1
|
Chiasson-MacKenzie C, Vitte J, Liu CH, Wright EA, Flynn EA, Stott SL, Giovannini M, McClatchey AI. Cellular mechanisms of heterogeneity in NF2-mutant schwannoma. Nat Commun 2023; 14:1559. [PMID: 36944680 PMCID: PMC10030849 DOI: 10.1038/s41467-023-37226-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Schwannomas are common sporadic tumors and hallmarks of familial neurofibromatosis type 2 (NF2) that develop predominantly on cranial and spinal nerves. Virtually all schwannomas result from inactivation of the NF2 tumor suppressor gene with few, if any, cooperating mutations. Despite their genetic uniformity schwannomas exhibit remarkable clinical and therapeutic heterogeneity, which has impeded successful treatment. How heterogeneity develops in NF2-mutant schwannomas is unknown. We have found that loss of the membrane:cytoskeleton-associated NF2 tumor suppressor, merlin, yields unstable intrinsic polarity and enables Nf2-/- Schwann cells to adopt distinct programs of ErbB ligand production and polarized signaling, suggesting a self-generated model of schwannoma heterogeneity. We validated the heterogeneous distribution of biomarkers of these programs in human schwannoma and exploited the synchronous development of lesions in a mouse model to establish a quantitative pipeline for studying how schwannoma heterogeneity evolves. Our studies highlight the importance of intrinsic mechanisms of heterogeneity across human cancers.
Collapse
Affiliation(s)
- Christine Chiasson-MacKenzie
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jeremie Vitte
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ching-Hui Liu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Emily A Wright
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Elizabeth A Flynn
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Shannon L Stott
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Andrea I McClatchey
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
2
|
Tumor Biology and Microenvironment of Vestibular Schwannoma-Relation to Tumor Growth and Hearing Loss. Biomedicines 2022; 11:biomedicines11010032. [PMID: 36672540 PMCID: PMC9856152 DOI: 10.3390/biomedicines11010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Vestibular schwannoma is the most common benign neoplasm of the cerebellopontine angle. It arises from Schwann cells of the vestibular nerve. The first symptoms of vestibular schwannoma include hearing loss, tinnitus, and vestibular symptoms. In the event of further growth, cerebellar and brainstem symptoms, along with palsy of the adjacent cranial nerves, may be present. Although hearing impairment is present in 95% of patients diagnosed with vestibular schwannoma, most tumors do not progress in size or have low growth rates. However, the clinical picture has unpredictable dynamics, and there are currently no reliable predictors of the tumor's behavior. The etiology of the hearing loss in patients with vestibular schwannoma is unclear. Given the presence of hearing loss in patients with non-growing tumors, a purely mechanistic approach is insufficient. A possible explanation for this may be that the function of the auditory system may be affected by the paracrine activity of the tumor. Moreover, initiation of the development and growth progression of vestibular schwannomas is not yet clearly understood. Biallelic loss of the NF2 gene does not explain the occurrence in all patients; therefore, detection of gene expression abnormalities in cases of progressive growth is required. As in other areas of cancer research, the tumor microenvironment is coming to the forefront, also in vestibular schwannomas. In the paradigm of the tumor microenvironment, the stroma of the tumor actively influences the tumor's behavior. However, research in the area of vestibular schwannomas is at an early stage. Thus, knowledge of the molecular mechanisms of tumorigenesis and interactions between cells present within the tumor is crucial for the diagnosis, prediction of tumor behavior, and targeted therapeutic interventions. In this review, we provide an overview of the current knowledge in the field of molecular biology and tumor microenvironment of vestibular schwannomas, as well as their relationship to tumor growth and hearing loss.
Collapse
|
3
|
Negro S, Pirazzini M, Rigoni M. Models and methods to study Schwann cells. J Anat 2022; 241:1235-1258. [PMID: 34988978 PMCID: PMC9558160 DOI: 10.1111/joa.13606] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Schwann cells (SCs) are fundamental components of the peripheral nervous system (PNS) of all vertebrates and play essential roles in development, maintenance, function, and regeneration of peripheral nerves. There are distinct populations of SCs including: (1) myelinating SCs that ensheath axons by a specialized plasma membrane, called myelin, which enhances the conduction of electric impulses; (2) non-myelinating SCs, including Remak SCs, which wrap bundles of multiple axons of small caliber, and perysinaptic SCs (PSCs), associated with motor axon terminals at the neuromuscular junction (NMJ). All types of SCs contribute to PNS regeneration through striking morphological and functional changes in response to nerve injury, are affected in peripheral neuropathies and show abnormalities and a diminished plasticity during aging. Therefore, methodological approaches to study and manipulate SCs in physiological and pathophysiological conditions are crucial to expand the present knowledge on SC biology and to devise new therapeutic strategies to counteract neurodegenerative conditions and age-derived denervation. We present here an updated overview of traditional and emerging methodologies for the study of SCs for scientists approaching this research field.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
| | - Marco Pirazzini
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| | - Michela Rigoni
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| |
Collapse
|
4
|
Stavrou M, Sargiannidou I, Georgiou E, Kagiava A, Kleopa KA. Emerging Therapies for Charcot-Marie-Tooth Inherited Neuropathies. Int J Mol Sci 2021; 22:6048. [PMID: 34205075 PMCID: PMC8199910 DOI: 10.3390/ijms22116048] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuropathies known as Charcot-Marie-Tooth (CMT) disease are genetically heterogeneous disorders affecting the peripheral nerves, causing significant and slowly progressive disability over the lifespan. The discovery of their diverse molecular genetic mechanisms over the past three decades has provided the basis for developing a wide range of therapeutics, leading to an exciting era of finding treatments for this, until now, incurable group of diseases. Many treatment approaches, including gene silencing and gene replacement therapies, as well as small molecule treatments are currently in preclinical testing while several have also reached clinical trial stage. Some of the treatment approaches are disease-specific targeted to the unique disease mechanism of each CMT form, while other therapeutics target common pathways shared by several or all CMT types. As promising treatments reach the stage of clinical translation, optimal outcome measures, novel biomarkers and appropriate trial designs are crucial in order to facilitate successful testing and validation of novel treatments for CMT patients.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Elena Georgiou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
- Center for Neuromuscular Diseases, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
5
|
Morrison DR, Sorace AG, Hamilton E, Moore LS, Houson HA, Udayakumar N, Ovaitt A, Warram JM, Walsh EM. Predicting Schwannoma Growth in a Tumor Model Using Targeted Imaging. Otol Neurotol 2021; 42:e615-e623. [PMID: 33661237 PMCID: PMC9762121 DOI: 10.1097/mao.0000000000003063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Vestibular schwannoma (VS) is a common pathology encountered in neurotology clinics. Many patients are observed with a "wait and scan" approach. Previous efforts to determine radiographic indicators of future growth have been unsuccessful. Using a mouse subcutaneous tumor model, we seek to determine if fluorescent imaging with directed immunotargets could be used to predict schwannoma growth rate. METHODS Anti-VEGFR2 and anti-Her2/Neu monoclonal antibodies were covalently linked to a near-infrared probe (IRDye800). Immunodeficient mice underwent subcutaneous injections with a rat-derived schwann (R3) cell line. When tumor growth was evident, either Anti-VEGFR2-IRDye800, anti-Her2/Neu-IRDye800, or Immunoglobulin G (IgG) Isotype-IRDye800 (control) were injected via tail vein. The mice were serially imaged in a closed field near-IR device. Fluorescent data were analyzed for tumor signal and correlated with tumor sie and growth rate. Heterogeneity of fluorescent tumor signal was also assessed. RESULTS In both anti-VEGFR2 and anti-Her2/Neu groups, there were strong correlations between day 1 mean tumor fluorescence and eventual maximum tumor volume (p = 0.002, 0.001; r2 = 0.92, 0.86). There was also strong correlation with maximum tumor signal on day 1 and maximum tumor volume (p = 0.003, 0.008; r2 = 0.90, 0.91). There was no such correlation in the control group (p = 0.99, 0.75; r2 = 0.0002, 0.028). CONCLUSION Given the potential morbidity in VS intervention, observation is an appropriate approach for patients with slow-growing or stagnant tumors. We seek to identify immunotargets in a murine model that show promise in predicting schwannoma growth with advanced imaging techniques. Both Her2/Neu and VEGFR2 correlated strongly wth tumor size and growth rates and are promising targets that merit further investigation.
