1
|
Fernandes O, Ramos LR, Acchar MC, Sanchez TA. Migraine aura discrimination using machine learning: an fMRI study during ictal and interictal periods. Med Biol Eng Comput 2024; 62:2545-2556. [PMID: 38637358 DOI: 10.1007/s11517-024-03080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Functional magnetic resonance imaging (fMRI) studies on migraine with aura are challenging due to the rarity of patients with triggered cases. This study optimized methodologies to explore differences in ictal and interictal spatiotemporal activation patterns based on visual stimuli using fMRI in two patients with unique aura triggers. Both patients underwent separate fMRI sessions during the ictal and interictal periods. The Gaussian Process Classifier (GPC) was used to differentiate these periods by employing a machine learning temporal embedding approach and spatiotemporal activation patterns based on visual stimuli. When restricted to visual and occipital regions, GPC had an improved performance, with accuracy rates for patients A and B of roughly 86-90% and 77-81%, respectively (p < 0.01). The algorithm effectively differentiated visual stimulation and rest periods and identified times when aura symptoms manifested, as evident from the varying predicted probabilities in the GPC models. These findings contribute to our understanding of the role of visual processing and brain activity patterns in migraine with aura and the significance of temporal embedding techniques in examining aura phenomena. This finding has implications for diagnostic tools and therapeutic techniques, especially for patients suffering from aura symptoms.
Collapse
Affiliation(s)
- Orlando Fernandes
- Laboratory of Neuroimaging and Psychophysiology, Instituto de Psiquiatria, Faculdade de Medicina - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratório de Neurofisiolgia e Comportamento, Departamento de Fisiologia e Farmacologia, Instituto Biomédico - Universidade Federal Fluminense, Nitéroi, RJ, Brazil
| | - Lucas Rego Ramos
- Laboratory of Neuroimaging and Psychophysiology, Instituto de Psiquiatria, Faculdade de Medicina - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana Calixto Acchar
- Laboratory of Neuroimaging and Psychophysiology, Instituto de Psiquiatria, Faculdade de Medicina - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Universidade Estacio de Sá (UNESA), Rio de Janeiro, RJ, Brazil
| | - Tiago Arruda Sanchez
- Laboratory of Neuroimaging and Psychophysiology, Instituto de Psiquiatria, Faculdade de Medicina - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Otu E, Şen S, Örmeci T, Yüzbaşıoğlu N. Association between vertebral artery dominance and basilar artery curvature in migraineurs: an anatomical magnetic resonance imaging study. Neuroradiol J 2024; 37:314-322. [PMID: 38153033 PMCID: PMC11138339 DOI: 10.1177/19714009231224444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND AND PURPOSES Numerous studies demonstrate a link between cerebrovascular alterations and migraine pathogenesis. We investigated the association between migraine and vertebral artery dominance (VAD), basilar artery (BA) curvature, and elongation. MATERIALS AND METHODS This cross-sectional MRI study included 74 migraine patients and 74 control subjects aged between 18 and 55 years. Diameters of the intracranial part of the vertebral artery (VA) and BA, height of the BA bifurcation, and total lateral displacement of the BA were measured. In addition, we investigated the directional relationship between VAD and BA curvature. RESULTS There were no statistically significant differences between the groups regarding VA and BA diameters and total lateral displacement of the BA. The height of the BA bifurcation was found to be significantly higher in migraine patients compared to controls (p = 0.002). The left-side VAD was more frequent in migraine patients compared to control subjects (60.8% (45/74) vs 41.9% (31/74), p = 0.001). In migraine patients, particularly those with aura (MwA) patients, with left-side VAD, the rate of BA displacement to the right side is significantly higher than those with right-side VAD or non-VAD (p = 0.022). Also, we found that total lateral displacement of the BA is correlated with VA asymmetry in patients with MwA (r = 0.538, p = 0.007). CONCLUSION VAD and its opposite-directional relationship with the lateral displacement of the BA may be associated with migraine pathophysiology. Together with aging, this association may contribute to changes in the vertebrobasilar system (VBS) geometry which may result in increased risk for posterior circulation infarction (PCI) in migraineurs.
Collapse
Affiliation(s)
- Ebru Otu
- Department of Anatomy, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Selva Şen
- Department of Anatomy, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Tuğrul Örmeci
- Department of Radiology, Istanbul Medipol University, Istanbul, Turkey
| | - Neslihan Yüzbaşıoğlu
- Department of Anatomy, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
3
|
Riederer F, Beiersdorf J, Lang C, Pirker-Kees A, Klein A, Scutelnic A, Platho-Elwischger K, Baumgartner C, Dreier JP, Schankin C. Signatures of migraine aura in high-density-EEG. Clin Neurophysiol 2024; 160:113-120. [PMID: 38422969 DOI: 10.1016/j.clinph.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE Cortical spreading depolarization is highly conserved among the species. It is easily detectable in direct cortical surface recordings and has been recorded in the cortex of humans with severe neurological disease. It is considered the pathophysiological correlate of human migraine aura, but direct electrophysiological evidence is still missing. As signatures of cortical spreading depolarization have been recognized in scalp EEG, we investigated typical spontaneous migraine aura, using full band high-density EEG (HD-EEG). METHODS In this prospective study, patients with migraine with aura were investigated during spontaneous migraine aura and interictally. Time compressed HD-EEG were analyzed for the presence of cortical spreading depolarization characterized by (a) slow potential changes below 0.05 Hz, (b) suppression of faster activity from 0.5 Hz - 45 Hz (c) spreading of these changes to neighboring regions during the aura phase. Further, topographical changes in alpha-power spectral density (8-14 Hz) during aura were analyzed. RESULTS In total, 26 HD-EEGs were recorded in patients with migraine with aura, thereof 10 HD-EEGs during aura. Eight HD-EEGs were recorded in the same subject. During aura, no slow potentials were recorded, but alpha-power was significantly decreased in parieto-occipito-temporal location on the hemisphere contralateral to visual aura, lasting into the headache phase. Interictal alpha-power in patients with migraine with aura did not differ significantly from age- and sex-matched healthy controls. CONCLUSIONS Unequivocal signatures of spreading depolarization were not recorded with EEG on the intact scalp in migraine. The decrease in alpha-power contralateral to predominant visual symptoms is consistent with focal depression of spontaneous brain activity as a consequence of cortical spreading depolarization but is not specific thereof. SIGNIFICANCE Cortical spreading depolarization is relevant in migraine, other paroxysmal neurological disorders and neurointensive care.
Collapse
Affiliation(s)
- Franz Riederer
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; University of Zurich, Medical Faculty, Zurich, Switzerland.
| | - Johannes Beiersdorf
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology
| | - Clemens Lang
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology; Department of Neurology, Clinic Hietzing, Vienna, Austria
| | - Agnes Pirker-Kees
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology; Department of Neurology, Clinic Hietzing, Vienna, Austria
| | - Antonia Klein
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian Scutelnic
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kirsten Platho-Elwischger
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology; Department of Neurology, Clinic Hietzing, Vienna, Austria
| | - Christoph Baumgartner
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology; Department of Neurology, Clinic Hietzing, Vienna, Austria
| | - Jens P Dreier
- Department of Neurology and Experimental Neurology Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Schankin
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Medvedeva TM, Smirnova MP, Pavlova IV, Vinogradova LV. Different vulnerability of fast and slow cortical oscillations to suppressive effect of spreading depolarization: state-dependent features potentially relevant to pathogenesis of migraine aura. J Headache Pain 2024; 25:8. [PMID: 38225575 PMCID: PMC10789028 DOI: 10.1186/s10194-023-01706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Spreading depolarization (SD), underlying mechanism of migraine aura and potential activator of pain pathways, is known to elicit transient local silencing cortical activity. Sweeping across the cortex, the electrocorticographic depression is supposed to underlie spreading negative symptoms of migraine aura. Main information about the suppressive effect of SD on cortical oscillations was obtained in anesthetized animals while ictal recordings in conscious patients failed to detect EEG depression during migraine aura. Here, we investigate the suppressive effect of SD on spontaneous cortical activity in awake animals and examine whether the anesthesia modifies the SD effect. METHODS Spectral and spatiotemporal characteristics of spontaneous cortical activity following a single unilateral SD elicited by amygdala pinprick were analyzed in awake freely behaving rats and after induction of urethane anesthesia. RESULTS In wakefulness, SD transiently suppressed cortical oscillations in all frequency bands except delta. Slow delta activity did not decline its power during SD and even increased it afterwards; high-frequency gamma oscillations showed the strongest and longest depression under awake conditions. Unexpectedly, gamma power reduced not only during SD invasion the recording cortical sites but also when SD occupied distant subcortical/cortical areas. Contralateral cortex not invaded by SD also showed transient depression of gamma activity in awake animals. Introduction of general anesthesia modified the pattern of SD-induced depression: SD evoked the strongest cessation of slow delta activity, milder suppression of fast oscillations and no distant changes in gamma activity. CONCLUSION Slow and fast cortical oscillations differ in their vulnerability to SD influence, especially in wakefulness. In the conscious brain, SD produces stronger and spatially broader depression of fast cortical oscillations than slow ones. The frequency-specific effects of SD on cortical activity of awake brain may underlie some previously unexplained clinical features of migraine aura.
