1
|
Stormezand GN, de Meyer E, Koopmans KP, Brouwers AH, Luurtsema G, Dierckx RAJO. Update on the Role of [ 18F]FDOPA PET/CT. Semin Nucl Med 2024:S0001-2998(24)00080-1. [PMID: 39384519 DOI: 10.1053/j.semnuclmed.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
[18F]-dihydroxyphenylalanine ([18F]FDOPA) is a radiopharmaceutical used in a broad spectrum of diseases, including neuroendocrine tumors (NETs), congenital hyperinsulinism, parkinsonian syndromes and neuro-oncology. Genetic analysis and disease specific biomarkers may guide the optimum selection of patients that may benefit most from [18F]FDOPA PET in different stages of several neuroendocrine neoplasms and in congenital hyperinsulinism. For clinical routine in neuro-oncology, indications for [18F]FDOPA PET include tumor delineation and distinguishing between treatment related changes and recurrent disease. New developments as the advent of large axial field of view PET/CT or integrated PET/MRI systems may provide more unique opportunities, such as those related to detection of smaller lesions in primary staging of NETs, dose reduction in children with congenital hyperinsulinism, or possibilities to obtain more extensive noninvasive quantification of cerebral uptake by using image derived input functions. Although the widespread use of [18F]FDOPA has been hampered by complex synthesis methods and high production costs in the past, significant efforts have been undertaken to provide robust GMP compliant synthesis methods with high activity yield and molar activity.
Collapse
Affiliation(s)
- Gilles N Stormezand
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Eline de Meyer
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Pieter Koopmans
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Al‐kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Elewa YHA, AL‐Farga A, Aqlan F, Zahran MH, Batiha GE. Sleep disorders cause Parkinson's disease or the reverse is true: Good GABA good night. CNS Neurosci Ther 2024; 30:e14521. [PMID: 38491789 PMCID: PMC10943276 DOI: 10.1111/cns.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative brain disease due to degeneration of dopaminergic neurons (DNs) presented with motor and non-motor symptoms. PD symptoms are developed in response to the disturbance of diverse neurotransmitters including γ-aminobutyric acid (GABA). GABA has a neuroprotective effect against PD neuropathology by protecting DNs in the substantia nigra pars compacta (SNpc). It has been shown that the degeneration of GABAergic neurons is linked with the degeneration of DNs and the progression of motor and non-motor PD symptoms. GABA neurotransmission is a necessary pathway for normal sleep patterns, thus deregulation of GABAergic neurotransmission in PD could be the potential cause of sleep disorders in PD. AIM Sleep disorders affect GABA neurotransmission leading to memory and cognitive dysfunction in PD. For example, insomnia and short sleep duration are associated with a reduction of brain GABA levels. Moreover, PD-related disorders including rigidity and nocturia influence sleep patterns leading to fragmented sleep which may also affect PD neuropathology. However, the mechanistic role of GABA in PD neuropathology regarding motor and non-motor symptoms is not fully elucidated. Therefore, this narrative review aims to clarify the mechanistic role of GABA in PD neuropathology mainly in sleep disorders, and how good GABA improves PD. In addition, this review of published articles tries to elucidate how sleep disorders such as insomnia and REM sleep behavior disorder (RBD) affect PD neuropathology and severity. The present review has many limitations including the paucity of prospective studies and most findings are taken from observational and preclinical studies. GABA involvement in the pathogenesis of PD has been recently discussed by recent studies. Therefore, future prospective studies regarding the use of GABA agonists in the management of PD are suggested to observe their distinct effects on motor and non-motor symptoms. CONCLUSION There is a bidirectional relationship between the pathogenesis of PD and sleep disorders which might be due to GABA deregulation.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary MedicineZagazig UniversityZagazigEgypt
- Faculty of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Ammar AL‐Farga
- Biochemistry Department, College of SciencesUniversity of JeddahJeddahSaudia Arbia
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbb GovernorateYemen
| | | | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhur UniversityDamanhurEgypt
| |
Collapse
|
3
|
Loehrer PA, Weber I, Oehrn CR, Nettersheim FS, Dafsari HS, Knake S, Tittgemeyer M, Timmermann L, Belke M. Microstructural alterations predict impaired bimanual control in Parkinson’s disease. Brain Commun 2022; 4:fcac137. [PMID: 35702729 PMCID: PMC9185383 DOI: 10.1093/braincomms/fcac137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/25/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022] Open
Abstract
Bimanual coordination is impaired in Parkinson’s disease affecting patients’ ability to perform activities of daily living and to maintain independence. Conveyance of information between cortical and subcortical areas is essential for bimanual coordination and relies on the integrity of cerebral microstructure. As pathological deposition of alpha-synuclein compromises microstructure in Parkinson’s disease, we investigated the relationship between microstructural integrity and bimanual coordination using diffusion-weighted MRI in 23 patients with Parkinson’s disease (mean age ± standard deviation: 56.0 ± 6.45 years; 8 female) and 26 older adults (mean age ± standard deviation: 58.5 ± 5.52 years). Whole-brain analysis revealed specific microstructural alterations between patients and healthy controls matched for age, sex, handedness, and cognitive status congruent with the literature and known Parkinson’s disease pathology. A general linear model revealed distinct microstructural alterations associated with poor bimanual coordination in Parkinson’s disease, corrected for multiple comparisons using a permutation-based approach. Integrating known functional topography, we conclude that distinct changes in microstructure cause an impediment of structures involved in attention, working memory, executive function, motor planning, motor control, and visual processing contributing to impaired bimanual coordination in Parkinson’s disease.
Collapse
Affiliation(s)
- Philipp A. Loehrer
- Correspondence to: Philipp A. Loehrer Department of Neurology Philipps-University Marburg, Baldinger Str 35043 Marburg, Germany E-mail:
| | - Immo Weber
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Carina R. Oehrn
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
- Department of Cardiology, University Hospital Cologne, Cologne, Germany
| | | | - Haidar S. Dafsari
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Susanne Knake
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
- Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Frankfurt am Main, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Marcus Belke
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Kapoor S, Offnick A, Allen B, Brown PA, Sachs JR, Gurcan MN, Pinton G, D'Agostino R, Bushnell C, Wolfe S, Duncan P, Asimos A, Sarwal A. Brain topography on adult ultrasound images: Techniques, interpretation, and image library. J Neuroimaging 2022; 32:1013-1026. [PMID: 35924877 PMCID: PMC9804536 DOI: 10.1111/jon.13031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Many studies have explored the possibility of using cranial ultrasound for discerning intracranial pathologies like tumors, hemorrhagic stroke, or subdural hemorrhage in clinical scenarios where computer tomography may not be accessible or feasible. The visualization of intracranial anatomy on B-mode ultrasound is challenging due to the presence of the skull that limits insonation to a few segments on the temporal bone that are thin enough to allow transcranial transmission of sound. Several artifacts are produced by hyperechoic signals inherent in brain and skull anatomy when images are created using temporal windows. METHODS While the literature has investigated the accuracy of diagnosis of intracranial pathology with ultrasound, we lack a reference source for images acquired on cranial topography on B-mode ultrasound to illustrate the appearance of normal and abnormal structures of the brain and skull. Two investigators underwent hands-on training in Cranial point-of-care ultrasound (c-POCUS) and acquired multiple images from each patient to obtain the most in-depth images of brain to investigate all visible anatomical structures and pathology within 24 hours of any CT/MRI imaging done. RESULTS Most reproducible structures visible on c-POCUS included bony parts and parenchymal structures. Transcranial and abdominal presets were equivalent in elucidating anatomical structures. Brain pathology like parenchymal hemorrhage, cerebral edema, and hydrocephalus were also visualized. CONCLUSIONS We present an illustrated anatomical atlas of cranial ultrasound B-mode images acquired in various pathologies in a critical care environment and compare our findings with published literature by performing a scoping review of literature on the subject.
Collapse
Affiliation(s)
- Sahil Kapoor
- Department of NeurologyWake Forest Baptist Medical CenterWinston‐SalemNorth CarolinaUSA
| | - Austin Offnick
- Department of NeurologyWake Forest Baptist Medical CenterWinston‐SalemNorth CarolinaUSA
| | - Beddome Allen
- Department of NeurologyWake Forest School of MedicineWinston‐SalemNCUSA
| | - Patrick A. Brown
- Departments of Radiology and NeurosurgeryWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jeffrey R. Sachs
- Neuroradiology Section, Wake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Metin Nafi Gurcan
- Center for Biomedical InformaticsWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Gianmarco Pinton
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill & North Carolina State UniversityChapel HillNorth CarolinaUSA
| | - Ralph D'Agostino
- Department of Biostatistics and Data ScienceWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Cheryl Bushnell
- Department of NeurologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Stacey Wolfe
- Department of NeurosurgeryWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Pam Duncan
- Department of NeurologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Andrew Asimos
- Department of Emergency MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA,Carolinas Stroke NetworkAtrium HealthCharlotteNorth CarolinaUSA
| | - Aarti Sarwal
- Department of NeurologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
5
|
Heijmans M, Wolters AF, Temel Y, Kuijf ML, Michielse S. Comparison of Olfactory Tract Diffusion Measures Between Early Stage Parkinson's Disease Patients and Healthy Controls Using Ultra-High Field MRI. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2161-2170. [PMID: 36093714 PMCID: PMC9661345 DOI: 10.3233/jpd-223349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND MRI is a valuable method to assist in the diagnostic work-up of Parkinson's disease (PD). The olfactory tract (OT) has been proposed as a potential MRI biomarker for distinguishing PD patients from healthy controls. OBJECTIVE This study aims to further investigate whether diffusion measures of the OT differ between early stage PD patients and healthy controls. METHODS Twenty hyposmic/anosmic PD patients, 65 normosmic PD patients, and 36 normosmic healthy controls were evaluated and a 7T diffusion weighted image scan was acquired. Manual seed regions of interest were drawn in the OT region. Tractography of the OT was performed using a deterministic streamlines algorithm. Diffusion measures (fractional anisotropy and mean- radial- and axial diffusivity) of the generated streamlines were compared between groups. RESULTS Diffusion measures did not differ between PD patients compared to healthy controls and between hyposmic/anosmic PD patients, normosmic PD patients, and normosmic healthy controls. A positive correlation was found between age and mean- and axial diffusivity within the hyposmic/anosmic PD subgroup, but not in the normosmic groups. A positive correlation was found between MDS-UPDRSIII scores and fractional anisotropy. CONCLUSION This study showed that fiber tracking of the OT was feasible in both early stage PD and healthy controls using 7T diffusion weighted imaging data. However, 7T MRI diffusion measures of the OT are not useful as an early clinical biomarker for PD. Future work is needed to clarify the role of other OT measurements as a biomarker for PD and its different subgroups.
Collapse
Affiliation(s)
- Margot Heijmans
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Amée F. Wolters
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mark L. Kuijf
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Stijn Michielse
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Alonso CCG, Silva FG, Costa LOP, Freitas SMSF. Smell tests can discriminate Parkinson's disease patients from healthy individuals: A meta-analysis. Clin Neurol Neurosurg 2021; 211:107024. [PMID: 34823156 DOI: 10.1016/j.clineuro.2021.107024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/20/2021] [Accepted: 11/03/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Olfactory impairment is common in Parkinson's disease (PD). The authors aimed to identify the clinical tests used to assess olfactory function and examine their ability to distinguish PD with different disease duration from healthy individuals with physiological aging. METHODS Cross-sectional studies published until May 2020 that assessed the olfaction of individuals with PD using search terms related to PD, olfactory function, and assessment were searched on PubMed, PsycInfo, Cinahl, and Web of Science databases. RESULTS Twelve smell tests were identified from the reviewed studies (n = 125) that assessed 8776 individuals with PD. Data of 6593 individuals with PD and 8731 healthy individuals were included in the meta-analyses. Individuals with PD presented worse performance than healthy individuals, regardless of the smell test used. The University of Pennsylvania Smell Identification Test (UPSIT) was used by most studies (n = 2310 individuals with PD) and presented smaller heterogeneity. When the studies were subclassified according to the years of PD duration, there were no significant differences. CONCLUSION All smell tests were able to discriminate the olfactory function of PD from that of healthy individuals, although the UPSIT was widely used. The abnormal olfaction was not related to the disease duration. Systematic review protocol registration (PROSPERO/2020-CRD42020160878).