Collapse
Affiliation(s)
- Daniel R. Morrison
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anna G. Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ellis Hamilton
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lindsay S. Moore
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hailey A. Houson
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Neha Udayakumar
- School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alyssa Ovaitt
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jason M. Warram
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Erika M. Walsh
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
6
|
Schulz A, Sekine Y, Oyeyemi MJ, Abrams AJ, Basavaraju M, Han SM, Groth M, Morrison H, Strittmatter SM, Hammarlund M. The stress-responsive gene GDPGP1/mcp-1 regulates neuronal glycogen metabolism and survival. J Cell Biol 2020; 219:133634. [PMID: 31968056 PMCID: PMC7041677 DOI: 10.1083/jcb.201807127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/14/2019] [Accepted: 11/19/2019] [Indexed: 01/13/2023] Open
Abstract
Maladaptive responses to stress might play a role in the sensitivity of neurons to stress. To identify novel cellular responses to stress, we performed transcriptional analysis in acutely stressed mouse neurons, followed by functional characterization in Caenorhabditis elegans. In both contexts, we found that the gene GDPGP1/mcp-1 is down-regulated by a variety of stresses. Functionally, the enzyme GDPGP1/mcp-1 protects against stress. Knockdown of GDPGP1 in mouse neurons leads to widespread neuronal cell death. Loss of mcp-1, the single homologue of GDPGP1 in C. elegans, leads to increased degeneration of GABA neurons as well as reduced survival of animals following environmental stress. Overexpression of mcp-1 in neurons enhances survival under hypoxia and protects against neurodegeneration in a tauopathy model. GDPGP1/mcp-1 regulates neuronal glycogen levels, indicating a key role for this metabolite in neuronal stress resistance. Together, our data indicate that down-regulation of GDPGP1/mcp-1 and consequent loss of neuronal glycogen is a maladaptive response that limits neuronal stress resistance and reduces survival.
Collapse
Affiliation(s)
- Alexander Schulz
- Department of Genetics, Yale University, New Haven, CT.,Department of Neuroscience, Yale University, New Haven, CT
| | - Yuichi Sekine
- Department of Genetics, Yale University, New Haven, CT.,Department of Neurology, Yale University, New Haven, CT
| | - Motunrayo J Oyeyemi
- Department of Genetics, Yale University, New Haven, CT.,Department of Neuroscience, Yale University, New Haven, CT
| | - Alexander J Abrams
- Department of Genetics, Yale University, New Haven, CT.,Department of Neuroscience, Yale University, New Haven, CT
| | - Manasa Basavaraju
- Department of Genetics, Yale University, New Haven, CT.,Department of Neuroscience, Yale University, New Haven, CT
| | - Sung Min Han
- Department of Genetics, Yale University, New Haven, CT.,Department of Neuroscience, Yale University, New Haven, CT
| | - Marco Groth
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Stephen M Strittmatter
- Department of Neuroscience, Yale University, New Haven, CT.,Department of Neurology, Yale University, New Haven, CT
| | - Marc Hammarlund
- Department of Genetics, Yale University, New Haven, CT.,Department of Neuroscience, Yale University, New Haven, CT
| |
Collapse
|
7
|
Yang X, Ji C, Liu X, Zheng C, Zhang Y, Shen R, Zhou Z. The significance of the neuregulin-1/ErbB signaling pathway and its effect on Sox10 expression in the development of terminally differentiated Schwann cells in vitro. Int J Neurosci 2020; 132:171-180. [PMID: 32757877 DOI: 10.1080/00207454.2020.1806266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE The purpose of this study was to explore the significance of the neuregulin-1/ErbB signaling pathway and its effect on Sox10 expression in the course of the differentiation of mouse bone marrow mesenchymal stem cells into Schwann-like cells in vitro. MATERIALS AND METHODS The experiment was conducted with three groups-control, TAK 165, and HRG-off. In the control group, we used the classical induction method of adding β-ME, RA, FSK, b-FGF, PDGF, and neuregulin (HRG); the cells were collected on the 7th day. Using the same basic protocol as the control group, the specific ErbB2 inhibitor mubritinib (TAK 165) was added to block the neuregulin-1/ErbB pathway in the TAK 165 group, while HRG was not added in the HRG-off group. We detected the degree of differentiation of stem cells into Schwann-like cells by using RT-PCR to examine the expression of Sox10, NRG-1, ErbB2, ErbB3, and ErbB4 and by using immunofluorescence staining to examine the Schwann cell marker S100B, Glial Fibrillary Acidic Protein (GFAP) and P75. RESULTS Our results showed that the proliferation of Schwann cells was reduced and apoptosis was increased in the TAK 165 group and the HRG-off group. Sox10 was stably expressed and NRG-1, ErbB2, and ErbB3 increased in the control group. However, the expression of Sox10 in the TAK 165 group was obviously decreased at the end of induced differentiation; meanwhile, the degree of stem cell differentiation also decreased. CONCLUSIONS the neuregulin-1/ErbB signaling pathway plays an important role in the differentiation of bone marrow mesenchymal stem cells into Schwann-like cells and can promote the maintenance of Sox10 。.
