1
|
Kinahan SP, Saidi P, Daliri A, Liss J, Berisha V. Electroencephalographic Classification Reveals Atypical Speech Motor Planning in Stuttering Adults. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:2053-2076. [PMID: 38924389 PMCID: PMC11253807 DOI: 10.1044/2024_jslhr-23-00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE This study explores speech motor planning in adults who stutter (AWS) and adults who do not stutter (ANS) by applying machine learning algorithms to electroencephalographic (EEG) signals. In this study, we developed a technique to holistically examine neural activity differences in speaking and silent reading conditions across the entire cortical surface. This approach allows us to test the hypothesis that AWS will exhibit lower separability of the speech motor planning condition. METHOD We used the silent reading condition as a control condition to isolate speech motor planning activity. We classified EEG signals from AWS and ANS individuals into speaking and silent reading categories using kernel support vector machines. We used relative complexities of the learned classifiers to compare speech motor planning discernibility for both classes. RESULTS AWS group classifiers require a more complex decision boundary to separate speech motor planning and silent reading classes. CONCLUSIONS These findings indicate that the EEG signals associated with speech motor planning are less discernible in AWS, which may result from altered neuronal dynamics in AWS. Our results support the hypothesis that AWS exhibit lower inherent separability of the silent reading and speech motor planning conditions. Further investigation may identify and compare the features leveraged for speech motor classification in AWS and ANS. These observations may have clinical value for developing novel speech therapies or assistive devices for AWS.
Collapse
Affiliation(s)
- Sean P. Kinahan
- College of Health Solutions, Arizona State University, Tempe
- School of Computing and Augmented Intelligence, Arizona State University, Tempe
| | - Pouria Saidi
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe
| | - Ayoub Daliri
- College of Health Solutions, Arizona State University, Tempe
| | - Julie Liss
- Department of Speech and Hearing Science, Arizona State University, Tempe
| | - Visar Berisha
- College of Health Solutions, Arizona State University, Tempe
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe
| |
Collapse
|
2
|
Tabari F, Patron C, Cryer H, Johari K. HD-tDCS over left supplementary motor area differentially modulated neural correlates of motor planning for speech vs. limb movement. Int J Psychophysiol 2024; 201:112357. [PMID: 38701898 DOI: 10.1016/j.ijpsycho.2024.112357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
The supplementary motor area (SMA) is implicated in planning, execution, and control of speech production and limb movement. The SMA is among putative generators of pre-movement EEG activity which is thought to be neural markers of motor planning. In neurological conditions such as Parkinson's disease, abnormal pre-movement neural activity within the SMA has been reported during speech production and limb movement. Therefore, this region can be a potential target for non-invasive brain stimulation for both speech and limb movement. The present study took an initial step in examining the application of high-definition transcranial direct current stimulation (HD-tDCS) over the left SMA in 24 neurologically intact adults. Subsequently, event-related potentials (ERPs) were recorded while participants performed speech and limb movement tasks. Participants' data were collected in three counterbalanced sessions: anodal, cathodal and sham HD-tDCS. Relative to sham stimulation, anodal, but not cathodal, HD-tDCS significantly attenuated ERPs prior to the onset of the speech production. In contrast, neither anodal nor cathodal HD-tDCS significantly modulated ERPs prior to the onset of limb movement compared to sham stimulation. These findings showed that neural correlates of motor planning can be modulated using HD-tDCS over the left SMA in neurotypical adults, with translational implications for neurological conditions that impair speech production. The absence of a stimulation effect on ERPs prior to the onset of limb movement was not expected in this study, and future studies are warranted to further explore this effect.
Collapse
Affiliation(s)
- Fatemeh Tabari
- Human Neurophysiology and Neuromodulation Lab, Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Celeste Patron
- Human Neurophysiology and Neuromodulation Lab, Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Hope Cryer
- Human Neurophysiology and Neuromodulation Lab, Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Karim Johari
- Human Neurophysiology and Neuromodulation Lab, Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
3
|
Orpella J, Flick G, Assaneo MF, Shroff R, Pylkkänen L, Poeppel D, Jackson ES. Reactive Inhibitory Control Precedes Overt Stuttering Events. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:432-453. [PMID: 38911458 PMCID: PMC11192511 DOI: 10.1162/nol_a_00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/06/2024] [Indexed: 06/25/2024]
Abstract
Research points to neurofunctional differences underlying fluent speech between stutterers and non-stutterers. Considerably less work has focused on processes that underlie stuttered vs. fluent speech. Additionally, most of this research has focused on speech motor processes despite contributions from cognitive processes prior to the onset of stuttered speech. We used MEG to test the hypothesis that reactive inhibitory control is triggered prior to stuttered speech. Twenty-nine stutterers completed a delayed-response task that featured a cue (prior to a go cue) signaling the imminent requirement to produce a word that was either stuttered or fluent. Consistent with our hypothesis, we observed increased beta power likely emanating from the right pre-supplementary motor area (R-preSMA)-an area implicated in reactive inhibitory control-in response to the cue preceding stuttered vs. fluent productions. Beta power differences between stuttered and fluent trials correlated with stuttering severity and participants' percentage of trials stuttered increased exponentially with beta power in the R-preSMA. Trial-by-trial beta power modulations in the R-preSMA following the cue predicted whether a trial would be stuttered or fluent. Stuttered trials were also associated with delayed speech onset suggesting an overall slowing or freezing of the speech motor system that may be a consequence of inhibitory control. Post-hoc analyses revealed that independently generated anticipated words were associated with greater beta power and more stuttering than researcher-assisted anticipated words, pointing to a relationship between self-perceived likelihood of stuttering (i.e., anticipation) and inhibitory control. This work offers a neurocognitive account of stuttering by characterizing cognitive processes that precede overt stuttering events.
