy in Dravet Syndrome: A UK-Wide Survey and 2-Center Experience. Neurol Clin Pract 2024; 14:e200288. [PMID: 38737515 PMCID: PMC11087032 DOI: 10.1212/cpj.0000000000200288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/22/2024] [Indexed: 05/14/2024]
Abstract
Background and Objectives Dravet syndrome (DS) is one of the most common monogenic epilepsies. Alongside the core seizure and developmental phenotypes, problems with appetite, swallowing, and weight loss are frequently reported, necessitating gastrostomy in some. We explored the burden of feeding difficulties and need for gastrostomy across 3 DS populations in the United Kingdom. We document caregiver opinion and postgastrostomy outcomes, and provide guidance regarding feeding issues and gastrostomy in DS. Methods A retrospective, observational study was conducted; data were collected from medical records of 124 individuals with DS attending clinics at the National Hospital for Neurology and Neurosurgery, and Great Ormond Street Hospital, and from 65 DS caregiver responses to a UK-wide survey. Results In total, 64 of 124 (52%) had at least 1 feeding difficulty; 21 of 124 (17%) had a gastrostomy, and gastrostomy was being considered in 5%; the most common reasons for gastrostomy were poor appetite (81%) and weight loss/failure to gain weight (71%). Median age at gastrostomy was 17 years (range 2.5-59). Multivariate analyses identified several factors that in combination contributed to risk of feeding difficulties and gastrostomy, including treatment with several antiseizure medications (ASMs), of which stiripentol made a unique contribution to risk of gastrostomy (p = 0.048, odds ratio 3.20, 95% CI 1.01-10.16). Preinsertion, 88% of caregivers were worried about the gastrostomy, with concerns across a range of issues. Postgastrostomy, 88% of caregivers were happy that their child had the gastrostomy, and >90% agreed that the gastrostomy ensured medication compliance, that their child's overall health was better, and that quality of life improved. Discussion Feeding difficulties are common in DS, and 17% require a gastrostomy to address these. Risk factors for feeding difficulties in DS are unknown, but ASMs may play a role. There is a high level of caregiver concern regarding gastrostomy preprocedure; however, postgastrostomy caregiver opinion is positive. Feeding difficulties should be proactively sought during review of people with DS, and the potential need for gastrostomy should be discussed.
Collapse
Affiliation(s)
- Lisa M Clayton
- UCL Queen Square Institute of Neurology (LMC, SMS), London; Chalfont Centre for Epilepsy (LMC, SMS), Bucks; Great Ormond Street Hospital (BA, RR), London; and Dravet Syndrome UK (CE, GW), Registered Charity Number 1128289, Member of Dravet Syndrome European Federation, Chesterfield, United Kingdom
| | - Bahar Azadi
- UCL Queen Square Institute of Neurology (LMC, SMS), London; Chalfont Centre for Epilepsy (LMC, SMS), Bucks; Great Ormond Street Hospital (BA, RR), London; and Dravet Syndrome UK (CE, GW), Registered Charity Number 1128289, Member of Dravet Syndrome European Federation, Chesterfield, United Kingdom
| | - Claire Eldred
- UCL Queen Square Institute of Neurology (LMC, SMS), London; Chalfont Centre for Epilepsy (LMC, SMS), Bucks; Great Ormond Street Hospital (BA, RR), London; and Dravet Syndrome UK (CE, GW), Registered Charity Number 1128289, Member of Dravet Syndrome European Federation, Chesterfield, United Kingdom
| | - Galia Wilson
- UCL Queen Square Institute of Neurology (LMC, SMS), London; Chalfont Centre for Epilepsy (LMC, SMS), Bucks; Great Ormond Street Hospital (BA, RR), London; and Dravet Syndrome UK (CE, GW), Registered Charity Number 1128289, Member of Dravet Syndrome European Federation, Chesterfield, United Kingdom
| | - Robert Robinson
- UCL Queen Square Institute of Neurology (LMC, SMS), London; Chalfont Centre for Epilepsy (LMC, SMS), Bucks; Great Ormond Street Hospital (BA, RR), London; and Dravet Syndrome UK (CE, GW), Registered Charity Number 1128289, Member of Dravet Syndrome European Federation, Chesterfield, United Kingdom
| | - Sanjay M Sisodiya
- UCL Queen Square Institute of Neurology (LMC, SMS), London; Chalfont Centre for Epilepsy (LMC, SMS), Bucks; Great Ormond Street Hospital (BA, RR), London; and Dravet Syndrome UK (CE, GW), Registered Charity Number 1128289, Member of Dravet Syndrome European Federation, Chesterfield, United Kingdom
| |
Collapse
|
6
|
Zhou C, Satpute V, Yip KL, Anderson LL, Hawkins N, Kearney J, Arnold JC. A high seizure burden increases several prostaglandin species in the hippocampus of a Scn1a +/- mouse model of Dravet syndrome. Prostaglandins Other Lipid Mediat 2024; 172:106836. [PMID: 38599513 DOI: 10.1016/j.prostaglandins.2024.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Dravet syndrome is an intractable epilepsy with a high seizure burden that is resistant to current anti-seizure medications. There is evidence that neuroinflammation plays a role in epilepsy and seizures, however few studies have specifically examined neuroinflammation in Dravet syndrome under conditions of a higher seizure burden. Here we used an established genetic mouse model of Dravet syndrome (Scn1a+/- mice), to examine whether a higher seizure burden impacts the number and morphology of microglia in the hippocampus. Moreover, we examined whether a high seizure burden influences classical inflammatory mediators in this brain region. Scn1a+/- mice with a high seizure burden induced by thermal priming displayed a localised reduction in microglial cell density in the granule cell layer and subgranular zone of the dentate gyrus, regions important to postnatal neurogenesis. However, microglial cell number and morphology remained unchanged in other hippocampal subfields. The high seizure burden in Scn1a+/- mice did not affect hippocampal mRNA expression of classical inflammatory mediators such as interleukin 1β and tumour necrosis factor α, but increased cyclooxygenase 2 (COX-2) expression. We then quantified hippocampal levels of prostanoids that arise from COX-2 mediated metabolism of fatty acids and found that Scn1a+/- mice with a high seizure burden displayed increased hippocampal concentrations of numerous prostaglandins, notably PGF2α, PGE2, PGD2, and 6-K-PGF1A, compared to Scn1a+/- mice with a low seizure burden. In conclusion, a high seizure burden increased hippocampal concentrations of various prostaglandin mediators in a mouse model of Dravet syndrome. Future studies could interrogate the prostaglandin pathways to further better understand their role in the pathophysiology of Dravet syndrome.
Collapse
Affiliation(s)
- Cilla Zhou
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Vaishali Satpute
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Ka Lai Yip
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Lyndsey L Anderson
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Nicole Hawkins
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Jennifer Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Jonathon C Arnold
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.
| |
Collapse
|
7
|
Veltra D, Theodorou V, Katsalouli M, Vorgia P, Niotakis G, Tsaprouni T, Pons R, Kosma K, Kampouraki A, Tsoutsou I, Makrythanasis P, Kekou K, Traeger-Synodinos J, Sofocleous C. SCN1A Channels a Wide Range of Epileptic Phenotypes: Report of Novel and Known Variants with Variable Presentations. Int J Mol Sci 2024; 25:5644. [PMID: 38891831 PMCID: PMC11171476 DOI: 10.3390/ijms25115644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
SCN1A, the gene encoding for the Nav1.1 channel, exhibits dominant interneuron-specific expression, whereby variants disrupting the channel's function affect the initiation and propagation of action potentials and neuronal excitability causing various types of epilepsy. Dravet syndrome (DS), the first described clinical presentation of SCN1A channelopathy, is characterized by severe myoclonic epilepsy in infancy (SMEI). Variants' characteristics and other genetic or epigenetic factors lead to extreme clinical heterogeneity, ranging from non-epileptic conditions to developmental and epileptic encephalopathy (DEE). This current study reports on findings from 343 patients referred by physicians in hospitals and tertiary care centers in Greece between 2017 and 2023. Positive family history for specific neurologic disorders was disclosed in 89 cases and the one common clinical feature was the onset of seizures, at a mean age of 17 months (range from birth to 15 years old). Most patients were specifically referred for SCN1A investigation (Sanger Sequencing and MLPA) and only five for next generation sequencing. Twenty-six SCN1A variants were detected, including nine novel causative variants (c.4567A>Τ, c.5564C>A, c.2176+2T>C, c.3646G>C, c.4331C>A, c.1130_1131delGAinsAC, c.1574_1580delCTGAGGA, c.4620A>G and c.5462A>C), and are herein presented, along with subsequent genotype-phenotype associations. The identification of novel variants complements SCN1A databases extending our expertise on genetic counseling and patient and family management including gene-based personalized interventions.
Collapse
Affiliation(s)
- Danai Veltra
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
- Research University Institute for the Study and Prevention of Genetic and Malignant Disease of Childhood, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece
| | - Virginia Theodorou
- Pediatric Neurology Department, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (V.T.); (M.K.)
| | - Marina Katsalouli
- Pediatric Neurology Department, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (V.T.); (M.K.)
| | - Pelagia Vorgia
- Agrifood and Life Sciences Institute, Hellenic Mediterranean University, 71410 Heraklion, Greece;
| | - Georgios Niotakis
- Pediatric Neurology Department, Venizelion Hospital, 71409 Heraklion, Greece;
| | | | - Roser Pons
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece;
| | - Konstantina Kosma
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
| | - Afroditi Kampouraki
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
| | - Irene Tsoutsou
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
| | - Periklis Makrythanasis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
- Department of Genetic Medicine and Development, Medical School, University of Geneva, 1211 Geneva, Switzerland
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Kyriaki Kekou
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
| |
Collapse
|
8
|
Sullivan J, Benítez A, Roth J, Andrews JS, Shah D, Butcher E, Jones A, Cross JH. A systematic literature review on the global epidemiology of Dravet syndrome and Lennox-Gastaut syndrome: Prevalence, incidence, diagnosis, and mortality. Epilepsia 2024; 65:1240-1263. [PMID: 38252068 DOI: 10.1111/epi.17866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
Dravet syndrome (DS) and Lennox-Gastaut syndrome (LGS) are rare developmental and epileptic encephalopathies associated with seizure and nonseizure symptoms. A comprehensive understanding of how many individuals are affected globally, the diagnostic journey they face, and the extent of mortality associated with these conditions is lacking. Here, we summarize and evaluate published data on the epidemiology of DS and LGS in terms of prevalence, incidence, diagnosis, genetic mutations, and mortality and sudden unexpected death in epilepsy (SUDEP) rates. The full study protocol is registered on PROSPERO (CRD42022316930). After screening 2172 deduplicated records, 91 unique records were included; 67 provided data on DS only, 17 provided data on LGS only, and seven provided data on both. Case definitions varied considerably across studies, particularly for LGS. Incidence and prevalence estimates per 100 000 individuals were generally higher for LGS than for DS (LGS: incidence proportion = 14.5-28, prevalence = 5.8-60.8; DS: incidence proportion = 2.2-6.5, prevalence = 1.2-6.5). Diagnostic delay was frequently reported for LGS, with a wider age range at diagnosis reported than for DS (DS, 1.6-9.2 years; LGS, 2-15 years). Genetic screening data were reported by 63 studies; all screened for SCN1A variants, and only one study specifically focused on individuals with LGS. Individuals with DS had a higher mortality estimate per 1000 person-years than individuals with LGS (DS, 15.84; LGS, 6.12) and a lower median age at death. SUDEP was the most frequently reported cause of death for individuals with DS. Only four studies reported mortality information for LGS, none of which included SUDEP. This systematic review highlights the paucity of epidemiological data available for DS and especially LGS, demonstrating the need for further research and adoption of standardized diagnostic criteria.