Collapse
Affiliation(s)
- Cintia C G Alonso
- Masters and Doctoral Programs in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, Brazil
| | - Fernanda G Silva
- Masters and Doctoral Programs in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, Brazil
| | - Leonardo O P Costa
- Masters and Doctoral Programs in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, Brazil
| | - Sandra M S F Freitas
- Masters and Doctoral Programs in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Felix C, Chahine LM, Hengenius J, Chen H, Rosso AL, Zhu X, Cao Z, Rosano C. Diffusion Tensor Imaging of the Olfactory System in Older Adults With and Without Hyposmia. Front Aging Neurosci 2021; 13:648598. [PMID: 34744681 PMCID: PMC8569942 DOI: 10.3389/fnagi.2021.648598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
Objectives: To compare gray matter microstructural characteristics of higher-order olfactory regions among older adults with and without hyposmia. Methods: Data from the Brief Smell Identification Test (BSIT) were obtained in 1998–99 for 265 dementia-free adults from the Health, Aging, and Body Composition study (age at BSIT: 74.9 ± 2.7; 62% White; 43% male) who received 3T diffusion tensor imaging in 2006–08 [Interval of time: mean (SD): 8.01 years (0.50)], Apolipoprotein (ApoEε4) genotypes, and repeated 3MS assessments until 2011–12. Cognitive status (mild cognitive impairment, dementia, normal cognition) was adjudicated in 2011–12. Hyposmia was defined as BSIT ≤ 8. Microstructural integrity was quantified by mean diffusivity (MD) in regions of the primary olfactory cortex amygdala, orbitofrontal cortex (including olfactory cortex, gyrus rectus, the orbital parts of the superior, middle, and inferior frontal gyri, medial orbital part of the superior frontal gyrus), and hippocampus. Multivariable regression models were adjusted for total brain atrophy, demographics, cognitive status, and ApoEε4 genotype. Results: Hyposmia in 1998–99 (n = 57, 21.59%) was significantly associated with greater MD in 2006–08, specifically in the orbital part of the middle frontal gyrus, and amygdala, on the right [adjusted beta (p value): 0.414 (0.01); 0.527 (0.01); respectively]. Conclusion: Older adults with higher mean diffusivity in regions important for olfaction are more likely to have hyposmia up to ten years prior. Future studies should address whether hyposmia can serve as an early biomarker of brain microstructural abnormalities for older adults with a range of cognitive functions, including those with normal cognition.
Collapse
Affiliation(s)
- Cynthia Felix
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - James Hengenius
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Andrea L Rosso
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xiaonan Zhu
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Zichun Cao
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Caterina Rosano
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Hybrid PET-MRI for early detection of dopaminergic dysfunction and microstructural degradation involved in Parkinson's disease. Commun Biol 2021; 4:1162. [PMID: 34621005 PMCID: PMC8497575 DOI: 10.1038/s42003-021-02705-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/22/2021] [Indexed: 01/10/2023] Open
Abstract
Dopamine depletion and microstructural degradation underlie the neurodegenerative processes in Parkinson’s disease (PD). To explore early alterations and underlying associations of dopamine and microstructure in PD patients utilizing the hybrid positron emission tomography (PET)-magnetic resonance imaging (MRI). Twenty-five PD patients in early stages and twenty-four matched healthy controls underwent hybrid 18F-fluorodopa (DOPA) PET-diffusion tensor imaging (DTI) scanning. The striatal standardized uptake value ratio (SUVR), DTI maps (fractional anisotropy, FA; mean diffusivity, MD) in subcortical grey matter, and deterministic tractography of the nigrostriatal pathway were processed. Values in more affected (MA) side, less affected (LA) side and mean were analysed. Correlations and mediations among PET, DTI and clinical characteristics were further analysed. PD groups exhibited asymmetric pattern of dopaminergic dysfunction in putamen, impaired integrity in the microstructures (nigral FA, putaminal MD, and FA of nigrostriatal projection). On MA side, significant associations between DTI metrics (nigral FA, putaminal MD, and FA of nigrostriatal projection) and motor performance were significantly mediated by putaminal SUVR, respectively. Early asymmetric disruptions in putaminal dopamine concentrations and nigrostriatal pathway microstructure were detected using hybrid PET-MRI. The findings further implied that molecular degeneration mediates the modulation of microstructural disorganization on motor dysfunction in the early stages of PD. To explore early alterations and underlying associations of dopamine levels and microstructure in Parkinson’s Disease (PD), Shang et al use a hybrid positron emission tomography (PET)-magnetic resonance imaging (MRI) approach in early stage patients and age-matched controls. Their data implies that molecular degeneration mediates the effects of microstructural disorganization on motor dysfunction in the early stages of PD.
Collapse
|
9
|
Trentin S, Fraiman de Oliveira BS, Ferreira Felloni Borges Y, de Mello Rieder CR. Systematic review and meta-analysis of Sniffin Sticks Test performance in Parkinson's disease patients in different countries. Eur Arch Otorhinolaryngol 2021; 279:1123-1145. [PMID: 34319482 DOI: 10.1007/s00405-021-06970-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/27/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Olfaction impairment occurs in about 90% of patients with Parkinson's disease. The Sniffin Sticks Test is a widely used instrument to measure olfactory performance and is divided into three subtests that assess olfactory threshold, discrimination and identification. However, cultural and socioeconomic differences can influence test performance. OBJECTIVES We performed a systematic review and meta-analysis of the existent data about Sniffin Sticks Test performance of Parkinson's disease patients and healthy controls in different countries and investigated if there are other cofactors which could influence the olfactory test results. A subgroup analysis by country was performed as well as a meta-regression using age, gender and air pollution as covariates. RESULTS Four hundred and thirty studies were found and 66 articles were included in the meta-analysis. Parkinson's disease patients showed significantly lower scores on the Sniffin Sticks Test and all its subtests than healthy controls. Overall, the heterogeneity among studies was moderate to high as well as the intra-country heterogeneity. The subgroup analysis, stratifying by country, maintained a high residual heterogeneity. CONCLUSION The meta-regression showed a significant correlation with age and air pollution in a few subtests. A high heterogeneity was found among studies which was not significantly decreased after subgroup analysis by country. This fact signalizes that maybe cultural influence has a small impact on the Sniffin Sticks Test results. Age and air pollution have influence in a few olfactory subtests.
Collapse
Affiliation(s)
- Sheila Trentin
- Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, 6690, Ipiranga Avenue, Jardim Botânico, Porto Alegre, 90619-900, Brazil.
| | - Bruno Samuel Fraiman de Oliveira
- Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, 6690, Ipiranga Avenue, Jardim Botânico, Porto Alegre, 90619-900, Brazil.,Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Yuri Ferreira Felloni Borges
- Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, 6690, Ipiranga Avenue, Jardim Botânico, Porto Alegre, 90619-900, Brazil
| | | |
Collapse
|
10
|
Zhang Y, Burock MA. Diffusion Tensor Imaging in Parkinson's Disease and Parkinsonian Syndrome: A Systematic Review. Front Neurol 2020; 11:531993. [PMID: 33101169 PMCID: PMC7546271 DOI: 10.3389/fneur.2020.531993] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Diffusion tensor imaging (DTI) allows measuring fractional anisotropy and similar microstructural indices of the brain white matter. Lower than normal fractional anisotropy as well as higher than normal diffusivity is associated with loss of microstructural integrity and neurodegeneration. Previous DTI studies in Parkinson's disease (PD) have demonstrated abnormal fractional anisotropy in multiple white matter regions, particularly in the dopaminergic nuclei and dopaminergic pathways. However, DTI is not considered a diagnostic marker for the earliest Parkinson's disease since anisotropic alterations present a temporally divergent pattern during the earliest Parkinson's course. This article reviews a majority of clinically employed DTI studies in PD, and it aims to prove the utilities of DTI as a marker of diagnosing PD, correlating clinical symptomatology, tracking disease progression, and treatment effects. To address the challenge of DTI being a diagnostic marker for early PD, this article also provides a comparison of the results from a longitudinal, early stage, multicenter clinical cohort of Parkinson's research with previous publications. This review provides evidences of DTI as a promising marker for monitoring PD progression and classifying atypical PD types, and it also interprets the possible pathophysiologic processes under the complex pattern of fractional anisotropic changes in the first few years of PD. Recent technical advantages, limitations, and further research strategies of clinical DTI in PD are additionally discussed.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Psychiatry, War Related Illness and Injury Study Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Marc A Burock
- Department of Psychiatry, Mainline Health, Bryn Mawr Hospital, Bryn Mawr, PA, United States
| |
Collapse
|
11
|
Nigro P, Chiappiniello A, Simoni S, Paolini Paoletti F, Cappelletti G, Chiarini P, Filidei M, Eusebi P, Guercini G, Santangelo V, Tarducci R, Calabresi P, Parnetti L, Tambasco N. Changes of olfactory tract in Parkinson's disease: a DTI tractography study. Neuroradiology 2020; 63:235-242. [PMID: 32918150 DOI: 10.1007/s00234-020-02551-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Impaired olfactory function is one of the main features of Parkinson's disease. However, how peripheral olfactory structures are involved remains unclear. Using diffusion tensor imaging fiber tracking, we investigated for MRI microstructural changes in the parkinsonian peripheral olfactory system and particularly the olfactory tract, in order to seek a better understanding of the structural alternations underlying hyposmia in Parkinson's disease. METHODS All patients were assessed utilizing by the Italian Olfactory Identification Test for olfactory function and the Unified Parkinson's Disease Rating Scale-III part as well as Hoehn and Yahr rating scale for motor disability. Imaging was performed on a 3 T Clinical MR scanner. MRI data pre-processing was carried out by DTIPrep, diffusion tensor imaging reconstruction, and fiber tracking using Diffusion Toolkit and tractography analysis by TrackVis. The following parameters were used for groupwise comparison: fractional anisotropy, mean diffusivity, radial diffusivity, axial diffusivity, and tract volume. RESULTS Overall 23 patients with Parkinson's disease (mean age 63.6 ± 9.3 years, UPDRS-III 24.5 ± 12.3, H&Y 1.9 ± 0.5) and 18 controls (mean age 56.3 ± 13.7 years) were recruited. All patients had been diagnosed hyposmic. Diffusion tensor imaging analysis of the olfactory tract showed significant fractional anisotropy, and tract volume decreases for the Parkinson's disease group compared with controls (P < 0.05). Fractional anisotropy and age, in the control group, were significant for multiple correlations (r = - 0.36, P < 0.05, Spearman's rank correlation). CONCLUSIONS Fiber tracking diffusion tensor imaging analysis of olfactory tract was feasible, and it could be helpful for characterizing hyposmia in Parkinson's disease.