Collapse
Affiliation(s)
- Xizhong Yang
- Department of Human Anatomy, Medical College of Qingdao University, Qingdao, P.R China.,Department of Orthopaedics, Jimo people's Hospital, Qingdao, P.R China
| | - Cuijie Ji
- Department of Orthopaedics, Jimo people's Hospital, Qingdao, P.R China
| | - Xinyue Liu
- Department of Human Anatomy, Medical College of Qingdao University, Qingdao, P.R China
| | - Chaoqun Zheng
- Department of Human Anatomy, Medical College of Qingdao University, Qingdao, P.R China
| | - Yanxin Zhang
- Department of Human Anatomy, Medical College of Qingdao University, Qingdao, P.R China
| | - Ruowu Shen
- Department of Human Anatomy, Medical College of Qingdao University, Qingdao, P.R China
| | - Zangong Zhou
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, P.R China
| |
Collapse
|
8
|
Helbing DL, Schulz A, Morrison H. Pathomechanisms in schwannoma development and progression. Oncogene 2020; 39:5421-5429. [PMID: 32616891 PMCID: PMC7410823 DOI: 10.1038/s41388-020-1374-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
Schwannomas are tumors of the peripheral nervous system, consisting of different cell types. These include tumorigenic Schwann cells, axons, macrophages, T cells, fibroblasts, blood vessels, and an extracellular matrix. All cell types involved constitute an intricate “tumor microenvironment” and play relevant roles in the development and progression of schwannomas. Although Nf2 tumor suppressor gene-deficient Schwann cells are the primary tumorigenic element and principle focus of current research efforts, evidence is accumulating regarding the contributory roles of other cell types in schwannoma pathology. In this review, we aim to provide an overview of intra- and intercellular mechanisms contributing to schwannoma formation. “Genes load the gun, environment pulls the trigger.” -George A. Bray
Collapse
Affiliation(s)
- Dario-Lucas Helbing
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany.,Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Alexander Schulz
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany.,MVZ Human Genetics, 99084, Erfurt, Germany
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany.
| |
Collapse
|
9
|
Murtaza M, Chacko A, Delbaz A, Reshamwala R, Rayfield A, McMonagle B, St John JA, Ekberg JAK. Why are olfactory ensheathing cell tumors so rare? Cancer Cell Int 2019; 19:260. [PMID: 31632194 PMCID: PMC6788004 DOI: 10.1186/s12935-019-0989-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/01/2019] [Indexed: 01/08/2023] Open
Abstract
The glial cells of the primary olfactory nervous system, olfactory ensheathing cells (OECs), are unusual in that they rarely form tumors. Only 11 cases, all of which were benign, have been reported to date. In fact, the existence of OEC tumors has been debated as the tumors closely resemble schwannomas (Schwann cell tumors), and there is no definite method for distinguishing the two tumor types. OEC transplantation is a promising therapeutic approach for nervous system injuries, and the fact that OECs are not prone to tumorigenesis is therefore vital. However, why OECs are so resistant to neoplastic transformation remains unknown. The primary olfactory nervous system is a highly dynamic region which continuously undergoes regeneration and neurogenesis throughout life. OECs have key roles in this process, providing structural and neurotrophic support as well as phagocytosing the axonal debris resulting from turnover of neurons. The olfactory mucosa and underlying tissue is also frequently exposed to infectious agents, and OECs have key innate immune roles preventing microbes from invading the central nervous system. It is possible that the unique biological functions of OECs, as well as the dynamic nature of the primary olfactory nervous system, relate to the low incidence of OEC tumors. Here, we summarize the known case reports of OEC tumors, discuss the difficulties of correctly diagnosing them, and examine the possible reasons for their rare incidence. Understanding why OECs rarely form tumors may open avenues for new strategies to combat tumorigenesis in other regions of the nervous system.
Collapse
Affiliation(s)
- Mariyam Murtaza
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Anu Chacko
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Ali Delbaz
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Ronak Reshamwala
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Andrew Rayfield
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Brent McMonagle
- 4Department of Otolaryngology-Head and Neck Surgery, Gold Coast University Hospital, 1 Hospital Boulevard, Southport, QLD 4215 Australia
| | - James A St John
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Jenny A K Ekberg
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| |
Collapse
|
10
|
Toledo A, Lang F, Doengi M, Morrison H, Stein V, Baader SL. Merlin modulates process outgrowth and synaptogenesis in the cerebellum. Brain Struct Funct 2019; 224:2121-2142. [PMID: 31165301 DOI: 10.1007/s00429-019-01897-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
Neurofibromatosis type 2 (NF2) patients are prone to develop glial-derived tumors in the peripheral and central nervous system (CNS). The Nf2 gene product -Merlin is not only expressed in glia, but also in neurons of the CNS, where its function still remains elusive. Here, we show that cerebellar Purkinje cells (PCs) of isoform-specific Merlin-deficient mice were innervated by smaller vGluT2-positive clusters at presynaptic terminals than those of wild-type mice. This was paralleled by a reduction in frequency and amplitude of miniature excitatory postsynaptic currents (mEPSC). On the contrary, in conditional transgenic mice in which Merlin expression was specifically ablated in PCs (L7Cre;Nf2fl/fl), we found enlarged vGluT2-positive clusters in their presynaptic buttons together with increased amplitudes of miniature postsynaptic currents. The presynaptic terminals of these PCs innervating neurons of the deep cerebellar nuclei were also enlarged. When exploring mice with Merlin-deficient granule cells (GCs) (Math1Cre;Nf2fl/fl), we found cerebellar extracts to contain higher amounts of vGluT1 present in parallel fiber terminals. In parallel, mEPSC frequency was increased in Math1Cre;Nf2fl/fl mice. On the contrary, VGluT2 clusters in cerebellar glomeruli composed of NF2-deficient presynaptic Mossy fiber terminals and NF2-deficient postsynaptic GC were reduced in size as shown for isoform-specific knockout mice. These changes in Math1Cre;Nf2fl/fl-deficient mice were paralleled by an increased activation of Rac1-Cofilin signaling which is known to impact on cytoskeletal reorganization and synapse formation. Consistent with the observed synaptic alterations in these transgenic mice, we observed altered ultrasonic vocalization, which is known to rely on proper cerebellar function. No gross morphological changes or motor coordination deficits were observed in any of these transgenic mice. We therefore conclude that Merlin does not regulate overall cerebellar development, but impacts on pre- and post-synaptic terminal organization.