Collapse
Affiliation(s)
- Tatiana M Medvedeva
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485, Moscow, Russia
| | - Maria P Smirnova
- Department of Conditioned Reflexes and Physiology of Emotion, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485, Moscow, Russia
| | - Irina V Pavlova
- Department of Conditioned Reflexes and Physiology of Emotion, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485, Moscow, Russia
| | - Lyudmila V Vinogradova
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485, Moscow, Russia.
| |
Collapse
|
5
|
Zhang L, Zhang H, Zhou X, Zhao J, Wang X. Bibliometric Analysis of Research on Migraine-Stroke Association from 2013 to 2023. J Pain Res 2023; 16:4089-4112. [PMID: 38058980 PMCID: PMC10697147 DOI: 10.2147/jpr.s438745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023] Open
Abstract
Background Both migraine and stroke heavily burden individuals, health systems, and society. The migraine-stroke association is of concern and has been studied widely. Our objective is to explore and overview the current research status and emerging trends. Materials and Methods Studies on migraine-stroke association from January 2013 to May 2023 were retrieved and screened from the Web of Science Core Collection (WOSCC) database. Records fulfilling the selection criteria were downloaded and imported into CiteSpace for data mining and visualization. Results A total of 862 papers on migraine-stroke association were included. Annual publications grew slowly. The United States and European countries dominated research in this area. Harvard University published the largest number of articles, while the University of London was most active with other institutions. Ayata Cenk contributed the most articles, while KURTH T and NEUROLOGY were co-cited most. Research hotspots included migraine with aura, ischemic stroke, patent foramen ovale, cortical spreading depolarization, meta-analysis, cross-sectional study, and risk factors. Pathophysiology and small vessel disease represented research frontiers and emerging trends. Conclusion Our study scientifically outlines the migraine-stroke association over the past decade, presenting useful information.
Collapse
Affiliation(s)
- Long Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
- Department of Traditional Chinese Medicine, Zibo TCM-Integrated Hospital, Zibo, Shandong, People’s Republic of China
| | - Hongyan Zhang
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital, Shanghai, People’s Republic of China
- Shaanxi Key Laboratory of Research on TCM Physical Constitution and Diseases Prevention and Treatment, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Xue Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jing Zhao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xingchen Wang
- Division of Neurology, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
6
|
Mehnert J, Fischer-Schulte L, May A. Aura phenomena do not initiate migraine attacks-Findings from neuroimaging. Headache 2023; 63:1040-1044. [PMID: 37449553 DOI: 10.1111/head.14597] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVES/BACKGROUND As cortical spreading depolarization (CSD) has been suggested to be the cause of migraine aura and as CSD can activate trigeminal nociceptive neurons in animals, it has been suggested that CSD may be the cause of migraine attacks. This raises the question of how migraine pain is generated in migraine attacks without aura and has led to the hypothesis that CSD may also occur in subcortical regions in the form of "silent" CSDs, and accordingly "silent auras". METHODS In this case study, we provide evidence for common neuronal alterations preceding headache attacks with and without aura in a male patient with migraine, who underwent daily event-correlated functional magnetic resonance imaging of trigeminal nociception for a period of 30 days. During these days the man experienced migraine attacks with and without aura. RESULTS Comparing the preictal phases between both attack types revealed a common hyperactivation of the hypothalamus (p < 0.01), which was already present 2 days before the actual attack. CONCLUSION The time frame of the central pathophysiological orchestration of migraine attacks, irrelevant of the presence of later aura, strongly suggests that the aura is an epiphenomenon that is unrelated and does not initiate headache attacks.
Collapse
Affiliation(s)
- Jan Mehnert
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Fischer-Schulte
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arne May
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Messina R, Rocca MA, Goadsby PJ, Filippi M. Insights into migraine attacks from neuroimaging. Lancet Neurol 2023; 22:834-846. [PMID: 37478888 DOI: 10.1016/s1474-4422(23)00152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 07/23/2023]
Abstract
Migraine is one of the most common neurological diseases and it has a huge social and personal impact. Although head pain is the core symptom, individuals with migraine can have a plethora of non-headache symptoms that precede, accompany, or follow the pain. Neuroimaging studies have shown that the involvement of specific brain areas can explain many of the symptoms reported during the different phases of migraine. Recruitment of the hypothalamus, pons, spinal trigeminal nucleus, thalamus, and visual and pain-processing cortical areas starts during the premonitory phase and persists through the headache phase, contributing to the onset of pain and associated symptoms. Once the pain stops, the involvement of most brain areas ends, although the pons, hypothalamus, and visual cortex remain active after acute treatment intake and resolution of migraine symptoms. A better understanding of the correlations between imaging findings and migraine symptomatology can provide new insight into migraine pathophysiology and the mechanisms of novel migraine-specific treatments.
Collapse
Affiliation(s)
- Roberta Messina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Peter J Goadsby
- NIHR King's Clinical Research Facility, King's College, London, UK; Department of Neurology, University of California, Los Angeles, CA, USA
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
8
|
Mastria G, Mancini V, Viganò A, Piervincenzi C, Petsas N, Puma M, Giannì C, Pantano P, Di Piero V. Neuroimaging markers of Alice in Wonderland syndrome in patients with migraine with aura. Front Neurol 2023; 14:1210811. [PMID: 37767534 PMCID: PMC10520557 DOI: 10.3389/fneur.2023.1210811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
Background The Alice in Wonderland syndrome (AIWS) is a transient neurological disturbance characterized by sensory distortions most frequently associated with migraine in adults. Some lines of evidence suggest that AIWS and migraine might share common pathophysiological mechanisms, therefore we set out to investigate the common and distinct neurophysiological alterations associated with these conditions in migraineurs. Methods We conducted a case-control study acquiring resting-state fMRI data from 12 migraine patients with AIWS, 12 patients with migraine with typical aura (MA) and 24 age-matched healthy controls (HC). We then compared the interictal thalamic seed-to-voxel and ROI-to-ROI cortico-cortical resting-state functional connectivity between the 3 groups. Results We found a common pattern of altered thalamic connectivity in MA and AIWS, compared to HC, with more profound and diffuse alterations observed in AIWS. The ROI-to-ROI functional connectivity analysis highlighted an increased connectivity between a lateral occipital region corresponding to area V3 and the posterior part of the superior temporal sulcus (STS) in AIWS, compared to both MA and HC. Conclusion The posterior STS is a multisensory integration area, while area V3 is considered the starting point of the cortical spreading depression (CSD), the neural correlate of migraine aura. This interictal hyperconnectivity might increase the probability of the CSD to directly diffuse to the posterior STS or deactivating it, causing the AIWS symptoms during the ictal phase. Taken together, these results suggest that AIWS in migraineurs might be a form of complex migraine aura, characterized by the involvement of associative and multisensory integration areas.
Collapse
Affiliation(s)
- Giulio Mastria
- My Space Lab, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Valentina Mancini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | | | | | | | - Marta Puma
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Costanza Giannì
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Vittorio Di Piero
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
D’Agnano D, Lo Cascio S, Correnti E, Raieli V, Sciruicchio V. A Narrative Review of Visual Hallucinations in Migraine and Epilepsy: Similarities and Differences in Children and Adolescents. Brain Sci 2023; 13:643. [PMID: 37190608 PMCID: PMC10136509 DOI: 10.3390/brainsci13040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Since the earliest descriptions of the simple visual hallucinations in migraine patients and in subjects suffering from occipital lobe epilepsy, several important issues have arisen in recognizing epileptic seizures of the occipital lobe, which often present with symptoms mimicking migraine. A detailed quantitative and qualitative clinical scrutiny of timing and characteristics of visual impairment can contribute to avoiding mistakes. Differential diagnosis, in children, might be challenging because of the partial clinical, therapeutic, and pathophysiological overlaps between the two diseases that often coexist. Ictal elementary visual hallucinations are defined by color, shape, size, location, movement, speed of appearance and duration, frequency, and associated symptoms and their progression. The evaluation of the distinctive clinical features of visual aura in migraine and visual hallucinations in occipital epilepsy could contribute to understanding the pathogenetic mechanisms of these two conditions. This paper aims to critically review the available scientific evidence on the main clinical criteria that address diagnosis, as well as similarities and differences in the pathophysiological mechanisms underlying the visual impairment in epilepsy and migraine.