Collapse
Affiliation(s)
- Joan Orpella
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
- Department of Psychology, New York University, New York, NY, USA
- Department of Communicative Sciences and Disorders, New York University, New York, NY, USA
| | - Graham Flick
- Department of Psychology, New York University, New York, NY, USA
| | - M. Florencia Assaneo
- Institute of Neurobiology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Ravi Shroff
- Department of Applied Statistics, Social Science, and Humanities, New York University, New York, NY, USA
| | - Liina Pylkkänen
- Department of Psychology, New York University, New York, NY, USA
- Department of Linguistics, New York University, New York, NY, USA
- NYUAD Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - David Poeppel
- Department of Psychology, New York University, New York, NY, USA
- Center for Language, Music and Emotion (CLaME), New York University, New York, NY, USA
- Ernst Strüngmann Institute (ESI) for Neuroscience, Frankfurt, Germany
| | - Eric S. Jackson
- Department of Communicative Sciences and Disorders, New York University, New York, NY, USA
| |
Collapse
|
4
|
Neef NE, Angstadt M, Koenraads SPC, Chang SE. Dissecting structural connectivity of the left and right inferior frontal cortex in children who stutter. Cereb Cortex 2023; 33:4085-4100. [PMID: 36057839 PMCID: PMC10068293 DOI: 10.1093/cercor/bhac328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/12/2022] Open
Abstract
Inferior frontal cortex pars opercularis (IFCop) features a distinct cerebral dominance and vast functional heterogeneity. Left and right IFCop are implicated in developmental stuttering. Weak left IFCop connections and divergent connectivity of hyperactive right IFCop regions have been related to impeded speech. Here, we reanalyzed diffusion magnetic resonance imaging data from 83 children (41 stuttering). We generated connection probability maps of functionally segregated area 44 parcels and calculated hemisphere-wise analyses of variance. Children who stutter showed reduced connectivity of executive, rostral-motor, and caudal-motor corticostriatal projections from the left IFCop. We discuss this finding in the context of tracing studies from the macaque area 44, which leads to the need to reconsider current models of speech motor control. Unlike the left, the right IFCop revealed increased connectivity of the inferior posterior ventral parcel and decreased connectivity of the posterior dorsal parcel with the anterior insula, particularly in stuttering boys. This divergent connectivity pattern in young children adds to the debate on potential core deficits in stuttering and challenges the theory that right hemisphere differences might exclusively indicate compensatory changes that evolve from lifelong exposure. Instead, early right prefrontal connectivity differences may reflect additional brain signatures of aberrant cognition-emotion-action influencing speech motor control.
Collapse
Affiliation(s)
- Nicole E Neef
- Institute for Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48105, USA
| | - Simone P C Koenraads
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, Wytemaweg 80, 3015 CNRotterdam, the Netherlands
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48105, USA
- Department of Communicative Sciences and Disorders, Michigan State University, 1026 Red Cedar Road, East Lansing, MI 48824, USA
- Cognitive Imaging Research Center, Department of Radiology, Michigan State University, 846 Service Road, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Sheikh SA, Sahidullah M, Hirsch F, Ouni S. Machine learning for stuttering identification: Review, challenges and future directions. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Jannati A, Ryan MA, Kaye HL, Tsuboyama M, Rotenberg A. Biomarkers Obtained by Transcranial Magnetic Stimulation in Neurodevelopmental Disorders. J Clin Neurophysiol 2022; 39:135-148. [PMID: 34366399 PMCID: PMC8810902 DOI: 10.1097/wnp.0000000000000784] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SUMMARY Transcranial magnetic stimulation (TMS) is a method for focal brain stimulation that is based on the principle of electromagnetic induction where small intracranial electric currents are generated by a powerful fluctuating magnetic field. Over the past three decades, TMS has shown promise in the diagnosis, monitoring, and treatment of neurological and psychiatric disorders in adults. However, the use of TMS in children has been more limited. We provide a brief introduction to the TMS technique; common TMS protocols including single-pulse TMS, paired-pulse TMS, paired associative stimulation, and repetitive TMS; and relevant TMS-derived neurophysiological measurements including resting and active motor threshold, cortical silent period, paired-pulse TMS measures of intracortical inhibition and facilitation, and plasticity metrics after repetitive TMS. We then discuss the biomarker applications of TMS in a few representative neurodevelopmental disorders including autism spectrum disorder, fragile X syndrome, attention-deficit hyperactivity disorder, Tourette syndrome, and developmental stuttering.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary A. Ryan
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Harper Lee Kaye
- Behavioral Neuroscience Program, Division of Medical Sciences, Boston University School of Medicine, Boston, USA
| | - Melissa Tsuboyama
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Gattie M, Lieven EVM, Kluk K. Weak Vestibular Response in Persistent Developmental Stuttering. Front Integr Neurosci 2021; 15:662127. [PMID: 34594189 PMCID: PMC8477904 DOI: 10.3389/fnint.2021.662127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/14/2021] [Indexed: 11/24/2022] Open
Abstract
Vibrational energy created at the larynx during speech will deflect vestibular mechanoreceptors in humans (Todd et al., 2008; Curthoys, 2017; Curthoys et al., 2019). Vestibular-evoked myogenic potential (VEMP), an indirect measure of vestibular function, was assessed in 15 participants who stutter, with a non-stutter control group of 15 participants paired on age and sex. VEMP amplitude was 8.5 dB smaller in the stutter group than the non-stutter group (p = 0.035, 95% CI [−0.9, −16.1], t = −2.1, d = −0.8, conditional R2 = 0.88). The finding is subclinical as regards gravitoinertial function, and is interpreted with regard to speech-motor function in stuttering. There is overlap between brain areas receiving vestibular innervation, and brain areas identified as important in studies of persistent developmental stuttering. These include the auditory brainstem, cerebellar vermis, and the temporo-parietal junction. The finding supports the disruptive rhythm hypothesis (Howell et al., 1983; Howell, 2004) in which sensory inputs additional to own speech audition are fluency-enhancing when they coordinate with ongoing speech.
Collapse
Affiliation(s)
- Max Gattie
- Manchester Centre for Audiology and Deafness (ManCAD), The University of Manchester, Manchester, United Kingdom
| | - Elena V M Lieven
- Child Study Centre, The University of Manchester, Manchester, United Kingdom.,The ESRC International Centre for Language and Communicative Development (LuCiD), The University of Manchester, Manchester, United Kingdom
| | - Karolina Kluk
- Manchester Centre for Audiology and Deafness (ManCAD), The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Singh A, Erwin-Grabner T, Goya-Maldonado R, Antal A. Transcranial Magnetic and Direct Current Stimulation in the Treatment of Depression: Basic Mechanisms and Challenges of Two Commonly Used Brain Stimulation Methods in Interventional Psychiatry. Neuropsychobiology 2021; 79:397-407. [PMID: 31487716 DOI: 10.1159/000502149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
Abstract
Noninvasive neuromodulation, including repetitive trans-cranial magnetic stimulation (rTMS) and direct current stimulation (tDCS), provides researchers and health care professionals with the ability to gain unique insights into brain functions and treat several neurological and psychiatric conditions. Undeniably, the number of published research and clinical papers on this topic is increasing exponentially. In parallel, several methodological and scientific caveats have emerged in the transcranial stimulation field; these include less robust and reliable effects as well as contradictory clinical findings. These inconsistencies are maybe due to the fact that research exploring the relationship between the methodological aspects and clinical efficacy of rTMS and tDCS is far from conclusive. Hence, additional work is needed to understand the mechanisms underlying the effects of magnetic stimulation and low-intensity transcranial electrical stimulation (TES) in order to optimize dosing, methodological designs, and safety aspects.