Collapse
Affiliation(s)
- Joseph Sullivan
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Arturo Benítez
- Takeda Development Center Americas, Cambridge, Massachusetts, USA
| | - Jeannine Roth
- Takeda Pharmaceuticals International, Zurich, Switzerland
| | - J Scott Andrews
- Takeda Development Center Americas, Cambridge, Massachusetts, USA
| | - Drishti Shah
- Takeda Development Center Americas, Cambridge, Massachusetts, USA
| | | | | | - J Helen Cross
- University College London, National Institute for Health and Care Research Biomedical Research Centre, London, UK
| |
Collapse
|
9
|
Di Berardino C, Mainardi M, Brusco S, Benvenuto E, Broccoli V, Colasante G. Temporal manipulation of the Scn1a gene reveals its essential role in adult brain function. Brain 2024; 147:1216-1230. [PMID: 37812819 PMCID: PMC10994529 DOI: 10.1093/brain/awad350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023] Open
Abstract
Dravet syndrome is a severe epileptic encephalopathy, characterized by drug-resistant epilepsy, severe cognitive and behavioural deficits, with increased risk of sudden unexpected death (SUDEP). It is caused by haploinsufficiency of SCN1A gene encoding for the α-subunit of the voltage-gated sodium channel Nav1.1. Therapeutic approaches aiming to upregulate the healthy copy of SCN1A gene to restore its normal expression levels are being developed. However, whether Scn1a gene function is required only during a specific developmental time-window or, alternatively, if its physiological expression is necessary in adulthood is untested up to now. We induced Scn1a gene haploinsufficiency at two ages spanning postnatal brain development (P30 and P60) and compared the phenotypes of those mice to Scn1a perinatally induced mice (P2), recapitulating all deficits of Dravet mice. Induction of heterozygous Nav1.1 mutation at P30 and P60 elicited susceptibility to the development of both spontaneous and hyperthermia-induced seizures and SUDEP rates comparable to P2-induced mice, with symptom onset accompanied by the characteristic GABAergic interneuron dysfunction. Finally, delayed Scn1a haploinsufficiency induction provoked hyperactivity, anxiety and social attitude impairment at levels comparable to age matched P2-induced mice, while it was associated with a better cognitive performance, with P60-induced mice behaving like the control group. Our data show that maintenance of physiological levels of Nav1.1 during brain development is not sufficient to prevent Dravet symptoms and that long-lasting restoration of Scn1a gene expression would be required to grant optimal clinical benefit in patients with Dravet syndrome.
Collapse
Affiliation(s)
- Claudia Di Berardino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Martina Mainardi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simone Brusco
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- National Research Council (CNR), Institute of Neuroscience, 20129 Milan, Italy
| | - Elena Benvenuto
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Gene and Cell Therapy PhD Program, Vita- Salute San Raffaele University, 20132 Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- National Research Council (CNR), Institute of Neuroscience, 20129 Milan, Italy
| | - Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
10
|
Alowaysi M, Al-Shehri M, Badkok A, Attas H, Aboalola D, Baadhaim M, Alzahrani H, Daghestani M, Zia A, Al-Ghamdi K, Al-Ghamdi A, Zakri S, Aouabdi S, Tegner J, Alsayegh K. Generation of iPSC lines (KAIMRCi003A, KAIMRCi003B) from a Saudi patient with Dravet syndrome carrying homozygous mutation in the CPLX1 gene and heterozygous mutation in SCN9A. Hum Cell 2024; 37:502-510. [PMID: 38110787 PMCID: PMC10890977 DOI: 10.1007/s13577-023-01016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023]
Abstract
The most prevalent form of epileptic encephalopathy is Dravet syndrome (DRVT), which is triggered by the pathogenic variant SCN1A in 80% of cases. iPSCs with different SCN1A mutations have been constructed by several groups to model DRVT syndrome. However, no studies involving DRVT-iPSCs with rare genetic variants have been conducted. Here, we established two DRVT-iPSC lines harboring a homozygous mutation in the CPLX1 gene and heterozygous mutation in SCN9A gene. Therefore, the derivation of these iPSC lines provides a unique cellular platform to dissect the molecular mechanisms underlying the cellular dysfunctions consequent to CPLX1 and SCN9A mutations.
Collapse
Affiliation(s)
- Maryam Alowaysi
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Mohammad Al-Shehri
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Amani Badkok
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Hanouf Attas
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Doaa Aboalola
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Moayad Baadhaim
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Hajar Alzahrani
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Mustafa Daghestani
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Department of Pathology and Laboratory Medicine, Ministry of the National Guard-Health Affairs, Jeddah, Saudi Arabia
| | - Asima Zia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Khalid Al-Ghamdi
- Forensic Laboratories, Criminal Evidence Department, Jeddah, Saudi Arabia
| | - Asayil Al-Ghamdi
- Forensic Laboratories, Criminal Evidence Department, Jeddah, Saudi Arabia
| | - Samer Zakri
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Sihem Aouabdi
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Jesper Tegner
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Khaled Alsayegh
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
| |
Collapse
|
11
|
Cha J, Filatov G, Smith SJ, Gammaitoni AR, Lothe A, Reeder T. Fenfluramine increases survival and reduces markers of neurodegeneration in a mouse model of Dravet syndrome. Epilepsia Open 2024; 9:300-313. [PMID: 38018342 PMCID: PMC10839300 DOI: 10.1002/epi4.12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE In patients with Dravet syndrome (DS), fenfluramine reduced convulsive seizure frequency and provided clinical benefit in nonseizure endpoints (e.g., executive function, survival). In zebrafish mutant scn1 DS models, chronic fenfluramine treatment preserved neuronal cytoarchitecture prior to seizure onset and prevented gliosis; here, we extend these findings to a mammalian model of DS (Scn1a+/- mice) by evaluating the effects of fenfluramine on neuroinflammation (degenerated myelin, activated microglia) and survival. METHODS Scn1a+/- DS mice were treated subcutaneously once daily with fenfluramine (15 mg/kg) or vehicle from postnatal day (PND) 7 until 35-37. Sagittal brain sections were processed for immunohistochemistry using antibodies to degraded myelin basic protein (D-MBP) for degenerated myelin, or CD11b for activated (inflammatory) microglia; sections were scored semi-quantitatively. Apoptotic nuclei were quantified by TUNEL assay. Statistical significance was evaluated by 1-way ANOVA with post-hoc Dunnett's test (D-MBP, CD11b, and TUNEL) or Logrank Mantel-Cox (survival). RESULTS Quantitation of D-MBP immunostaining per 0.1 mm2 unit area of the parietal cortex and hippocampus CA3 yielded significantly higher spheroidal and punctate myelin debris counts in vehicle-treated DS mice than in wild-type mice. Fenfluramine treatment in DS mice significantly reduced these counts. Activated CD11b + microglia were more abundant in DS mouse corpus callosum and hippocampus than in wild-type controls. Fenfluramine treatment of DS mice resulted in significantly fewer activated CD11b + microglia than vehicle-treated DS mice in these brain regions. TUNEL staining in corpus callosum was increased in DS mice relative to wild-type controls. Fenfluramine treatment in DS mice lowered TUNEL staining relative to vehicle-treated DS mice. By PND 35-37, 55% of control DS mice had died, compared with 24% of DS mice receiving fenfluramine treatment (P = 0.0291). SIGNIFICANCE This is the first report of anti-neuroinflammation and pro-survival after fenfluramine treatment in a mammalian DS model. These results corroborate prior data in humans and animal models and suggest important pharmacological activities for fenfluramine beyond seizure reduction. PLAIN LANGUAGE SUMMARY Dravet syndrome is a severe epilepsy disorder that impairs learning and causes premature death. Clinical studies in patients with Dravet syndrome show that fenfluramine reduces convulsive seizures. Additional studies suggest that fenfluramine may have benefits beyond seizures, including promoting survival and improving control over emotions and behavior. Our study is the first to use a Dravet mouse model to investigate nonseizure outcomes of fenfluramine. Results showed that fenfluramine treatment of Dravet mice reduced neuroinflammation significantly more than saline treatment. Fenfluramine-treated Dravet mice also lived longer than saline-treated mice. These results support clinical observations that fenfluramine may have benefits beyond seizures.
Collapse
Affiliation(s)
- John Cha
- University of California San FranciscoSan FranciscoCaliforniaUSA
- Zogenix, Inc. (now a part of UCB)EmeryvilleCaliforniaUSA
| | - Gregory Filatov
- Zogenix, Inc. (now a part of UCB)EmeryvilleCaliforniaUSA
- Crosshair Therapeutics, Inc.SunnyvaleCaliforniaUSA
| | - Steven J. Smith
- Zogenix, Inc. (now a part of UCB)EmeryvilleCaliforniaUSA
- WuXi AppTec, Inc.San FranciscoCaliforniaUSA
| | | | | | - Thadd Reeder
- Zogenix, Inc. (now a part of UCB)EmeryvilleCaliforniaUSA
| |
Collapse
|
12
|
Sierra-Marcos A, Ribosa-Nogué R, Vidal-Robau N, Aldecoa I, Turón E, Rodríguez-Santiago B, Turón M, Boronat S, Molina-Porcel L. Inherited SCN1A missense mutation in a Dravet Syndrome family: Neuropathological correlation, family screening and implications for adult carriers. Epilepsy Res 2024; 199:107266. [PMID: 38061235 DOI: 10.1016/j.eplepsyres.2023.107266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
INTRODUCTION Neuropathological findings in Dravet Syndrome (DS) are scarce, especially in adult patients, and often do not have a genetic confirmation. Additionally, the missense SCN1A pathogenic variant found has only been described as de novo mutation in previous literature. METHODS We describe the clinical and genetic findings of a family (including three sisters and his father), using Sanger sequencing in the three sisters and in postmortem brain tissue in the father. The present study also shows the neuropathological findings of the father. RESULTS Despite the presence of long term drug resistant epilepsy, starting with febrile seizures between 6 and 12 months of age, and intellectual disability (ID), the three sisters were diagnosed with DS in adulthood, identifying a missense SCN1A pathogenic variant in exon 20, previously described as de novo -p.Gly1332Glu (c .3995 G>A). The oldest sister had the most severe phenotype, with severe ID and wheel chair dependency, passing away at 52. The other two sisters had a moderate phenotype, being at the present seizure free, but with significant comorbidities, such as crouch gait and parkinsonism. Several relatives from the paternal path (including the father) presented epilepsy, but without ID. The father was diagnosed with Alzheimer´s Disease (AD) at 60, and because he donated his brain, the same variant was confirmed in postmortem study. Neither the MRI nor the histopathology showed specific morphological changes for DS, consistent with previous studies. CONCLUSIONS This work supports the need to review the clinical and genetic spectra of DS in adults with epilepsy and unknown ID. The clinical consequences of this syndrome seem to have a functional rather than a structural basis, supported by the absence of specific neuropathological findings.