Collapse
Affiliation(s)
- Pasquale Nigro
- Movement Disorders Center, Neurology Department, Perugia General Hospital and University of Perugia, S. Maria della Misericordia Hospital, Perugia, Italy
| | | | - Simone Simoni
- Movement Disorders Center, Neurology Department, Perugia General Hospital and University of Perugia, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Federico Paolini Paoletti
- Movement Disorders Center, Neurology Department, Perugia General Hospital and University of Perugia, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Giulia Cappelletti
- Movement Disorders Center, Neurology Department, Perugia General Hospital and University of Perugia, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Pietro Chiarini
- Neuroradiology Unit, Perugia General Hospital, Perugia, Italy
| | - Marta Filidei
- Movement Disorders Center, Neurology Department, Perugia General Hospital and University of Perugia, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Paolo Eusebi
- Neurology Department, Perugia General Hospital and University of Perugia, Perugia, Italy
| | | | - Valerio Santangelo
- Department of Philosophy, Social Sciences & Education, University of Perugia, Perugia, Italy.,Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Roberto Tarducci
- Department of Medical Physics, Perugia General Hospital, Perugia, Italy
| | - Paolo Calabresi
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lucilla Parnetti
- Neurology Department, Perugia General Hospital and University of Perugia, Perugia, Italy
| | - Nicola Tambasco
- Movement Disorders Center, Neurology Department, Perugia General Hospital and University of Perugia, S. Maria della Misericordia Hospital, Perugia, Italy. .,Neurology Department, Perugia General Hospital and University of Perugia, Perugia, Italy.
| |
Collapse
|
12
|
Sgambato V. Breathing new life into neurotoxic-based monkey models of Parkinson's disease to study the complex biological interplay between serotonin and dopamine. PROGRESS IN BRAIN RESEARCH 2020; 261:265-285. [PMID: 33785131 DOI: 10.1016/bs.pbr.2020.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Numerous clinical studies have shown that the serotonergic system also degenerates in patients with Parkinson's disease. The causal role of this impairment in Parkinson's symptomatology and the response to treatment remains to be refined, in particular thanks to approaches allowing the two components DA and 5-HT to be isolated if possible. We have developed a macaque monkey model of Parkinson's disease exhibiting a double lesion (dopaminergic and serotonergic) thanks to the sequential use of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and MDMA (3,4-methylenedioxy-N-methamphetamine) (or MDMA prior MPTP). We characterized this monkey model by multimodal imaging (PET, positron emission tomography with several radiotracers; DTI, diffusion tensor imaging), behavioral assessments (parkinsonism, dyskinesia, neuropsychiatric-like behavior) and post-mortem analysis (with DA and 5-HT markers). When administrated after MPTP, MDMA damaged the 5-HT presynaptic system without affecting the remaining DA neurons. The lesion of 5-HT fibers induced by MDMA altered rigidity and prevented dyskinesia and neuropsychiatric-like symptoms induced by levodopa therapy in MPTP-treated animals. Interestingly also, prior MDMA administration aggravates the parkinsonian deficits and associated DA injury. Dystonic postures, action tremor and global spontaneous activities were significantly affected. All together, these data clearly indicate that late or early lesions of the 5-HT system have a differential impact on parkinsonian symptoms in the macaque model of Parkinson's disease. Whether MDMA has an impact on neuropsychiatric-like symptoms such as apathy, anxiety, depression remains to be addressed. Despite its limitations, this toxin-based double-lesioned monkey model takes on its full meaning and provides material for the experimental study of the heterogeneity of patients.
Collapse
Affiliation(s)
- Véronique Sgambato
- Université de Lyon, CNRS UMR 5229, Institut des Sciences Cognitives Marc Jeannerod, Bron, France.
| |
Collapse
|
13
|
Murueta-Goyena A, Andikoetxea A, Gómez-Esteban JC, Gabilondo I. Contribution of the GABAergic System to Non-Motor Manifestations in Premotor and Early Stages of Parkinson's Disease. Front Pharmacol 2019; 10:1294. [PMID: 31736763 PMCID: PMC6831739 DOI: 10.3389/fphar.2019.01294] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Non-motor symptoms are common in Parkinson’s disease (PD) and they represent a major source of disease burden. Several non-motor manifestations, such as rapid eye movement sleep behavior disorder, olfactory loss, gastrointestinal abnormalities, visual alterations, cognitive and mood disorders, are known to precede the onset of motor signs. Nonetheless, the mechanisms mediating these alterations are poorly understood and probably involve several neurotransmitter systems. The dysregulation of GABAergic system has received little attention in PD, although the spectrum of non-motor symptoms might be linked to this pathway. This Mini Review aims to provide up-to-date information about the involvement of the GABAergic system for explaining non-motor manifestations in early stages of PD. Therefore, special attention is paid to the clinical data derived from patients with isolated REM sleep behavior disorder or drug-naïve patients with PD, as they represent prodromal and early stages of the disease, respectively. This, in combination with animal studies, might help us to understand how the disturbance of the GABAergic system is related to non-motor manifestations of PD.
Collapse
Affiliation(s)
- Ane Murueta-Goyena
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Andikoetxea
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Juan Carlos Gómez-Esteban
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iñigo Gabilondo
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
14
|
Rimmele DL, Frey BM, Cheng B, Schulz R, Krawinkel LA, Bönstrup M, Braass H, Gerloff C, Thomalla G. Association of Extrapyramidal Tracts' Integrity With Performance in Fine Motor Skills After Stroke. Stroke 2019; 49:2928-2932. [PMID: 30571408 DOI: 10.1161/strokeaha.118.022706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background and Purpose- Tractography by diffusion tensor imaging has extended our knowledge on the contribution of damage to different pathways to residual motor function after stroke. Integrity of the corticospinal tract (CST), for example, has been identified to characterize and predict its course. Yet there is only scarce data that allow a judgment on the impact of extrapyramidal pathways between the basal ganglia on motor function poststroke. We aimed at studying their association with performance in fine motor skills after stroke. Methods- We performed probabilistic tractography and reconstructed nigro-pallidal tracts connecting substantia nigra and globus pallidus, as well as the CST in 26 healthy subjects. Resulting tracts were registered to the individual images of 20 patients 3 months after stroke, and their microstructural integrity was measured by fractional anisotropy. Clinical examination of the patients' gross (grip force) and fine (nine-hole peg test) motor skills was performed 1 year after stroke. For assessment of factors influencing nine-hole peg test, we used a multivariate model. Results- Nigro-pallidal tracts were traceable in all participants, had no overlap to the CST and passed the nucleus subthalamicus. In stroke patients, nigro-pallidal tracts ipsilateral to the stroke lesion showed a significantly reduced fractional anisotropy (ratio, 0.96±0.02; P=0.021). One year after stroke, nine-hole peg test values were significantly slower for the affected hand, while grip force was comparable between both hands. Reduced integrity of the nigro-pallidal tracts was associated with worse performance in the nine-hole peg test ( P=0.040), as was reduced integrity of the CST ( P<0.001) and younger age ( P<0.001). Conclusions- Nigro-pallidal tracts with containing connections of the nucleus subthalamicus represent a relevant part of the extrapyramidal system and specifically contribute to residual fine motor skills after stroke beyond the well-known contribution of the CST. They may deliver supportive information for prediction of motor recovery after stroke.
Collapse
Affiliation(s)
- D Leander Rimmele
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.R., B.M.F., B.C., R.S., L.A.K., M.B., H.B., C.G., G.T.)
| | - Benedikt M Frey
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.R., B.M.F., B.C., R.S., L.A.K., M.B., H.B., C.G., G.T.)
| | - Bastian Cheng
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.R., B.M.F., B.C., R.S., L.A.K., M.B., H.B., C.G., G.T.)
| | - Robert Schulz
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.R., B.M.F., B.C., R.S., L.A.K., M.B., H.B., C.G., G.T.)
| | - Lutz A Krawinkel
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.R., B.M.F., B.C., R.S., L.A.K., M.B., H.B., C.G., G.T.)
| | - Marlene Bönstrup
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.R., B.M.F., B.C., R.S., L.A.K., M.B., H.B., C.G., G.T.).,Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD (M.B.)
| | - Hanna Braass
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.R., B.M.F., B.C., R.S., L.A.K., M.B., H.B., C.G., G.T.)
| | - Christian Gerloff
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.R., B.M.F., B.C., R.S., L.A.K., M.B., H.B., C.G., G.T.)
| | - Götz Thomalla
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.R., B.M.F., B.C., R.S., L.A.K., M.B., H.B., C.G., G.T.)
| |
Collapse
|
15
|
Pelizzari L, Laganà MM, Di Tella S, Rossetto F, Bergsland N, Nemni R, Clerici M, Baglio F. Combined Assessment of Diffusion Parameters and Cerebral Blood Flow Within Basal Ganglia in Early Parkinson's Disease. Front Aging Neurosci 2019; 11:134. [PMID: 31214017 PMCID: PMC6558180 DOI: 10.3389/fnagi.2019.00134] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
Diffusion tensor imaging (DTI) is a sensitive tool for detecting brain tissue microstructural alterations in Parkinson’s disease (PD). Abnormal cerebral perfusion patterns have also been reported in PD patients using arterial spin labeling (ASL) MRI. In this study we aimed to perform a combined DTI and ASL assessment in PD patients within the basal ganglia, in order to test the relationship between microstructural and perfusion alterations. Fifty-two subjects participated in this study. Specifically, 26 PD patients [mean age (SD) = 66.7 (8.9) years, 21 males, median (IQR) Modified Hoehn and Yahr = 1.5 (1–1.6)] and twenty-six healthy controls [HC, mean age (SD) = 65.2 (7.5), 15 males] were scanned with 1.5T MRI. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD) maps were derived from diffusion-weighted images, while cerebral blood flow (CBF) maps were computed from ASL data. After registration to Montreal Neurological Institute standard space, FA, MD, AD, RD and CBF median values were extracted within specific regions of interest: substantia nigra, caudate, putamen, globus pallidus, thalamus, red nucleus and subthalamic nucleus. DTI measures and CBF were compared between the two groups. The relationship between diffusion parameters and CBF was tested with Spearman’s correlations. False discovery rate (FDR)-corrected p-values lower than 0.05 were considered significant, while uncorrected p-values <0.05 were considered a trend. No significant FA, MD and RD differences were observed. AD was significantly increased in PD patients compared with HC in the putamen (p = 0.005, pFDR = 0.035). No significant CBF differences were found between PD patients and HC. Diffusion parameters were not significantly correlated with CBF in the HC group, while a significant correlation emerged for PD patients in the caudate nucleus, for all DTI measures (with FA: r = 0.543, pFDR = 0.028; with MD: r = −0.661, pFDR = 0.002; with AD: r = −0.628, pFDR = 0.007; with RD: r = −0.635, pFDR = 0.003). This study showed that DTI is a more sensitive technique than ASL to detect alterations in the basal ganglia in the early phase of PD. Our results suggest that, although DTI and ASL convey different information, a relationship between microstructural integrity and perfusion changes in the caudate may be present.
Collapse
Affiliation(s)
| | | | | | | | - Niels Bergsland
- IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy.,Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Raffaello Nemni
- IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Mario Clerici
- IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
16
|
Yang J, Archer DB, Burciu RG, Müller MLTM, Roy A, Ofori E, Bohnen NI, Albin RL, Vaillancourt DE. Multimodal dopaminergic and free-water imaging in Parkinson's disease. Parkinsonism Relat Disord 2019; 62:10-15. [PMID: 30639168 DOI: 10.1016/j.parkreldis.2019.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/17/2018] [Accepted: 01/04/2019] [Indexed: 02/05/2023]
Abstract
INTRODUCTION When using free-water diffusion imaging or positron emission tomography (PET), it is established that substania nigra microstructure and presynaptic dopamine activity are impaired in early PD. It is not well understood if these two forms of degeneration are redundant, or if they each provide a unique contribution to the clinical motor and cognitive symptoms. METHODS A total of 129 PD and 75 control individuals underwent motor and cognitive evaluations, and in vivo [11C]dihydrotetrabenazine (DTBZ) monoaminergic brain PET imaging and diffusion imaging. Correlations between free-water in the substantia nigra and striatal PET measures were analyzed. Unbiased multiple regression using a backward elimination method was performed between clinical severity and all imaging measures. RESULTS Inverse correlations were found between free-water in posterior substantia nigra and DTBZ binding in putamen and caudate. Multiple regression revealed that increased free-water in the posterior substantia nigra, decreased DTBZ binding in putamen, and age were predictors of higher Hoehn and Yahr stage, MDS-UPDRS III scores, and posture and gait sub-scores. Increased posterior substantia nigra free-water alone was associated tremor scores. Free-water in caudate and putamen did not predict measures of motor performance. Decreased DTBZ binding in caudate, increased free-water in caudate and posterior substantia nigra were associated with higher dementia ratings. CONCLUSIONS These findings suggest that free-water in the posterior substantia nigra and presynaptic dopamine imaging in striatum are uniquely associated with the clinical symptoms of PD, indicating that each imaging modality may be measuring a unique mechanism relevant to nigrostriatal degeneration.
Collapse
Affiliation(s)
- Jing Yang
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL,USA; Department of Neurology, West China Hospital of Sichuan University, Chengdu, China.
| | - Derek B Archer
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL,USA.
| | - Roxana G Burciu
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA.
| | - Martijn L T M Müller
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; University of Michigan, Morris K Udall Center of Excellence for Parkinson's Disease Research, Ann Arbor, MI, USA.
| | - Arnab Roy
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL,USA.
| | - Edward Ofori
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA.
| | - Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; University of Michigan, Morris K Udall Center of Excellence for Parkinson's Disease Research, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Neurology Service and GRECC, VAAAHS, Ann Arbor, MI, USA.
| | - Roger L Albin
- University of Michigan, Morris K Udall Center of Excellence for Parkinson's Disease Research, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Neurology Service and GRECC, VAAAHS, Ann Arbor, MI, USA.