Collapse
Affiliation(s)
- Aditya Singh
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Tracy Erwin-Grabner
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany, .,Institute for Medical Psychology, Medical Faculty, Otto-v.-Guericke University Magdeburg, Magdeburg, Germany,
| |
Collapse
|
9
|
Alm PA. Stuttering: A Disorder of Energy Supply to Neurons? Front Hum Neurosci 2021; 15:662204. [PMID: 34630054 PMCID: PMC8496059 DOI: 10.3389/fnhum.2021.662204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022] Open
Abstract
Stuttering is a disorder characterized by intermittent loss of volitional control of speech movements. This hypothesis and theory article focuses on the proposal that stuttering may be related to an impairment of the energy supply to neurons. Findings from electroencephalography (EEG), brain imaging, genetics, and biochemistry are reviewed: (1) Analyses of the EEG spectra at rest have repeatedly reported reduced power in the beta band, which is compatible with indications of reduced metabolism. (2) Studies of the absolute level of regional cerebral blood flow (rCBF) show conflicting findings, with two studies reporting reduced rCBF in the frontal lobe, and two studies, based on a different method, reporting no group differences. This contradiction has not yet been resolved. (3) The pattern of reduction in the studies reporting reduced rCBF corresponds to the regional pattern of the glycolytic index (GI; Vaishnavi et al., 2010). High regional GI indicates high reliance on non-oxidative metabolism, i.e., glycolysis. (4) Variants of the gene ARNT2 have been associated with stuttering. This gene is primarily expressed in the brain, with a pattern roughly corresponding to the pattern of regional GI. A central function of the ARNT2 protein is to act as one part of a sensor system indicating low levels of oxygen in brain tissue and to activate appropriate responses, including activation of glycolysis. (5) It has been established that genes related to the functions of the lysosomes are implicated in some cases of stuttering. It is possible that these gene variants result in a reduced peak rate of energy supply to neurons. (6) Lastly, there are indications of interactions between the metabolic system and the dopamine system: for example, it is known that acute hypoxia results in an elevated tonic level of dopamine in the synapses. Will mild chronic limitations of energy supply also result in elevated levels of dopamine? The indications of such interaction effects suggest that the metabolic theory of stuttering should be explored in parallel with the exploration of the dopaminergic theory.
Collapse
Affiliation(s)
- Per A. Alm
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Treutler M, Sörös P. Functional MRI of Native and Non-native Speech Sound Production in Sequential German-English Bilinguals. Front Hum Neurosci 2021; 15:683277. [PMID: 34349632 PMCID: PMC8326338 DOI: 10.3389/fnhum.2021.683277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Bilingualism and multilingualism are highly prevalent. Non-invasive brain imaging has been used to study the neural correlates of native and non-native speech and language production, mainly on the lexical and syntactic level. Here, we acquired continuous fast event-related FMRI during visually cued overt production of exclusively German and English vowels and syllables. We analyzed data from 13 university students, native speakers of German and sequential English bilinguals. The production of non-native English sounds was associated with increased activity of the left primary sensorimotor cortex, bilateral cerebellar hemispheres (lobule VI), left inferior frontal gyrus, and left anterior insula compared to native German sounds. The contrast German > English sounds was not statistically significant. Our results emphasize that the production of non-native speech requires additional neural resources already on a basic phonological level in sequential bilinguals.
Collapse
Affiliation(s)
- Miriam Treutler
- European Medical School Oldenburg-Groningen, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Peter Sörös
- Department of Neurology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
11
|
Herbert P, Burke JR. Characterization of stimulus response curves obtained with transcranial magnetic stimulation from bilateral anterior digastric muscles in healthy subjects. Somatosens Mot Res 2021; 38:178-187. [PMID: 34126860 DOI: 10.1080/08990220.2021.1914019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE The purpose of the study was to describe measurements of stimulus-response curves in the anterior digastric muscle (ADM) bilaterally following transcranial magnetic stimulation (TMS) to the right and left hemispheres. The first dorsal interosseous muscle (FDI) was the control muscle. MATERIALS AND METHODS The subjects were 20 healthy young adults. Test sessions determined motor thresholds (MT) and stimulus-response curves (1.0, 1.2, 1.4, 1.6 × MT) from either the FDI or ADM following TMS to left and right hemispheres using the double cone coil. Bilateral recordings of MEPs in the left and right ADM allowed us to generate stimulus response curves following ipsilateral and contralateral TMS. RESULTS Intraclass correlation coefficients (ICC) for MEP amplitudes from ipsilateral and contralateral ADMs were >0.60 at motor threshold (MT) and >0.90 at stimulus intensities above MT. There was a linear increase in MEP amplitudes across stimulus intensities for the FDI following contralateral TMS, while MEP amplitudes from the ADM following contralateral and ipsilateral TMS increased linearly across stimulus intensities [F(3, 57) [Muscle × Recording Site × Stim Intensity] = 33.57; p < 0.05]; (ηp2 = 0.64). The slopes of the stimulus-response curve of the contralateral FDI was greater than the slopes of the stimulus response curves of the ipsilateral and contralateral ADM (p < 0.05). CONCLUSIONS The current study provided insights on the methodology for recording stimulus response curves in the ADM with TMS. These findings may translate into a valid, reliable, and relevant clinical outcome to study the pathophysiology of the corticobulbar motor system.