Collapse
Affiliation(s)
- A Toledo
- Institute of Anatomy, Anatomy and Cell Biology, Bonn University, 53115, Bonn, Germany
| | - F Lang
- Institute of Anatomy, Anatomy and Cell Biology, Bonn University, 53115, Bonn, Germany
| | - M Doengi
- Institute of Physiology II, Bonn University, 53115, Bonn, Germany
| | - H Morrison
- Leibniz Institute for Age Research, Fritz Lipmann Institute, 07745, Jena, Germany
| | - V Stein
- Institute of Physiology II, Bonn University, 53115, Bonn, Germany
| | - S L Baader
- Institute of Anatomy, Anatomy and Cell Biology, Bonn University, 53115, Bonn, Germany.
| |
Collapse
|
11
|
Toledo A, Grieger E, Karram K, Morrison H, Baader SL. Neurofibromatosis type 2 tumor suppressor protein is expressed in oligodendrocytes and regulates cell proliferation and process formation. PLoS One 2018; 13:e0196726. [PMID: 29715273 PMCID: PMC5929554 DOI: 10.1371/journal.pone.0196726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 04/18/2018] [Indexed: 12/25/2022] Open
Abstract
The neurofibromatosis type 2 (NF2) tumor suppressor protein Merlin functions as a negative regulator of cell growth and actin dynamics in different cell types amongst which Schwann cells have been extensively studied. In contrast, the presence and the role of Merlin in oligodendrocytes, the myelin forming cells within the CNS, have not been elucidated. In this work, we demonstrate that Merlin immunoreactivity was broadly distributed in the white matter throughout the central nervous system. Following Merlin expression during development in the cerebellum, Merlin could be detected in the cerebellar white matter tract at early postnatal stages as shown by its co-localization with Olig2-positive cells as well as in adult brain sections where it was aligned with myelin basic protein containing fibers. This suggests that Merlin is expressed in immature and mature oligodendrocytes. Expression levels of Merlin were low in oligodendrocytes as compared to astrocytes and neurons throughout development. Expression of Merlin in oligodendroglia was further supported by its identification in either immortalized cell lines of oligodendroglial origin or in primary oligodendrocyte cultures. In these cultures, the two main splice variants of Nf2 could be detected. Merlin was localized in clusters within the nuclei and in the cytoplasm. Overexpressing Merlin in oligodendrocyte cell lines strengthened reduced impedance in XCELLigence measurements and Ki67 stainings in cultures over time. In addition, the initiation and elongation of cellular projections were reduced by Merlin overexpression. Consistently, cell migration was retarded in scratch assays done on Nf2-transfected oligodendrocyte cell lines. These data suggest that Merlin actively modulates process outgrowth and migration in oligodendrocytes.
Collapse
Affiliation(s)
- Andrea Toledo
- Institute of Anatomy, Anatomy and Cell Biology, Bonn, Germany
- Laboratorio de Cultivo de Tejidos, Sección Biología Celular, Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - Elena Grieger
- Institute of Anatomy, Anatomy and Cell Biology, Bonn, Germany
| | - Khalad Karram
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Helen Morrison
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Stephan L. Baader
- Institute of Anatomy, Anatomy and Cell Biology, Bonn, Germany
- * E-mail:
| |
Collapse
|
12
|
Nf2 Mutation in Schwann Cells Delays Functional Neural Recovery Following Injury. Neuroscience 2018; 374:205-213. [PMID: 29408605 DOI: 10.1016/j.neuroscience.2018.01.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 11/21/2022]
Abstract
Merlin is the protein product of the NF2 tumor suppressor gene. Germline NF2 mutation leads to neurofibromatosis type 2 (NF2), characterized by multiple intracranial and spinal schwannomas. Patients with NF2 also frequently develop peripheral neuropathies. While the role of merlin in SC neoplasia is well established, its role in SC homeostasis is less defined. Here we explore the role of merlin in SC responses to nerve injury and their ability to support axon regeneration. We performed sciatic nerve crush in wild-type (WT) and in P0SchΔ39-121 transgenic mice that express a dominant negative Nf2 isoform in SCs. Recovery of nerve function was assessed by measuring mean contact paw area on a pressure pad 7, 21, 60, and 90 days following nerve injury and by nerve conduction assays at 90 days following injury. After 90 days, the nerves were harvested and axon regeneration was quantified stereologically. Myelin ultrastructure was analyzed by electron microscopy. Functional studies showed delayed nerve regeneration in Nf2 mutant mice compared to the WT mice. Delayed neural recovery correlated with a reduced density of regenerated axons and increased endoneurial space in mutants compared to WT mice. Nevertheless, functional and nerve conduction measures ultimately recovered to similar levels in WT and Nf2 mutant mice, while there was a small (∼17%) reduction in the percent of regenerated axons in the Nf2 mutant mice. The data suggest that merlin function in SCs regulates neural ultrastructure and facilitates neural regeneration, in addition to its role in SC neoplasia.