Collapse
Affiliation(s)
- A Sierra-Marcos
- Epilepsy Unit, Neurology Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain.
| | - R Ribosa-Nogué
- Epilepsy Unit, Neurology Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - N Vidal-Robau
- Pathology Department, Biomedical Diagnostic Centre (CDB), Hospital Clinic, Barcelona, Spain
| | - I Aldecoa
- Pathology Department, Biomedical Diagnostic Centre (CDB), Hospital Clinic, Barcelona, Spain; Neurological Tissue Bank, Biobanc-Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - E Turón
- Child Neurology Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - B Rodríguez-Santiago
- Genetics Department, Hospital de la Santa Creu i Sant Pau, Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - M Turón
- Neuropsychology Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - S Boronat
- Pathology Department, Biomedical Diagnostic Centre (CDB), Hospital Clinic, Barcelona, Spain
| | - L Molina-Porcel
- Neurological Tissue Bank, Biobanc-Hospital Clínic-IDIBAPS, Barcelona, Spain; Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Rong M, Benke T, Zulfiqar Ali Q, Aledo-Serrano Á, Bayat A, Rossi A, Devinsky O, Qaiser F, Ali AS, Fasano A, Bassett AS, Andrade DM. Adult Phenotype of SYNGAP1-DEE. Neurol Genet 2023; 9:e200105. [PMID: 38045990 PMCID: PMC10692795 DOI: 10.1212/nxg.0000000000200105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/20/2023] [Indexed: 12/05/2023]
Abstract
Background and Objectives SYNGAP1 variants are associated with rare developmental and epileptic encephalopathies (DEEs). Although SYNGAP1-related childhood phenotypes are well characterized, the adult phenotype remains ill-defined. We sought to investigate phenotypes and outcomes in adults with SYNGAP1 variants and epilepsy. Methods Patients 18 years or older with DEE carrying likely pathogenic and pathogenic (LP/P) SYNGAP1 variants were recruited through physicians' practices and patient organization groups. We used standardized questionnaires to evaluate current seizures, medication use, sleep, gastrointestinal symptoms, pain response, gait, social communication disorder and adaptive skills of patients. We also assessed caregiver burden. Results Fourteen unrelated adult patients (median: 21 years, range: 18-65 years) with SYNGAP1-DEE were identified, 11 with novel and 3 with known LP/P SYNGAP1 de novo variants. One patient with a partial exon 3 deletion had greater daily living skills and social skills than others with single-nucleotide variants. Ten of 14 (71%) patients had drug-resistant seizures, treated with a median of 2 antiseizure medications. All patients (100%) had abnormal pain processing. Sleep disturbances, social communication disorders, and aggressive/self-injurious behaviors were each reported in 86% of patients. Only half of adults could walk with minimal or no assistance. Toileting was normal in 29%, and 71% had constipation. No adult patients could read or understand verbal material at a sixth-grade level or higher. Aggressive/self-injurious behaviors were leading cause of caregiver burden. The oldest patient was aged 65 years; although nonambulant, she had walked independently when younger. Discussion Seventy-one percent of patients with SYNGAP1-DEEs continue to have seizures when adults. Nonseizure comorbidities, especially aggression and self-injurious behaviors, are major management challenges in adults with SYNGAP1-DEE. Only 50% of adults can ambulate with minimal or no assistance. Almost all adult patients depend on caregivers for many activities of daily living. Prompt diagnostic genetic testing of adults with DEE can inform clinical care and guide outcomes of precision therapies.
Collapse
Affiliation(s)
- Marlene Rong
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Tim Benke
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Quratulain Zulfiqar Ali
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Ángel Aledo-Serrano
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Allan Bayat
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Alessandra Rossi
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Orrin Devinsky
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Farah Qaiser
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Anum S Ali
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Alfonso Fasano
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Anne S Bassett
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Danielle M Andrade
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
14
|
Rusina E, Simonti M, Duprat F, Cestèle S, Mantegazza M. Voltage-gated sodium channels in genetic epilepsy: up and down of excitability. J Neurochem 2023. [PMID: 37654020 DOI: 10.1111/jnc.15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
The past two decades have witnessed a wide range of studies investigating genetic variants of voltage-gated sodium (NaV ) channels, which are involved in a broad spectrum of diseases, including several types of epilepsy. We have reviewed here phenotypes and pathological mechanisms of genetic epilepsies caused by variants in NaV α and β subunits, as well as of some relevant interacting proteins (FGF12/FHF1, PRRT2, and Ankyrin-G). Notably, variants of all these genes can induce either gain- or loss-of-function of NaV leading to either neuronal hyperexcitability or hypoexcitability. We present the results of functional studies obtained with different experimental models, highlighting that they should be interpreted considering the features of the experimental system used. These systems are models, but they have allowed us to better understand pathophysiological issues, ameliorate diagnostics, orientate genetic counseling, and select/develop therapies within a precision medicine framework. These studies have also allowed us to gain insights into the physiological roles of different NaV channels and of the cells that express them. Overall, our review shows the progress that has been made, but also the need for further studies on aspects that have not yet been clarified. Finally, we conclude by highlighting some significant themes of general interest that can be gleaned from the results of the work of the last two decades.
Collapse
Affiliation(s)
- Evgeniia Rusina
- University Cote d'Azur, Valbonne-Sophia Antipolis, France
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Martina Simonti
- University Cote d'Azur, Valbonne-Sophia Antipolis, France
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Fabrice Duprat
- University Cote d'Azur, Valbonne-Sophia Antipolis, France
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
- Inserm, Valbonne-Sophia Antipolis, France
| | - Sandrine Cestèle
- University Cote d'Azur, Valbonne-Sophia Antipolis, France
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Massimo Mantegazza
- University Cote d'Azur, Valbonne-Sophia Antipolis, France
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
- Inserm, Valbonne-Sophia Antipolis, France
| |
Collapse
|
15
|
Lenge M, Balestrini S, Mei D, Macconi L, Caligiuri ME, Cuccarini V, Aquino D, Mazzi F, d’Incerti L, Darra F, Bernardina BD, Guerrini R. Morphometry and network-based atrophy patterns in SCN1A-related Dravet syndrome. Cereb Cortex 2023; 33:9532-9541. [PMID: 37344172 PMCID: PMC10431750 DOI: 10.1093/cercor/bhad224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
Mutations of the voltage-gated sodium channel SCN1A gene (MIM#182389) are among the most clinically relevant epilepsy-related genetic mutations and present variable phenotypes, from the milder genetic epilepsy with febrile seizures plus to Dravet syndrome, a severe developmental and epileptic encephalopathy. Qualitative neuroimaging studies have identified malformations of cortical development in some patients and mild atrophic changes, partially confirmed by quantitative studies. Precise correlations between MRI findings and clinical variables have not been addressed. We used morphometric methods and network-based models to detect abnormal brain structural patterns in 34 patients with SCN1A-related epilepsy, including 22 with Dravet syndrome. By measuring the morphometric characteristics of the cortical mantle and volume of subcortical structures, we found bilateral atrophic changes in the hippocampus, amygdala, and the temporo-limbic cortex (P-value < 0.05). By correlating atrophic patterns with brain connectivity profiles, we found the region of the hippocampal formation as the epicenter of the structural changes. We also observed that Dravet syndrome was associated with more severe atrophy patterns with respect to the genetic epilepsy with febrile seizures plus phenotype (r = -0.0613, P-value = 0.03), thus suggesting that both the underlying mutation and seizure severity contribute to determine atrophic changes.
Collapse
Affiliation(s)
- Matteo Lenge
- Neuroscience Department, Meyer Children’s Hospital IRCCS, 50139, Florence, Italy
| | - Simona Balestrini
- Neuroscience Department, Meyer Children’s Hospital IRCCS, 50139, Florence, Italy
| | - Davide Mei
- Neuroscience Department, Meyer Children’s Hospital IRCCS, 50139, Florence, Italy
| | - Letizia Macconi
- Neuroradiology Unit, Meyer Children’s Hospital IRCCS, 50139, Florence, Italy
| | - Maria Eugenia Caligiuri
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Grecia University, 88100, Catanzaro, Italy
| | - Valeria Cuccarini
- Neuroradiology Unit, Fondazione IRCCS Neurologico Carlo Besta, 20100, Milan, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Neurologico Carlo Besta, 20100, Milan, Italy
| | - Federica Mazzi
- Neuroradiology Unit, Fondazione IRCCS Neurologico Carlo Besta, 20100, Milan, Italy
| | - Ludovico d’Incerti
- Neuroradiology Unit, Meyer Children’s Hospital IRCCS, 50139, Florence, Italy
| | - Francesca Darra
- Child Neuropsychiatry Unit, Department of Engineering for Innovation Medicine University of Verona, 37100, Verona, Italy
| | - Bernardo Dalla Bernardina
- Child Neuropsychiatry Unit, Department of Engineering for Innovation Medicine University of Verona, 37100, Verona, Italy
- Pediatric Epilepsy Research Center (CREP), Azienda Ospedaliera Universitaria Integrata, 37100, Verona, Italy
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children’s Hospital IRCCS, 50139, Florence, Italy
| |
Collapse
|
16
|
Huang H, Shakkottai VG. Targeting Ion Channels and Purkinje Neuron Intrinsic Membrane Excitability as a Therapeutic Strategy for Cerebellar Ataxia. Life (Basel) 2023; 13:1350. [PMID: 37374132 DOI: 10.3390/life13061350] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In degenerative neurological disorders such as Parkinson's disease, a convergence of widely varying insults results in a loss of dopaminergic neurons and, thus, the motor symptoms of the disease. Dopamine replacement therapy with agents such as levodopa is a mainstay of therapy. Cerebellar ataxias, a heterogeneous group of currently untreatable conditions, have not been identified to have a shared physiology that is a target of therapy. In this review, we propose that perturbations in cerebellar Purkinje neuron intrinsic membrane excitability, a result of ion channel dysregulation, is a common pathophysiologic mechanism that drives motor impairment and vulnerability to degeneration in cerebellar ataxias of widely differing genetic etiologies. We further propose that treatments aimed at restoring Purkinje neuron intrinsic membrane excitability have the potential to be a shared therapy in cerebellar ataxia akin to levodopa for Parkinson's disease.
Collapse
Affiliation(s)
- Haoran Huang
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Vikram G Shakkottai
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
17
|
Gao C, Pielas M, Jiao F, Mei D, Wang X, Kotulska K, Jozwiak S. Epilepsy in Dravet Syndrome—Current and Future Therapeutic Opportunities. J Clin Med 2023; 12:jcm12072532. [PMID: 37048615 PMCID: PMC10094968 DOI: 10.3390/jcm12072532] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Dravet Syndrome (DS) is a developmental epileptic encephalopathy characterized by drug-resistant seizures and other clinical features, including intellectual disability and behavioral, sleep, and gait problems. The pathogenesis is strongly connected to voltage-gated sodium channel dysfunction. The current consensus of seizure management in DS consists of a combination of conventional and recently approved drugs such as stiripentol, cannabidiol, and fenfluramine. Despite promising results in randomized clinical trials and extension studies, the prognosis of the developmental outcomes of patients with DS remains unfavorable. The article summarizes recent changes in the therapeutic approach to DS and discusses ongoing clinical research directions. Serotonergic agents under investigation show promising results and may replace less DS-specific medicines. The use of antisense nucleotides and gene therapy is focused not only on symptom relief but primarily addresses the underlying cause of the syndrome. Novel compounds, after expected safe and successful implementation in clinical practice, will open a new era for patients with DS. The main goal of causative treatment is to modify the natural course of the disease and provide the best neurodevelopmental outcome with minimum neurological deficit.
Collapse
|
18
|
Das RR, Goss AL, Scheffer IE. ANA Podcasts & Webinars: Genetics of Epilepsy. Ann Neurol 2023; 93:15. [PMID: 36372936 DOI: 10.1002/ana.26546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/15/2022]
Affiliation(s)
- Rohit R Das
- UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Ingrid E Scheffer
- University of Melbourne, Austin and Royal Children's Hospitals, Parkville, VIC, Australia
| |
Collapse
|
19
|
Scheffer IE, Bennett CA, Gill D, de Silva MG, Boggs K, Marum J, Baker N, Palmer EE, Howell KB. Exome sequencing for patients with developmental and epileptic encephalopathies in clinical practice. Dev Med Child Neurol 2023; 65:50-57. [PMID: 35701389 PMCID: PMC10952465 DOI: 10.1111/dmcn.15308] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
AIM To assess the clinical utility of exome sequencing for patients with developmental and epileptic encephalopathies (DEEs). METHOD Over 2 years, patients with DEEs were recruited for singleton exome sequencing. Parental segregation was performed where indicated. RESULTS Of the 103 patients recruited (54 males, 49 females; aged 2 weeks-17 years), the genetic aetiology was identified in 36 out of 103 (35%) with management implications in 13 out of 36. Exome sequencing revealed pathogenic or likely pathogenic variants in 30 out of 103 (29%) patients, variants of unknown significance in 39 out of 103 (38%), and 34 out of 103 (33%) were negative on exome analysis. After the description of new genetic diseases, a molecular diagnosis was subsequently made for six patients or through newly available high-density chromosomal microarray testing. INTERPRETATION We demonstrate the utility of exome sequencing in routine clinical care of children with DEEs. We highlight that molecular diagnosis often leads to changes in management and informs accurate prognostic and reproductive counselling. Our findings reinforce the need for ongoing analysis of genomic data to identify the aetiology in patients in whom the cause is unknown. The implementation of genomic testing in the care of children with DEEs should become routine in clinical practice. WHAT THIS PAPER ADDS The cause was identified in 35% of patients with developmental and epileptic encephalopathies. KCNQ2, CDKL5, SCN1A, and STXBP1 were the most frequently identified genes. Reanalysis of genomic data found the cause in an additional six patients. Genetic aetiology was identified in 41% of children with seizure onset under 2 years, compared to 18% with older onset. Finding the molecular cause led to management changes in 36% of patients with DEEs.