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL,USA; Department of Neurology, University of Florida, Gainesville, FL,USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
17
|
Sethi SK, Kisch SJ, Ghassaban K, Rajput A, Rajput A, Babyn PS, Liu S, Szkup P, Mark Haacke E. Iron quantification in Parkinson's disease using an age-based threshold on susceptibility maps: The advantage of local versus entire structure iron content measurements. Magn Reson Imaging 2019; 55:145-152. [DOI: 10.1016/j.mri.2018.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/29/2018] [Accepted: 10/06/2018] [Indexed: 01/09/2023]
|
18
|
Abnormalities on structural MRI associate with faster disease progression in multiple system atrophy. Parkinsonism Relat Disord 2019; 58:23-27. [DOI: 10.1016/j.parkreldis.2018.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/22/2018] [Accepted: 08/06/2018] [Indexed: 11/22/2022]
|
19
|
Pathophysiology of levodopa-induced dyskinesia: Insights from multimodal imaging and immunohistochemistry in non-human primates. Neuroimage 2018; 183:132-141. [DOI: 10.1016/j.neuroimage.2018.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/21/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022] Open
|
20
|
Heldmann M, Heeren J, Klein C, Rauch L, Hagenah J, Münte TF, Kasten M, Brüggemann N. Neuroimaging abnormalities in individuals exhibiting Parkinson's disease risk markers. Mov Disord 2018; 33:1412-1422. [PMID: 29756356 DOI: 10.1002/mds.27313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 12/23/2017] [Accepted: 12/31/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The concept of prodromal Parkinson's disease (PD) involves variable combinations of nonmotor features and subtle motor abnormalities as a result of ongoing neurodegeneration in the brain stem including substantia nigra (SN) and abnormal findings upon transcranial sonography and nuclear imaging. Except for nuclear imaging, the predictive value of risk markers for the conversion to overt PD is low. OBJECTIVE The objective of this study was to determine whether PD risk markers are associated with changes in brain structure and to what extent cognitive changes are risk markers for PD. METHODS Diffusion-weighted imaging, voxel-based morphometry, and cortical thickness analysis was performed in 29 individuals with hyposmia and/or an increased SN hyperechogenicity (SN+) upon transcranial sonography and 28 controls without these 2 risk markers. Classical parkinsonian signs were an exclusion criterion. All of the participants underwent a neuropsychological test battery addressing executive functions, learning ability, and verbal fluency. RESULTS In the PD risk group, diffusion-weighted imaging mean diffusivity was increased in 4 left hemisphere clusters (posterior thalamus, inferior longitudinal fasciculus, fornix, corticospinal tract). A negative relationship of mean diffusivity and smell function was present for the posterior thalamus and the corticospinal tract. There was a significant correlation of mean diffusivity values and SN+ in all clusters. Neither voxel-based morphometry nor cortical thickness analysis revealed any group differences. No relevant group differences were observed for cognitive tests included. CONCLUSION PD-free individuals with PD risk markers show microstructural changes of the white matter, including areas relevant for motor and limbic processes. In addition, our study provides for the first time a neuroanatomical correlate for SN hyperechogenicity. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Janna Heeren
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Linus Rauch
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Johann Hagenah
- Department of Neurology, Westküstenklinikum Heide, Heide, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
21
|
A meta-analysis of diffusion tensor imaging of substantia nigra in patients with Parkinson's disease. Sci Rep 2018; 8:2941. [PMID: 29440768 PMCID: PMC5811437 DOI: 10.1038/s41598-018-20076-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/12/2018] [Indexed: 01/11/2023] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disease characterized by severe, selective loss of pigmented neurons in the substantial nigra (SN). Previous studies have indicated that such loss could be detected by diffusion tensor imaging (DTI). Here, we try to consolidate current DTI data to both quantitatively determine the imaging changes in SN, as well as explore the potential use of DTI for PD diagnosis. Fourteen research articles are included in this meta-analysis, each obtained by searching PubMed, EMBASE, or Cochrane library database dated until July 2017. The articles contain 14 trials with 298 total PD patients and 283 healthy controls (HCs). The results show not only significantly lower FA values of SN in PD compared to that of HCs (WMD = −0.02, 95% CI = [−0.03, −0.02], p < 0.00001), but also a significantly higher MD in PD compared to HCs (WMD = 0.05, 95% CI = [0.03, 0.07], P < 0.0001). This indicates that the sharp difference detected between PD patients and HCs can be detected by DTI. By further analyzing the heterogeneity, we found that FA measurement of SN could be potentially used as a surrogate, noninvasive diagnostic marker toward PD diagnosis.
Collapse
|
22
|
Takeuchi H, Kawashima R. Mean Diffusivity in the Dopaminergic System and Neural Differences Related to Dopaminergic System. Curr Neuropharmacol 2018; 16:460-474. [PMID: 29119929 PMCID: PMC6018195 DOI: 10.2174/1570159x15666171109124839] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/29/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The mean diffusivity (MD) parameter obtained by diffusion tensor imaging provides a measure of how freely water molecules move in brain tissue. Greater tissue density conferred by closely arrayed cellular structures is assumed to lower MD by inhibiting the free diffusion of water molecules. METHODS In this paper, we review studies showing MD variation among regions of the brain dopaminergic system (MDDS), especially subcortical structures such as the putamen, caudate nucleus, and globus pallidus, in different conditions with known associations to dopaminergic system function or dysfunction. The methodologies and background related to MD and MDDS are also discussed. RESULTS Past studies indicate that MDDS is sensitive to pathological derangement of dopaminergic activity, neural changes caused by cognitive and pharmacological interventions that are known to affect the dopaminergic system, and individual character traits related to dopaminergic function. CONCLUSION These results suggest that MDDS can be one useful tool to tap the neural differences related to the dopaminergic system.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Address correspondence to this author at the Division of Developmental Cognitive Neuroscience, IDAC, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; Tel/Fax: +81-22-717-7988;, E-mail:
| | | |
Collapse
|
23
|
Météreau E, Beaudoin-Gobert M, Duperrier S, Thobois S, Tremblay L, Sgambato-Faure V. Diffusion tensor imaging marks dopaminergic and serotonergic lesions in the Parkinsonian monkey. Mov Disord 2017; 33:298-309. [DOI: 10.1002/mds.27201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/24/2017] [Accepted: 08/27/2017] [Indexed: 12/31/2022] Open
Affiliation(s)
- Elise Météreau
- Université de Lyon, Centre National de la Recherche Scientifique, Institut des Sciences Cognitives Marc Jeannerod; Bron France
| | - Maude Beaudoin-Gobert
- Université de Lyon, Centre National de la Recherche Scientifique, Institut des Sciences Cognitives Marc Jeannerod; Bron France
| | - Sandra Duperrier
- Université de Lyon, Centre National de la Recherche Scientifique, Institut des Sciences Cognitives Marc Jeannerod; Bron France
| | - Stéphane Thobois
- Université de Lyon, Centre National de la Recherche Scientifique, Institut des Sciences Cognitives Marc Jeannerod; Bron France
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer; Lyon France
| | - Léon Tremblay
- Université de Lyon, Centre National de la Recherche Scientifique, Institut des Sciences Cognitives Marc Jeannerod; Bron France
| | - Véronique Sgambato-Faure
- Université de Lyon, Centre National de la Recherche Scientifique, Institut des Sciences Cognitives Marc Jeannerod; Bron France
| |
Collapse
|
24
|
Microstructural network alterations of olfactory dysfunction in newly diagnosed Parkinson's disease. Sci Rep 2017; 7:12559. [PMID: 28970540 PMCID: PMC5624890 DOI: 10.1038/s41598-017-12947-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/12/2017] [Indexed: 12/28/2022] Open
Abstract
Olfactory dysfunction is a robust and early sign for Parkinson's disease (PD). Previous studies have revealed its association with dementia and related neural changes in PD. Yet, how olfactory dysfunction affects white matter (WM) microstructure in newly diagnosed and untreated PD remains unclear. Here we comprehensively examined WM features using unbiased whole-brain analyses. 88 newly diagnosed PD patients without dementia (70 with hyposmia and 18 without hyposmia) and 33 healthy controls underwent clinical assessment and diffusion tensor imaging (DTI) scanning. Tract-based special statistics (TBSS), graph-theoretic methods and network-based statistics (NBS) were used to compare regional and network-related WM features between groups. TBSS analysis did not show any differences in fractional anisotropy and mean diffusivity between groups. Compared with controls, PD patients without hyposmia showed a significant decrease in global efficiency, whilst PD patients with hyposmia exhibited significantly reduced global and local efficiency and additionally a disrupted connection between the right medial orbitofrontal cortex and left rectus and had poorer frontal-related cognitive functioning. These results demonstrate that hyposmia-related WM changes in early PD only occur at the network level. The confined disconnectivity between the bilateral olfactory circuitry may serve as a biomarker for olfactory dysfunction in early PD.
Collapse
|
25
|
Burciu RG, Ofori E, Archer DB, Wu SS, Pasternak O, McFarland NR, Okun MS, Vaillancourt DE. Progression marker of Parkinson's disease: a 4-year multi-site imaging study. Brain 2017; 140:2183-2192. [PMID: 28899020 PMCID: PMC6057495 DOI: 10.1093/brain/awx146] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/14/2017] [Indexed: 11/13/2022] Open
Abstract
Progression markers of Parkinson's disease are crucial for successful therapeutic development. Recently, a diffusion magnetic resonance imaging analysis technique using a bitensor model was introduced allowing the estimation of the fractional volume of free water within a voxel, which is expected to increase in neurodegenerative disorders such as Parkinson's disease. Prior work demonstrated that free water in the posterior substantia nigra was elevated in Parkinson's disease compared to controls across single- and multi-site cohorts, and increased over 1 year in Parkinson's disease but not in controls at a single site. Here, the goal was to validate free water in the posterior substantia nigra as a progression marker in Parkinson's disease, and describe the pattern of progression of free water in patients with a 4-year follow-up tested in a multicentre international longitudinal study of de novo Parkinson's disease (http://www.ppmi-info.org/). The analyses examined: (i) 1-year changes in free water in 103 de novo patients with Parkinson's disease and 49 controls; (ii) 2- and 4-year changes in free water in a subset of 46 patients with Parkinson's disease imaged at baseline, 12, 24, and 48 months; (iii) whether 1- and 2-year changes in free water predict 4-year changes in the Hoehn and Yahr scale; and (iv) the relationship between 4-year changes in free water and striatal binding ratio in a subgroup of Parkinson's disease who had undergone both diffusion and dopamine transporter imaging. Results demonstrated that: (i) free water level in the posterior substantia nigra increased over 1 year in de novo Parkinson's disease but not in controls; (ii) free water kept increasing over 4 years in Parkinson's disease; (iii) sex and baseline free water predicted 4-year changes in free water; (iv) free water increases over 1 and 2 years were related to worsening on the Hoehn and Yahr scale over 4 years; and (v) the 4-year increase in free water was associated with the 4-year decrease in striatal binding ratio in the putamen. Importantly, all longitudinal results were consistent across sites. In summary, this study demonstrates an increase over 1 year in free water in the posterior substantia nigra in a large cohort of de novo patients with Parkinson's disease from a multi-site cohort study and no change in healthy controls, and further demonstrates an increase of free water in Parkinson's disease over the course of 4 years. A key finding was that results are consistent across sites and the 1-year and 2-year increase in free water in the posterior substantia nigra predicts subsequent long-term progression on the Hoehn and Yahr staging system. Collectively, these findings demonstrate that free water in the posterior substantia nigra is a valid, progression imaging marker of Parkinson's disease, which may be used in clinical trials of disease-modifying therapies.