Collapse
|
13
|
Sakellariou GK, McDonagh B, Porter H, Giakoumaki II, Earl KE, Nye GA, Vasilaki A, Brooks SV, Richardson A, Van Remmen H, McArdle A, Jackson MJ. Comparison of Whole Body SOD1 Knockout with Muscle-Specific SOD1 Knockout Mice Reveals a Role for Nerve Redox Signaling in Regulation of Degenerative Pathways in Skeletal Muscle. Antioxid Redox Signal 2018; 28:275-295. [PMID: 29065712 PMCID: PMC5743036 DOI: 10.1089/ars.2017.7249] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
AIMS Lack of Cu,Zn-superoxide dismutase (CuZnSOD) in homozygous knockout mice (Sod1-/-) leads to accelerated age-related muscle loss and weakness, but specific deletion of CuZnSOD in skeletal muscle (mSod1KO mice) or neurons (nSod1KO mice) resulted in only mild muscle functional deficits and failed to recapitulate the loss of mass and function observed in Sod1-/- mice. To dissect any underlying cross-talk between motor neurons and skeletal muscle in the degeneration in Sod1-/- mice, we characterized neuromuscular changes in the Sod1-/- model compared with mSod1KO mice and examined degenerative molecular mechanisms and pathways in peripheral nerve and skeletal muscle. RESULTS In contrast to mSod1KO mice, myofiber atrophy in Sod1-/- mice was associated with increased muscle oxidative damage, neuromuscular junction degeneration, denervation, nerve demyelination, and upregulation of proteins involved in maintenance of myelin sheaths. Proteomic analyses confirmed increased proteasomal activity and adaptive stress responses in muscle of Sod1-/- mice that were absent in mSod1KO mice. Peripheral nerve from neither Sod1-/- nor mSod1KO mice showed increased oxidative damage or molecular responses to increased oxidation compared with wild type mice. Differential cysteine (Cys) labeling revealed a specific redox shift in the catalytic Cys residue of peroxiredoxin 6 (Cys47) in the peripheral nerve from Sod1-/- mice. Innovation and Conclusion: These findings demonstrate that neuromuscular integrity, redox mechanisms, and pathways are differentially altered in nerve and muscle of Sod1-/- and mSod1KO mice. Results support the concept that impaired redox signaling, rather than oxidative damage, in peripheral nerve plays a key role in muscle loss in Sod1-/- mice and potentially sarcopenia during aging. Antioxid. Redox Signal. 28, 275-295.
Collapse
Affiliation(s)
- Giorgos K Sakellariou
- 1 MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool , Liverpool, United Kingdom
| | - Brian McDonagh
- 1 MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool , Liverpool, United Kingdom
| | - Helen Porter
- 1 MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool , Liverpool, United Kingdom
| | - Ifigeneia I Giakoumaki
- 1 MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool , Liverpool, United Kingdom
| | - Kate E Earl
- 1 MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool , Liverpool, United Kingdom
| | - Gareth A Nye
- 1 MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool , Liverpool, United Kingdom
| | - Aphrodite Vasilaki
- 1 MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool , Liverpool, United Kingdom
| | - Susan V Brooks
- 2 Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan
| | - Arlan Richardson
- 3 Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center and Oklahoma City VA Medical Center , Oklahoma City, Oklahoma.,4 Oklahoma VA Medical Center , Oklahoma City, Oklahoma
| | - Holly Van Remmen
- 4 Oklahoma VA Medical Center , Oklahoma City, Oklahoma.,5 Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation , Oklahoma City, Oklahoma
| | - Anne McArdle
- 1 MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool , Liverpool, United Kingdom
| | - Malcolm J Jackson
- 1 MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool , Liverpool, United Kingdom
| |
Collapse
|
14
|
Neuropathies in the setting of Neurofibromatosis tumor syndromes: Complexities and opportunities. Exp Neurol 2017; 299:334-344. [PMID: 28587874 DOI: 10.1016/j.expneurol.2017.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/03/2017] [Accepted: 06/02/2017] [Indexed: 12/11/2022]
Abstract
The term 'Neurofibromatosis' (NF) comprises a group of rare diseases with related clinical presentations but distinct genetic conditions. All currently known types - NF1, NF2 and Schwannomatosis - predispose afflicted individuals to the development of glial cell-derived (gliogenic) tumors. Furthermore, the occurrence of neuropathic symptoms, which add to the overall neurologic disability of patients, has been described in all disease entities. We show that neuropathic symptoms are a common and clinically important, yet infrequently studied feature in the NF spectrum. However, the clinical relevance and respective underlying pathogenesis, varies greatly among the different NF types. In this review, we summarize and interpret the latest basic research findings, as well as clinical observations, in respect of Neurofibromatosis-associated neuropathies.
Collapse
|
15
|
Mindos T, Dun XP, North K, Doddrell RDS, Schulz A, Edwards P, Russell J, Gray B, Roberts SL, Shivane A, Mortimer G, Pirie M, Zhang N, Pan D, Morrison H, Parkinson DB. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol 2017; 216:495-510. [PMID: 28137778 PMCID: PMC5294779 DOI: 10.1083/jcb.201606052] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/23/2016] [Accepted: 12/27/2016] [Indexed: 02/06/2023] Open
Abstract
Loss of the Merlin tumor suppressor and activation of the Hippo signaling pathway play major roles in the control of cell proliferation and tumorigenesis. We have identified completely novel roles for Merlin and the Hippo pathway effector Yes-associated protein (YAP) in the control of Schwann cell (SC) plasticity and peripheral nerve repair after injury. Injury to the peripheral nervous system (PNS) causes a dramatic shift in SC molecular phenotype and the generation of repair-competent SCs, which direct functional repair. We find that loss of Merlin in these cells causes a catastrophic failure of axonal regeneration and remyelination in the PNS. This effect is mediated by activation of YAP expression in Merlin-null SCs, and loss of YAP restores axonal regrowth and functional repair. This work identifies new mechanisms that control the regenerative potential of SCs and gives new insight into understanding the correct control of functional nerve repair in the PNS.
Collapse
Affiliation(s)
- Thomas Mindos
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Xin-Peng Dun
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Katherine North
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
- University of Bath, Bath BA2 7AY, England, UK
| | - Robin D S Doddrell
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Alexander Schulz
- Leibniz Institute for Age Research - Fritz Lipmann Institute Jena, D-07745 Jena, Germany
| | - Philip Edwards
- Department of Cellular and Anatomical Pathology, Derriford Hospital, Plymouth PL6 8DH, England, UK
| | - James Russell
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Bethany Gray
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
- University of Bath, Bath BA2 7AY, England, UK
| | - Sheridan L Roberts
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Aditya Shivane
- Department of Cellular and Anatomical Pathology, Derriford Hospital, Plymouth PL6 8DH, England, UK
| | - Georgina Mortimer
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Melissa Pirie
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Nailing Zhang
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Duojia Pan
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Helen Morrison
- Leibniz Institute for Age Research - Fritz Lipmann Institute Jena, D-07745 Jena, Germany
| | - David B Parkinson
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| |
Collapse
|
16
|
Farschtschi S, Gelderblom M, Buschbaum S, Bostock H, Grafe P, Mautner VF. Muscle action potential scans and ultrasound imaging in neurofibromatosis type 2. Muscle Nerve 2016; 55:350-358. [PMID: 27422240 DOI: 10.1002/mus.25256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The neuropathy in patients with neurofibromatosis type 2 (NF2) is difficult to quantify and follow up. In this study we compared 3 methods that may help assess motor axon pathology in NF2 patients. METHODS Nerve conduction studies in median nerves were supplemented by deriving motor unit number estimates (MUNEs) from compound muscle action potential (CMAP) scans and by high-resolution ultrasound (US) peripheral nerve imaging. RESULTS CMAP amplitudes and nerve conduction velocity were normal in the vast majority of affected individuals, but CMAP scan MUNE revealed denervation and reinnervation in many peripheral nerves. In addition, nerve US imaging enabled monitoring of the size and number of schwannoma-like fascicular enlargements in median nerve trunks. CONCLUSION In contrast to conventional nerve conduction studies, CMAP scan MUNE in combination with US nerve imaging can quantify the NF2-associated neuropathy and may help to monitor disease progression and drug treatments. Muscle Nerve 55: 350-358, 2017.