Collapse
Affiliation(s)
- Ingrid E. Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin HealthThe University of MelbourneHeidelbergVictoria
- Department of PaediatricsThe University of MelbourneVictoria
- Florey Institute of Neuroscience and Mental HealthHeidelbergVictoria
- Murdoch Children's Research InstituteParkvilleVictoria
| | - Caitlin A. Bennett
- Epilepsy Research Centre, Department of Medicine, Austin HealthThe University of MelbourneHeidelbergVictoria
| | - Deepak Gill
- TY Nelson Department of Neurology and NeurosurgeryThe Children's Hospital at WestmeadNew South Wales
| | - Michelle G. de Silva
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalParkvilleVictoria
- Australian Genomics Health AllianceMelbourne
| | - Kirsten Boggs
- Australian Genomics Health AllianceMelbourne
- Sydney Children's Hospitals NetworkSydney
| | - Justine Marum
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalParkvilleVictoria
| | - Naomi Baker
- Department of PaediatricsThe University of MelbourneVictoria
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalParkvilleVictoria
| | | | - Katherine B. Howell
- Department of PaediatricsThe University of MelbourneVictoria
- Murdoch Children's Research InstituteParkvilleVictoria
- Department of NeurologyThe Royal Children's HospitalParkvilleVictoriaAustralia
| |
Collapse
|
20
|
Makridis KL, Friedo AL, Kellinghaus C, Losch FP, Schmitz B, Boßelmann C, Kaindl AM. Successful treatment of adult Dravet syndrome patients with cenobamate. Epilepsia 2022; 63:e164-e171. [PMID: 36176237 DOI: 10.1111/epi.17427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 01/11/2023]
Abstract
Dravet syndrome (DS) is a rare, drug-resistant, severe developmental and epileptic encephalopathy caused by pathogenic variants in the α subunit of the voltage-gated sodium channel gene SCN1A. Hyperexcitability in DS results from loss of function in inhibitory interneurons. Thus sodium channel blockers are usually contraindicated in patients with DS as they may lead to disease aggravation. Cenobamate (CNB) is a novel antiseizure medication (ASM) with promising rates of seizure freedom in patients with focal-onset, drug-resistant epilepsy. CNB blocks persistent sodium currents by promoting the inactive states of sodium channels. In a multi-center study, we analyzed retrospectively the effect of an add-on therapy of CNB in adult patients with DS. We report four adult patients with DS in whom the use of CNB resulted in a significant seizure reduction of more than 80%, with a follow-up of up to 542 days. CNB was the first drug in these patients that resulted in a long-lasting and significant seizure reduction. No severe adverse events occurred. We highlight CNB as an ASM that may lead to a clinically meaningful reduction of seizure frequency in adult patients with DS. It is unclear, however, if all patients with DS benefit, requiring further investigation and functional experiments.
Collapse
Affiliation(s)
- Konstantin L Makridis
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Cell and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Epilepsy Center for Children and Adolescents, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna-Lena Friedo
- Epilepsy Center Berlin-Brandenburg, Epilepsieklinik Tabor, Bernau, Germany
| | | | | | - Bettina Schmitz
- Department of Neurology, Vivantes Humboldt-Klinikum, Berlin, Germany
| | - Christian Boßelmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Cell and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Epilepsy Center for Children and Adolescents, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
21
|
Zographos GA, Russ‐Hall SJ, Scheffer IE. Does long-term phenytoin have a place in Dravet syndrome? Ann Clin Transl Neurol 2022; 9:2036-2040. [PMID: 36314457 PMCID: PMC9735367 DOI: 10.1002/acn3.51684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022] Open
Abstract
Anti-seizure medications that block sodium channels are generally considered contraindicated in Dravet syndrome. There is, however, considerable debate about the sodium-channel blocker phenytoin, which is often used for status epilepticus, a frequent feature of Dravet syndrome. We describe four patients with Dravet syndrome in whom long-term phenytoin therapy reduced seizure frequency and duration. In two patients, phenytoin produced prolonged periods without status epilepticus for the first time. Attempting to wean phenytoin in all patients after 1 to 20 years of use resulted in seizure exacerbation. Reintroducing phenytoin improved seizure control, suggesting phenytoin is beneficial in some patients with Dravet syndrome.
Collapse
Affiliation(s)
- George A. Zographos
- Epilepsy Research Centre, Department of MedicineUniversity of Melbourne, Austin HealthMelbourneAustralia
| | - Sophie J. Russ‐Hall
- Epilepsy Research Centre, Department of MedicineUniversity of Melbourne, Austin HealthMelbourneAustralia
| | - Ingrid E. Scheffer
- Epilepsy Research Centre, Department of MedicineUniversity of Melbourne, Austin HealthMelbourneAustralia,Florey Institute of Neuroscience and Mental HealthMelbourneAustralia,Murdoch Children's Research Institute and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalMelbourneAustralia
| |
Collapse
|
22
|
Lo Barco T, Offredi F, Castino E, Proietti J, Cossu A, Fiorini E, Fontana E, Cantalupo G, Dalla Bernardina B, Darra F. Adaptive behaviour in adolescents and adults with Dravet syndrome. Dev Med Child Neurol 2022; 65:838-846. [PMID: 36316303 DOI: 10.1111/dmcn.15448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022]
Abstract
AIM To explore the feasibility of using an adaptive behaviour profile (ABP) assessment generated from a well-known measure-the Vineland Adaptive Behavior Scales, Second Edition (VABS-II)-as an instrument for outcome measures in adolescents and adults with Dravet syndrome. METHOD We administered the VABS-II to 35 adolescents and adults with Dravet syndrome (15 males; mean age 24 years, SD 8 years, range: 12-46 years) and collected epilepsy history and neurological features at the time of assessment. We conducted a cross-sectional analysis of VABS-II raw scores and performed cluster analysis to identify different subgroups. We then explored possible relationships between clinical and epilepsy features, ABPs, and age. RESULTS Most participants obtained the minimum standard scores in the various VABS-II subdomains, while the raw score analysis outlined interindividual and intraindividual differences among skills. We found two subpopulations: one with a 'lower' ABP and one with a 'higher' ABP, corresponding respectively to individuals in whom myoclonic seizures or generalized spike-and-wave activity were present ('complete phenotype') or absent ('incomplete phenotype') on electroencephalography. INTERPRETATION This study further delineates the natural history of Dravet syndrome. The assessment of an ABP through the VABS-II raw score analysis provides a means by which to illustrate profiles of adaptive behaviour in adolescents and adults with Dravet syndrome but shows limitations related to poor sensitivity in measuring fine clinical details. There is a need for new and more specific tools to monitor patients with developmental and epileptic encephalopathies.
Collapse
Affiliation(s)
- Tommaso Lo Barco
- Child Neuropsychiatry Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy.,Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy.,Research Center for Pediatric Epilepsies Verona, Verona, Italy
| | - Francesca Offredi
- Child Neuropsychiatry Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Eva Castino
- Child Neuropsychiatry Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Jacopo Proietti
- Child Neuropsychiatry Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy.,Research Center for Pediatric Epilepsies Verona, Verona, Italy
| | - Alberto Cossu
- Child Neuropsychiatry Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Elena Fiorini
- Child Neuropsychiatry Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Elena Fontana
- Child Neuropsychiatry Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Gaetano Cantalupo
- Child Neuropsychiatry Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy.,Research Center for Pediatric Epilepsies Verona, Verona, Italy
| | - Bernardo Dalla Bernardina
- Child Neuropsychiatry Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy.,Research Center for Pediatric Epilepsies Verona, Verona, Italy
| | - Francesca Darra
- Child Neuropsychiatry Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy.,Research Center for Pediatric Epilepsies Verona, Verona, Italy
| |
Collapse
|
23
|
Krey I, Platzer K, Esterhuizen A, Berkovic SF, Helbig I, Hildebrand MS, Lerche H, Lowenstein D, Møller RS, Poduri A, Sadleir L, Sisodiya SM, Weckhuysen S, Wilmshurst JM, Weber Y, Lemke JR. Current practice in diagnostic genetic testing of the epilepsies. Epileptic Disord 2022; 24:765-786. [PMID: 35830287 PMCID: PMC10752379 DOI: 10.1684/epd.2022.1448] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2022] [Indexed: 01/19/2023]
Abstract
Epilepsy genetics is a rapidly developing field, in which novel disease-associated genes, novel mechanisms associated with epilepsy, and precision medicine approaches are continuously being identified. In the past decade, advances in genomic knowledge and analysis platforms have begun to make clinical genetic testing accessible for, in principle, people of all ages with epilepsy. For this reason, the Genetics Commission of the International League Against Epilepsy (ILAE) presents this update on clinical genetic testing practice, including current techniques, indications, yield of genetic testing, recommendations for pre- and post-test counseling, and follow-up after genetic testing is completed. We acknowledge that the resources vary across different settings but highlight that genetic diagnostic testing for epilepsy should be prioritized when the likelihood of an informative finding is high. Results of genetic testing, in particular the identification of causative genetic variants, are likely to improve individual care. We emphasize the importance of genetic testing for individuals with epilepsy as we enter the era of precision therapy.
Collapse
Affiliation(s)
- Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Alina Esterhuizen
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Samuel F. Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Heidelberg, VIC, Australia
| | - Ingo Helbig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Building C, Arnold-Heller-Straße 3, 24105 Kiel, Germany
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104 USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104 USA
| | - Michael S. Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg and Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, Australia
| | - Holger Lerche
- Department of Epileptology and Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Daniel Lowenstein
- Department of Neurology, University of California, San Francisco, USA
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynette Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology London, UK and Chalfont Centre for Epilepsy, Buckinghamshire, UK
| | - Sarah Weckhuysen
- Center for Molecular Neurology, VIB-University of Antwerp, VIB, Antwerp, Belgium; Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Jo M. Wilmshurst
- Department of Paediatric Neurology, Paediatric and Child Health, Red Cross War Memorial Children’s Hospital, Neuroscience Institute, University of Cape Town, South Africa
| | - Yvonne Weber
- Department of Epileptology and Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
- Department of Epileptology and Neurology, University of Aachen, Germany
| | - Johannes R. Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
24
|
Clayton LM, Williams E, Balestrini S, Sisodiya SM. Case report: Dravet syndrome, feeding difficulties and gastrostomy. Front Neurol 2022; 13:993906. [PMID: 36176564 PMCID: PMC9513453 DOI: 10.3389/fneur.2022.993906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Dravet syndrome (DS) is a developmental and epileptic encephalopathy associated with variants in the voltage-gated sodium channel alpha 1 subunit (SCN1A) gene in around 90% of individuals. The core phenotype is well-recognized, and is characterized by seizure onset in infancy, typically with prolonged febrile seizures, followed by the emergence of multiple seizure types that are frequently drug-resistant, developmental delay, and intellectual disability. Comorbidities are common and include autism spectrum disorder, gait impairment, scoliosis, and sleep disorder. Feeding difficulties and weight loss are frequently reported by DS caregivers, and negatively impact quality of life, yet have received little attention. Here we report an adult with DS who developed reduced food and fluid intake in adolescence, resulting in weight loss and malnutrition. No underlying cause for her feeding difficulties was identified, and she subsequently required insertion of a percutaneous endoscopic gastrostomy. We review the occurrence of feeding difficulties in people with DS and discuss potential mechanisms.