Collapse
|
12
|
Kornisch M. Bilinguals who stutter: A cognitive perspective. JOURNAL OF FLUENCY DISORDERS 2021; 67:105819. [PMID: 33296800 DOI: 10.1016/j.jfludis.2020.105819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/05/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE Brain differences, both in structure and executive functioning, have been found in both developmental stuttering and bilingualism. However, the etiology of stuttering remains unknown. The early suggestion that stuttering is a result of brain dysfunction has since received support from various behavioral and neuroimaging studies that have revealed functional and structural brain changes in monolinguals who stutter (MWS). In addition, MWS appear to show deficits in executive control. However, there is a lack of data on bilinguals who stutter (BWS). This literature review is intended to provide an overview of both stuttering and bilingualism as well as synthesize areas of overlap among both lines of research and highlight knowledge gaps in the current literature. METHODS A systematic literature review on both stuttering and bilingualism studies was conducted, searching for articles containing "stuttering" and/or "bilingualism" and either "brain", "executive functions", "executive control", "motor control", "cognitive reserve", or "brain reserve" in the PubMed database. Additional studies were found by examining the reference list of studies that met the inclusion criteria. RESULTS A total of 148 references that met the criteria for inclusion in this paper were used in the review. A comparison of the impact of stuttering or bilingualism on the brain are discussed. CONCLUSION Previous research examining a potential bilingual advantage for BWS is mixed. However, if such an advantage does exist, it appears to offset potential deficits in executive functioning that may be associated with stuttering.
Collapse
Affiliation(s)
- Myriam Kornisch
- The University of Mississippi, School of Applied Sciences, Department of Communication Sciences & Disorders, 2301 South Lamar Blvd, Oxford, MS 38655, United States.
| |
Collapse
|
13
|
Khan DM, Kamel N, Muzaimi M, Hill T. Effective Connectivity for Default Mode Network Analysis of Alcoholism. Brain Connect 2020; 11:12-29. [PMID: 32842756 DOI: 10.1089/brain.2019.0721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Introduction: With the recent technical advances in brain imaging modalities such as magnetic resonance imaging, positron emission tomography, and functional magnetic resonance imaging (fMRI), researchers' interests have inclined over the years to study brain functions through the analysis of the variations in the statistical dependence among various brain regions. Through its wide use in studying brain connectivity, the low temporal resolution of the fMRI represented by the limited number of samples per second, in addition to its dependence on brain slow hemodynamic changes, makes it of limited capability in studying the fast underlying neural processes during information exchange between brain regions. Materials and Methods: In this article, the high temporal resolution of the electroencephalography (EEG) is utilized to estimate the effective connectivity within the default mode network (DMN). The EEG data are collected from 20 subjects with alcoholism and 25 healthy subjects (controls), and used to obtain the effective connectivity diagram of the DMN using the Partial Directed Coherence algorithm. Results: The resulting effective connectivity diagram within the DMN shows the unidirectional causal effect of each region on the other. The variations in the causal effects within the DMN between controls and alcoholics show clear correlation with the symptoms that are usually associated with alcoholism, such as cognitive and memory impairments, executive control, and attention deficiency. The correlation between the exchanged causal effects within the DMN and symptoms related to alcoholism is discussed and properly analyzed. Conclusion: The establishment of the causal differences between control and alcoholic subjects within the DMN regions provides valuable insight into the mechanism by which alcohol modulates our cognitive and executive functions and creates better possibility for effective treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Danish M Khan
- Centre for Intelligent Signal & Imaging Research (CISIR), Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia.,Department of Electronic and Telecommunications Engineering, NED University of Engineering & Technology, University Road, Karachi, Pakistan
| | - Nidal Kamel
- Centre for Intelligent Signal & Imaging Research (CISIR), Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
| | - Mustapha Muzaimi
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian Malaysia
| | - Timothy Hill
- Neurotherapy & Psychology, Brain Therapy Centre, Kent Town, Australia
| |
Collapse
|
14
|
Advanced TMS approaches to probe corticospinal excitability during action preparation. Neuroimage 2020; 213:116746. [DOI: 10.1016/j.neuroimage.2020.116746] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
|
15
|
Busan P, Del Ben G, Tantone A, Halaj L, Bernardini S, Natarelli G, Manganotti P, Battaglini PP. Effect of muscular activation on surrounding motor networks in developmental stuttering: A TMS study. BRAIN AND LANGUAGE 2020; 205:104774. [PMID: 32135384 DOI: 10.1016/j.bandl.2020.104774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/05/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Previous studies regarding developmental stuttering (DS) suggest that motor neural networks are strongly affected. Transcranial magnetic stimulation (TMS) was used to investigate neural activation of the primary motor cortex in DS during movement execution, and the influence of muscle representations involved in movements on "surrounding" ones. TMS was applied over the contralateral abductor digiti minimi (ADM) motor representation, at rest and during the movement of homologue first dorsal interosseous muscles (tonic contraction, phasic movements cued by acoustic signalling, and "self-paced" movements). Results highlighted a lower cortico-spinal excitability of ADM in the left hemisphere of stutterers, and an enhanced intracortical inhibition in their right motor cortex (in comparison to fluent speakers). Abnormal intracortical functioning was especially evident during phasic contractions cued by "external" acoustic signals. An exaggerated inhibition of muscles not directly involved in intended movements, in stuttering, may be useful to obtain more efficient motor control. This was stronger during contractions cued by "external" signals, highlighting mechanisms likely used by stutterers during fluency-evoking conditions.
Collapse
Affiliation(s)
- Pierpaolo Busan
- IRCCS Ospedale San Camillo, via Alberoni 70, 30126 Venice, Italy.
| | - Giovanni Del Ben
- Department of Life Sciences, University of Trieste, via Fleming 22, 34100 Trieste, Italy.
| | - Antonietta Tantone
- Department of Life Sciences, University of Trieste, via Fleming 22, 34100 Trieste, Italy
| | - Livia Halaj
- Department of Life Sciences, University of Trieste, via Fleming 22, 34100 Trieste, Italy
| | | | - Giulia Natarelli
- Department of Developmental and Social Psychology, University of Padua, via Venezia 8, 35100 Padua, Italy.
| | - Paolo Manganotti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy.
| | - Piero Paolo Battaglini
- Department of Life Sciences, University of Trieste, via Fleming 22, 34100 Trieste, Italy.
| |
Collapse
|
16
|
Busan P. Developmental stuttering and the role of the supplementary motor cortex. JOURNAL OF FLUENCY DISORDERS 2020; 64:105763. [PMID: 32361030 DOI: 10.1016/j.jfludis.2020.105763] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Developmental stuttering is a frequent neurodevelopmental disorder with a complex neurobiological basis. Robust neural markers of stuttering include imbalanced activity of speech and motor related brain regions, and their impaired structural connectivity. The dynamic interaction of cortical regions is regulated by the cortico-basal ganglia-thalamo-cortical system with the supplementary motor area constituting a crucial cortical site. The SMA integrates information from different neural circuits, and manages information about motor programs such as self-initiated movements, motor sequences, and motor learning. Abnormal functioning of SMA is increasingly reported in stuttering, and has been recently indicated as an additional "neural marker" of DS: anatomical and functional data have documented abnormal structure and activity of the SMA, especially in motor and speech networks. Its connectivity is often impaired, especially when considering networks of the left hemisphere. Compatibly, recent data suggest that, in DS, SMA is part of a poorly synchronized neural network, thus resulting in a likely substrate for the appearance of DS symptoms. However, as evident when considering neural models of stuttering, the role of SMA has not been fully clarified. Herein, the available evidence is reviewed, which highlights the role of the SMA in DS as a neural "hub", receiving and conveying altered information, thus "gating" the release of correct or abnormal motor plans.