Collapse
Affiliation(s)
- Said Farschtschi
- Department of Neurology, University Medical Centre Hamburg-Eppendorf Hospital, Hamburg, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Medical Centre Hamburg-Eppendorf Hospital, Hamburg, Germany
| | - Sabriena Buschbaum
- Department of Neurology, University Medical Centre Hamburg-Eppendorf Hospital, Hamburg, Germany
| | - Hugh Bostock
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Peter Grafe
- Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Pettenkoferstrasse 12, 80336, Munich, Germany
| | - Victor F Mautner
- Department of Neurology, University Medical Centre Hamburg-Eppendorf Hospital, Hamburg, Germany
| |
Collapse
|
17
|
Martin PM, Cifuentes-Diaz C, Devaux J, Garcia M, Bureau J, Thomasseau S, Klingler E, Girault JA, Goutebroze L. Schwannomin-interacting Protein 1 Isoform IQCJ-SCHIP1 Is a Multipartner Ankyrin- and Spectrin-binding Protein Involved in the Organization of Nodes of Ranvier. J Biol Chem 2016; 292:2441-2456. [PMID: 27979964 DOI: 10.1074/jbc.m116.758029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/14/2016] [Indexed: 11/06/2022] Open
Abstract
The nodes of Ranvier are essential regions for action potential conduction in myelinated fibers. They are enriched in multimolecular complexes composed of voltage-gated Nav and Kv7 channels associated with cell adhesion molecules. Cytoskeletal proteins ankyrin-G (AnkG) and βIV-spectrin control the organization of these complexes and provide mechanical support to the plasma membrane. IQCJ-SCHIP1 is a cytoplasmic protein present in axon initial segments and nodes of Ranvier. It interacts with AnkG and is absent from nodes and axon initial segments of βIV-spectrin and AnkG mutant mice. Here, we show that IQCJ-SCHIP1 also interacts with βIV-spectrin and Kv7.2/3 channels and self-associates, suggesting a scaffolding role in organizing nodal proteins. IQCJ-SCHIP1 binding requires a βIV-spectrin-specific domain and Kv7 channel 1-5-10 calmodulin-binding motifs. We then investigate the role of IQCJ-SCHIP1 in vivo by studying peripheral myelinated fibers in Schip1 knock-out mutant mice. The major nodal proteins are normally enriched at nodes in these mice, indicating that IQCJ-SCHIP1 is not required for their nodal accumulation. However, morphometric and ultrastructural analyses show an altered shape of nodes similar to that observed in βIV-spectrin mutant mice, revealing that IQCJ-SCHIP1 contributes to nodal membrane-associated cytoskeleton organization, likely through its interactions with the AnkG/βIV-spectrin network. Our work reveals that IQCJ-SCHIP1 interacts with several major nodal proteins, and we suggest that it contributes to a higher organizational level of the AnkG/βIV-spectrin network critical for node integrity.
Collapse
Affiliation(s)
- Pierre-Marie Martin
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Carmen Cifuentes-Diaz
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Jérôme Devaux
- the Aix Marseille University, CNRS, CRN2M, 13344 Marseille, France
| | - Marta Garcia
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Jocelyne Bureau
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Sylvie Thomasseau
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Esther Klingler
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Jean-Antoine Girault
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Laurence Goutebroze
- the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris, .,the Institut du Fer à Moulin, 75005 Paris, and
| |
Collapse
|
18
|
Schulz A, Büttner R, Hagel C, Baader SL, Kluwe L, Salamon J, Mautner VF, Mindos T, Parkinson DB, Gehlhausen JR, Clapp DW, Morrison H. The importance of nerve microenvironment for schwannoma development. Acta Neuropathol 2016; 132:289-307. [PMID: 27236462 PMCID: PMC4947119 DOI: 10.1007/s00401-016-1583-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/18/2016] [Accepted: 05/21/2016] [Indexed: 11/22/2022]
Abstract
Schwannomas are predominantly benign nerve sheath neoplasms caused by Nf2 gene inactivation. Presently, treatment options are mainly limited to surgical tumor resection due to the lack of effective pharmacological drugs. Although the mechanistic understanding of Nf2 gene function has advanced, it has so far been primarily restricted to Schwann cell-intrinsic events. Extracellular cues determining Schwann cell behavior with regard to schwannoma development remain unknown. Here we show pro-tumourigenic microenvironmental effects on Schwann cells where an altered axonal microenvironment in cooperation with injury signals contribute to a persistent regenerative Schwann cell response promoting schwannoma development. Specifically in genetically engineered mice following crush injuries on sciatic nerves, we found macroscopic nerve swellings in mice with homozygous nf2 gene deletion in Schwann cells and in animals with heterozygous nf2 knockout in both Schwann cells and axons. However, patient-mimicking schwannomas could only be provoked in animals with combined heterozygous nf2 knockout in Schwann cells and axons. We identified a severe re-myelination defect and sustained macrophage presence in the tumor tissue as major abnormalities. Strikingly, treatment of tumor-developing mice after nerve crush injury with medium-dose aspirin significantly decreased schwannoma progression in this disease model. Our results suggest a multifactorial concept for schwannoma formation—emphasizing axonal factors and mechanical nerve irritation as predilection site for schwannoma development. Furthermore, we provide evidence supporting the potential efficacy of anti-inflammatory drugs in the treatment of schwannomas.