Collapse
Affiliation(s)
- Roxana G Burciu
- University of Florida, Department of Applied Physiology and Kinesiology, Gainesville, FL, USA
| | - Edward Ofori
- University of Florida, Department of Applied Physiology and Kinesiology, Gainesville, FL, USA
| | - Derek B Archer
- University of Florida, Department of Applied Physiology and Kinesiology, Gainesville, FL, USA
| | - Samuel S Wu
- University of Florida, Department of Biostatistics, Gainesville, FL, USA
| | - Ofer Pasternak
- Harvard Medical School Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Nikolaus R McFarland
- University of Florida, Department of Neurology, Gainesville, FL, USA.,University of Florida, Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Michael S Okun
- University of Florida, Department of Neurology, Gainesville, FL, USA.,University of Florida, Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA.,University of Florida, Department of Neurosurgery, Gainesville, FL, USA
| | - David E Vaillancourt
- University of Florida, Department of Applied Physiology and Kinesiology, Gainesville, FL, USA.,University of Florida, Department of Neurology, Gainesville, FL, USA.,University of Florida, Department of Biomedical Engineering, Gainesville, FL, USA
| |
Collapse
|
26
|
Heim B, Krismer F, De Marzi R, Seppi K. Magnetic resonance imaging for the diagnosis of Parkinson's disease. J Neural Transm (Vienna) 2017; 124:915-964. [PMID: 28378231 PMCID: PMC5514207 DOI: 10.1007/s00702-017-1717-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022]
Abstract
The differential diagnosis of parkinsonian syndromes is considered one of the most challenging in neurology and error rates in the clinical diagnosis can be high even at specialized centres. Despite several limitations, magnetic resonance imaging (MRI) has undoubtedly enhanced the diagnostic accuracy in the differential diagnosis of neurodegenerative parkinsonism over the last three decades. This review aims to summarize research findings regarding the value of the different MRI techniques, including advanced sequences at high- and ultra-high-field MRI and modern image analysis algorithms, in the diagnostic work-up of Parkinson's disease. This includes not only the exclusion of alternative diagnoses for Parkinson's disease such as symptomatic parkinsonism and atypical parkinsonism, but also the diagnosis of early, new onset, and even prodromal Parkinson's disease.
Collapse
Affiliation(s)
- Beatrice Heim
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
| | - Roberto De Marzi
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
- Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
27
|
Atkinson-Clement C, Pinto S, Eusebio A, Coulon O. Diffusion tensor imaging in Parkinson's disease: Review and meta-analysis. Neuroimage Clin 2017; 16:98-110. [PMID: 28765809 PMCID: PMC5527156 DOI: 10.1016/j.nicl.2017.07.011] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neuroimaging studies help us better understand the pathophysiology and symptoms of Parkinson's disease (PD). In several of these studies, diffusion tensor imaging (DTI) was used to investigate structural changes in cerebral tissue. Although data have been provided as regards to specific brain areas, a whole brain meta-analysis is still missing. METHODS We compiled 39 studies in this meta-analysis: 14 used fractional anisotropy (FA), 1 used mean diffusivity (MD), and 24 used both indicators. These studies comprised 1855 individuals, 1087 with PD and 768 healthy controls. Regions of interest were classified anatomically (subcortical structures; white matter; cortical areas; cerebellum). Our statistical analysis considered the disease effect size (DES) as the main variable; the heterogeneity index (I2) and Pearson's correlations between the DES and co-variables (demographic, clinical and MRI parameters) were also calculated. RESULTS Our results showed that FA-DES and MD-DES were able to distinguish between patients and healthy controls. Significant differences, indicating degenerations, were observed within the substantia nigra, the corpus callosum, and the cingulate and temporal cortices. Moreover, some findings (particularly in the corticospinal tract) suggested opposite brain changes associated with PD. In addition, our results demonstrated that MD-DES was particularly sensitive to clinical and MRI parameters, such as the number of DTI directions and the echo time within white matter. CONCLUSIONS Despite some limitations, DTI appears as a sensitive method to study PD pathophysiology and severity. The association of DTI with other MRI methods should also be considered and could benefit the study of brain degenerations in PD.
Collapse
Affiliation(s)
| | - Serge Pinto
- Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France
- Brain and Language Research Institute, Aix Marseille Univ, Aix-en-Provence, France
| | - Alexandre Eusebio
- Aix Marseille Univ, APHM, Hôpital de la Timone, Service de Neurologie et Pathologie du Mouvement, Marseille, France
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille France
| | - Olivier Coulon
- Brain and Language Research Institute, Aix Marseille Univ, Aix-en-Provence, France
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille France
- Aix Marseille Univ, CNRS, LSIS lab, UMR 7296, Marseille, France
| |
Collapse
|
28
|
Joshi N, Rolheiser TM, Fisk JD, McKelvey JR, Schoffer K, Phillips G, Armstrong M, Khan MN, Leslie RA, Rusak B, Robertson HA, Good KP. Lateralized microstructural changes in early-stage Parkinson's disease in anterior olfactory structures, but not in substantia nigra. J Neurol 2017; 264:1497-1505. [PMID: 28653210 DOI: 10.1007/s00415-017-8555-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a progressive neurological disorder characterized by motor symptoms as well as severe deficits in olfactory function and microstructural changes in olfactory brain regions. Because of the evidence of asymmetric neuropathological features in early-stage PD, we examined whether lateralized microstructural changes occur in olfactory brain regions and the substantia nigra in a group of early-stage PD patients. Using diffusion tensor imaging (DTI) and the University of Pennsylvania Smell Identification Test (UPSIT), we assessed 24 early-stage PD patients (Hoehn and Yahr stage 1 or 2) and 26 healthy controls (HC). We used DTI and a region of interest (ROI) approach to study the microstructure of the left and right anterior olfactory structures (AOS; comprising the olfactory bulbs and anterior end of the olfactory tracts) and the substantia nigra (SN). PD patients had reduced UPSIT scores relative to HC and showed increased mean diffusivity (MD) in the SN, with no lateralized differences. Significant group differences in fractional anisotropy (FA) and MD were seen in the AOS, but these differences were restricted to the right side and were not associated with the primary side of motor symptoms amongst PD patients. No associations were observed between lateralized motor impairment and lateralized microstructural changes in AOS. Impaired olfaction and microstructural changes in AOS are useful for early identification of PD but asymmetries in AOS microstructure seem unrelated to the laterality of PD motor symptoms.
Collapse
Affiliation(s)
- N Joshi
- Department of Psychiatry, IWK Hospital, Halifax, NS, Canada
| | - T M Rolheiser
- Department of Psychiatry, Dalhousie University, 4064 AJLB, 5909 Veterans Memorial Lane, Halifax, NS, Canada
| | - J D Fisk
- Department of Psychology, Nova Scotia Health Authority, Central Zone, Halifax, NS, Canada
| | - J R McKelvey
- Division of Neurology, Department of Medicine, Nova Scotia Health Authority, Halifax, NS, Canada
| | - K Schoffer
- Division of Neurology, Department of Medicine, Nova Scotia Health Authority, Halifax, NS, Canada
| | - G Phillips
- Division of Respirology, Department of Medicine, Nova Scotia Health Authority, Halifax, NS, Canada
| | - M Armstrong
- Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - M N Khan
- Department of Radiology, IWK Hospital, Halifax, NS, Canada
| | - R A Leslie
- Department of Medical Neurosciences, Dalhousie University, Halifax, NS, Canada
| | - B Rusak
- Department of Psychiatry, Dalhousie University, 4064 AJLB, 5909 Veterans Memorial Lane, Halifax, NS, Canada.,Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - H A Robertson
- Department of Psychiatry, Dalhousie University, 4064 AJLB, 5909 Veterans Memorial Lane, Halifax, NS, Canada.,Division of Neurology, Department of Medicine, Nova Scotia Health Authority, Halifax, NS, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - K P Good
- Department of Psychiatry, Dalhousie University, 4064 AJLB, 5909 Veterans Memorial Lane, Halifax, NS, Canada. .,Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
29
|
Yousaf T, Wilson H, Politis M. Imaging the Nonmotor Symptoms in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:179-257. [PMID: 28802921 DOI: 10.1016/bs.irn.2017.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is acknowledged to be a multisystem syndrome, manifesting as a result of multineuropeptide dysfunction, including dopaminergic, cholinergic, serotonergic, and noradrenergic deficits. This multisystem disorder ultimately leads to the presentation of a range of nonmotor symptoms, now appreciated to be an integral part of the disease-specific spectrum of symptoms, often preceding the diagnosis of motor Parkinson's disease. In this chapter, we review the dopaminergic and nondopaminergic basis of these symptoms by exploring the neuroimaging evidence based on several techniques including positron emission tomography, single-photon emission computed tomography molecular imaging, magnetic resonance imaging, functional magnetic resonance imaging, and diffusion tensor imaging. We discuss the role of these neuroimaging techniques in elucidating the underlying pathophysiology of NMS in Parkinson's disease.
Collapse
Affiliation(s)
- Tayyabah Yousaf
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Heather Wilson
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom.
| |
Collapse
|
30
|
Kiparizoska S, Ikuta T. Disrupted Olfactory Integration in Schizophrenia: Functional Connectivity Study. Int J Neuropsychopharmacol 2017; 20:740-746. [PMID: 28582529 PMCID: PMC5581488 DOI: 10.1093/ijnp/pyx045] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/03/2017] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Evidence for olfactory dysfunction in schizophrenia has been firmly established. However, in the typical understanding of schizophrenia, olfaction is not recognized to contribute to or interact with the illness. Despite the solid presence of olfactory dysfunction in schizophrenia, its relation to the rest of the illness remains largely unclear. Here, we aimed to examine functional connectivity of the olfactory bulb, olfactory tract, and piriform cortices and isolate the network that would account for the altered olfaction in schizophrenia. METHODS We examined the functional connectivity of these specific olfactory regions in order to isolate other brain regions associated with olfactory processing in schizophrenia. Using the resting state functional MRI data from the Center for Biomedical Research Excellence in Brain Function and Mental Illness, we compared 84 patients of schizophrenia and 90 individuals without schizophrenia. RESULTS The schizophrenia group showed disconnectivity between the anterior piriform cortex and the nucleus accumbens, between the posterior piriform cortex and the middle frontal gyrus, and between the olfactory tract and the visual cortices. CONCLUSIONS The current results suggest functional disconnectivity of olfactory regions in schizophrenia, which may account for olfactory dysfunction and disrupted integration with other sensory modalities in schizophrenia.
Collapse
Affiliation(s)
- Sara Kiparizoska
- School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi (Ms Kiparizoska); Department of Communication Sciences and Disorders, University of Mississippi, University, Mississippi (Dr Ikuta)
| | - Toshikazu Ikuta
- School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi (Ms Kiparizoska); Department of Communication Sciences and Disorders, University of Mississippi, University, Mississippi (Dr Ikuta).,Correspondence: Toshikazu Ikuta, PhD, 311 George Hall, 352 Rebel Drive, University of Mississippi, University, MS 38672 ()
| |
Collapse
|
31
|
Campabadal A, Uribe C, Segura B, Baggio HC, Abos A, Garcia-Diaz AI, Marti MJ, Valldeoriola F, Compta Y, Bargallo N, Junque C. Brain correlates of progressive olfactory loss in Parkinson's disease. Parkinsonism Relat Disord 2017; 41:44-50. [PMID: 28522171 DOI: 10.1016/j.parkreldis.2017.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/04/2017] [Accepted: 05/08/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Olfactory dysfunction is present in a large proportion of patients with Parkinson's disease (PD) upon diagnosis. However, its progression over time has been poorly investigated. The few available longitudinal studies lack control groups or MRI data. OBJECTIVE To investigate the olfactory changes and their structural correlates in non-demented PD over a four-year follow-up. METHODS We assessed olfactory function in a sample of 25 PD patients and 24 normal controls of similar age using the University of Pennsylvania Smell Identification test (UPSIT). Structural magnetic resonance imaging data, obtained with a 3-T Siemens Trio scanner, were analyzed using FreeSurfer software. RESULTS Analysis of variance showed significant group (F = 53.882; P < 0.001) and time (F = 6.203; P = 0.016) effects, but the group-by-time interaction was not statistically significant. UPSIT performance declined ≥1.5 standard deviations in 5 controls and 7 patients. Change in UPSIT scores of patients correlated positively with volume change in the left putamen, right thalamus, and right caudate nucleus. CONCLUSION Olfactory loss over time in PD and controls is similar, but we have observed significant correlation between this loss and basal ganglia volumes only in patients.