Collapse
|
17
|
Pflug A, Gompf F, Muthuraman M, Groppa S, Kell CA. Differential contributions of the two human cerebral hemispheres to action timing. eLife 2019; 8:e48404. [PMID: 31697640 PMCID: PMC6837842 DOI: 10.7554/elife.48404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023] Open
Abstract
Rhythmic actions benefit from synchronization with external events. Auditory-paced finger tapping studies indicate the two cerebral hemispheres preferentially control different rhythms. It is unclear whether left-lateralized processing of faster rhythms and right-lateralized processing of slower rhythms bases upon hemispheric timing differences that arise in the motor or sensory system or whether asymmetry results from lateralized sensorimotor interactions. We measured fMRI and MEG during symmetric finger tapping, in which fast tapping was defined as auditory-motor synchronization at 2.5 Hz. Slow tapping corresponded to tapping to every fourth auditory beat (0.625 Hz). We demonstrate that the left auditory cortex preferentially represents the relative fast rhythm in an amplitude modulation of low beta oscillations while the right auditory cortex additionally represents the internally generated slower rhythm. We show coupling of auditory-motor beta oscillations supports building a metric structure. Our findings reveal a strong contribution of sensory cortices to hemispheric specialization in action control.
Collapse
Affiliation(s)
- Anja Pflug
- Cognitive Neuroscience Group, Brain Imaging Center and Department of NeurologyGoethe UniversityFrankfurtGermany
| | - Florian Gompf
- Cognitive Neuroscience Group, Brain Imaging Center and Department of NeurologyGoethe UniversityFrankfurtGermany
| | - Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of NeurologyJohannes Gutenberg UniversityMainzGermany
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of NeurologyJohannes Gutenberg UniversityMainzGermany
| | - Christian Alexander Kell
- Cognitive Neuroscience Group, Brain Imaging Center and Department of NeurologyGoethe UniversityFrankfurtGermany
| |
Collapse
|
18
|
Sommer M, Omer S, Wolff von Gudenberg A, Paulus W. Hand Motor Cortex Excitability During Speaking in Persistent Developmental Stuttering. Front Hum Neurosci 2019; 13:349. [PMID: 31636556 PMCID: PMC6788188 DOI: 10.3389/fnhum.2019.00349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/20/2019] [Indexed: 11/18/2022] Open
Abstract
Persistent developmental stuttering (PDS) is a speech fluency disorder characterized by intermittent involuntary breakdowns of speech motor control, possibly related to motor cortex excitability. Whether motor cortex dysfunction extends into hand representations is unclear. We here studied task-dependent modulations of hand motor cortex excitability in 10 right-handed adults who stutter (AWS) and 13 age- and sex-matched fluent speaking control participants (ANS), covering a wide range of tasks in an exploratory study. Before, during and after a null speech/rest task, spontaneous speech, solo reading, chorus reading, singing, and non-verbal orofacial movements, transcranial magnetic stimulation was applied over the primary motor cortex and motor evoked potentials (MEPs) were recorded from the abductor digiti minimi muscle of either hand. In both groups, motor threshold was lower in the left than in the right motor cortex. During task performance, MEP amplitudes increased in both groups. A post hoc comparison of spontaneous speech and non-verbal orofacial movements yielded an interaction of group by task with AWS showing larger than ANS MEP amplitude increase in spontaneous speech, but a smaller than ANS MEP amplitude increase in non-verbal orofacial movements. We conclude that hemispheric specialization of hand motor representation is similar for both groups. Spontaneous speech as well as non-verbal orofacial movements are the orofacial tasks that merit further study. The excessive motor cortex facilitation could be reflecting a stronger activation of non-speech muscles during AWS’s speech.
Collapse
Affiliation(s)
- Martin Sommer
- Department of Clinical Neurophysiology, University of Göttingen, Göttingen, Germany
| | - Sherko Omer
- Department of Clinical Neurophysiology, University of Göttingen, Göttingen, Germany
| | | | - Walter Paulus
- Department of Clinical Neurophysiology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Peter B, Dinu V, Liu L, Huentelman M, Naymik M, Lancaster H, Vose C, Schrauwen I. Exome Sequencing of Two Siblings with Sporadic Autism Spectrum Disorder and Severe Speech Sound Disorder Suggests Pleiotropic and Complex Effects. Behav Genet 2019; 49:399-414. [DOI: 10.1007/s10519-019-09957-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/18/2019] [Indexed: 12/19/2022]
|
20
|
Yang Y, Jia F, Fox PT, Siok WT, Tan LH. Abnormal neural response to phonological working memory demands in persistent developmental stuttering. Hum Brain Mapp 2019; 40:214-225. [PMID: 30145850 PMCID: PMC6865627 DOI: 10.1002/hbm.24366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 11/10/2022] Open
Abstract
Persistent developmental stuttering is a neurological disorder that commonly manifests as a motor problem. Cognitive theories, however, hold that poorly developed cognitive skills are the origins of stuttering. Working memory (WM), a multicomponent cognitive system that mediates information maintenance and manipulation, is known to play an important role in speech production, leading us to postulate that the neurophysiological mechanisms underlying stuttering may be associated with a WM deficit. Using functional magnetic resonance imaging, we aimed to elucidate brain mechanisms in a phonological WM task in adults who stutter and controls. A right-lateralized compensatory mechanism for a deficit in the rehearsal process and neural disconnections associated with the central executive dysfunction were found. Furthermore, the neural abnormalities underlying the phonological WM were independent of memory load. This study demonstrates for the first time the atypical neural responses to phonological WM in PWS, shedding new light on the underlying cause of stuttering.