Collapse
|
19
|
Neuron-Specific Deletion of the Nf2 Tumor Suppressor Impairs Functional Nerve Regeneration. PLoS One 2016; 11:e0159718. [PMID: 27467574 PMCID: PMC4965074 DOI: 10.1371/journal.pone.0159718] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/07/2016] [Indexed: 12/20/2022] Open
Abstract
In contrast to axons of the central nervous system (CNS), axons of the peripheral nervous system (PNS) show better, but still incomplete and often slow regeneration following injury. The tumor suppressor protein merlin, mutated in the hereditary tumor syndrome Neurofibromatosis type 2 (NF2), has recently been shown to have RhoA regulatory functions in PNS neurons—in addition to its well-characterized, growth-inhibitory activity in Schwann cells. Here we report that the conditional knockout of merlin in PNS neurons leads to impaired functional recovery of mice following sciatic nerve crush injury, in a gene-dosage dependent manner. Gross anatomical or electrophysiological alterations of sciatic nerves could not be detected. However, correlating with attenuated RhoA activation due to merlin deletion, ultrastructural analysis of nerve samples indicated enhanced sprouting of axons with reduced caliber size and increased myelination compared to wildtype animals. We conclude that deletion of the tumor suppressor merlin in the neuronal compartment of peripheral nerves results in compromised functional regeneration after injury. This mechanism could explain the clinical observation that NF2 patients suffer from higher incidences of slowly recovering facial nerve paralysis after vestibular schwannoma surgery.
Collapse
|
20
|
Rao SNR, Pearse DD. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration. Front Mol Neurosci 2016; 9:33. [PMID: 27375427 PMCID: PMC4896923 DOI: 10.3389/fnmol.2016.00033] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023] Open
Abstract
Following spinal cord injury (SCI), a multitude of intrinsic and extrinsic factors adversely affect the gene programs that govern the expression of regeneration-associated genes (RAGs) and the production of a diversity of extracellular matrix molecules (ECM). Insufficient RAG expression in the injured neuron and the presence of inhibitory ECM at the lesion, leads to structural alterations in the axon that perturb the growth machinery, or form an extraneous barrier to axonal regeneration, respectively. Here, the role of myelin, both intact and debris, in antagonizing axon regeneration has been the focus of numerous investigations. These studies have employed antagonizing antibodies and knockout animals to examine how the growth cone of the re-growing axon responds to the presence of myelin and myelin-associated inhibitors (MAIs) within the lesion environment and caudal spinal cord. However, less attention has been placed on how the myelination of the axon after SCI, whether by endogenous glia or exogenously implanted glia, may alter axon regeneration. Here, we examine the intersection between intracellular signaling pathways in neurons and glia that are involved in axon myelination and axon growth, to provide greater insight into how interrogating this complex network of molecular interactions may lead to new therapeutics targeting SCI.
Collapse
Affiliation(s)
- Sudheendra N R Rao
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of MedicineMiami, FL, USA; The Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, USA; The Neuroscience Program, University of Miami Miller School of MedicineMiami, FL, USA; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of MedicineMiami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA
| |
Collapse
|
21
|
Petrilli AM, Fernández-Valle C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene 2016; 35:537-48. [PMID: 25893302 PMCID: PMC4615258 DOI: 10.1038/onc.2015.125] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/20/2015] [Accepted: 03/16/2015] [Indexed: 01/13/2023]
Abstract
Merlin (Moesin-ezrin-radixin-like protein, also known as schwannomin) is a tumor suppressor protein encoded by the neurofibromatosis type 2 gene NF2. Loss of function mutations or deletions in NF2 cause neurofibromatosis type 2 (NF2), a multiple tumor forming disease of the nervous system. NF2 is characterized by the development of bilateral vestibular schwannomas. Patients with NF2 can also develop schwannomas on other cranial and peripheral nerves, as well as meningiomas and ependymomas. The only potential treatment is surgery/radiosurgery, which often results in loss of function of the involved nerve. There is an urgent need for chemotherapies that slow or eliminate tumors and prevent their formation in NF2 patients. Interestingly NF2 mutations and merlin inactivation also occur in spontaneous schwannomas and meningiomas, as well as other types of cancer including mesothelioma, glioma multiforme, breast, colorectal, skin, clear cell renal cell carcinoma, hepatic and prostate cancer. Except for malignant mesotheliomas, the role of NF2 mutation or inactivation has not received much attention in cancer, and NF2 might be relevant for prognosis and future chemotherapeutic approaches. This review discusses the influence of merlin loss of function in NF2-related tumors and common human cancers. We also discuss the NF2 gene status and merlin signaling pathways affected in the different tumor types and the molecular mechanisms that lead to tumorigenesis, progression and pharmacological resistance.
Collapse
Affiliation(s)
- Alejandra M. Petrilli
- Department of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Cristina Fernández-Valle
- Department of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
22
|
McGrath MC. Charcot-Marie-Tooth 1A: A narrative review with clinical and anatomical perspectives. Clin Anat 2015; 29:547-54. [PMID: 26457477 DOI: 10.1002/ca.22653] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/09/2015] [Indexed: 11/08/2022]
Abstract
Charcot-Marie-Tooth 1A (CMT1A) is regarded as the most common hereditary peripheral neurodegenerative disorder. This narrative review highlights perspectives around the historically well-established and characteristic anatomical manifestations of CMT1A seen in the feet, legs and hands, in addition to a clinical diagnosis that may be confirmed by electrophysiology, genetic or molecular markers together with the presence of a typical family history. A less well-known perspective is the potential for systemic manifestations and wider complication. The condition is characterised by a progressive clinical picture with unmistakable anatomical and neurological features that have been described since the late 19th century. There remains no cure although supportive, rehabilitative, and surgical regimes may provide helpful management or amelioration of symptoms. Most recently, the emergence of a pleotherapeutic approach suggests distinct promise. Future research focused on a detailed elucidation of the underlying molecular mechanisms underpinning myelin and axonal function may eventually hold the key to successful treatment of CMT1A. Genetic modification would potentially present a cure. Clin. Anat. 29:547-554, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M C McGrath
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
23
|
Ahmad I, Fernando A, Gurgel R, Jason Clark J, Xu L, Hansen MR. Merlin status regulates p75(NTR) expression and apoptotic signaling in Schwann cells following nerve injury. Neurobiol Dis 2015; 82:114-122. [PMID: 26057084 DOI: 10.1016/j.nbd.2015.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 02/06/2023] Open
Abstract
After nerve injury, Schwann cells (SCs) dedifferentiate, proliferate, and support axon regrowth. If axons fail to regenerate, denervated SCs eventually undergo apoptosis due, in part, to increased expression of the low-affinity neurotrophin receptor, p75(NTR). Merlin is the protein product of the NF2 tumor suppressor gene implicated in SC tumorigenesis. Here we explore the contribution of merlin to SC responses to nerve injury. We find that merlin becomes phosphorylated (growth permissive) in SCs following acute axotomy and following gradual neural degeneration in a deafness model, temporally correlated with increased p75(NTR) expression. p75(NTR) levels are elevated in P0SchΔ39-121 transgenic mice that harbor an Nf2 mutation in SCs relative to wild-type mice before axotomy and remain elevated for a longer period of time following injury. Replacement of wild-type, but not phospho-mimetic (S518D), merlin isoforms suppresses p75(NTR) expression in primary human schwannoma cultures which otherwise lack functional merlin. Despite elevated levels of p75(NTR), SC apoptosis following axotomy is blunted in P0SchΔ39-121 mice relative to wild-type mice suggesting that loss of functional merlin contributes to SC resistance to apoptosis. Further, cultured SCs from mice with a tamoxifen-inducible knock-out of Nf2 confirm that SCs lacking functional merlin are less sensitive to p75(NTR)-mediated cell death. Taken together these results point to a model whereby loss of axonal contact following nerve injury results in merlin phosphorylation leading to increased p75(NTR) expression. Further, they demonstrate that merlin facilitates p75(NTR)-mediated apoptosis in SCs helping to explain how neoplastic SCs that lack functional merlin survive long-term in the absence of axonal contact.