Collapse
Affiliation(s)
- Daniela D’Agnano
- Children Epilepsy and EEG Center, San Paolo Hospital, ASL Bari, 70132 Bari, Italy
| | - Salvatore Lo Cascio
- Child Neuropsychiatry Unit Department, Pro.MI.S.E. “G. D’Alessandro, University of Palermo, 90100 Palermo, Italy
| | - Edvige Correnti
- Child Neuropsychiatry Department, ISMEP, ARNAS Civico, 90100 Palermo, Italy
| | - Vincenzo Raieli
- Child Neuropsychiatry Department, ISMEP, ARNAS Civico, 90100 Palermo, Italy
| | - Vittorio Sciruicchio
- Children Epilepsy and EEG Center, San Paolo Hospital, ASL Bari, 70132 Bari, Italy
| |
Collapse
|
10
|
Frattale I, Papetti L, Ursitti F, Sforza G, Monte G, Voci A, Proietti Checchi M, Mazzone L, Valeriani M. Visual Disturbances Spectrum in Pediatric Migraine. J Clin Med 2023; 12:jcm12082780. [PMID: 37109116 PMCID: PMC10143789 DOI: 10.3390/jcm12082780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Migraine is a complex neurological disorder with partially unknown pathophysiological mechanisms. The prevalence in childhood ranges from 7.7% to 17.8%, thus representing the most frequent primary headache. In half of the cases, migraine is accompanied or preceded by various neurological disturbances, among which the visual aura is the best known. In literature, other conditions, such as Alice in Wonderland Syndrome and Visual Snow syndrome, are characterized by visual manifestations and are often associated with migraine. The aim of this narrative review is to describe the spectrum of visual disturbances in pediatric migraine and their pathophysiological mechanisms.
Collapse
Affiliation(s)
- Ilaria Frattale
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Hospital of Rome, Tor Vergata University, 00165 Rome, Italy
| | - Laura Papetti
- Developmental Neurology, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy
| | - Fabiana Ursitti
- Developmental Neurology, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy
| | - Giorgia Sforza
- Developmental Neurology, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy
| | - Gabriele Monte
- Developmental Neurology, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy
| | - Alessandra Voci
- Developmental Neurology, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy
| | | | - Luigi Mazzone
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Hospital of Rome, Tor Vergata University, 00165 Rome, Italy
| | - Massimiliano Valeriani
- Developmental Neurology, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy
- Center for Sensory Motor Interaction, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
11
|
Differential Diagnosis of Visual Phenomena Associated with Migraine: Spotlight on Aura and Visual Snow Syndrome. Diagnostics (Basel) 2023; 13:diagnostics13020252. [PMID: 36673062 PMCID: PMC9857878 DOI: 10.3390/diagnostics13020252] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Migraine is a severe and common primary headache disorder, characterized by pain as well as a plethora of non-painful symptoms. Among these, visual phenomena have long been known to be associated with migraine, to the point where they can constitute a hallmark of the disease itself. In this review we focus on two key visual disorders that are directly or indirectly connected to migraine: visual aura and visual snow syndrome (VSS). Visual aura is characterized by the transient presence of positive and negative visual symptoms, before, during or outside of a migraine attack. VSS is a novel stand-alone phenomenon which has been shown to be comorbid with migraine. We discuss key clinical features of the two disorders, including pathophysiological mechanisms, their differential diagnoses and best treatment practices. Our aim is to provide an aid for clinicians and researchers in recognizing these common visual phenomena, which can even appear simultaneously in patients with an underlying migraine biology.
Collapse
|
12
|
Sanchez Del Rio M, Cutrer FM. Pathophysiology of migraine aura. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:71-83. [PMID: 38043972 DOI: 10.1016/b978-0-12-823356-6.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Migraine aura occurs in about a third of patients with migraine and consists of a group of transient focal neurological symptoms that appear from 5 to 60min and then resolve prior to or in the early phase of a migraine headache attack. Migraine auras may consist of visual, language, unilateral sensory, or motor symptoms. There has been considerable debate as to the origins of the migrainous aura. Investigations during physiologically induced visual auras suggest that the phenomenon of cortical spreading depression or its human equivalent underpins the migraine aura. Single gene defects have been linked to relatively rare forms of the motor subtypes of aura known as familial hemiplegic migraine (FHM). These include CACNA1A (FHM1), ATP1A2 (FHM2), and SCN1A (FHM3). In the familial hemiplegic forms of migraine, the more typical forms of aura are almost always also present. Despite ample epidemiological evidence of increased heritability of migraine with aura compared to migraine without aura, identification of the specific variants driving susceptibility to the more common forms of aura has been problematic thus far. In the first genome-wide association study (GWAS) that focused migraine with aura, a single SNP rs835740 reached genome-wide significance. Unfortunately, the SNP did show statistical significance in a later meta-analysis which included GWAS data from subsequent studies. Here, we review the clinical features, pathophysiological theories, and currently available potential evidence for the genetic basis of migraine aura.
Collapse
|
13
|
Piervincenzi C, Petsas N, Viganò A, Mancini V, Mastria G, Puma M, Giannì C, Di Piero V, Pantano P. Functional connectivity alterations in migraineurs with Alice in Wonderland syndrome. Neurol Sci 2023; 44:305-317. [PMID: 36114397 DOI: 10.1007/s10072-022-06404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/09/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND PURPOSE Alice in Wonderland syndrome (AIWS) is a neurological disorder characterized by erroneous perception of the body schema or surrounding space. Migraine is the primary cause of AIWS in adults. The pathophysiology of AIWS is largely unknown, especially regarding functional abnormalities. In this study, we compared resting-state functional connectivity (FC) of migraine patients experiencing AIWS, migraine patients with typical aura (MA) and healthy controls (HCs). METHODS Twelve AIWS, 12 MA, and 24 HCs were enrolled and underwent 3 T MRI scanning. Independent component analysis was used to identify RSNs thought to be relevant for AIWS: visual, salience, basal ganglia, default mode, and executive control networks. Dual regression technique was used to detect between-group differences in RSNs. Finally, AIWS-specific FC alterations were correlated with clinical measures. RESULTS With respect to HCs, AIWS and MA patients both showed significantly lower (p < 0.05, FDR corrected) FC in lateral and medial visual networks and higher FC in salience and default mode networks. AIWS patients alone showed higher FC in basal ganglia and executive control networks than HCs. When directly compared, AIWS patients showed lower FC in visual networks and higher FC in all other investigated RSNs than MA patients. Lastly, AIWS-specific FC alterations in the executive control network positively correlated with migraine frequency. CONCLUSIONS AIWS and MA patients showed similar FC alterations in several RSNs, although to a different extent, suggesting common pathophysiological underpinnings. However, AIWS patients showed additional FC alterations, likely due to the complexity of AIWS symptoms involving high-order associative cortical areas.
Collapse
Affiliation(s)
| | | | | | - Valentina Mancini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Giulio Mastria
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,My Space Lab, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Marta Puma
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Costanza Giannì
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,IRCCS NEUROMED, Pozzilli, IS, Italy
| | - Vittorio Di Piero
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,IRCCS NEUROMED, Pozzilli, IS, Italy
| |
Collapse
|
14
|
Argyriou AA, Mantovani E, Mitsikostas DD, Vikelis M, Tamburin S. A systematic review with expert opinion on the role of gepants for the preventive and abortive treatment of migraine. Expert Rev Neurother 2022; 22:469-488. [PMID: 35707907 DOI: 10.1080/14737175.2022.2091435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Gepants are small molecules targeting the calcitonin gene-related peptide (CGRP) that have been recently introduced and are under additional clinical development as preventive and abortive treatment options for migraine. AREAS COVERED After providing a narrative overview of current preventive and acute treatment options for migraine and summarizing the pathophysiology of migraine attack and the role of CGRP, we performed a systematic review, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations, on trials on gepants in preventive and acute treatment of migraine. Studies and results were reviewed and discussed, and expert opinion was presented. We also collected data on relevant ongoing trials. EXPERT OPINION Whether direct targeting CGRP pathways within the central nervous system or indirectly modulating them from the peripheral nervous system is more effective and safer in migraine remains still unclear. The available data on the efficacy and safety of gepants suggest they may represent an abortive, and to some extent, preventive treatment option for migraine, in patients who do not respond or have adverse effects to first/second line treatments or at high risk for medication overuse headache; thus opening new therapeutic horizons.
Collapse
Affiliation(s)
- Andreas A Argyriou
- Headache Outpatient Clinic, Department of Neurology, 'Agios Andreas' State General Hospital of Patras, Patras, Greece
| | - Elisa Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Dimos-Dimitrios Mitsikostas
- 1st Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
15
|
Puledda F, Wang SJ, Diener HC, Schytz HW. A history of International Headache Society grants and their impact on headache careers. Cephalalgia 2022; 42:1288-1293. [PMID: 35698291 PMCID: PMC9535968 DOI: 10.1177/03331024221107384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background The International Headache Society has been offering multiple award opportunities for young researchers and clinicians for many years, with the aim of supporting the development of careers in headache science and medicine. Methods In order to assess the outcomes of the International Headache Society award grants, a questionnaire was sent to all previous recipients, investigating a series of aspects related to their work, both during and after award completion. Results Of 44 total questionnaires sent, 36 were returned. Eighty-one percent of the recipients reported to have remained in the headache field since the award, half of them held a current academic position and over three-quarters had stayed in contact with the host institution. The totality of questionnaire responders stated that the grant had had a significantly positive impact on their careers. Conclusions The International Headache Society grants have assisted many young researchers in building an academic and clinical career in the field of headache, throughout the years.