Collapse
Affiliation(s)
- Anna Campabadal
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
| | - Carme Uribe
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain.
| | - Barbara Segura
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain.
| | - Hugo C Baggio
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain.
| | - Alexandra Abos
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain.
| | - Anna Isabel Garcia-Diaz
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain.
| | - Maria Jose Marti
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain; Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain.
| | - Francesc Valldeoriola
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain; Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain.
| | - Yaroslau Compta
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain; Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain.
| | - Nuria Bargallo
- Centre de Diagnòstic per la Imatge, Hospital Clínic, Barcelona, Catalonia, Spain.
| | - Carme Junque
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain.
| |
Collapse
|
32
|
Milardi D, Cacciola A, Calamuneri A, Ghilardi MF, Caminiti F, Cascio F, Andronaco V, Anastasi G, Mormina E, Arrigo A, Bruschetta D, Quartarone A. The Olfactory System Revealed: Non-Invasive Mapping by using Constrained Spherical Deconvolution Tractography in Healthy Humans. Front Neuroanat 2017; 11:32. [PMID: 28443000 PMCID: PMC5385345 DOI: 10.3389/fnana.2017.00032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/28/2017] [Indexed: 11/27/2022] Open
Abstract
Although the olfactory sense has always been considered with less interest than the visual, auditive or somatic senses, it does plays a major role in our ordinary life, with important implication in dangerous situations or in social and emotional behaviors. Traditional Diffusion Tensor signal model and related tractography have been used in the past years to reconstruct the cranial nerves, including the olfactory nerve (ON). However, no supplementary information with regard to the pathways of the olfactory network have been provided. Here, by using the more advanced Constrained Spherical Deconvolution (CSD) diffusion model, we show for the first time in vivo and non-invasively that, in healthy humans, the olfactory system has a widely distributed anatomical network to several cortical regions as well as to many subcortical structures. Although the present study focuses on an healthy sample size, a similar approach could be applied in the near future to gain important insights with regard to the early involvement of olfaction in several neurodegenerative disorders.
Collapse
Affiliation(s)
- Demetrio Milardi
- Centro Neurolesi Bonino Pulejo (IRCCS)Messina, Italy.,Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of MessinaMessina, Italy
| | | | - Alessandro Calamuneri
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of MessinaMessina, Italy
| | - Maria F Ghilardi
- Sophie Davis School for Biomedical Education, City College New York (CCNY), The City University of New York (CUNY)New York, NY, USA.,The Fresco Institute for Parkinson's and Movement Disorders, NYU Langone Medical Center, New York UniversityNew York, NY, USA
| | | | - Filippo Cascio
- Department of Otorhinolaryngology, Papardo HospitalMessina, Italy
| | | | - Giuseppe Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of MessinaMessina, Italy
| | - Enricomaria Mormina
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of MessinaMessina, Italy
| | - Alessandro Arrigo
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of MessinaMessina, Italy
| | - Daniele Bruschetta
- Centro Neurolesi Bonino Pulejo (IRCCS)Messina, Italy.,Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of MessinaMessina, Italy
| | - Angelo Quartarone
- Centro Neurolesi Bonino Pulejo (IRCCS)Messina, Italy.,Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of MessinaMessina, Italy
| |
Collapse
|
33
|
The underlying mechanism of prodromal PD: insights from the parasympathetic nervous system and the olfactory system. Transl Neurodegener 2017; 6:4. [PMID: 28239455 PMCID: PMC5319081 DOI: 10.1186/s40035-017-0074-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
Neurodegeneration of Parkinson's disease (PD) starts in an insidious manner, 30-50% of dopaminergic neurons have been lost in the substantia nigra before clinical diagnosis. Prodromal stage of the disease, during which the disease pathology has started but is insufficient to result in clinical manifestations, offers a valuable window for disease-modifying therapies. The most focused underlying mechanisms linking the pathological pattern and clinical characteristics of prodromal PD are the prion hypothesis of alpha-synuclein and the selective vulnerability of neurons. In this review, we consider the two potential portals, the vagus nerve and the olfactory bulb, through which abnormal alpha-synuclein can access the brain. We review the clinical, pathological and neuroimaging evidence of the parasympathetic nervous system and the olfactory system in the neurodegenerative process and using the two systems as models to discuss the internal homogeneity and heterogeneity of the prodromal stage of PD, including both the clustering and subtyping of symptoms and signs. Finally, we offer some suggestions on future directions for imaging studies in prodromal Parkinson's disease.
Collapse
|
34
|
Lenfeldt N, Eriksson J, Åström B, Forsgren L, Mo SJ. Fractional Anisotropy and Mean Diffusion as Measures of Dopaminergic Function in Parkinson’s Disease: Challenging Results. JOURNAL OF PARKINSONS DISEASE 2017; 7:129-142. [DOI: 10.3233/jpd-161011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Niklas Lenfeldt
- Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Johan Eriksson
- Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Björn Åström
- Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Lars Forsgren
- Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | | |
Collapse
|
35
|
Qamar MA, Sauerbier A, Politis M, Carr H, Loehrer PA, Chaudhuri KR. Presynaptic dopaminergic terminal imaging and non-motor symptoms assessment of Parkinson's disease: evidence for dopaminergic basis? NPJ Parkinsons Dis 2017; 3:5. [PMID: 28649605 PMCID: PMC5445592 DOI: 10.1038/s41531-016-0006-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/04/2016] [Accepted: 11/25/2016] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is now considered to be a multisystemic disorder consequent on multineuropeptide dysfunction including dopaminergic, serotonergic, cholinergic, and noradrenergic systems. This multipeptide dysfunction leads to expression of a range of non-motor symptoms now known to be integral to the concept of PD and preceding the diagnosis of motor PD. Some non-motor symptoms in PD may have a dopaminergic basis and in this review, we investigate the evidence for this based on imaging techniques using dopamine-based radioligands. To discuss non-motor symptoms we follow the classification as outlined by the validated PD non-motor symptoms scale.
Collapse
Affiliation(s)
- MA Qamar
- National Parkinson’s Foundation International Center of Excellence, King’s College London and King’s College Hospital NHS Foundation Trust, London, UK
| | - A Sauerbier
- National Parkinson’s Foundation International Center of Excellence, King’s College London and King’s College Hospital NHS Foundation Trust, London, UK
| | - M Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
| | - H Carr
- National Parkinson’s Foundation International Center of Excellence, King’s College London and King’s College Hospital NHS Foundation Trust, London, UK
| | - P A Loehrer
- National Parkinson’s Foundation International Center of Excellence, King’s College London and King’s College Hospital NHS Foundation Trust, London, UK
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - K Ray Chaudhuri
- National Parkinson’s Foundation International Center of Excellence, King’s College London and King’s College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
36
|
Markopoulou K, Chase BA, Robowski P, Strongosky A, Narożańska E, Sitek EJ, Berdynski M, Barcikowska M, Baker MC, Rademakers R, Sławek J, Klein C, Hückelheim K, Kasten M, Wszolek ZK. Assessment of Olfactory Function in MAPT-Associated Neurodegenerative Disease Reveals Odor-Identification Irreproducibility as a Non-Disease-Specific, General Characteristic of Olfactory Dysfunction. PLoS One 2016; 11:e0165112. [PMID: 27855167 PMCID: PMC5113898 DOI: 10.1371/journal.pone.0165112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/06/2016] [Indexed: 01/30/2023] Open
Abstract
Olfactory dysfunction is associated with normal aging, multiple neurodegenerative disorders, including Parkinson's disease, Lewy body disease and Alzheimer's disease, and other diseases such as diabetes, sleep apnea and the autoimmune disease myasthenia gravis. The wide spectrum of neurodegenerative disorders associated with olfactory dysfunction suggests different, potentially overlapping, underlying pathophysiologies. Studying olfactory dysfunction in presymptomatic carriers of mutations known to cause familial parkinsonism provides unique opportunities to understand the role of genetic factors, delineate the salient characteristics of the onset of olfactory dysfunction, and understand when it starts relative to motor and cognitive symptoms. We evaluated olfactory dysfunction in 28 carriers of two MAPT mutations (p.N279K, p.P301L), which cause frontotemporal dementia with parkinsonism, using the University of Pennsylvania Smell Identification Test. Olfactory dysfunction in carriers does not appear to be allele specific, but is strongly age-dependent and precedes symptomatic onset. Severe olfactory dysfunction, however, is not a fully penetrant trait at the time of symptom onset. Principal component analysis revealed that olfactory dysfunction is not odor-class specific, even though individual odor responses cluster kindred members according to genetic and disease status. Strikingly, carriers with incipient olfactory dysfunction show poor inter-test consistency among the sets of odors identified incorrectly in successive replicate tests, even before severe olfactory dysfunction appears. Furthermore, when 78 individuals without neurodegenerative disease and 14 individuals with sporadic Parkinson's disease were evaluated twice at a one-year interval using the Brief Smell Identification Test, the majority also showed inconsistency in the sets of odors they identified incorrectly, independent of age and cognitive status. While these findings may reflect the limitations of these tests used and the sample sizes, olfactory dysfunction appears to be associated with the inability to identify odors reliably and consistently, not with the loss of an ability to identify specific odors. Irreproducibility in odor identification appears to be a non-disease-specific, general feature of olfactory dysfunction that is accelerated or accentuated in neurodegenerative disease. It may reflect a fundamental organizational principle of the olfactory system, which is more "error-prone" than other sensory systems.
Collapse
Affiliation(s)
- Katerina Markopoulou
- NorthShore University Health System, Evanston, Illinois, United States of America
- * E-mail:
| | - Bruce A. Chase
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| | - Piotr Robowski
- Department of Neurological and Psychiatric Nursing, Medical University of Gdańsk, Gdańsk, Poland
- Department of Neurology, St. Adalbert Hospital, Copernicus PL Sp. z o.o, Gdańsk, Poland
| | - Audrey Strongosky
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, Florida, United States of America
| | - Ewa Narożańska
- Department of Neurological and Psychiatric Nursing, Medical University of Gdańsk, Gdańsk, Poland
- Department of Neurology, St. Adalbert Hospital, Copernicus PL Sp. z o.o, Gdańsk, Poland
| | - Emilia J. Sitek
- Department of Neurological and Psychiatric Nursing, Medical University of Gdańsk, Gdańsk, Poland
- Department of Neurology, St. Adalbert Hospital, Copernicus PL Sp. z o.o, Gdańsk, Poland
| | - Mariusz Berdynski
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Maria Barcikowska
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Matt C. Baker
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, Florida, United States of America
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, Florida, United States of America
| | - Jarosław Sławek
- Department of Neurological and Psychiatric Nursing, Medical University of Gdańsk, Gdańsk, Poland
- Department of Neurology, St. Adalbert Hospital, Copernicus PL Sp. z o.o, Gdańsk, Poland
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katja Hückelheim
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Zbigniew K. Wszolek
- Department of Neurology, Mayo Clinic Jacksonville, Jacksonville, Florida, United States of America
| |
Collapse
|
37
|
Hirata FCC, Sato JR, Vieira G, Lucato LT, Leite CC, Bor-Seng-Shu E, Pastorello BF, Otaduy MCG, Chaim KT, Campanholo KR, Novaes NP, Melo LM, Gonçalves MR, do Nascimento FBP, Teixeira MJ, Barbosa ER, Amaro E, Cardoso EF. Substantia nigra fractional anisotropy is not a diagnostic biomarker of Parkinson's disease: A diagnostic performance study and meta-analysis. Eur Radiol 2016; 27:2640-2648. [PMID: 27709279 DOI: 10.1007/s00330-016-4611-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/31/2016] [Accepted: 09/15/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Our goal was to estimate the diagnostic accuracy of substantia nigra fractional anisotropy (SN-FA) for Parkinson's disease (PD) diagnosis in a sample similar to the clinical setting, including patients with essential tremor (ET) and healthy controls (HC). We also performed a systematic review and meta-analysis to estimate mean change in SN-FA induced by PD and its diagnostic accuracy. METHODS Our sample consisted of 135 subjects: 72 PD, 21 ET and 42 HC. To address inter-scanner variability, two 3.0-T MRI scans were performed. MRI results of this sample were pooled into a meta-analysis that included 1,432 subjects (806 PD and 626 HC). A bivariate model was used to evaluate diagnostic accuracy measures. RESULTS In our sample, we did not observe a significant effect of disease on SN-FA and it was uninformative for diagnosis. The results of the meta-analysis estimated a 0.03 decrease in mean SN-FA in PD relative to HC (CI: 0.01-0.05). However, the discriminatory capability of SN-FA to diagnose PD was low: pooled sensitivity and specificity were 72 % (CI: 68-75) and 63 % (CI: 58-70), respectively. There was high heterogeneity between studies (I2 = 91.9 %). CONCLUSIONS SN-FA cannot be used as an isolated measure to diagnose PD. KEY POINTS • SN-FA appears insufficiently sensitive and specific to diagnose PD. • Radiologists must be careful when translating mean group results to clinical practice. • Imaging protocol and analysis standardization is necessary for developing reproducible quantitative biomarkers.