Collapse
Affiliation(s)
- Iram Ahmad
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Augusta Fernando
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Richard Gurgel
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - J Jason Clark
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Linjing Xu
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Marlan R Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA; Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
24
|
Abstract
Auditory processing can be disrupted by brainstem lesions. It is estimated that approximately 57% of brainstem lesions are associated with auditory disorders. However diseases of the brainstem usually involve many structures, producing a plethora of other neurologic deficits, often relegating "auditory symptoms in the background." Lesions below or within the cochlear nuclei result in ipsilateral auditory-processing abnormalities detected in routine testing; disorders rostral to the cochlear nuclei may result in bilateral abnormalities or may be silent. Lesions in the superior olivary complex and trapezoid body show a mixture of ipsilateral, contralateral, and bilateral abnormalities, whereas lesions of the lateral lemniscus, inferior colliculus, and medial geniculate body do not affect peripheral auditory processing and result in predominantly subtle contralateral abnormalities that may be missed by routine auditory testing. In these cases psychophysical methods developed for the evaluation of central auditory function should be employed (e.g., dichotic listening, interaural time perception, sound localization). The extensive connections of the auditory brainstem nuclei not only are responsible for binaural interaction but also assure redundancy in the system. This redundancy may explain why small brainstem lesions are sometimes clinically silent. Any disorder of the brainstem (e.g., neoplasms, vascular disorders, infections, trauma, demyelinating disorders, neurodegenerative diseases, malformations) that involves the auditory pathways and/or centers may produce hearing abnormalities.
Collapse
|
25
|
Cisterna BA, Cardozo C, Sáez JC. Neuronal involvement in muscular atrophy. Front Cell Neurosci 2014; 8:405. [PMID: 25540609 PMCID: PMC4261799 DOI: 10.3389/fncel.2014.00405] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 11/10/2014] [Indexed: 12/18/2022] Open
Abstract
The innervation of skeletal myofibers exerts a crucial influence on the maintenance of muscle tone and normal operation. Consequently, denervated myofibers manifest atrophy, which is preceded by an increase in sarcolemma permeability. Recently, de novo expression of hemichannels (HCs) formed by connexins (Cxs) and other none selective channels, including P2X7 receptors (P2X7Rs), and transient receptor potential, sub-family V, member 2 (TRPV2) channels was demonstrated in denervated fast skeletal muscles. The denervation-induced atrophy was drastically reduced in denervated muscles deficient in Cxs 43 and 45. Nonetheless, the transduction mechanism by which the nerve represses the expression of the above mentioned non-selective channels remains unknown. The paracrine action of extracellular signaling molecules including ATP, neurotrophic factors (i.e., brain-derived neurotrophic factor (BDNF)), agrin/LDL receptor-related protein 4 (Lrp4)/muscle-specific receptor kinase (MuSK) and acetylcholine (Ach) are among the possible signals for repression for connexin expression. This review discusses the possible role of relevant factors in maintaining the normal functioning of fast skeletal muscles and suppression of connexin hemichannel expression.
Collapse
Affiliation(s)
- Bruno A. Cisterna
- Departamento de Fisiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Christopher Cardozo
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical CenterBronx, NY, USA
- Departments of Medicine and Rehabilitation Medicine, Icahn School of Medicine at Mount SinaiNew York, NY, USA
| | - Juan C. Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de ChileSantiago, Chile
- Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de ValparaísoValparaíso, Chile
| |
Collapse
|
26
|
Mei L, Nave KA. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron 2014; 83:27-49. [PMID: 24991953 DOI: 10.1016/j.neuron.2014.06.007] [Citation(s) in RCA: 413] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuregulins (NRGs) comprise a large family of growth factors that stimulate ERBB receptor tyrosine kinases. NRGs and their receptors, ERBBs, have been identified as susceptibility genes for diseases such as schizophrenia (SZ) and bipolar disorder. Recent studies have revealed complex Nrg/Erbb signaling networks that regulate the assembly of neural circuitry, myelination, neurotransmission, and synaptic plasticity. Evidence indicates there is an optimal level of NRG/ERBB signaling in the brain and deviation from it impairs brain functions. NRGs/ERBBs and downstream signaling pathways may provide therapeutic targets for specific neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Lin Mei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Goettingen, Germany.
| |
Collapse
|
27
|
Schulz A, Zoch A, Morrison H. A neuronal function of the tumor suppressor protein merlin. Acta Neuropathol Commun 2014; 2:82. [PMID: 25012216 PMCID: PMC4149232 DOI: 10.1186/s40478-014-0082-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/30/2014] [Indexed: 02/07/2023] Open
Abstract
Mutagenic loss of the NF2 tumor suppressor gene encoded protein merlin is known to provoke the hereditary neoplasia syndrome, Neurofibromatosis type 2 (NF2). In addition to glial cell-derived tumors in the PNS and CNS, disease-related lesions also affect the skin and the eyes. Furthermore, 60% of NF2 patients suffer from peripheral nerve damage, clinically referred to as peripheral neuropathy. Strikingly, NF2-associated neuropathy often occurs in the absence of nerve damaging tumors, suggesting tumor-independent events. Recent findings indicate an important role of merlin in neuronal cell types concerning neuromorphogenesis, axon structure maintenance and communication between axons and Schwann cells. In this review, we compile clinical and experimental evidences for the underestimated role of the tumor suppressor merlin in the neuronal compartment.
Collapse
|