Collapse
Affiliation(s)
- Lisa M. Clayton
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Buckinghamshire, United Kingdom
| | | | - Simona Balestrini
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Buckinghamshire, United Kingdom
- Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Buckinghamshire, United Kingdom
- *Correspondence: Sanjay M. Sisodiya
| |
Collapse
|
25
|
Phenotypic and Genotypic Spectrum of Early-Onset Developmental and Epileptic Encephalopathies-Data from a Romanian Cohort. Genes (Basel) 2022; 13:genes13071253. [PMID: 35886038 PMCID: PMC9322987 DOI: 10.3390/genes13071253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Early-onset developmental epileptic encephalopathy (DEE) refers to an age-specific, diverse group of epilepsy syndromes with electroclinical anomalies that are associated with severe cognitive, behavioral, and developmental impairments. Genetic DEEs have heterogeneous etiologies. This study includes 36 Romanian patients referred to the Regional Centre for Medical Genetics Dolj for genetic testing between 2017 and 2020. The patients had been admitted to and clinically evaluated at Doctor Victor Gomoiu Children’s Hospital and Prof. Dr. Alexandru Obregia Psychiatry Hospital in Bucharest. Panel testing was performed using the Illumina® TruSight™ One “clinical exome” (4811 genes), and the analysis focused on the known genes reported in DEEs and clinical concordance. The overall diagnostic rate was 25% (9/36 cases). Seven cases were diagnosed with Dravet syndrome (likely pathogenic/pathogenic variants in SCN1A) and two with Genetic Epilepsy with Febrile Seizures Plus (SCN1B). For the diagnosed patients, seizure onset was <1 year, and the seizure type was generalized tonic-clonic. Four additional plausible variants of unknown significance in SCN2A, SCN9A, and SLC2A1 correlated with the reported phenotype. Overall, we are reporting seven novel variants. Comprehensive clinical phenotyping is crucial for variant interpretation. Genetic assessment of patients with severe early-onset DEE can be a powerful diagnostic tool for clinicians, with implications for the management and counseling of the patients and their families.
Collapse
|
26
|
The clinical, economic, and humanistic burden of Dravet syndrome - A systematic literature review. Epilepsy Behav 2022; 130:108661. [PMID: 35334258 DOI: 10.1016/j.yebeh.2022.108661] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Dravet syndrome (DS) is a developmental and epileptic encephalopathy with evolving disease course as individuals age. In recent years, the treatment landscape of DS has changed considerably, and a comprehensive systematic review of the contemporary literature is lacking. Here we synthesized published evidence on the occurrence of clinical impacts by age, the economic and humanistic (health-related quality-of-life [HRQoL]) burden, and health state utility. We provide an evidence-based, contemporary visualization of the clinical manifestations, highlighting that DS is not limited to seizures; non-seizure manifestations appear early in life and increase over time, contributing significantly to the economic and humanistic burden of disease. The primary drivers of HRQoL in DS include seizure severity, cognition, and motor and behavioral problems; in turn, these directly affect caregivers through the extent of assistance required and consequent impact on activities of daily living. Unsurprisingly, costs are driven by seizure-related events, hospitalizations, and in-home medical care visits. This systematic review highlights a paucity of longitudinal data; most studies meeting inclusion criteria were cross-sectional or had short follow-up. Nonetheless, available data illustrate the substantial impact on individuals, their families, and healthcare systems and establish the need for novel therapies to address the complex spectrum of DS manifestations.
Collapse
|
27
|
Legros L, Adle-Biassette H, Dozières-Puyravel B, Khung S, Elmaleh-Bergès M, Lesca G, Delanoë C, Biran V, Auvin S. Neuropathology findings in KCNQ2 neonatal epileptic encephalopathy. Seizure 2022; 99:36-39. [DOI: 10.1016/j.seizure.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
|
28
|
Martin P, Kümmerle A. Motor and behavioral phenotype of Dravet syndrome in adulthood. Epilepsy Behav 2022; 129:108601. [PMID: 35203016 DOI: 10.1016/j.yebeh.2022.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022]
Abstract
In a comparative cross-sectional study, 26 adult individuals with clinically typical, genetically confirmed Dravet syndrome (DS) and an equal number of individuals with early onset, problematic epilepsy, and intellectual disability (ID) of comparable severity were included. The aim of the study was to find out whether patients with DS could be clearly distinguished from the comparison group with regard to neurological and behavioral symptoms. Significant differences were found in that individuals with DS clearly more frequently exhibited a symptom cluster characterized by bradykinesia, hypomimia, hypophonia, (spastic) increased muscle tone, ataxia, sthenic perseveration, and a special interest in colors. To these symptoms must be added, according to the findings of previous examinations, mastication, camptocormia/antecollis on the one hand, and the tendency to visual hallucinations on the other hand, in order to define one neuropsychiatric phenotype of DS in adulthood. To these symptoms must be added, according to the findings of previous investigations, crouch gait with camptocormia/antecollis on the one hand, and the tendency to visual hallucinations on the other hand, in order to define one outlined neuropsychiatric phenotype of DS in adulthood.
Collapse
Affiliation(s)
- Peter Martin
- Séguin-Clinic for Persons with Severe Intellectual Disability, Epilepsy Centre Kork, Germany; Medical Faculty, University of Freiburg, Germany.
| | | |
Collapse
|
29
|
Marco-Hernández AV, Caro-Llopis A, Rubio Sánchez P, Martínez Martínez JC, Tomás Vila M, Monfort S, Martínez F. Extending the Phenotype Related to SCN1A Gene: Arthrogryposis, Movement Disorders, and Malformations of Cortical Development. J Child Neurol 2022; 37:340-350. [PMID: 35072530 DOI: 10.1177/08830738211072694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Expand the knowledge about the clinical phenotypes associated with pathogenic or likely pathogenic variants in the SCN1A gene. METHODS The study was carried out in 15 patients with SCN1A variants. The complete phenotype of the patients was evaluated. A systematic search was carried out in the scientific literature for those unexpected symptoms. RESULTS Ten patients showed a missense variant, whereas the remaining showed different loss-of-function variants. Twelve (80%) had Dravet syndrome. Two (13.3%) had Epilepsy with febrile seizures plus. Three (20%) presented an atypical phenotype. One of them was developmental and epileptic encephalopathy with arthrogryposis, the other Dravet syndrome and movement disorder, and lastly one patient had Dravet syndrome and malformations of the cortical development. CONCLUSION The exhaustive assessment of patients with pathogenic alterations detected in massive sequencing can help us to expand the phenotype, understand the etiopathogenesis associated with each genetic abnormality, and thus improve the prognosis and management of future patients.
Collapse
Affiliation(s)
| | | | - Pilar Rubio Sánchez
- Neurophysiology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Miguel Tomás Vila
- Neuropediatric Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Sandra Monfort
- Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Francisco Martínez
- Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
30
|
Studtmann C, Ladislav M, Topolski MA, Safari M, Swanger SA. NaV1.1 haploinsufficiency impairs glutamatergic and GABAergic neuron function in the thalamus. Neurobiol Dis 2022; 167:105672. [DOI: 10.1016/j.nbd.2022.105672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
|
31
|
Scn1a gene reactivation after symptom onset rescues pathological phenotypes in a mouse model of Dravet syndrome. Nat Commun 2022; 13:161. [PMID: 35013317 PMCID: PMC8748984 DOI: 10.1038/s41467-021-27837-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 12/14/2021] [Indexed: 01/02/2023] Open
Abstract
Dravet syndrome is a severe epileptic encephalopathy caused primarily by haploinsufficiency of the SCN1A gene. Repetitive seizures can lead to endurable and untreatable neurological deficits. Whether this severe pathology is reversible after symptom onset remains unknown. To address this question, we generated a Scn1a conditional knock-in mouse model (Scn1a Stop/+) in which Scn1a expression can be re-activated on-demand during the mouse lifetime. Scn1a gene disruption leads to the development of seizures, often associated with sudden unexpected death in epilepsy (SUDEP) and behavioral alterations including hyperactivity, social interaction deficits and cognitive impairment starting from the second/third week of age. However, we showed that Scn1a gene re-activation when symptoms were already manifested (P30) led to a complete rescue of both spontaneous and thermic inducible seizures, marked amelioration of behavioral abnormalities and normalization of hippocampal fast-spiking interneuron firing. We also identified dramatic gene expression alterations, including those associated with astrogliosis in Dravet syndrome mice, that, accordingly, were rescued by Scn1a gene expression normalization at P30. Interestingly, regaining of Nav1.1 physiological level rescued seizures also in adult Dravet syndrome mice (P90) after months of repetitive attacks. Overall, these findings represent a solid proof-of-concept highlighting that disease phenotype reversibility can be achieved when Scn1a gene activity is efficiently reconstituted in brain cells. Dravet syndrome is a devastating epileptic encephalopathy caused by Scn1a gene haploinsufficiency. Exploiting a novel knock-in mouse model, here the authors show that restoring Scn1a expression after symptom onset is sufficient to rescue main phenotypic manifestations of the syndrome.
Collapse
|
32
|
Scheffer IE. Solving the Molecular Basis of the Developmental and Epileptic Encephalopathies: Are We there Yet? Epilepsy Curr 2021; 21:430-432. [PMID: 34924850 PMCID: PMC8652330 DOI: 10.1177/15357597211038180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
33
|
Silvennoinen K, Puvirajasinghe C, Hudgell K, Sidhu MK, Martins Custodio H, Jones WD, Balestrini S, Sisodiya SM. Late diagnoses of Dravet syndrome: How many individuals are we missing? Epilepsia Open 2021; 6:770-776. [PMID: 34268891 PMCID: PMC8633473 DOI: 10.1002/epi4.12525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
We report new genetic diagnoses of Dravet syndrome in a group of adults with complex epilepsy of unknown cause, under follow-up at a tertiary epilepsy center. Individuals with epilepsy and other features of unknown cause from our unit underwent whole-genome sequencing through the 100 000 Genomes Project. Virtual gene panels were applied to frequency-filtered variants based on phenotype summary. Of 1078 individuals recruited, 8 (0.74%) were identified to have a pathogenic or likely pathogenic variant in SCN1A. Variant types were as follows: nonsense (stopgain) in five (62.5%) and missense in three (37.5%). Detailed review of childhood history confirmed a phenotype compatible with Dravet syndrome. Median age at genetic diagnosis was 44.5 years (range 28-52 years). Tonic-clonic seizures were ongoing in all despite polytherapy including valproate. All had a history of fever sensitivity and myoclonic seizures, which were ongoing in two (25%) and three (37.5%) individuals, respectively. Salient features of Dravet syndrome may be less apparent in adulthood, making clinical diagnosis difficult. Regardless of age, benefits of a genetic diagnosis include access to syndrome-specific treatment options, avoidance of harmful drugs, and monitoring for common complications.