Collapse
Affiliation(s)
- Francesca Puledda
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Shuu-Jiun Wang
- Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Henrik Winther Schytz
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Abstract
Purpose of Review Until the last 5 years, there was very little in the literature about the phenomenon now known as visual snow syndrome. This review will examine the current thinking on the pathology of visual snow and how that thinking has evolved. Recent Findings While migraine is a common comorbidity to visual snow syndrome, evidence points to these conditions being distinct clinical entities, with some overlapping pathophysiological processes. There is increasing structural and functional evidence that visual snow syndrome is due to a widespread cortical dysfunction. Cortical hyperexcitability coupled with changes in thalamocortical pathways and higher-level salience network controls have all shown differences in patients with visual snow syndrome compared to controls. Summary Further work is needed to clarify the exact mechanisms of visual snow syndrome. Until that time, treatment options will remain limited. Clinicians having a clearer understanding of the basis for visual snow syndrome can appropriately discuss the diagnosis with their patients and steer them towards appropriate management options.
Collapse
Affiliation(s)
- Clare L Fraser
- Faculty of Health and Medicine, Save Sight Institute, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia. .,Macquarie Ophthalmology, School of Clinical Medicine, Macquarie University, Sydney, Australia.
| |
Collapse
|
17
|
Abstract
Migraine is a common, chronic, disorder that is typically characterized by recurrent disabling attacks of headache and accompanying symptoms, including aura. The aetiology is multifactorial with rare monogenic variants. Depression, epilepsy, stroke and myocardial infarction are comorbid diseases. Spreading depolarization probably causes aura and possibly also triggers trigeminal sensory activation, the underlying mechanism for the headache. Despite earlier beliefs, vasodilation is only a secondary phenomenon and vasoconstriction is not essential for antimigraine efficacy. Management includes analgesics or NSAIDs for mild attacks, and, for moderate or severe attacks, triptans or 5HT1B/1D receptor agonists. Because of cardiovascular safety concerns, unreliable efficacy and tolerability issues, use of ergots to abort attacks has nearly vanished in most countries. CGRP receptor antagonists (gepants) and lasmiditan, a selective 5HT1F receptor agonist, have emerged as effective acute treatments. Intramuscular onabotulinumtoxinA may be helpful in chronic migraine (migraine on ≥15 days per month) and monoclonal antibodies targeting CGRP or its receptor, as well as two gepants, have proven effective and well tolerated for the preventive treatment of migraine. Several neuromodulation modalities have been approved for acute and/or preventive migraine treatment. The emergence of new treatment targets and therapies illustrates the bright future for migraine management.
Collapse
|
18
|
Dai W, Liu RH, Qiu E, Liu Y, Chen Z, Chen X, Ao R, Zhuo M, Yu S. Cortical mechanisms in migraine. Mol Pain 2021; 17:17448069211050246. [PMID: 34806494 PMCID: PMC8606910 DOI: 10.1177/17448069211050246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Migraine is the second most prevalent disorder in the world; yet, its underlying mechanisms are still poorly understood. Cumulative studies have revealed pivotal roles of cerebral cortex in the initiation, propagation, and termination of migraine attacks as well as the interictal phase. Investigation of basic mechanisms of the cortex in migraine not only brings insight into the underlying pathophysiology but also provides the basis for designing novel treatments. We aim to summarize the current research literatures and give a brief overview of the cortex and its role in migraine, including the basic structure and function; structural, functional, and biochemical neuroimaging; migraine-related genes; and theories related to cortex in migraine pathophysiology. We propose that long-term plasticity of synaptic transmission in the cortex encodes migraine.
Collapse
Affiliation(s)
- Wei Dai
- Department of Neurology, Chinese PLA General Hospital, Beijing, China.,Chinese PLA Medical School, Beijing, China
| | - Ren-Hao Liu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 12480Xi'an Jiaotong University, Xi'an, China
| | - Enchao Qiu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Yinglu Liu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Zhiye Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing, China.,Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Ran Ao
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 12480Xi'an Jiaotong University, Xi'an, China.,International Institute for Brain Research, Qingdao International Academician Park, Qingdao, China.,Department of Physiology, 1 King's College Circle, University of Toronto, Toronto, ON, Canada
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
19
|
Wilkinson F. Aura Mapping: Where Vision and Somatosensation Meet. Vision (Basel) 2021; 5:52. [PMID: 34842832 PMCID: PMC8628888 DOI: 10.3390/vision5040052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 01/19/2023] Open
Abstract
While migraine auras are most frequently visual, somatosensory auras are also relatively common. Both are characterized by the spread of activation across a cortical region containing a spatial mapping of the sensory (retinal or skin) surface. When both aura types occur within a single migraine episode, they may offer an insight into the neural mechanism which underlies them. Could they both be initiated by a single neural event, or do the timing and laterality relationships between them demand multiple triggers? The observations reported here were carried out 25 years ago by a group of six individuals with migraine with aura. They timed, described and mapped their visual and somatosensory auras as they were in progress. Twenty-nine episode reports are summarized here. The temporal relationship between the onset of the two auras was quite variable within and across participants. Various forms of the cortical spreading depression hypothesis of migraine aura are evaluated in terms of whether they can account for the timing, pattern of symptom spread and laterality of the recorded auras.
Collapse
Affiliation(s)
- Frances Wilkinson
- Centre for Vision Research & Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
20
|
Chong YJ, Mollan SP, Logeswaran A, Sinclair AB, Wakerley BR. Current Perspective on Retinal Migraine. Vision (Basel) 2021; 5:38. [PMID: 34449754 PMCID: PMC8396291 DOI: 10.3390/vision5030038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022] Open
Abstract
Retinal migraine was first formally described in 1882. Various terms such as "ocular migraine" and "ophthalmic migraine" have since been used interchangeably in the literature. The lack of a consistent consensus-based definition has led to controversy and potential confusion for clinicians and patients. Retinal migraine as defined by the International Classification of Headache Disorders (ICHD) has been found to be rare. The latest ICHD defined retinal migraine as 'repeated attacks of monocular visual disturbance, including scintillation, scotoma or blindness, associated with migraine headache', which are fully reversible. Retinal migraine should be considered a diagnosis of exclusion, which requires other causes of transient monocular visual loss to be excluded. The aim of this narrative review is to summarize the literature on retinal migraine, including: epidemiology and risk factors; proposed aetiology; clinical presentation; and management strategies. It is potentially a misnomer as its proposed aetiology is different from our current understanding of the mechanism of migraine.
Collapse
Affiliation(s)
- Yu Jeat Chong
- Birmingham Neuro-Ophthalmology, Ophthalmology Department, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK; (Y.J.C.); (S.P.M.)
| | - Susan P. Mollan
- Birmingham Neuro-Ophthalmology, Ophthalmology Department, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK; (Y.J.C.); (S.P.M.)
| | | | - Alexandra B. Sinclair
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK;
- Metabolic Neurology Group, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Benjamin R. Wakerley
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK;
- Metabolic Neurology Group, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
21
|
Demarquay G, Rheims S. Relationships between migraine and epilepsy: Pathophysiological mechanisms and clinical implications. Rev Neurol (Paris) 2021; 177:791-800. [PMID: 34340811 DOI: 10.1016/j.neurol.2021.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023]
Abstract
Migraine and epilepsy are distinct neurological diseases with specific clinical features and underlying pathophysiological mechanisms. However, numerous studies have highlighted the complex and multifaceted relationships between the two conditions. The relationships between headache and epilepsy manifest themselves in different ways. Firstly, the clinical diagnosis of these disorders may be challenging in view of possible overlapping. While post-ictal headache is a frequent condition, ictal epileptic headache is a rare but challenging diagnosis. Both situations raise the question of the pathophysiological mechanism of headache triggered by seizures. Migraine aura and epilepsy can also exhibit overlapping symptoms leading to their misdiagnosis, in particular in the case of visual aura. Secondly, migraine with aura and epilepsy can occur as a co-morbid condition, particularly in familial hemiplegic migraine (FHM). From a pathophysiological perspective, the identification of genetic mutations in FHM has brought significant advances in the understanding of dysfunctions of neuronal networks leading to hyperexcitability. The purpose of this review is to present clinical situations encompassing headache and epilepsy that can be challenging in neurological practice and to discuss the underlying pathophysiological mechanism of such interactions.
Collapse
Affiliation(s)
- G Demarquay
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Lyon 1 University, Lyon, France; Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292 and Lyon 1 University, Lyon, France.
| | - S Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Lyon 1 University, Lyon, France; Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292 and Lyon 1 University, Lyon, France
| |
Collapse
|
22
|
Vuralli D, Karatas H, Yemisci M, Bolay H. Updated review on the link between cortical spreading depression and headache disorders. Expert Rev Neurother 2021; 21:1069-1084. [PMID: 34162288 DOI: 10.1080/14737175.2021.1947797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Experimental animal studies have revealed mechanisms that link cortical spreading depression (CSD) to the trigeminal activation mediating lateralized headache. However, conventional CSD as seen in lissencephalic brain is insufficient to explain some clinical features of aura and migraine headache. AREAS COVERED The importance of CSD in headache development including dysfunction of the thalamocortical network, neuroinflammation, calcitonin gene-related peptide, transgenic models, and the role of CSD in migraine triggers, treatment options, neuromodulation and future directions are reviewed. EXPERT OPINION The conventional understanding of CSD marching across the hemisphere is invalid in gyrencephalic brains. Thalamocortical dysfunction and interruption of functional cortical network systems by CSD, may provide alternative explanations for clinical manifestations of migraine phases including aura. Not all drugs showing CSD blocking properties in lissencephalic brains, have efficacy in migraine headache and monoclonal antibodies against CGRP ligand/receptors which are effective in migraine treatment, have no impact on aura in humans or CSD properties in rodents. Functional networks and molecular mechanisms mediating and amplifying the effects of limited CSD in migraine brain remain to be investigated to define new targets.