Collapse
Affiliation(s)
- Yang Yang
- Center for Brain Disorders and Cognitive ScienceShenzhen UniversityShenzhenChina
- Center for Language and BrainShenzhen Institute of NeuroscienceShenzhenChina
| | - Fanlu Jia
- Center for Brain Disorders and Cognitive ScienceShenzhen UniversityShenzhenChina
- Center for Language and BrainShenzhen Institute of NeuroscienceShenzhenChina
| | - Peter T. Fox
- Center for Brain Disorders and Cognitive ScienceShenzhen UniversityShenzhenChina
- Center for Language and BrainShenzhen Institute of NeuroscienceShenzhenChina
- Research Imaging InstituteUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Wai Ting Siok
- Department of LinguisticsUniversity of Hong KongPokfulam RoadHong Kong
| | - Li Hai Tan
- Center for Brain Disorders and Cognitive ScienceShenzhen UniversityShenzhenChina
- Center for Language and BrainShenzhen Institute of NeuroscienceShenzhenChina
| |
Collapse
|
21
|
Busan P, Del Ben G, Russo LR, Bernardini S, Natarelli G, Arcara G, Manganotti P, Battaglini PP. Stuttering as a matter of delay in neural activation: A combined TMS/EEG study. Clin Neurophysiol 2019; 130:61-76. [DOI: 10.1016/j.clinph.2018.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 08/27/2018] [Accepted: 10/15/2018] [Indexed: 10/27/2022]
|
22
|
Dinoto A, Busan P, Formaggio E, Bertolotti C, Menichelli A, Stokelj D, Manganotti P. Stuttering-like hesitation in speech during acute/post-acute phase of immune-mediated encephalitis. JOURNAL OF FLUENCY DISORDERS 2018; 58:70-76. [PMID: 30220403 DOI: 10.1016/j.jfludis.2018.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/08/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
PURPOSE Neurogenic stuttering may be evident after a lesion/dysfunction of wider neural networks. Here we present a case of acquired stuttering as the consequence of immune-mediated encephalitis. METHODS The case of a 71-year old male who complained about the progressive onset of stuttering and disequilibrium as the consequence of immune-mediated encephalitis, is here reported. Administration of corticosteroid methylprednisolone was useful to recover from impairments. An in depth analysis of the electroencephalography (relative power of brain rhythms and source localization) during different phases of the disease/treatment was also realized. RESULTS The patient showed a stuttering-like slowed speech with blocks and repetitions, especially at the beginning of words/sentences, with associated movements of the oro-facial muscles. Speech and general motor skills resulted slowed in their preparation/execution phases. Electroencephalography showed a "slowed" pattern, with delta/theta waves mainly in the prefrontal cortex and in sensorimotor networks. CONCLUSION This case reports a probable immune-mediated encephalitis that resulted in acquired stuttering. The effect of "slowed" oscillatory brain activity on motor skills requesting sequencing and fine coordination (e.g. speech) could result in less "synchronized" systems, easily prone to disruptions.
Collapse
Affiliation(s)
- Alessandro Dinoto
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Strada di Fiume 447, 34100, Trieste, Italy.
| | - Pierpaolo Busan
- Fondazione Ospedale San Camillo IRCCS, Via Alberoni 70, 30126, Venice, Italy.
| | - Emanuela Formaggio
- Fondazione Ospedale San Camillo IRCCS, Via Alberoni 70, 30126, Venice, Italy.
| | - Claudio Bertolotti
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Strada di Fiume 447, 34100, Trieste, Italy.
| | - Alina Menichelli
- Neuropsychological Unit, Department of Rehabilitation Medicine, ASUI Trieste, Strada di Fiume 447, 34100, Trieste, Italy.
| | - David Stokelj
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Strada di Fiume 447, 34100, Trieste, Italy.
| | - Paolo Manganotti
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Strada di Fiume 447, 34100, Trieste, Italy.
| |
Collapse
|
23
|
Whillier A, Hommel S, Neef NE, Wolff von Gudenberg A, Paulus W, Sommer M. Adults who stutter lack the specialised pre-speech facilitation found in non-stutterers. PLoS One 2018; 13:e0202634. [PMID: 30303960 PMCID: PMC6179203 DOI: 10.1371/journal.pone.0202634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/07/2018] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Persistent developmental stuttering is a speech fluency disorder defined by its symptoms, where the underlying neurophysiological causes remain uncertain. This study examined the underlying neurophysiological mechanisms of the speech planning process, using facilitation in the motor cortex during speech preparation as an analogue. METHODS transcranial magnetic stimulation (TMS) pulses induced motor evoked potentials (MEPs), which were recorded from the tongue. Eighteen adults who stutter (AWS) and 17 adults who do not stutter (ANS) completed three experiments, which involved reading a German prefix+verb utterance from a screen. Each experiment involved 120 trials with three distinct levels of speech production: immediate speech, delayed speech without pacing and delayed speech with predefined pacing. TMS was applied shortly before speech onset. Trial MEPs were normalised to average non-speech MEPs. MEP amplitude, MEP facilitation ratio (amplitude: pre-speech offset) and group difference were the outcomes of interest analysed by multiple regression, as well as speech reaction time analysed by correlation. RESULTS MEP values were 11·1%-23·4% lower in AWS than ANS (by standardised Beta), across all three experiments. MEP facilitation ratio slopes were also 4·9%-18·3% flatter in AWS than ANS across all three experiments. Reaction times for AWS were only significantly slower than for ANS in immediate speech and predefined pacing experiments. No stuttering was detected during the trials. The group difference in immediate speech was 100% and 101% greater than the other two experiments respectively. DISCUSSION While performance of both ANS and AWS worsens under disturbed speech conditions, greater disturbance conditions affected controls worse than AWS. Future research and therapy in stuttering should focus on non-disturbed speech.