Collapse
Affiliation(s)
- Katri Silvennoinen
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- Chalfont Centre for EpilepsyChalfont St PeterUK
| | | | | | - Meneka K. Sidhu
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- Chalfont Centre for EpilepsyChalfont St PeterUK
| | - Helena Martins Custodio
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- Chalfont Centre for EpilepsyChalfont St PeterUK
| | - Wendy D. Jones
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- North East Thames Regional Genetics ServiceGreat Ormond Street HospitalLondonUK
| | - Simona Balestrini
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- Chalfont Centre for EpilepsyChalfont St PeterUK
- Children's Hospital A. MeyerUniversity of FlorenceFlorenceItaly
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- Chalfont Centre for EpilepsyChalfont St PeterUK
| |
Collapse
|
34
|
Abstract
This article situates the movement for the legalisation of medicinal cannabis within the bigger picture of the impetus toward recreational cannabis legalisation. It describes the role played by children with epileptic syndromes in the medicinal cannabis law reform campaigns in the United Kingdom, and Queensland, New South Wales and Victoria in Australia. Noting the 'rule of rescue' and the prominence in media campaigns of children in Australian and English cases of parental disputation with clinicians about treatment for their children, it reviews whether paediatric epilepsy is a suitable test case for the legalisation of medicinal cannabis. Taking into account the vested commercial interests of Big Cannabis, the current medico-scientific knowledge of the efficacy of medicinal cannabis in controlling paediatric epileptic seizures, and issues of dignity, health privacy, and the enduring digital footprints of media coverage, the article commences discussion about the ethics of the media, parents, politicians and entrepreneurial doctors utilising parents' testimonials about the effects of medicinal cannabis as part of the cannabis law reform movement.
Collapse
Affiliation(s)
- Ian Freckelton Ao Qc
- Castan Chambers, Melbourne, Australia.
- University of Melbourne, Melbourne, Australia.
- C/o Foley's List, Owen Dixon Chambers, 205 William St, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
35
|
Balestrini S, Guerrini R, Sisodiya SM. Rare and Complex Epilepsies from Childhood to Adulthood: Requirements for Separate Management or Scope for a Lifespan Holistic Approach? Curr Neurol Neurosci Rep 2021; 21:65. [PMID: 34817708 PMCID: PMC8613076 DOI: 10.1007/s11910-021-01154-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE In this descriptive review, we describe current models of transition in rare and complex epilepsy syndromes and propose alternative approaches for more holistic management based on disease biology. RECENT FINDINGS Previously published guidance and recommendations on transition strategies in individuals with epilepsy have not been systematically and uniformly applied. There is significant heterogeneity in models of transition/transfer of care across countries and even within the same country. We provide examples of the most severe epilepsy and related syndromes and emphasise the limited data on their outcome in adulthood. Rare and complex epilepsy syndromes have unique presentations and require high levels of expertise and multidisciplinary approach. Lifespan clinics, with no transition, but instead continuity of care from childhood to adulthood with highly specialised input from healthcare providers, may represent an alternative effective approach. Effectiveness should be measured by evaluation of quality of life for both patients and their families/caregivers.
Collapse
Affiliation(s)
- Simona Balestrini
- Department of Clinical and Experimental Epilepsy, University College of London (UCL) Queen Square Institute of Neurology, London WC1N 3BG and Chalfont Centre for Epilepsy, London, Bucks, UK.
- Neuroscience Department, Meyer Children's Hospital, European Reference Network ERN EpiCARE, 50139, Florence, Italy.
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital, European Reference Network ERN EpiCARE, 50139, Florence, Italy
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College of London (UCL) Queen Square Institute of Neurology, London WC1N 3BG and Chalfont Centre for Epilepsy, London, Bucks, UK
| |
Collapse
|
36
|
Auvin S, Damera V, Martin M, Holland R, Simontacchi K, Saich A. The impact of seizure frequency on quality of life in patients with Lennox-Gastaut syndrome or Dravet syndrome. Epilepsy Behav 2021; 123:108239. [PMID: 34375802 DOI: 10.1016/j.yebeh.2021.108239] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/30/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Lennox-Gastaut syndrome (LGS) and Dravet syndrome (DS) are rare treatment-resistant epileptic encephalopathies with limited data describing the relationship between seizures and quality of life (QoL). The objective of this cross-sectional pilot study was to assess the impact on QoL of seizures and seizure-free days for the generation of utility values. METHODS Surveys were conducted in the UK and France, whereby patients and/or caregivers of patients with LGS, DS, or other epilepsies were asked to score health state vignettes for a hypothetical patient with LGS or DS. Respondents evaluated QoL for health states based on the number of seizures and seizure-free days per month, using a visual analog scale (VAS). Visual analog scale scores were converted to the 0-1 scale as a proxy estimate for utility values. Surveys were pilot tested and respondents were recruited from October 2018 to August 2019. RESULTS Patient respondents were mainly treatment-responsive (n = 43/55) whereas caregiver respondents mainly cared for patients with treatment-resistant epilepsy (n = 38/43). Most respondents and patients were aged ≥18 years. Results from LGS and DS surveys in the UK (n = 58) and France (n = 40) suggested that health states with fewer seizures and more seizure-free days had higher QoL scores for hypothetical patients. For DS, QoL scores for patient health states ranged from 0.20 (32 convulsive seizures and 4 seizure-free days/month, UK) to 0.92 (seizure-free, France). For LGS, scores ranged from 0.14 (130 drop seizures and 1 seizure-free day/month, France) to 0.83 (seizure-free, UK). In all surveys, seizure-free days had a greater impact on QoL than seizure frequency (P < 0.001). CONCLUSIONS Fewer seizures and additional seizure-free days improved QoL in patients with LGS or DS; seizure-free days had the greatest impact on QoL.
Collapse
Affiliation(s)
- Stéphane Auvin
- Université de Paris, Service de Neurologie Pédiatrique, Hôpital Robert-Debré, APHP, 48 Bd Sérurier, 75019 Paris, France.
| | - Vidya Damera
- Syneos Health Consulting, 10 Bloomsbury Way, 4th Floor, London WC1A 2SL, UK
| | - Monique Martin
- Syneos Health Consulting, 10 Bloomsbury Way, 4th Floor, London WC1A 2SL, UK
| | - Rowena Holland
- GW Pharma Ltd, 1 Cavendish Pl, Marylebone, London W1G 0QF, UK
| | | | - Andrew Saich
- Greenwich Biosciences, Inc., 5750 Fleet St, Carlsbad, CA 92008, USA
| |
Collapse
|
37
|
Juandó-Prats C, James E, Bilder DA, McNair L, Kenneally N, Helfer J, Huang N, Vila MC, Sullivan J, Wirrell E, Rico S. DRAVET ENGAGE. Parent caregivers of children with Dravet syndrome: Perspectives, needs, and opportunities for clinical research. Epilepsy Behav 2021; 122:108198. [PMID: 34284219 DOI: 10.1016/j.yebeh.2021.108198] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/15/2022]
Abstract
Dravet syndrome (DS) is an intractable developmental and epileptic encephalopathy significantly impacting affected children and their families. A novel, one-time, adeno-associated virus (AAV)-mediated gene regulation therapy was designed to treat the underlying cause of DS, potentially improving the full spectrum of DS manifestations. To ensure the first-in-human clinical trial addresses meaningful outcomes for patients and families, we examined their perspectives, priorities, goals, and desired outcomes in the design phase through a mixed methods approach (quantitative and qualitative). We conducted a non-identifiable parent caregiver survey, shared through a patient advocacy organization (n = 36 parents; children age ≤6 years). Parents were also engaged via three group discussions (n = 10; children age 2-20 years) and optional follow-up in-depth individual interviews (n = 6). Qualitative data analysis followed an inductive interpretive process, and qualitative researchers conducted a thematic analysis with a narrative approach. Survey results revealed most children (94%) were diagnosed by age 1, with onset of seizures at mean age 6.2 months and other DS manifestations before 2 years. The most desired disease aspects to address with potential new disease-modifying therapies were severe seizures (ranked by 92% of caregivers) and communication issues (development, expressive, receptive; 72-83%). Qualitative results showed the need for trial outcomes that recognize the impact of DS on the whole family. Parents eventually hope for trials including children of all ages and were both excited about the potential positive impact of a one-time disease-modifying therapy and mindful of potential long-term implications. Participants reflected on the details and risks of a clinical trial design (e.g., sham procedures) and described the different factors that relate to their decision to participate in a trial. Their main aspirations were to stop neurodevelopmental stagnation, to reduce seizures, and to reduce the impact on their families' wellbeing. To our knowledge, this is the first study within a patient-oriented research framework that specifically explored parents' needs and perceptions regarding clinical trials of a potential disease-modifying therapy for children with a severe, developmental disease, such as DS.
Collapse
Affiliation(s)
- Clara Juandó-Prats
- Dalla Lana School of Public Health, University of Toronto, ON, Canada; Applied Health Research Center, St. Michael's Hospital, Unity Health Toronto, ON, Canada.
| | - Emma James
- Encoded Therapeutics, Inc., South San Francisco, CA, USA
| | | | | | - Noah Kenneally
- Humane Services and Early Learning, MacEwan University, Edmonton, AB, Canada
| | | | - Norman Huang
- Encoded Therapeutics, Inc., South San Francisco, CA, USA
| | | | - Joseph Sullivan
- University of California, San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Elaine Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Salvador Rico
- Encoded Therapeutics, Inc., South San Francisco, CA, USA
| |
Collapse
|
38
|
Clayton LM, Balestrini S, Cross JH, Wilson G, Eldred C, Evans H, Koepp MJ, Sisodiya SM. The impact of SARS-CoV-2 vaccination in Dravet syndrome: A UK survey. Epilepsy Behav 2021; 124:108258. [PMID: 34536735 PMCID: PMC8379095 DOI: 10.1016/j.yebeh.2021.108258] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND The COVID-19 pandemic led to the urgent need for accelerated vaccine development. Approved vaccines have proved to be safe and well tolerated across millions of people in the general population. Dravet syndrome (DS) is a severe, early onset, developmental and epileptic encephalopathy. Vaccination is a precipitating factor for seizures. While there is no evidence that vaccine-precipitated seizures lead to adverse outcomes in people with DS, fear surrounding vaccination can remain for caregivers of people with DS, in some cases resulting in rejection of recommended vaccinations, leaving individuals more vulnerable to the relevant infections. A greater understanding of the safety profile of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in this vulnerable group will help provide guidance for caregivers and clinicians when considering vaccination. METHODS A cross-sectional survey regarding COVID-19 and SARS-CoV-2 vaccine, in people with DS, was conducted by Dravet Syndrome UK (DSUK). Concomitantly, a review of individuals with DS who had recently received the SARS-CoV-2 vaccine, and who are resident at the Chalfont Centre for Epilepsy (CCE), or attend epilepsy clinics at the National Hospital for Neurology and Neurosurgery (NHNN), was undertaken. RESULTS Thirty-eight people completed the DSUK survey. Thirty-seven percent of caregivers reported being concerned about someone with DS receiving the SARS-CoV-2 vaccine; with some reporting that they would decline a vaccine when offered. Seventy-seven percent had not received any advice from a healthcare professional about the SARS-CoV-2 vaccination. 18/38 were eligible for SARS-CoV-2 vaccination, of whom nine had received their first vaccine dose. Combining the results of the DSUK survey and the review of individuals monitored at CCE or NHNN, fifteen people with DS had received their first dose of the SARS-CoV-2 vaccine. 11/15 (73%) reported at least one side effect, the most common being fatigue (6/15; 40%) and fever (6/15; 40%). Three individuals (20%) reported an increase in seizure frequency after the first vaccine dose. No increase in seizure frequency or duration was reported after the second dose. CONCLUSION Overall, these results suggest that SARS-CoV-2 vaccines are safe and well tolerated in individuals with DS, as they are in most people without DS. In most people with DS, SARS-CoV-2 vaccine does not appear to be associated with an increase in the frequency or duration of seizures, even in those who develop fever post-vaccination. Many caregivers are concerned about a person with DS receiving a SARS-CoV-2 vaccine, with some reporting that they would decline a SARS-CoV-2 vaccine when offered. It is crucial that healthcare professionals are proactive in providing accurate information regarding the risks and benefits of vaccination in this population, given the potential for serious outcomes from infection.