Collapse
Affiliation(s)
- Doga Vuralli
- Department of Neurology and Algology, Gazi University Faculty of Medicine, Besevler, Ankara, Turkey.,Neuropsychiatry Center, Gazi University, Besevler, Ankara, Turkey.,Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
| | - Hulya Karatas
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey.,Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Muge Yemisci
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey.,Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Hayrunnisa Bolay
- Department of Neurology and Algology, Gazi University Faculty of Medicine, Besevler, Ankara, Turkey.,Neuropsychiatry Center, Gazi University, Besevler, Ankara, Turkey.,Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
| |
Collapse
|
23
|
Lloyd J, Biloshytska M, Andreou AP, Lambru G. Noninvasive Neuromodulation in Headache: An Update. Neurol India 2021; 69:S183-S193. [PMID: 34003164 DOI: 10.4103/0028-3886.315998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Migraine is a common disabling primary headache condition. Although strives have been made in treatment, there remains an unmet need for safe, effective acute, and preventative treatments. The promising concept of neuromodulation of relevant neuronal targets in a noninvasive fashion for the treatment of primary headache disorders has led to the trial of numerous devices over the years. Objective We aimed to review the evidence on current neuromodulation treatments available for the management of primary headache disorders. Methods Randomized controlled trial as well as open-label and real-world studies on central and peripheral cephalic and noncephalic neuromodulation modalities in primary headaches were critically reviewed. Results The current evidence suggests a role of single-pulse transcranial magnetic stimulation, supraorbital nerve stimulation, and remote noncephalic electrical stimulation as migraine abortive treatments, with stronger evidence in episodic rather than in chronic migraine. Single-pulse transcranial magnetic stimulation and supraorbital nerve stimulation also hold promising evidence in episodic migraine prevention and initial positive evidence in chronic migraine prevention. More evidence should clarify the therapeutic role of the external vagus nerve stimulation and transcranial direct current stimulation in migraine. However, external vagus nerve stimulation may be effective in the acute treatment of episodic but not chronic cluster headache, in the prevention of hemicrania continua and paroxysmal hemicrania but not of short-lasting neuralgiform headache attacks. The difficulty in setting up sham-controlled studies has thus far prevented the publication of robust trials. This limitation along with the cost of these therapies has meant that their use is limited in most countries. Conclusion Neuromodulation is a promising nonpharmacological treatment approach for primary headaches. More studies with appropriate blinding strategies and reduction of device cost may allow more widespread approval of these treatments and in turn increase clinician's experience in neuromodulation.
Collapse
Affiliation(s)
- Joseph Lloyd
- Headache Research-Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Maryna Biloshytska
- Headache Research-Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Anna P Andreou
- Department of Functional Neurosurgery and Neuromodulation, Romodanov Neurosurgery Institute, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine; The Headache Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Giorgio Lambru
- The Headache Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
24
|
O’Hare L, Asher JM, Hibbard PB. Migraine Visual Aura and Cortical Spreading Depression-Linking Mathematical Models to Empirical Evidence. Vision (Basel) 2021; 5:30. [PMID: 34200625 PMCID: PMC8293461 DOI: 10.3390/vision5020030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 01/10/2023] Open
Abstract
This review describes the subjective experience of visual aura in migraine, outlines theoretical models of this phenomenon, and explores how these may be linked to neurochemical, electrophysiological, and psychophysical differences in sensory processing that have been reported in migraine with aura. Reaction-diffusion models have been used to model the hallucinations thought to arise from cortical spreading depolarisation and depression in migraine aura. One aim of this review is to make the underlying principles of these models accessible to a general readership. Cortical spreading depolarisation and depression in these models depends on the balance of the diffusion rate between excitation and inhibition and the occurrence of a large spike in activity to initiate spontaneous pattern formation. We review experimental evidence, including recordings of brain activity made during the aura and attack phase, self-reported triggers of migraine, and psychophysical studies of visual processing in migraine with aura, and how these might relate to mechanisms of excitability that make some people susceptible to aura. Increased cortical excitability, increased neural noise, and fluctuations in oscillatory activity across the migraine cycle are all factors that are likely to contribute to the occurrence of migraine aura. There remain many outstanding questions relating to the current limitations of both models and experimental evidence. Nevertheless, reaction-diffusion models, by providing an integrative theoretical framework, support the generation of testable experimental hypotheses to guide future research.
Collapse
Affiliation(s)
- Louise O’Hare
- Division of Psychology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Jordi M. Asher
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| | - Paul B. Hibbard
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| |
Collapse
|
25
|
Hadjikhani N, Vincent M. Visual Perception in Migraine: A Narrative Review. Vision (Basel) 2021; 5:20. [PMID: 33924855 PMCID: PMC8167726 DOI: 10.3390/vision5020020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 11/25/2022] Open
Abstract
Migraine, the most frequent neurological ailment, affects visual processing during and between attacks. Most visual disturbances associated with migraine can be explained by increased neural hyperexcitability, as suggested by clinical, physiological and neuroimaging evidence. Here, we review how simple (e.g., patterns, color) visual functions can be affected in patients with migraine, describe the different complex manifestations of the so-called Alice in Wonderland Syndrome, and discuss how visual stimuli can trigger migraine attacks. We also reinforce the importance of a thorough, proactive examination of visual function in people with migraine.
Collapse
Affiliation(s)
- Nouchine Hadjikhani
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of Gothenburg, 41119 Gothenburg, Sweden
| | | |
Collapse
|
26
|
Kowalska M, Prendecki M, Piekut T, Kozubski W, Dorszewska J. Migraine: Calcium Channels and Glia. Int J Mol Sci 2021; 22:2688. [PMID: 33799975 PMCID: PMC7962070 DOI: 10.3390/ijms22052688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/03/2023] Open
Abstract
Migraine is a common neurological disease that affects about 11% of the adult population. The disease is divided into two main clinical subtypes: migraine with aura and migraine without aura. According to the neurovascular theory of migraine, the activation of the trigeminovascular system (TGVS) and the release of numerous neuropeptides, including calcitonin gene-related peptide (CGRP) are involved in headache pathogenesis. TGVS can be activated by cortical spreading depression (CSD), a phenomenon responsible for the aura. The mechanism of CSD, stemming in part from aberrant interactions between neurons and glia have been studied in models of familial hemiplegic migraine (FHM), a rare monogenic form of migraine with aura. The present review focuses on those interactions, especially as seen in FHM type 1, a variant of the disease caused by a mutation in CACNA1A, which encodes the α1A subunit of the P/Q-type voltage-gated calcium channel.
Collapse
Affiliation(s)
- Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| | - Michał Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| | - Thomas Piekut
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland;
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| |
Collapse
|
27
|
Abstract
Illusions and hallucinations are commonly encountered in both daily life and clinical practice. In this chapter, we review definitions and possible underlying mechanisms of these phenomena and then review what is known about specific conditions that are associated with them, including ophthalmic causes, migraine, epilepsy, Parkinson's disease, and schizophrenia. We then discuss specific syndromes including the Charles Bonnet syndrome, visual snow syndrome, Alice in Wonderland syndrome, and peduncular hallucinosis. The scientific study of illusions and hallucinations has contributed significantly to our understanding of how eye and brain process vision and contribute to perception. Important concepts are the distinction between topologic and hodologic mechanisms underlying hallucinations and the involvement of attentional networks. This chapter examines the various ways in which pathological illusions and hallucinations might arise in relation to the phenomenology and known pathology of the various conditions associated with them.
Collapse
Affiliation(s)
- Clare L Fraser
- Department of Ophthalmology, Save Sight Institute, Faculty of Health and Medicine, University of Sydney, Sydney, Australia.
| | - Christian J Lueck
- Department of Neurology, Canberra Hospital, and Australian National University Medical School, Canberra, Australia
| |
Collapse
|
28
|
A richer view of aura. Nature 2020. [DOI: 10.1038/d41586-020-02863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Lloyd JO, Chisholm KI, Oehle B, Jones MG, Okine BN, Al-Kaisy A, Lambru G, McMahon SB, Andreou AP. Cortical Mechanisms of Single-Pulse Transcranial Magnetic Stimulation in Migraine. Neurotherapeutics 2020; 17:1973-1987. [PMID: 32632772 PMCID: PMC7851313 DOI: 10.1007/s13311-020-00879-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Single-pulse transcranial magnetic stimulation (sTMS) of the occipital cortex is an effective migraine treatment. However, its mechanism of action and cortical effects of sTMS in migraine are yet to be elucidated. Using calcium imaging and GCaMP-expressing mice, sTMS did not depolarise neurons and had no effect on vascular tone. Pre-treatment with sTMS, however, significantly affected some characteristics of the cortical spreading depression (CSD) wave, the correlate of migraine aura. sTMS inhibited spontaneous neuronal firing in the visual cortex in a dose-dependent manner and attenuated L-glutamate-evoked firing, but not in the presence of GABAA/B antagonists. In the CSD model, sTMS increased the CSD electrical threshold, but not in the presence of GABAA/B antagonists. We first report here that sTMS at intensities similar to those used in the treatment of migraine, unlike traditional sTMS applied in other neurological fields, does not excite cortical neurons but it reduces spontaneous cortical neuronal activity and suppresses the migraine aura biological substrate, potentially by interacting with GABAergic circuits.