Collapse
Affiliation(s)
- Fabiana C C Hirata
- LIM-44, Department of Radiology, University of São Paulo, Rua Oscar Freire, 1967, Apto. 43A, Cerqueira César, São Paulo, SP, Brazil
| | - João R Sato
- LIM-44, Department of Radiology, University of São Paulo, Rua Oscar Freire, 1967, Apto. 43A, Cerqueira César, São Paulo, SP, Brazil
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - Gilson Vieira
- LIM-44, Department of Radiology, University of São Paulo, Rua Oscar Freire, 1967, Apto. 43A, Cerqueira César, São Paulo, SP, Brazil
| | - Leandro T Lucato
- LIM-44, Department of Radiology, University of São Paulo, Rua Oscar Freire, 1967, Apto. 43A, Cerqueira César, São Paulo, SP, Brazil
| | - Claudia C Leite
- LIM-44, Department of Radiology, University of São Paulo, Rua Oscar Freire, 1967, Apto. 43A, Cerqueira César, São Paulo, SP, Brazil
| | - Edson Bor-Seng-Shu
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Bruno F Pastorello
- LIM-44, Department of Radiology, University of São Paulo, Rua Oscar Freire, 1967, Apto. 43A, Cerqueira César, São Paulo, SP, Brazil
| | - Maria C G Otaduy
- LIM-44, Department of Radiology, University of São Paulo, Rua Oscar Freire, 1967, Apto. 43A, Cerqueira César, São Paulo, SP, Brazil
| | - Khallil T Chaim
- LIM-44, Department of Radiology, University of São Paulo, Rua Oscar Freire, 1967, Apto. 43A, Cerqueira César, São Paulo, SP, Brazil
| | - Kenia R Campanholo
- LIM-44, Department of Radiology, University of São Paulo, Rua Oscar Freire, 1967, Apto. 43A, Cerqueira César, São Paulo, SP, Brazil
| | - Natalia P Novaes
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Department of Neurology, University of São Paulo, São Paulo, Brazil
| | | | | | - Felipe Barjud Pereira do Nascimento
- LIM-44, Department of Radiology, University of São Paulo, Rua Oscar Freire, 1967, Apto. 43A, Cerqueira César, São Paulo, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | | - Edson Amaro
- LIM-44, Department of Radiology, University of São Paulo, Rua Oscar Freire, 1967, Apto. 43A, Cerqueira César, São Paulo, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ellison Fernando Cardoso
- LIM-44, Department of Radiology, University of São Paulo, Rua Oscar Freire, 1967, Apto. 43A, Cerqueira César, São Paulo, SP, Brazil.
- Hospital Israelita Albert Einstein, São Paulo, Brazil.
- Institute of Mathematics and Statistics University of São Paulo (IME-USP), São Paulo, Brazil.
| |
Collapse
|
38
|
Mahlknecht P, Pechlaner R, Boesveldt S, Volc D, Pinter B, Reiter E, Müller C, Krismer F, Berendse HW, van Hilten JJ, Wuschitz A, Schimetta W, Högl B, Djamshidian A, Nocker M, Göbel G, Gasperi A, Kiechl S, Willeit J, Poewe W, Seppi K. Optimizing odor identification testing as quick and accurate diagnostic tool for Parkinson's disease. Mov Disord 2016; 31:1408-13. [PMID: 27159493 PMCID: PMC5026160 DOI: 10.1002/mds.26637] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/10/2016] [Accepted: 02/29/2016] [Indexed: 12/05/2022] Open
Abstract
Introduction The aim of this study was to evaluate odor identification testing as a quick, cheap, and reliable tool to identify PD. Methods Odor identification with the 16‐item Sniffin' Sticks test (SS‐16) was assessed in a total of 646 PD patients and 606 controls from three European centers (A, B, and C), as well as 75 patients with atypical parkinsonism or essential tremor and in a prospective cohort of 24 patients with idiopathic rapid eye movement sleep behavior disorder (center A). Reduced odor sets most discriminative for PD were determined in a discovery cohort derived from a random split of PD patients and controls from center A using L1‐regularized logistic regression. Diagnostic accuracy was assessed in the rest of the patients/controls as validation cohorts. Results Olfactory performance was lower in PD patients compared with controls and non‐PD patients in all cohorts (each P < 0.001). Both the full SS‐16 and a subscore of the top eight discriminating odors (SS‐8) were associated with an excellent discrimination of PD from controls (areas under the curve ≥0.90; sensitivities ≥83.3%; specificities ≥82.0%) and from non‐PD patients (areas under the curve ≥0.91; sensitivities ≥84.1%; specificities ≥84.0%) in all cohorts. This remained unchanged when patients with >3 years of disease duration were excluded from analysis. All 8 incident PD cases among patients with idiopathic rapid eye movement sleep behavior disorder were predicted with the SS‐16 and the SS‐8 (sensitivity, 100%; positive predictive value, 61.5%). Conclusions Odor identification testing provides excellent diagnostic accuracy in the distinction of PD patients from controls and diagnostic mimics. A reduced set of eight odors could be used as a quick tool in the workup of patients presenting with parkinsonism and for PD risk indication. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Philipp Mahlknecht
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.,Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - Raimund Pechlaner
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Sanne Boesveldt
- Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands.,Divisions of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Dieter Volc
- Study Center Confraternitaet-PKJ Vienna, Vienna, Austria
| | - Bernardette Pinter
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Eva Reiter
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Christoph Müller
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Henk W Berendse
- Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - Jacobus J van Hilten
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Wolfgang Schimetta
- Department of Applied Systems Research and Statistics, Johannes Kepler University Linz, Linz, Austria
| | - Birgit Högl
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Atbin Djamshidian
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Nocker
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Georg Göbel
- Department of Medical Statistics, Informatics and Health Economics, Medical University Innsbruck, Innsbruck, Austria
| | - Arno Gasperi
- Department of Neurology, Hospital of Bruneck, Bruneck, Italy
| | - Stefan Kiechl
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Johann Willeit
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
39
|
Tanik N, Serin HI, Celikbilek A, Inan LE, Gundogdu F. Associations of olfactory bulb and depth of olfactory sulcus with basal ganglia and hippocampus in patients with Parkinson’s disease. Neurosci Lett 2016; 620:111-4. [DOI: 10.1016/j.neulet.2016.03.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/26/2016] [Indexed: 11/15/2022]
|
40
|
Potential of Diffusion Tensor Imaging and Relaxometry for the Detection of Specific Pathological Alterations in Parkinson's Disease (PD). PLoS One 2015; 10:e0145493. [PMID: 26713760 PMCID: PMC4705111 DOI: 10.1371/journal.pone.0145493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 12/04/2015] [Indexed: 11/19/2022] Open
Abstract
The purpose of the present study was to evaluate the potential of multimodal MR imaging including mean diffusivity (MD), fractional anisotropy (FA), relaxation rates R2 and R2* to detect disease specific alterations in Parkinson's Disease (PD). We enrolled 82 PD patients (PD-all) with varying disease durations (≤5 years: PD≤5, n = 43; >5 years: PD>5, n = 39) and 38 matched healthy controls (HC), receiving diffusion tensor imaging as well as R2 and R2* relaxometry calculated from multi-echo T2*-weighted and dual-echo TSE imaging, respectively. ROIs were drawn to delineate caudate nucleus (CN), putamen (PU), globus pallidus (GP) and substantia nigra (SN) on the co-registered maps. The SN was divided in 3 descending levels (SL 1–3). The most significant parameters were used for a flexible discrimination analysis (FDA) in a training collective consisting of 25 randomized subjects from each group in order to predict the classification of remaining subjects. PD-all showed significant increases in MD, R2 and R2* within SN and its subregions as well as in MD and R2* within different basal ganglia regions. Compared to the HC group, the PD≤5 and the PD>5 group showed significant MD increases within the SN and its lower two subregions, while the PD≤5 group exhibited significant increases in R2 and R2* within SN and its subregions, and tended to elevation within the basal ganglia. The PD>5 group had significantly increased MD in PU and GP, whereas the PD≤5 group presented normal MD within the basal ganglia. FDA achieved right classification in 84% of study participants. Micro-structural damage affects primarily the SN of PD patients and in later disease stages the basal ganglia. Iron contents of PU, GP and SN are increased at early disease stages of PD.
Collapse
|
41
|
Weingarten CP, Sundman MH, Hickey P, Chen NK. Neuroimaging of Parkinson's disease: Expanding views. Neurosci Biobehav Rev 2015; 59:16-52. [PMID: 26409344 PMCID: PMC4763948 DOI: 10.1016/j.neubiorev.2015.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022]
Abstract
Advances in molecular and structural and functional neuroimaging are rapidly expanding the complexity of neurobiological understanding of Parkinson's disease (PD). This review article begins with an introduction to PD neurobiology as a foundation for interpreting neuroimaging findings that may further lead to more integrated and comprehensive understanding of PD. Diverse areas of PD neuroimaging are then reviewed and summarized, including positron emission tomography, single photon emission computed tomography, magnetic resonance spectroscopy and imaging, transcranial sonography, magnetoencephalography, and multimodal imaging, with focus on human studies published over the last five years. These included studies on differential diagnosis, co-morbidity, genetic and prodromal PD, and treatments from L-DOPA to brain stimulation approaches, transplantation and gene therapies. Overall, neuroimaging has shown that PD is a neurodegenerative disorder involving many neurotransmitters, brain regions, structural and functional connections, and neurocognitive systems. A broad neurobiological understanding of PD will be essential for translational efforts to develop better treatments and preventive strategies. Many questions remain and we conclude with some suggestions for future directions of neuroimaging of PD.
Collapse
Affiliation(s)
- Carol P Weingarten
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, United States.
| | - Mark H Sundman
- Brain Imaging and Analysis Center, Duke University Medical Center, United States
| | - Patrick Hickey
- Department of Neurology, Duke University School of Medicine, United States
| | - Nan-kuei Chen
- Brain Imaging and Analysis Center, Duke University Medical Center, United States; Department of Radiology, Duke University School of Medicine, United States
| |
Collapse
|
42
|
Goveas J, O'Dwyer L, Mascalchi M, Cosottini M, Diciotti S, De Santis S, Passamonti L, Tessa C, Toschi N, Giannelli M. Diffusion-MRI in neurodegenerative disorders. Magn Reson Imaging 2015; 33:853-76. [PMID: 25917917 DOI: 10.1016/j.mri.2015.04.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 04/18/2015] [Accepted: 04/19/2015] [Indexed: 12/11/2022]
Abstract
The ability to image the whole brain through ever more subtle and specific methods/contrasts has come to play a key role in understanding the basis of brain abnormalities in several diseases. In magnetic resonance imaging (MRI), "diffusion" (i.e. the random, thermally-induced displacements of water molecules over time) represents an extraordinarily sensitive contrast mechanism, and the exquisite structural detail it affords has proven useful in a vast number of clinical as well as research applications. Since diffusion-MRI is a truly quantitative imaging technique, the indices it provides can serve as potential imaging biomarkers which could allow early detection of pathological alterations as well as tracking and possibly predicting subtle changes in follow-up examinations and clinical trials. Accordingly, diffusion-MRI has proven useful in obtaining information to better understand the microstructural changes and neurophysiological mechanisms underlying various neurodegenerative disorders. In this review article, we summarize and explore the main applications, findings, perspectives as well as challenges and future research of diffusion-MRI in various neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and degenerative ataxias.