Collapse
Affiliation(s)
- Lisa M Clayton
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont St. Peter, Buckinghamshire SL9 0RJ, UK.
| | - Simona Balestrini
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont St. Peter, Buckinghamshire SL9 0RJ, UK; Neuroscience Department, Meyer Children Hospital, Viale Gaetano Pieraccini, 2450139 Florence, Italy.
| | - J Helen Cross
- UCL NIHR BRC Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; Young Epilepsy, Piers Lane, Lingfield RH7 6PW, UK.
| | - Galia Wilson
- Dravet Syndrome UK (DSUK), Registered Charity Number 1128289, Member of Dravet Syndrome European Federation (DSEF), PO Box 756, Chesterfield S43 9EB, UK.
| | - Claire Eldred
- Dravet Syndrome UK (DSUK), Registered Charity Number 1128289, Member of Dravet Syndrome European Federation (DSEF), PO Box 756, Chesterfield S43 9EB, UK.
| | - Helen Evans
- Dravet Syndrome UK (DSUK), Registered Charity Number 1128289, Member of Dravet Syndrome European Federation (DSEF), PO Box 756, Chesterfield S43 9EB, UK.
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont St. Peter, Buckinghamshire SL9 0RJ, UK.
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont St. Peter, Buckinghamshire SL9 0RJ, UK.
| |
Collapse
|
39
|
Li W, Schneider AL, Scheffer IE. Defining Dravet syndrome: An essential pre-requisite for precision medicine trials. Epilepsia 2021; 62:2205-2217. [PMID: 34338318 PMCID: PMC9291974 DOI: 10.1111/epi.17015] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The classical description of Dravet syndrome, the prototypic developmental and epileptic encephalopathy, is of a normal 6-month-old infant presenting with a prolonged, febrile, hemiclonic seizure and showing developmental slowing after age 1 year. SCN1A pathogenic variants are found in >80% of patients. Many patients have atypical features resulting in diagnostic delay and inappropriate therapy. We aimed to provide an evidence-based definition of SCN1A-Dravet syndrome in readiness for precision medicine trials. METHODS Epilepsy patients were recruited to the University of Melbourne Epilepsy Genetics Research Program between 1995 and 2020 by neurologists from around the world. Patients with SCN1A pathogenic variants were reviewed and only those with Dravet syndrome were included. Clinical data, including seizure and developmental course, were analyzed in all patients with SCN1A-Dravet syndrome. RESULTS Two hundred and five patients were studied at a median age of 8.5 years (range 10 months to 60 years); 25 were deceased. The median seizure-onset age was 5.7 months (range 1.5-20.6 months). Initial seizures were tonic-clonic (52%) and hemiclonic (35%), with only 55% being associated with fever. Only 34% of patients presented with status epilepticus (seizure lasting ≥30 minutes). Median time between first and second seizure was 30 days (range 4 hours to 8 months), and seven patients (5%) had at least 6 months between initial seizures. Median ages at onset of second and third seizure types were 9.1 months (range 3 months-25.4 years) and 15.5 months (range 4 months-8.2 years), respectively. Developmental slowing occurred prior to 12 months in 27%. SIGNIFICANCE An evidence-based definition of SCN1A-Dravet syndrome is essential for early diagnosis. We refine the spectrum of Dravet syndrome, based on patterns of seizure onset, type, and progression. Understanding of the full spectrum of SCN1A-Dravet syndrome presentation is essential for early diagnosis and optimization of treatment, especially as precision medicine trials become available.
Collapse
Affiliation(s)
- Wenhui Li
- Children's Hospital of Fudan University, Shanghai, China.,Department of Medicine, Austin Health, Epilepsy Research Centre, University of Melbourne, Heidelberg, Vic., Australia
| | - Amy L Schneider
- Department of Medicine, Austin Health, Epilepsy Research Centre, University of Melbourne, Heidelberg, Vic., Australia
| | - Ingrid E Scheffer
- Department of Medicine, Austin Health, Epilepsy Research Centre, University of Melbourne, Heidelberg, Vic., Australia.,Florey Institute of Neuroscience and Mental Health, Heidelberg, Vic., Australia.,Murdoch Children's Research Institute and Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
40
|
Ho SY, Lin L, Chen IC, Tsai CW, Chang FC, Liou HH. Perampanel Reduces Hyperthermia-Induced Seizures in Dravet Syndrome Mouse Model. Front Pharmacol 2021; 12:682767. [PMID: 34335252 PMCID: PMC8317459 DOI: 10.3389/fphar.2021.682767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Treatment options for Dravet syndrome are limited. The aim of this study was to evaluate the antiepileptic effect of the AMPA receptor antagonist perampanel (PER) on a mouse model of Dravet syndrome (Scn1aE1099X/+). We report here that the PER (2 mg/kg) treatment inhibited the spontaneous recurrent seizures and attenuated epileptic activity in Scn1aE1099X/+ mice. In the hyperthermia-induced seizure experiment, PER clearly increased temperature tolerance and significantly ameliorated seizure frequency and discharge duration. PER also demonstrated antiepileptic effects in a cross-over study and a synergistic effect for attenuating heat-induced seizure when given in combination with stiripentol or valproic acid. The results showed that PER effectively decreased the occurrence of spontaneous recurrent seizures and showed significant therapeutic potential for hyperthermia-induced seizures with regard to both susceptibility and severity in a Dravet syndrome mouse model. Potential therapeutic effects of PER for treatment of Dravet syndrome were demonstrated.
Collapse
Affiliation(s)
- Shih-Yin Ho
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li Lin
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Chun Chen
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Che-Wen Tsai
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fang-Chia Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Horng-Huei Liou
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,National Taiwan University Hospital Yunlin Branch, Douliu, Taiwan
| |
Collapse
|
41
|
Barco TL, Kuchenbuch M, Garcelon N, Neuraz A, Nabbout R. Improving early diagnosis of rare diseases using Natural Language Processing in unstructured medical records: an illustration from Dravet syndrome. Orphanet J Rare Dis 2021; 16:309. [PMID: 34256808 PMCID: PMC8278630 DOI: 10.1186/s13023-021-01936-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/27/2021] [Indexed: 12/01/2022] Open
Abstract
Background The growing use of Electronic Health Records (EHRs) is promoting the application of data mining in health-care. A promising use of big data in this field is to develop models to support early diagnosis and to establish natural history. Dravet Syndrome (DS) is a rare developmental and epileptic encephalopathy that commonly initiates in the first year of life with febrile seizures (FS). Age at diagnosis is often delayed after 2 years, as it is difficult to differentiate DS at onset from FS. We aimed to explore if some clinical terms (concepts) are significantly more used in the electronic narrative medical reports of individuals with DS before the age of 2 years compared to those of individuals with FS. These concepts would allow an earlier detection of patients with DS resulting in an earlier orientation toward expert centers that can provide early diagnosis and care. Methods Data were collected from the Necker Enfants Malades Hospital using a document-based data warehouse, Dr Warehouse, which employs Natural Language Processing, a computer technology consisting in processing written information. Using Unified Medical Language System Meta-thesaurus, phenotype concepts can be recognized in medical reports. We selected individuals with DS (DS Cohort) and individuals with FS (FS Cohort) with confirmed diagnosis after the age of 4 years. A phenome-wide analysis was performed evaluating the statistical associations between the phenotypes of DS and FS, based on concepts found in the reports produced before 2 years and using a series of logistic regressions. Results We found significative higher representation of concepts related to seizures’ phenotypes distinguishing DS from FS in the first phases, namely the major recurrence of complex febrile convulsions (long-lasting and/or with focal signs) and other seizure-types. Some typical early onset non-seizure concepts also emerged, in relation to neurodevelopment and gait disorders. Conclusions Narrative medical reports of individuals younger than 2 years with FS contain specific concepts linked to DS diagnosis, which can be automatically detected by software exploiting NLP. This approach could represent an innovative and sustainable methodology to decrease time of diagnosis of DS and could be transposed to other rare diseases.
Collapse
Affiliation(s)
- Tommaso Lo Barco
- Department of Pediatric Neurology, Necker-Enfants Malades Hospital, APHP, Centre de Référence Épilepsies Rares, Member of ERN EPICARE, Université de Paris, Paris, France.,Child Neuropsychiatry, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Mathieu Kuchenbuch
- Department of Pediatric Neurology, Necker-Enfants Malades Hospital, APHP, Centre de Référence Épilepsies Rares, Member of ERN EPICARE, Université de Paris, Paris, France.,Imagine Institute, INSERM, UMR 1163, Université de Paris, 75015, Paris, France
| | - Nicolas Garcelon
- Imagine Institute, INSERM, UMR 1163, Université de Paris, 75015, Paris, France
| | - Antoine Neuraz
- Université de Paris, Paris, France.,INSERM, UMR1138, Centre de Recherche Des Cordeliers, Paris, France.,Department of Medical Informatics, University Hospital Necker-Enfants Malades, APHP, Paris, France
| | - Rima Nabbout
- Department of Pediatric Neurology, Necker-Enfants Malades Hospital, APHP, Centre de Référence Épilepsies Rares, Member of ERN EPICARE, Université de Paris, Paris, France. .,Imagine Institute, INSERM, UMR 1163, Université de Paris, 75015, Paris, France. .,Université de Paris, Paris, France.
| |
Collapse
|
42
|
Sullo F, Pasquetti E, Patanè F, Lo Bianco M, Marino SD, Polizzi A, Falsaperla R, Ruggieri M, Zanghì A, Praticò AD. SCN1A and Its Related Epileptic Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractEpilepsy is one of the most common neurological disorders, with a lifetime incidence of 1 in 26. Approximately two-thirds of epilepsy has a substantial genetic component in its etiology. As a result, simultaneous screening for mutations in multiple genes and performing whole exome sequencing (WES) are becoming very frequent in the clinical evaluation of children with epilepsy. In this setting, mutations in voltage-gated sodium channel (SCN) α-subunit genes are the most commonly identified cause of epilepsy, with sodium channel genes (i.e., SCN1A, SCN2A, SCN8A) being the most frequently identified causative genes. SCN1A mutations result in a wide spectrum of epilepsy phenotypes ranging from simple febrile seizures to Dravet syndrome, a severe epileptic encephalopathy. In case of mutation of SCN1A, it is also possible to observe behavioral alterations, such as impulsivity, inattentiveness, and distractibility, which can be framed in an attention deficit hyperactivity disorder (ADHD) like phenotype. Despite more than 1,200 SCN1A mutations being reported, it is not possible to assess a clear phenotype–genotype correlations. Treatment remains a challenge and seizure control is often partial and transitory.
Collapse
Affiliation(s)
- Federica Sullo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Elisa Pasquetti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesca Patanè
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Simona D. Marino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Martino Ruggieri
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
43
|
Mantegazza M, Cestèle S, Catterall WA. Sodium channelopathies of skeletal muscle and brain. Physiol Rev 2021; 101:1633-1689. [PMID: 33769100 DOI: 10.1152/physrev.00025.2020] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve, skeletal muscle, and other electrically excitable cells. Mutations in them cause a wide range of diseases. These channelopathy mutations affect every aspect of sodium channel function, including voltage sensing, voltage-dependent activation, ion conductance, fast and slow inactivation, and both biosynthesis and assembly. Mutations that cause different forms of periodic paralysis in skeletal muscle were discovered first and have provided a template for understanding structure, function, and pathophysiology at the molecular level. More recent work has revealed multiple sodium channelopathies in the brain. Here we review the well-characterized genetics and pathophysiology of the periodic paralyses of skeletal muscle and then use this information as a foundation for advancing our understanding of mutations in the structurally homologous α-subunits of brain sodium channels that cause epilepsy, migraine, autism, and related comorbidities. We include studies based on molecular and structural biology, cell biology and physiology, pharmacology, and mouse genetics. Our review reveals unexpected connections among these different types of sodium channelopathies.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France.,INSERM, Valbonne-Sophia Antipolis, France
| | - Sandrine Cestèle
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France
| | | |
Collapse
|
44
|
Abstract
Epilepsy and autism frequently co-occur. Epilepsy confers an increased risk of autism and autism confers an increased risk of epilepsy. Specific epilepsy syndromes, intellectual disability, and female gender present a particular risk of autism in individuals with epilepsy. Epilepsy and autism are likely to share common etiologies, which predispose individuals to either or both conditions. Genetic factors, metabolic disorders, mitochondrial disorders, and immune dysfunction all can be implicated.