Collapse
Affiliation(s)
- Joseph O Lloyd
- Headache Research-Wolfson CARD, Guy's Campus, King's College London, London, UK
| | - Kim I Chisholm
- Department of Neurorestoration, Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Beatrice Oehle
- Department of Neurorestoration, Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Martyn G Jones
- Department of Neurorestoration, Wolfson Centre for Age-Related Diseases, King's College London, London, UK
- Zenith Neurotech Ltd, London, UK
| | - Bright N Okine
- Headache Research-Wolfson CARD, Guy's Campus, King's College London, London, UK
| | - Adnan Al-Kaisy
- Pain Management and Neuromodulation Centre, Guy's and St Thomas's NHS Foundation Trust, King's Health Partners, London, UK
| | - Giorgio Lambru
- Headache Research-Wolfson CARD, Guy's Campus, King's College London, London, UK
- Headache Centre, Guy's and St Thomas's NHS Foundation Trust, King's Health Partners, London, UK
| | - Stephen B McMahon
- Department of Neurorestoration, Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Anna P Andreou
- Headache Research-Wolfson CARD, Guy's Campus, King's College London, London, UK.
- Headache Centre, Guy's and St Thomas's NHS Foundation Trust, King's Health Partners, London, UK.
| |
Collapse
|
30
|
Abstract
BACKGROUND Migraine is a common disabling neurological disorder where attacks have been recognized to consist of more than headache. The premonitory, headache, and postdromal phases are the various phases of the migraine cycle, where aura can occur before, during, or after the onset of pain. Migraine is also associated with photosensitivity and cranial autonomic symptoms, which includes lacrimation, conjunctival injection, periorbital edema, ptosis, nasal congestion, and rhinorrhoea. This review will present the current understanding of migraine pathophysiology and the relationship to the observed symptoms. EVIDENCE ACQUISITION The literature was reviewed with specific focus on clinical, neurophysiological, functional imaging, and preclinical studies in migraine including the studies on the role of calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase activating polypeptide (PACAP). RESULTS The phases of the migraine cycle have been delineated by several studies. The observations of clinical symptoms help develop hypotheses of the key structures involved and the biochemical and neuronal pathways through which the effects are mediated. Preclinical studies and functional imaging studies have provided evidence for the role of multiple cortical areas, the diencephalon, especially the hypothalamus, and certain brainstem nuclei in the modulation of nociceptive processing, symptoms of the premonitory phase, aura, and photophobia. CGRP and PACAP have been found to be involved in nociceptive modulation and through exploration of CGRP mechanisms, new successful treatments have been developed. CONCLUSIONS Migraine is a complex neural disorder and is important to understand when seeing patients who present to neuro-ophthalmology, especially with the successful translation from preclinical and clinical research leading to successful advances in migraine management.
Collapse
|
31
|
Takizawa T, Ayata C, Chen SP. Therapeutic implications of cortical spreading depression models in migraine. PROGRESS IN BRAIN RESEARCH 2020; 255:29-67. [PMID: 33008510 DOI: 10.1016/bs.pbr.2020.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Migraine is among the most common and disabling neurological diseases in the world. Cortical spreading depression (CSD) is a wave of near-complete depolarization of neurons and glial cells that slowly propagates along the cortex creating the perception of aura. Evidence suggests that CSD can trigger migraine headache. Experimental models of CSD have been considered highly translational as they recapitulate migraine-related phenomena and have been validated for screening migraine therapeutics. Here we outline the essential components of validated experimental models of CSD and provide a comprehensive review of potential modulators and targets against CSD. We further focus on novel interventions that have been recently shown to suppress CSD susceptibility that may lead to therapeutic targets in migraine.
Collapse
Affiliation(s)
- Tsubasa Takizawa
- Department of Neurology, Keio Universrity School of Medicine, Tokyo, Japan
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shih-Pin Chen
- Department of Medical Research & Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
32
|
|
33
|
Abstract
Migraine is the most common disabling primary headache globally. Attacks typically present with unilateral throbbing headache and associated symptoms including, nausea, multisensory hypersensitivity, and marked fatigue. In this article, the authors address the underlying neuroanatomical basis for migraine-related headache, associated symptomatology, and discuss key clinical and preclinical findings that indicate that migraine likely results from dysfunctional homeostatic mechanisms. Whereby, abnormal central nervous system responses to extrinsic and intrinsic cues may lead to increased attack susceptibility.
Collapse
Affiliation(s)
- Peter J Goadsby
- Headache Group, Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Philip R Holland
- Headache Group, Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
34
|
Puledda F, Ffytche D, O'Daly O, Goadsby PJ. Imaging the Visual Network in the Migraine Spectrum. Front Neurol 2019; 10:1325. [PMID: 31920945 PMCID: PMC6923266 DOI: 10.3389/fneur.2019.01325] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/29/2019] [Indexed: 01/13/2023] Open
Abstract
The involvement of the visual network in migraine pathophysiology has been well-known for more than a century. Not only is the aura phenomenon linked to cortical alterations primarily localized in the visual cortex; but also migraine without aura has shown distinct dysfunction of visual processing in several studies in the past. Further, the study of photophobia, a hallmark migraine symptom, has allowed unraveling of distinct connections that link retinal pathways to the trigeminovascular system. Finally, visual snow, a recently recognized neurological disorder characterized by a continuous visual disturbance, is highly comorbid with migraine and possibly shares with it some common pathophysiological mechanisms. Here, we review the most relevant neuroimaging literature to date, considering studies that have either attempted to investigate the visual network or have indirectly shown visual processing dysfunctions in migraine. We do this by taking into account the broader spectrum of migrainous biology, thus analyzing migraine both with and without aura, focusing on light sensitivity as the most relevant visual symptom in migraine, and finally analyzing the visual snow syndrome. We also present possible hypotheses on the underlying pathophysiology of visual snow, for which very little is currently known.
Collapse
Affiliation(s)
- Francesca Puledda
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR-Wellcome Trust King's Clinical Research Facility, SLaM NIHR Biomedical Research Centre, King's College Hospital, London, United Kingdom
| | - Dominic Ffytche
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Owen O'Daly
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Peter J. Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR-Wellcome Trust King's Clinical Research Facility, SLaM NIHR Biomedical Research Centre, King's College Hospital, London, United Kingdom
| |
Collapse
|
35
|
Tolner EA, Chen SP, Eikermann-Haerter K. Current understanding of cortical structure and function in migraine. Cephalalgia 2019; 39:1683-1699. [PMID: 30922081 PMCID: PMC6859601 DOI: 10.1177/0333102419840643] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To review and discuss the literature on the role of cortical structure and function in migraine. DISCUSSION Structural and functional findings suggest that changes in cortical morphology and function contribute to migraine susceptibility by modulating dynamic interactions across cortical and subcortical networks. The involvement of the cortex in migraine is well established for the aura phase with the underlying phenomenon of cortical spreading depolarization, while increasing evidence suggests an important role for the cortex in perception of head pain and associated sensations. As part of trigeminovascular pain and sensory processing networks, cortical dysfunction is likely to also affect initiation of attacks. CONCLUSION Morphological and functional changes identified across cortical regions are likely to contribute to initiation, cyclic recurrence and chronification of migraine. Future studies are needed to address underlying mechanisms, including interactions between cortical and subcortical regions and effects of internal (e.g. genetics, gender) and external (e.g. sensory inputs, stress) modifying factors, as well as possible clinical and therapeutic implications.
Collapse
Affiliation(s)
- Else A Tolner
- Departments of Neurology and Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Shih-Pin Chen
- Insitute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei
| | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW This article discusses the basic mechanisms of migraine aura and its clinical significance based upon evidence from human studies and animal models. RECENT FINDINGS Prospective clinical studies have reinforced the understanding that migraine aura is highly variable from one individual to the next as well as from attack to attack in an individual. While migraine with aura clearly has a higher heritability than migraine without aura, population studies have not identified specific genes that underlie this heritability for typical migraine with aura. Imaging studies reveal hypoperfusion associated with migraine aura, although the timing and distribution of this hypoperfusion is not strictly correlated with migraine symptoms. Mapping of migraine visual aura symptoms onto the visual cortex suggests that the mechanisms underlying the aura propagate in a linear fashion along gyri or sulci rather than as a concentric wave and also suggests that aura may propagate in the absence of clinical symptoms. Cortical spreading depression in animal models continues to be a translational model for migraine, and the study of spreading depolarizations in the injured human brain has provided new insight into potential mechanisms of cortical spreading depression in migraine. Migraine with aura has multiple comorbidities including patent foramen ovale, stroke, and psychiatric disorders; the shared mechanisms underlying these comorbidities remains a topic of active investigation. SUMMARY Although it occurs in the minority of patients with migraine, aura may have much to teach us about basic mechanisms of migraine. In addition, its occurrence may influence clinical management regarding comorbid conditions and acute and preventive therapy.