Collapse
Affiliation(s)
- Alexander Whillier
- Department of Clinical Neurophysiology, University Medical Centre Göttingen, Göttingen, Germany
| | - Sina Hommel
- Department of Clinical Neurophysiology, University Medical Centre Göttingen, Göttingen, Germany
| | - Nicole E. Neef
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Science, Leipzig, Germany
| | | | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Centre Göttingen, Göttingen, Germany
| | - Martin Sommer
- Department of Clinical Neurophysiology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Chang SE, Garnett EO, Etchell A, Chow HM. Functional and Neuroanatomical Bases of Developmental Stuttering: Current Insights. Neuroscientist 2018; 25:566-582. [PMID: 30264661 DOI: 10.1177/1073858418803594] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Affecting 5% of all preschool-aged children and 1% of the general population, developmental stuttering-also called childhood-onset fluency disorder-is a complex, multifactorial neurodevelopmental disorder characterized by frequent disruption of the fluent flow of speech. Over the past two decades, neuroimaging studies of both children and adults who stutter have begun to provide significant insights into the neurobiological bases of stuttering. This review highlights convergent findings from this body of literature with a focus on functional and structural neuroimaging results that are supported by theoretically driven neurocomputational models of speech production. Updated views on possible mechanisms of stuttering onset and persistence, and perspectives on promising areas for future research into the mechanisms of stuttering, are discussed.
Collapse
Affiliation(s)
- Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Emily O Garnett
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Etchell
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Ho Ming Chow
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| |
Collapse
|
25
|
Temporal Profile and Limb-specificity of Phasic Pain-Evoked Changes in Motor Excitability. Neuroscience 2018; 386:240-255. [DOI: 10.1016/j.neuroscience.2018.06.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 12/17/2022]
|
26
|
Jenson D, Reilly KJ, Harkrider AW, Thornton D, Saltuklaroglu T. Trait related sensorimotor deficits in people who stutter: An EEG investigation of μ rhythm dynamics during spontaneous fluency. Neuroimage Clin 2018; 19:690-702. [PMID: 29872634 PMCID: PMC5986168 DOI: 10.1016/j.nicl.2018.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/28/2018] [Accepted: 05/20/2018] [Indexed: 01/09/2023]
Abstract
Stuttering is associated with compromised sensorimotor control (i.e., internal modeling) across the dorsal stream and oscillations of EEG mu (μ) rhythms have been proposed as reliable indices of anterior dorsal stream processing. The purpose of this study was to compare μ rhythm oscillatory activity between (PWS) and matched typically fluent speakers (TFS) during spontaneously fluent overt and covert speech production tasks. Independent component analysis identified bilateral μ components from 24/27 PWS and matched TFS that localized over premotor cortex. Time-frequency analysis of the left hemisphere μ clusters demonstrated significantly reduced μ-α and μ-β ERD (pCLUSTER < 0.05) in PWS across the time course of overt and covert speech production, while no group differences were found in the right hemisphere in any condition. Results were interpreted through the framework of State Feedback Control. They suggest that weak forward modeling and evaluation of sensory feedback across the time course of speech production characterizes the trait related sensorimotor impairment in PWS. This weakness is proposed to represent an underlying sensorimotor instability that may predispose the speech of PWS to breakdown.
Collapse
Affiliation(s)
- David Jenson
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States.
| | - Kevin J Reilly
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| | - Ashley W Harkrider
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| | - David Thornton
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| | - Tim Saltuklaroglu
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| |
Collapse
|
27
|
Vreeswijk SM, Linh Hoang T, Neef NE, Gudenberg A, Paulus W, Sommer M. T47. Is stuttering a focal dystonia? Clin Neurophysiol 2018. [DOI: 10.1016/j.clinph.2018.04.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Vassiliadis P, Grandjean J, Derosiere G, de Wilde Y, Quemener L, Duque J. Using a Double-Coil TMS Protocol to Assess Preparatory Inhibition Bilaterally. Front Neurosci 2018; 12:139. [PMID: 29568258 PMCID: PMC5852071 DOI: 10.3389/fnins.2018.00139] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/21/2018] [Indexed: 11/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1), elicits motor-evoked potentials (MEPs) in contralateral limb muscles which are valuable indicators of corticospinal excitability (CSE) at the time of stimulation. So far, most studies have used single-coil TMS over one M1, yielding MEPs in muscles of a single limb-usually the hand. However, tracking CSE in the two hands simultaneously would be useful in many contexts. We recently showed that, in the resting state, double-coil stimulation of the two M1 with a 1 ms inter-pulse interval (double-coil1 ms TMS) elicits MEPs in both hands that are comparable to MEPs obtained using single-coil TMS. To further evaluate this new technique, we considered the MEPs elicited by double-coil1 ms TMS in an instructed-delay choice reaction time task where a prepared response has to be withheld until an imperative signal is displayed. Single-coil TMS studies have repetitively shown that in this type of task, the motor system is transiently inhibited during the delay period, as evident from the broad suppression of MEP amplitudes. Here, we aimed at investigating whether a comparable inhibitory effect can be observed with MEPs elicited using double-coil1 ms TMS. To do so, we compared the amplitude as well as the coefficient of variation (CV) of MEPs produced by double-coil1 ms or single-coil TMS during action preparation. We observed that MEPs were suppressed (smaller amplitude) and often less variable (smaller CV) during the delay period compared to baseline. Importantly, these effects were equivalent whether single-coil or double-coil1 ms TMS was used. This suggests that double-coil1 ms TMS is a reliable tool to assess CSE, not only when subjects are at rest, but also when they are involved in a task, opening new research horizons for scientists interested in the corticospinal correlates of human behavior.
Collapse
Affiliation(s)
- Pierre Vassiliadis
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Julien Grandjean
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Gerard Derosiere
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Ysaline de Wilde
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Louise Quemener
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Julie Duque
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
29
|
Chang SE, Angstadt M, Chow HM, Etchell AC, Garnett EO, Choo AL, Kessler D, Welsh RC, Sripada C. Anomalous network architecture of the resting brain in children who stutter. JOURNAL OF FLUENCY DISORDERS 2018; 55:46-67. [PMID: 28214015 PMCID: PMC5526749 DOI: 10.1016/j.jfludis.2017.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/28/2016] [Accepted: 01/14/2017] [Indexed: 05/14/2023]
Abstract
PURPOSE We combined a large longitudinal neuroimaging dataset that includes children who do and do not stutter and a whole-brain network analysis in order to examine the intra- and inter-network connectivity changes associated with stuttering. Additionally, we asked whether whole brain connectivity patterns observed at the initial year of scanning could predict persistent stuttering in later years. METHODS A total of 224 high-quality resting state fMRI scans collected from 84 children (42 stuttering, 42 controls) were entered into an independent component analysis (ICA), yielding a number of distinct network connectivity maps ("components") as well as expression scores for each component that quantified the degree to which it is expressed for each child. These expression scores were compared between stuttering and control groups' first scans. In a second analysis, we examined whether the components that were most predictive of stuttering status also predicted persistence in stuttering. RESULTS Stuttering status, as well as stuttering persistence, were associated with aberrant network connectivity involving the default mode network and its connectivity with attention, somatomotor, and frontoparietal networks. The results suggest developmental alterations in the balance of integration and segregation of large-scale neural networks that support proficient task performance including fluent speech motor control. CONCLUSIONS This study supports the view that stuttering is a complex neurodevelopmental disorder and provides comprehensive brain network maps that substantiate past theories emphasizing the importance of considering situational, emotional, attentional and linguistic factors in explaining the basis for stuttering onset, persistence, and recovery.