Collapse
Affiliation(s)
- Joseph Goveas
- Department of Psychiatry and Behavioral Medicine, and Institute for Health and Society, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Laurence O'Dwyer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt, Germany
| | - Mario Mascalchi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Quantitative and Functional Neuroradiology Research Program at Meyer Children and Careggi Hospitals of Florence, Florence, Italy
| | - Mirco Cosottini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy; Unit of Neuroradiology, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy
| | - Silvia De Santis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Luca Passamonti
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Carlo Tessa
- Division of Radiology, "Versilia" Hospital, AUSL 12 Viareggio, Lido di Camaiore, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, Medical Physics Section, University of Rome "Tor Vergata", Rome, Italy; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy.
| |
Collapse
|
43
|
Recent imaging advances in neurology. J Neurol 2015; 262:2182-94. [PMID: 25808503 DOI: 10.1007/s00415-015-7711-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 01/08/2023]
Abstract
Over the recent years, the application of neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) has considerably advanced the understanding of complex neurological disorders. PET is a powerful molecular imaging tool, which investigates the distribution and binding of radiochemicals attached to biologically relevant molecules; as such, this technique is able to give information on biochemistry and metabolism of the brain in health and disease. MRI uses high intensity magnetic fields and radiofrequency pulses to provide structural and functional information on tissues and organs in intact or diseased individuals, including the evaluation of white matter integrity, grey matter thickness and brain perfusion. The aim of this article is to review the most recent advances in neuroimaging research in common neurological disorders such as movement disorders, dementia, epilepsy, traumatic brain injury and multiple sclerosis, and to evaluate their contribution in the diagnosis and management of patients.
Collapse
|
44
|
Poewe W, Seppi K, Fitzer-Attas CJ, Wenning GK, Gilman S, Low PA, Giladi N, Barone P, Sampaio C, Eyal E, Rascol O. Efficacy of rasagiline in patients with the parkinsonian variant of multiple system atrophy: a randomised, placebo-controlled trial. Lancet Neurol 2015; 14:145-52. [DOI: 10.1016/s1474-4422(14)70288-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Ofori E, Pasternak O, Planetta PJ, Burciu R, Snyder A, Febo M, Golde TE, Okun MS, Vaillancourt DE. Increased free water in the substantia nigra of Parkinson's disease: a single-site and multi-site study. Neurobiol Aging 2014; 36:1097-104. [PMID: 25467638 DOI: 10.1016/j.neurobiolaging.2014.10.029] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/15/2014] [Accepted: 10/24/2014] [Indexed: 01/08/2023]
Abstract
Measures from diffusion magnetic resonance imaging reflect changes in the substantia nigra of Parkinson's disease. It is the case, however, that partial volume effects from free water can bias diffusion measurements. The bi-tensor diffusion model was introduced to quantify the contribution of free water and eliminates its bias on estimations of tissue microstructure. Here, we test the hypothesis that free water is elevated in the substantia nigra for Parkinson's disease compared with control subjects. This hypothesis was tested between large cohorts of Parkinson's disease and control participants in a single-site study and validated against a multisite study using multiple scanners. The fractional volume of free water was increased in the posterior region of the substantia nigra in Parkinson's disease compared with control subjects in both the single-site and multi-site studies. We did not observe changes in either cohort for free-water-corrected fractional anisotropy or free-water-corrected mean diffusivity. Our findings provide new evidence that the free-water index reflects alteration of the substantia nigra in Parkinson's disease, and this was evidenced across both single-site and multi-site cohorts.
Collapse
Affiliation(s)
- Edward Ofori
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peggy J Planetta
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Roxana Burciu
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Amy Snyder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Marcelo Febo
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Todd E Golde
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
46
|
Fujiwara S, Uhrig L, Amadon A, Jarraya B, Le Bihan D. Quantification of iron in the non-human primate brain with diffusion-weighted magnetic resonance imaging. Neuroimage 2014; 102 Pt 2:789-97. [PMID: 25192653 DOI: 10.1016/j.neuroimage.2014.08.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/23/2014] [Accepted: 08/26/2014] [Indexed: 01/12/2023] Open
Abstract
Pathological iron deposits in the brain, especially within basal ganglia, are linked to severe neurodegenerative disorders like Parkinson's disease. As iron induces local changes in magnetic susceptibility, its presence can be visualized with magnetic resonance imaging (MRI). The usual approach, based on iron induced changes in magnetic relaxation (T2/T2'), is often prone, however, to confounding artifacts and lacks specificity. Here, we propose a new method to quantify and map iron deposits using water diffusion MRI. This method is based on the differential sensitivity of two image acquisition schemes to the local magnetic field gradients induced by iron deposits and their cross-term with gradient pulses used for diffusion encoding. Iron concentration could be imaged and estimated with high accuracy in the brain cortex, the thalamus, the substantia nigra and the globus pallidus of macaques, showing iron distributions in agreement with literature. Additionally, iron maps could clearly show a dramatic increase in iron content upon injection of an UltraSmall Particle Iron Oxide (USPIO) contrast agent, notably in the cortex and the thalamus, reflecting regional differences in blood volume. The method will benefit clinical investigations on the effect of iron deposits in the brain or other organs, as iron deposits are increasingly seen as a biomarker for a wide range of diseases, notably, neurodegenerative diseases in the pre-symptomatic stage. It also has the potential for quantifying variations in blood volume induced by brain activation in fMRI studies using USPIOs.
Collapse
Affiliation(s)
- Shunro Fujiwara
- Neurospin, Bâtiment 145, CEA-Saclay, Gif-sur-Yvette, 91191 Gif-sur-Yvette, France; Department of Neurosurgery, Iwate Medical University, 19-1 Uchimaru, Morioka, 0208505 Iwate, Japan
| | - Lynn Uhrig
- Neurospin, Bâtiment 145, CEA-Saclay, Gif-sur-Yvette, 91191 Gif-sur-Yvette, France; Equipe Avenir INSERM Bettencourt Schueller, Institut Fédératif de Recherche n°49, NeuroSpin, Bât. 145, CEA-Saclay, Gif-sur-Yvette, 91191 Gif-sur-Yvette, France
| | - Alexis Amadon
- Neurospin, Bâtiment 145, CEA-Saclay, Gif-sur-Yvette, 91191 Gif-sur-Yvette, France
| | - Béchir Jarraya
- Neurospin, Bâtiment 145, CEA-Saclay, Gif-sur-Yvette, 91191 Gif-sur-Yvette, France; Equipe Avenir INSERM Bettencourt Schueller, Institut Fédératif de Recherche n°49, NeuroSpin, Bât. 145, CEA-Saclay, Gif-sur-Yvette, 91191 Gif-sur-Yvette, France; Department of Neurosurgery, Neuromodulation unit, Foch Hospital, University of Versailles-Saint Quentin, 40 rue Worth, 92150 Suresnes, France
| | - Denis Le Bihan
- Neurospin, Bâtiment 145, CEA-Saclay, Gif-sur-Yvette, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
47
|
Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer’s disease dementia. J Neurol 2014; 261:1939-48. [PMID: 25059393 DOI: 10.1007/s00415-014-7439-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 02/03/2023]
|
48
|
Neurofunctional dopaminergic impairment in elderly after lifetime exposure to manganese. Neurotoxicology 2014; 45:309-17. [PMID: 24881811 DOI: 10.1016/j.neuro.2014.05.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Manganese (Mn) is an essential element that can become neurotoxic through various exposure windows over the lifespan. While there is clear evidence of Mn neurotoxicity in pediatric and adult occupational populations, little is known about effects in the elderly who may exhibit enhanced susceptibilities due to compromised physiology compared to younger adults. In the province of Brescia, Italy, the Valcamonica area has been the site of three ferroalloy plants operating from 1902 to 2001. Metal emissions of Mn and to a lesser extent lead (Pb) have impacted the surrounding environment, where a high prevalence of Parkinsonism was previously observed. This study aimed to assess neurocognitive and motor functions in healthy elderly subjects residing for most of their lifetime in Valcamonica or in a reference area unimpacted by ferroalloy plant activity. METHODS Subjects were enrolled for extensive neurobehavioral assessment of motor, cognitive and sensory functions. Exposure was assessed with 24h personal air sampling for PM10 airborne particles, surface soil and tap water measurement at individual households, Mn levels in blood and urine and Pb in blood. Dose-response relationships between exposure indicators and biomarkers and health outcomes were analyzed with generalized (linear and logistic) additive models (GAM). RESULTS A total of 255 subjects (55% women) were examined; most (52.9%) were within the 65-70 years age class. Average airborne Mn was 26.41 ng/m(3) (median 18.42) in Valcamonica and 20.96 ng/m(3) (median 17.62) in the reference area. Average Mn in surface soil was 1026 ppm (median 923) in Valcamonica and 421 ppm (median 410) in the reference area. Manganese in drinking water was below the LDL of 1 μg/L. The GAM analysis showed significant association between airborne Mn (p=0.0237) and the motor coordination tests of the Luria Nebraska Neuropsychological Battery. The calculation of the Benchmark Dose using this dose-response relationship yielded a lower level confidence interval of 22.7 ng/m(3) (median 26.4). For the odor identification score of the Sniffin Stick test, an association was observed with soil Mn (p=0.0006) and with a significant interaction with blood Pb (p=0.0856). Significant dose-responses resulted also for the Raven's Colored Progressive Matrices with the distance from exposure point source (p=0.0025) and Mn in soil (p=0.09), and for the Trail Making test, with urinary Mn (p=0.0074). Serum prolactin (PRL) levels were associated with air (p=0.061) and urinary (p=0.003) Mn, and with blood Pb (p=0.0303). In most of these associations age played a significant role as an effect modifier. CONCLUSION Lifelong exposure to Mn was significantly associated with changes in odor discrimination, motor coordination, cognitive abilities and serum PRL levels. These effects are consistent with the hypothesis of a specific mechanism of toxicity of Mn on the dopaminergic system. Lead co-exposure, even at very low levels, can further enhance Mn toxicity.
Collapse
|
49
|
Attems J, Walker L, Jellinger KA. Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol 2014; 127:459-75. [PMID: 24554308 DOI: 10.1007/s00401-014-1261-7] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 12/24/2022]
Abstract
Olfactory dysfunction is a common and early symptom of many neurodegenerative diseases, particularly of Parkinson's disease and other synucleinopathies, Alzheimer's disease (AD), and mild cognitive impairment heralding its progression to dementia. The neuropathologic changes of olfactory dysfunction in neurodegenerative diseases may involve the olfactory epithelium, olfactory bulb/tract, primary olfactory cortices, and their secondary targets. Olfactory dysfunction is related to deposition of pathological proteins, α-synuclein, hyperphosphorylated tau protein, and neurofilament protein in these areas, featured by neurofibrillary tangles, Lewy bodies and neurites inducing a complex cascade of molecular processes including oxidative damage, neuroinflammation, and cytosolic disruption of cellular processes leading to cell death. Damage to cholinergic, serotonergic, and noradrenergic systems is likely involved, since such damage is most marked in those diseases with severe anosmia. Recent studies of olfactory dysfunction have focused its potential as an early biomarker for the diagnosis of neurodegenerative disorders and their disease progression. Here, we summarize the current knowledge on neuropathological and pathophysiological changes of the olfactory system in the most frequent neurodegenerative diseases, in particular AD and synucleinopathies. We also present neuropathological findings in the olfactory bulb and tract in a large autopsy cohort (n = 536, 57.8 % female, mean age 81.3 years). The severity of olfactory bulb HPτ, Aβ, and αSyn pathology correlated and increased significantly (P < 0.001) with increasing neuritic Braak stages, Thal Aβ phases, and cerebral Lewy body pathology, respectively. Hence, further studies are warranted to investigate the potential role of olfactory biopsies (possibly restricted to the olfactory epithelium) in the diagnostic process of neurodegenerative diseases in particular in clinical drug trials to identify subjects showing early, preclinical stages of neurodegeneration and to stratify clinically impaired cohorts according to the underlying cerebral neuropathology.
Collapse
Affiliation(s)
- Johannes Attems
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|