Collapse
|
37
|
Bolay H, Vuralli D, Goadsby PJ. Aura and Head pain: relationship and gaps in the translational models. J Headache Pain 2019; 20:94. [PMID: 31481015 PMCID: PMC6734357 DOI: 10.1186/s10194-019-1042-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Migraine is a complex brain disorder and initiating events for acute attacks still remain unclear. It seems difficult to explain the development of migraine headache with one mechanism and/or a single anatomical location. Cortical spreading depression (CSD) is recognized as the biological substrate of migraine aura and experimental animal studies have provided mechanisms that possibly link CSD to the activation of trigeminal neurons mediating lateralized head pain. However, some CSD features do not match the clinical features of migraine headache and there are gaps in translating CSD to migraine with aura. Clinical features of migraine headache and results from research are critically evaluated; and consistent and inconsistent findings are discussed according to the known basic features of canonical CSD: typical SD limited to the cerebral cortex as it was originally defined. Alternatively, arguments related to the emergence of SD in other brain structures in addition to the cerebral cortex or CSD initiated dysfunction in the thalamocortical network are proposed. Accordingly, including thalamus, particularly reticular nucleus and higher order thalamic nuclei, which functions as a hub connecting the visual, somatosensory, language and motor cortical areas and subjects to modulation by brain stem projections into the CSD theory, would greatly improve our current understanding of migraine.
Collapse
Affiliation(s)
- Hayrunnisa Bolay
- Department of Neurology and Algology, Gazi University Faculty of Medicine, Besevler, 06510 Ankara, Turkey
- Neuropsychiatry Center, Gazi University, Besevler, Ankara, Turkey
| | - Doga Vuralli
- Neuropsychiatry Center, Gazi University, Besevler, Ankara, Turkey
- Department of Algology, Bakirkoy Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul, Turkey
| | - Peter J. Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, King’s College London, London, UK
- NIHR-Wellcome Trust King’s Clinical Research Facility, King’s College Hospital, London, UK
| |
Collapse
|
38
|
Abstract
Migraine is a common headache disorder characterized by often-severe headaches that may be preceded or accompanied by a variety of visual symptoms. Although a typical migraine aura is not difficult to diagnose, patients with migraine may report several other visual symptoms, such as prolonged or otherwise atypical auras, "visual blurring", "retinal migraine", "ophthalmoplegic migraine", photophobia, palinopsia, and "visual snow". Here, we provide a short overview of these symptoms and what is known about the relationship with migraine pathophysiology. For some symptoms, the association with migraine is still debated; for other symptoms, recent studies indicate that migraine mechanisms play a role.
Collapse
Affiliation(s)
- Robin M. van Dongen
- Department of Neurology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Joost Haan
- Department of Neurology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Department of Neurology, Alrijne Ziekenhuis, Simon Smitweg 1, 2353 GA, Leiderdorp, The Netherlands
| |
Collapse
|
39
|
Harriott AM, Takizawa T, Chung DY, Chen SP. Spreading depression as a preclinical model of migraine. J Headache Pain 2019; 20:45. [PMID: 31046659 PMCID: PMC6734429 DOI: 10.1186/s10194-019-1001-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/18/2019] [Indexed: 01/12/2023] Open
Abstract
Spreading depression (SD) is a slowly propagating wave of near-complete depolarization of neurons and glial cells across the cortex. SD is thought to contribute to the underlying pathophysiology of migraine aura, and possibly also an intrinsic brain activity causing migraine headache. Experimental models of SD have recapitulated multiple migraine-related phenomena and are considered highly translational. In this review, we summarize conventional and novel methods to trigger SD, with specific focus on optogenetic methods. We outline physiological triggers that might affect SD susceptibility, review a multitude of physiological, biochemical, and behavioral consequences of SD, and elaborate their relevance to migraine pathophysiology. The possibility of constructing a recurrent episodic or chronic migraine model using SD is also discussed.
Collapse
Affiliation(s)
- Andrea M Harriott
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Tsubasa Takizawa
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - David Y Chung
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Shih-Pin Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan. .,Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
40
|
Abstract
Vascular theories of migraine and cluster headache have dominated for many years the pathobiological concept of these disorders. This view is supported by observations that trigeminal activation induces a vascular response and that several vasodilating molecules trigger acute attacks of migraine and cluster headache in susceptible individuals. Over the past 30 years, this rationale has been questioned as it became clear that the actions of some of these molecules, in particular, calcitonin gene-related peptide and pituitary adenylate cyclase-activating peptide, extend far beyond the vasoactive effects, as they possess the ability to modulate nociceptive neuronal activity in several key regions of the trigeminovascular system. These findings have shifted our understanding of these disorders to a primarily neuronal origin with the vascular manifestations being the consequence rather than the origin of trigeminal activation. Nevertheless, the neurovascular component, or coupling, seems to be far more complex than initially thought, being involved in several accompanying features. The review will discuss in detail the anatomical basis and the functional role of the neurovascular mechanisms relevant to migraine and cluster headache.
Collapse
Affiliation(s)
- Jan Hoffmann
- 1 Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Serapio M Baca
- 2 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Simon Akerman
- 3 Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
41
|
Bouley J, Chung DY, Ayata C, Brown RH, Henninger N. Cortical Spreading Depression Denotes Concussion Injury. J Neurotrauma 2019; 36:1008-1017. [PMID: 29999455 PMCID: PMC6444888 DOI: 10.1089/neu.2018.5844] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cortical spreading depression (CSD) has been described after moderate-to-severe traumatic brain injury (TBI). It is uncertain, however, whether CSD occurs after mild, concussive TBI and whether it relates to brain pathology and functional outcome. Male C57BL6/J mice (n = 62) were subjected to closed head TBI with a 25 g weight (n = 11), 50 g weight (n = 45), or sham injury (n = 6). Laser Doppler flowmetry and optical intrinsic signal imaging were used to determine cerebral blood flow dynamics after concussive CSD. Functional deficits were assessed at baseline, 2 h, 24 h, and 48 h. TUNEL and Prussian blue staining were used to determine cell death and presence of cerebral microbleeds at 48 h. No CSD was observed in mice subjected to a 25 g weight drop whereas 58.9% of mice subjected to a 50 g weight drop developed a CSD. Mice with concussive CSD displayed significantly greater numbers of apoptotic cell profiles in the ipsilesional hemisphere compared with mice without a CSD that underwent the same 50 g weight drop paradigm (p < 0.05, each). All investigated animals had at least one cerebral microbleed (range 1 to 24). Compared with mice without a CSD, mice with a CSD had significantly more microbleeds in the traumatized hemisphere (p < 0.05, each) and showed impaired functional recovery (p < 0.05). Incidence of CSD after mild TBI depended on impact severity and was associated with histological and behavioral outcomes. These observations indicate that concussive CSD may serve as viable marker for concussion severity and provide novel avenues for outcome prediction and therapeutic decision making.
Collapse
Affiliation(s)
- James Bouley
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - David Y. Chung
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Cenk Ayata
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Robert H. Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Nils Henninger
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
42
|
Klaric JS, Forbes LL, Finkel AG. Painful Craniofacial/Cervical Surface Area and Continuous Headache After Military Concussion: A Morphometric Retrospective Cohort Study. Headache 2018; 58:1457-1464. [PMID: 30362523 DOI: 10.1111/head.13416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE In this retrospective study of active duty service members (ADSMs), possible relationships were examined between extent of headache pain depicted on head/neck diagrams and headache phenomenology. BACKGROUND The signature injury of US military operations in Iraq and Afghanistan is mild traumatic brain injury (mTBI). Blast injury, especially from improvised explosive devices, was the most common cause during the height of the wars; the most persistent symptom remains posttraumatic headache (PTH). Neurologic patients were asked to draw pain diagrams/maps, a method of pain assessment in several clinical settings. METHODS Thirty-four ADSMs attributing PTH to both blast and non-blast sources underwent clinical evaluations; diagnoses and headache characteristics were obtained. They completed 58 drawings depicting craniofacial/cervical headache pain on non-standardized templates. Drawings were of 29 continuous and 29 non-continuous headaches (CHA and NCHA, respectively). Surface area was calculated using a grid and expressed as a percentage. RESULTS The sample was male (100%), primarily white (83%), with an average age of 30.3 years. Evidence for statistical independence of observations is provided (intra-class correlation = 0.004). Percent surface area was larger for CHA (median [mdn] = 35.2, interquartile range [IQR] = 9.0, 78.3) than NCHA (mdn = 9.1, IQR = 5.4, 34.1, P = .029). In those with blast injury, CHA percent surface areas (mdn = 45.9, IQR = 27.0, 100) were larger than NCHA (mdn = 11.6, IQR = 5.8, 28.9; P = .0012), a relationship not observed in patients with PTH from non-blasts (CHA: mdn = 26.8, IQR = 8.5, 52.0; NCHA: mdn = 9.1, IQR = 5.0, 47.6, P = .050). This pattern is observed after pooling at the median (blast, P < .012; non-blast: P = .264). CONCLUSION Painful craniofacial/cervical surface area, as shown on patient drawings, is related to PTH phenomenology (continuous versus non-continuous headache). This relationship is stronger after blast injury.