Collapse
Affiliation(s)
- Frank M C Besag
- East London NHS Foundation Trust, 5-7 Rush Court, Bedford MK40 3JT, UK; University College London, London, UK; King's College London, London, UK.
| | - Michael J Vasey
- East London NHS Foundation Trust, 5-7 Rush Court, Bedford MK40 3JT, UK
| |
Collapse
|
45
|
Badv RS, Ghamari A, Ashrafi MR, Mohammadi M, Azizi Malamiri R, Heidari M. Managing Status Epilepticus in a Child with Dravet Syndrome: How Difficult It Could Be? JOURNAL OF PEDIATRIC EPILEPSY 2021. [DOI: 10.1055/s-0041-1723951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractPreviously known as severe myoclonic epilepsy of infancy, Dravet syndrome is characterized by febrile or afebrile prolonged hemiconvulsive seizures or generalized status epilepticus in an infant with previously normal development. Immediate management of status epilepticus is critical in these patients. Early control of status epilepticus prevents further brain damage; however, there is no consensus regarding the management of status epilepticus in children with Dravet syndrome, as many conventional antiseizure medications that are recommended in the management of status epilepticus worsen the seizures in these patients. A 2.5-year-old girl child patient was referred due to status epilepticus which was refractory to antiseizure medications. Sodium valproate, nitrazepam, ketogenic diet, intravenous phenytoin, and midazolam continuous infusion were administered. After controlling status epilepticus, the probable diagnosis of Dravet syndrome was proposed and confirmed by a mutation in SCN1A. As previously stated in numerous case reports, phenytoin worsens seizures in patients with Dravet syndrome. Therefore, it seems logical that in every infant with status epilepticus and probable Dravet syndrome, the practicing physician considers administering intravenous valproate or even midazolam continuous infusion instead of intravenous phenytoin.
Collapse
Affiliation(s)
- Reza Shervin Badv
- Department of Pediatric Neurology, Pediatric Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Ghamari
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Department of Pediatric Neurology, Pediatric Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Mohammadi
- Department of Pediatric Neurology, Pediatric Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Azizi Malamiri
- Department of Pediatric Neurology, Golestan Medical, Educational and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Morteza Heidari
- Department of Pediatric Neurology, Pediatric Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatric Neurology, Vali-e-Asr Hospital, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Guery D, Rheims S. Clinical Management of Drug Resistant Epilepsy: A Review on Current Strategies. Neuropsychiatr Dis Treat 2021; 17:2229-2242. [PMID: 34285484 PMCID: PMC8286073 DOI: 10.2147/ndt.s256699] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Drug resistant epilepsy (DRE) is defined as the persistence of seizures despite at least two syndrome-adapted antiseizure drugs (ASD) used at efficacious daily dose. Despite the increasing number of available ASD, about a third of patients with epilepsy still suffer from drug resistance. Several factors are associated with the risk of evolution to DRE in patients with newly diagnosed epilepsy, including epilepsy onset in the infancy, intellectual disability, symptomatic epilepsy and abnormal neurological exam. Pharmacological management often consists in ASD polytherapy. However, because quality of life is driven by several factors in patients with DRE, including the tolerability of the treatment, ASD management should try to optimize efficacy while anticipating the risks of drug-related adverse events. All patients with DRE should be evaluated at least once in a tertiary epilepsy center, especially to discuss eligibility for non-pharmacological therapies. This is of paramount importance in patients with drug resistant focal epilepsy in whom epilepsy surgery can result in long-term seizure freedom. Vagus nerve stimulation, deep brain stimulation or cortical stimulation can also improve seizure control. Lastly, considering the effect of DRE on psychologic status and social integration, comprehensive care adaptations are always needed in order to improve patients' quality of life.
Collapse
Affiliation(s)
- Deborah Guery
- Department of Functional Neurology and Epileptology, Hospices Civils De Lyon and University of Lyon, Lyon, France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils De Lyon and University of Lyon, Lyon, France.,Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France.,Epilepsy Institute, Lyon, France
| |
Collapse
|
47
|
De Liso P, Pironi V, Mastrangelo M, Battaglia D, Craiu D, Trivisano M, Specchio N, Nabbout R, Vigevano F. Fatal Status Epilepticus in Dravet Syndrome. Brain Sci 2020; 10:brainsci10110889. [PMID: 33238377 PMCID: PMC7700506 DOI: 10.3390/brainsci10110889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/21/2023] Open
Abstract
Dravet Syndrome (DS) is burdened by high epilepsy-related premature mortality due to status epilepticus (SE). We surveyed centres within Europe through the Dravet Italia Onlus and EpiCARE network (European Reference Network for Rare and Complex Epilepsies). We collated responses on seven DS SCN1A+ patients who died following refractory SE (mean age 6.9 year, range 1.3–23.4 year); six were on valproate, clobazam, and stiripentol. All patients had previous SE. Fatal SE was always triggered by fever: either respiratory infection or one case of hexavalent vaccination. SE lasted between 80 min and 9 h and all patients received IV benzodiazepines. Four patients died during or within hours of SE; in three patients, SE was followed by coma with death occurring after 13–60 days. Our survey supports the hypothesis that unresponsive fever is a core characteristic feature of acute encephalopathy. We highlight the need for management protocols for prolonged seizures and SE in DS.
Collapse
Affiliation(s)
- Paola De Liso
- Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (P.D.L.); (V.P.); (M.T.); (N.S.)
| | - Virginia Pironi
- Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (P.D.L.); (V.P.); (M.T.); (N.S.)
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health, Institute of Pediatrics, Policlinico Universitario Gemelli Foundation, Catholic University of Rome, 00168 Rome, Italy
| | | | - Domenica Battaglia
- Department of Child Neurology and Psychiatry, Policlinico Universitario Gemelli Foundation, Catholic University of Rome, 00153 Rome, Italy;
| | - Dana Craiu
- Department of Neurology, Paediatric Neurology, Psychiatry, Neurosurgery, “Carol Davila” University of Medicine of Bucharest, Full Member of European Reference Network EpiCARE, 050474 Bucharest, Romania;
| | - Marina Trivisano
- Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (P.D.L.); (V.P.); (M.T.); (N.S.)
| | - Nicola Specchio
- Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (P.D.L.); (V.P.); (M.T.); (N.S.)
| | - Rima Nabbout
- Centre for Rare Epilepsies, Department of Paediatric Neurology, Necker-Enfants Malades Hospital, Imagine Institute, INSERMU1163, Paris Descartes University, Full Member of European Reference Network EpiCARE, 75006 Paris, France;
| | - Federico Vigevano
- Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (P.D.L.); (V.P.); (M.T.); (N.S.)
- Correspondence:
| |
Collapse
|
48
|
Dibué M, Spoor JKH, Dremmen M, von Saß CF, Hänggi D, Steiger HJ, Ryvlin P, Kamp MA. Sudden death in epilepsy: There is room for intracranial pressure. Brain Behav 2020; 10:e01838. [PMID: 32949224 PMCID: PMC7667321 DOI: 10.1002/brb3.1838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Sudden unexpected death in patients with epilepsy (SUDEP) remains a poorly understood entity, and it is unclear whether the same pathomechanisms underlie all sudden deaths occurring in patients with epilepsy. One aspect not included in current models of SUDEP is the role of increased intracranial pressure (ICP) which can be observed immediately upon seizure activity in neurosurgical practice. METHODS We conducted a systematic review of the occurrence of edema in patients with epilepsy reported to have died of sudden death who underwent brain autopsy or postmortem brain imaging and discuss how increased ICP may contribute to clinical features of SUDEP. RESULTS 19 eligible studies comprising a total of 623 patients were identified. Edema-mostly mild or moderate-was reported in 17% of cases and 74% of studies. 1% (n = 6) of the overall cases were clearly identified as having Dravet syndrome or an SCN1A mutation. In these patients, edema was found in 4 (67%) of cases. CONCLUSION Edema is regularly found in patients with epilepsy classified to have died from SUDEP. We argue that seizures preceding SUDEP may in certain cases elicit acute edema which may represent an additional contributing factor in the cascade of events leading to sudden death of patients with epilepsy. Furthermore, we hypothesize that mild edema may especially progress to severe edema in patients with sodium channel mutations which may represent an important mechanism to investigate in the context of understanding the significantly elevated risk of SUDEP in patients with SCN1A mutations.
Collapse
Affiliation(s)
- Maxine Dibué
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jochem K H Spoor
- Department of Neurosurgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marjolein Dremmen
- Department of Radiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Daniel Hänggi
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Jakob Steiger
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Centre Hospitalo-Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Marcel A Kamp
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
49
|
Vezyroglou A, Varadkar S, Bast T, Hirsch E, Strobl K, Harvey AS, Scheffer IE, Sisodiya SM, Cross JH. Focal epilepsy in SCN1A-mutation carrying patients: is there a role for epilepsy surgery? Dev Med Child Neurol 2020; 62:1331-1335. [PMID: 32538476 DOI: 10.1111/dmcn.14588] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2020] [Indexed: 11/28/2022]
Abstract
Variants in the gene SCN1A are a common genetic cause for a wide range of epilepsy phenotypes ranging from febrile seizures to Dravet syndrome. Focal onset seizures and structural lesions can be present in these patients and the question arises whether epilepsy surgery should be considered. We report eight patients (mean age 13y 11mo [SD 8y 1mo], range 3-26y; four females, four males) with SCN1A variants, who underwent epilepsy surgery. Outcomes were variable and seemed to be directly related to the patient's anatomo-electroclinical epilepsy phenotype. Patients with Dravet syndrome had unfavourable outcomes, whilst patients with focal epilepsy, proven to arise from a single structural lesion, had good results. We conclude that the value of epilepsy surgery in patients with an SCN1A variant rests on two issues: understanding whether the variant is pathogenic and the patient's anatomo-electroclinical phenotype. Careful evaluation of epilepsy phenotype integrated with understanding the significance of genetic variants is essential in determining a patient's suitability for epilepsy surgery. Patients with focal onset epilepsy may benefit from epilepsy surgery, whereas those with Dravet syndrome do not. WHAT THIS PAPER ADDS: Patients should not automatically be excluded from epilepsy surgery evaluation if they carry an SCN1A variant. Patients with focal epilepsy may benefit from epilepsy surgery; those with Dravet syndrome do not.
Collapse
Affiliation(s)
- Aikaterini Vezyroglou
- Department of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, London, UK.,Department of Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Sophia Varadkar
- Department of Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Thomas Bast
- Kork Epilepsy Center, Kehl-Kork, Germany.,Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Edouard Hirsch
- Medical and Surgical Epilepsy Unit, Hautepierre Hospital, University of Strasbourg, Strasbourg, France
| | | | - A Simon Harvey
- Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | | | - Ingrid E Scheffer
- Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia.,Florey Institute and Murdoch Children's Research Institute, Austin Health and Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - J Helen Cross
- Department of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, London, UK.,Department of Neurology, Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
50
|
Silvennoinen K, Martins Custodio H, Balestrini S, Rugg-Gunn F, England Research Consortium G, Sisodiya SM. Complex epilepsy: it's all in the history. Pract Neurol 2020; 21:practneurol-2020-002522. [PMID: 33070112 DOI: 10.1136/practneurol-2020-002522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Katri Silvennoinen
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- The Chalfont Centre for Epilepsy, Chalfont St. Peter, UK
| | - Helena Martins Custodio
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- The Chalfont Centre for Epilepsy, Chalfont St. Peter, UK
| | - Simona Balestrini
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- The Chalfont Centre for Epilepsy, Chalfont St. Peter, UK
| | - Fergus Rugg-Gunn
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- The Chalfont Centre for Epilepsy, Chalfont St. Peter, UK
| | | | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- The Chalfont Centre for Epilepsy, Chalfont St. Peter, UK
| |
Collapse
|