Collapse
Affiliation(s)
- John S Klaric
- Womack Army Medical Center (WAMC), Ft. Bragg, NC, USA
| | | | - Alan G Finkel
- Womack Army Medical Center (WAMC), Ft. Bragg, NC, USA.,Defense and Veterans Brain Injury Center, Silver Spring, MD, USA.,Carolina Headache Institute, Chapel Hill, NC, USA
| |
Collapse
|
43
|
Brennan KC, Pietrobon D. A Systems Neuroscience Approach to Migraine. Neuron 2018; 97:1004-1021. [PMID: 29518355 PMCID: PMC6402597 DOI: 10.1016/j.neuron.2018.01.029] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/13/2017] [Accepted: 01/12/2018] [Indexed: 01/07/2023]
Abstract
Migraine is an extremely common but poorly understood nervous system disorder. We conceptualize migraine as a disorder of sensory network gain and plasticity, and we propose that this framing makes it amenable to the tools of current systems neuroscience.
Collapse
Affiliation(s)
- K C Brennan
- Department of Neurology, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA.
| | - Daniela Pietrobon
- Department of Biomedical Sciences and Padova Neuroscience Center, University of Padova, 35131 Padova, Italy; CNR Institute of Neuroscience, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
44
|
Abstract
Migraine is one of the most common neurological disorders. In addition to severe headaches, non-headache symptoms associated with migraine attacks as well as co-morbid disorders frequently aggravate the disabling of migraine patients. Some of these symptoms are related to poor outcomes. In this review, we update the advances of studies on certain non-headache symptoms, including visual disturbance, gastrointestinal symptoms, allodynia, vestibular symptoms, and symptoms of co-morbid restless legs syndrome and psychiatric disorders.
Collapse
Affiliation(s)
- Ping-Kun Chen
- School of Medicine, China Medical University, Taichung, Taiwan.,Bo-Zhi Neurology Clinic, Taichung, Taiwan.,Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Shuu-Jiun Wang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
45
|
The pathophysiology of migraine: implications for clinical management. Lancet Neurol 2018; 17:174-182. [DOI: 10.1016/s1474-4422(17)30435-0] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022]
|
46
|
Abouelhuda AM, Kim HS, Kim SY, Kim YK. Association between headache and temporomandibular disorder. J Korean Assoc Oral Maxillofac Surg 2017; 43:363-367. [PMID: 29333365 PMCID: PMC5756792 DOI: 10.5125/jkaoms.2017.43.6.363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/06/2017] [Indexed: 01/03/2023] Open
Abstract
Headaches are one of the most common conditions associated with temporomandibular disorder (TMD). In the present paper, we evaluated the relationship between headache and TMD, determined whether headache influences the symptoms of TMD, and reported two cases of TMD accompanied by headache. Our practical experience and a review of the literature suggested that headache increases the frequency and intensity of pain parameters, thus complicating dysfunctional diseases in both diagnostic and treatment phases. Therefore, early and multidisciplinary treatment of TMD is necessary to avoid the overlap of painful events that could result in pain chronicity.
Collapse
Affiliation(s)
- Amira Mokhtar Abouelhuda
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyun-Seok Kim
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sang-Yun Kim
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Young-Kyun Kim
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
47
|
Arngrim N, Hougaard A, Ahmadi K, Vestergaard MB, Schytz HW, Amin FM, Larsson HBW, Olesen J, Hoffmann MB, Ashina M. Heterogenous migraine aura symptoms correlate with visual cortex functional magnetic resonance imaging responses. Ann Neurol 2017; 82:925-939. [PMID: 29130510 DOI: 10.1002/ana.25096] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/17/2017] [Accepted: 11/05/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Migraine aura is sparsely studied due to the highly challenging task of capturing patients during aura. Cortical spreading depression (CSD) is likely the underlying phenomenon of aura. The possible correlation between the multifaceted phenomenology of aura symptoms and the effects of CSD on the brain has not been ascertained. METHODS Five migraine patients were studied during various forms of aura symptoms induced by hypoxia, sham hypoxia, or physical exercise with concurrent photostimulation. The blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signal response to visual stimulation was measured in retinotopic mapping-defined visual cortex areas V1 to V4. RESULTS We found reduced BOLD response in patients reporting scotoma and increased response in patients who only experienced positive symptoms. Furthermore, patients with bilateral visual symptoms had corresponding bihemispherical changes in BOLD response. INTERPRETATION These findings suggest that different aura symptoms reflect different types of cerebral dysfunction, which correspond to specific changes in BOLD signal reactivity. Furthermore, we provide evidence of bilateral CSD recorded by fMRI during bilateral aura symptoms. Ann Neurol 2017;82:925-939.
Collapse
Affiliation(s)
- Nanna Arngrim
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Anders Hougaard
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Khazar Ahmadi
- Visual Processing Laboratory, Ophthalmic Department, Otto von Guericke University, Magdeburg, Germany
| | - Mark Bitsch Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Henrik Winther Schytz
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Faisal Mohammad Amin
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Jes Olesen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Michael B Hoffmann
- Visual Processing Laboratory, Ophthalmic Department, Otto von Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
48
|
Jay GW, Barkin RL. Primary Headache Disorders Part I- Migraine and the Trigeminal Autonomic Cephalalgias. Dis Mon 2017; 63:308-338. [DOI: 10.1016/j.disamonth.2017.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Demarquay G, Ducros A, Montavont A, Mauguiere F. Migraine with brainstem aura: Why not a cortical origin? Cephalalgia 2017; 38:1687-1695. [PMID: 29073774 DOI: 10.1177/0333102417738251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Migraine with brainstem aura is defined as a migraine with aura including at least two of the following symptoms: dysarthria, vertigo, tinnitus, hypacusis, diplopia, ataxia and/or decreased level of consciousness. Aim The aim of this study is to review data coming from clinical observations and functional mapping that support the role of the cerebral cortex in the initiation of brainstem aura symptoms. Results Vertigo can result from a vestibular cortex dysfunction, while tinnitus and hypacusis can originate within the auditory cortex. Diplopia can reflect a parieto-occipital involvement. Dysarthria can be caused by dysfunctions located in precentral gyri. Ataxia can reflect abnormal processing of vestibular, sensory, or visual inputs by the parietal lobe. Alteration of consciousness can be caused by abnormal neural activation within specific consciousness networks that include prefrontal and posterior parietal cortices. Conclusion Any symptom of so-called brainstem aura can originate within the cortex. Based on these data, we suggest that brainstem aura could have a cortical origin. This hypothesis would explain the co-occurrence of typical and brainstem aura during attacks and would fit with the theory of cortical spreading depression. We propose that migraine with brainstem aura should be classified as a typical migraine aura.
Collapse
Affiliation(s)
- Geneviève Demarquay
- 1 Department of Neurology, Hospices Civils de Lyon, Lyon, France.,2 Lyon Neuroscience Research Center (CRNL), Brain Dynamics and Cognition Team (Dycog), INSERM U1028, CNRS UMR5292, Lyon, France
| | - Anne Ducros
- 3 Department of Neurology, Montpellier University Hospital, France.,4 Medical School of Montpellier University (UM), France
| | | | - François Mauguiere
- 1 Department of Neurology, Hospices Civils de Lyon, Lyon, France.,5 Lyon Neuroscience Research Center (CRNL), Neuropain team, INSERM U1028, CNRS UMR5292, Lyon, France.,6 Lyon 1 University, Lyon, France
| |
Collapse
|
50
|
Gil-Gouveia R, Martins IP. Clinical description of attack-related cognitive symptoms in migraine: A systematic review. Cephalalgia 2017; 38:1335-1350. [DOI: 10.1177/0333102417728250] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Introduction Cognitive symptoms have been described during migraine attacks since the Roman era; while being neglected throughout the centuries, they are relevant contributors to migraine-related disability. Objective To determine whether cognitive symptoms are included in clinical series describing migraine attack phenomenology, and which symptoms occur in each attack phase. Method Systematic review of existing data on clinical descriptions of migraine attacks, focusing on cognitive symptomatology. Data were organized and analyzed qualitatively, due to methodological differences between studies. Results Twenty-four articles were reviewed, with a total sample of 7007 patients, including 82.9% females with an average age of 39.2 years. Twenty one (75%) studies analyzed one phase of the attack (eight prodromes, five auras, one between aura and pain, three headaches and three postdromes), the remaining studied more than one phase. Cognitive complaints were the most frequent symptom of the prodromic (30%) and headache (38%) phases, while fatigue (70%) dominated the resolution phase. Not enough data is available to estimate the frequency of cognitive symptoms during the aura. Discussion Cognitive symptoms are described in all phases of the migraine attack phenomenology in published clinical series of migraine. Their characteristics appear to be different in each attack phase, although methodological limitations prevent generalization of this finding.
Collapse
Affiliation(s)
- Raquel Gil-Gouveia
- Headache Center, Hospital da Luz, Lisboa, Portugal
- Headache Outpatient Clinic, Department of Neurosciences and Mental Health, Hospital de Santa Maria, Lisboa, Portugal
| | - Isabel Pavão Martins
- Headache Outpatient Clinic, Department of Neurosciences and Mental Health, Hospital de Santa Maria, Lisboa, Portugal
| |
Collapse
|