Collapse
Affiliation(s)
- Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States.
| | - Michael Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Ho Ming Chow
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Andrew C Etchell
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Emily O Garnett
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Ai Leen Choo
- Department of Communicative Sciences and Disorders, California State University East Bay, Hayward, CA, United States
| | - Daniel Kessler
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Robert C Welsh
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Chandra Sripada
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
30
|
Etchell AC, Civier O, Ballard KJ, Sowman PF. A systematic literature review of neuroimaging research on developmental stuttering between 1995 and 2016. JOURNAL OF FLUENCY DISORDERS 2018; 55:6-45. [PMID: 28778745 DOI: 10.1016/j.jfludis.2017.03.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 01/25/2017] [Accepted: 03/06/2017] [Indexed: 05/14/2023]
Abstract
PURPOSE Stuttering is a disorder that affects millions of people all over the world. Over the past two decades, there has been a great deal of interest in investigating the neural basis of the disorder. This systematic literature review is intended to provide a comprehensive summary of the neuroimaging literature on developmental stuttering. It is a resource for researchers to quickly and easily identify relevant studies for their areas of interest and enable them to determine the most appropriate methodology to utilize in their work. The review also highlights gaps in the literature in terms of methodology and areas of research. METHODS We conducted a systematic literature review on neuroimaging studies on developmental stuttering according to the PRISMA guidelines. We searched for articles in the pubmed database containing "stuttering" OR "stammering" AND either "MRI", "PET", "EEG", "MEG", "TMS"or "brain" that were published between 1995/01/01 and 2016/01/01. RESULTS The search returned a total of 359 items with an additional 26 identified from a manual search. Of these, there were a total of 111 full text articles that met criteria for inclusion in the systematic literature review. We also discuss neuroimaging studies on developmental stuttering published throughout 2016. The discussion of the results is organized first by methodology and second by population (i.e., adults or children) and includes tables that contain all items returned by the search. CONCLUSIONS There are widespread abnormalities in the structural architecture and functional organization of the brains of adults and children who stutter. These are evident not only in speech tasks, but also non-speech tasks. Future research should make greater use of functional neuroimaging and noninvasive brain stimulation, and employ structural methodologies that have greater sensitivity. Newly planned studies should also investigate sex differences, focus on augmenting treatment, examine moments of dysfluency and longitudinally or cross-sectionally investigate developmental trajectories in stuttering.
Collapse
Affiliation(s)
- Andrew C Etchell
- Department of Psychiatry, University of Michigan, MI, United States; Department of Cognitive Science, Macquarie University, Sydney, Australia.
| | - Oren Civier
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Kirrie J Ballard
- Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Paul F Sowman
- Department of Cognitive Science, Macquarie University, Sydney, Australia
| |
Collapse
|
31
|
Gough PM, Connally EL, Howell P, Ward D, Chesters J, Watkins KE. Planum temporale asymmetry in people who stutter. JOURNAL OF FLUENCY DISORDERS 2018; 55:94-105. [PMID: 28648465 PMCID: PMC5846813 DOI: 10.1016/j.jfludis.2017.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 06/07/2017] [Accepted: 06/15/2017] [Indexed: 06/08/2023]
Abstract
PURPOSE Previous studies have reported that the planum temporale - a language-related structure that normally shows a leftward asymmetry - had reduced asymmetry in people who stutter (PWS) and reversed asymmetry in those with severe stuttering. These findings are consistent with the theory that altered language lateralization may be a cause or consequence of stuttering. Here, we re-examined these findings in a larger sample of PWS. METHODS We evaluated planum temporale asymmetry in structural MRI scans obtained from 67 PWS and 63 age-matched controls using: 1) manual measurements of the surface area; 2) voxel-based morphometry to automatically calculate grey matter density. We examined the influences of gender, age, and stuttering severity on planum temporale asymmetry. RESULTS The size of the planum temporale and its asymmetry were not different in PWS compared with Controls using either the manual or the automated method. Both groups showed a significant leftwards asymmetry on average (about one-third of PWS and Controls showed rightward asymmetry). Importantly, and contrary to previous reports, the degree of asymmetry was not related to stuttering severity. In the manual measurements, women who stutter had a tendency towards rightwards asymmetry but men who stutter showed the same degree of leftwards asymmetry as male Controls. In the automated measurements, Controls showed a significant increase in leftwards asymmetry with age but this relationship was not observed in PWS. CONCLUSIONS We conclude that reduced planum temporale asymmetry is not a prominent feature of the brain in PWS and that the asymmetry is unrelated to stuttering severity.
Collapse
Affiliation(s)
- Patricia M Gough
- Department of Psychology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Emily L Connally
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3UD, UK
| | - Peter Howell
- Department of Psychology, University College London, Bedford Way, London, WC1E 6BT, UK
| | - David Ward
- School of Psychology and Clinical Language Sciences, University of Reading, Harry Pitt Building, Earley Gate, Reading, RG6 7BE, UK
| | - Jennifer Chesters
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3UD, UK
| | - Kate E Watkins
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3UD, UK.
| |
Collapse
|
32
|
Grandjean J, Derosiere G, Vassiliadis P, Quemener L, Wilde YD, Duque J. Towards assessing corticospinal excitability bilaterally: Validation of a double-coil TMS method. J Neurosci Methods 2017; 293:162-168. [PMID: 28962906 DOI: 10.1016/j.jneumeth.2017.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND For several decades, Transcranial magnetic stimulation (TMS) has been used to monitor corticospinal excitability (CSE) changes in various contexts. Habitually, single-coil TMS is applied over one primary motor cortex (M1), eliciting motor-evoked potentials (MEPs) in a contralateral limb muscle, usually a hand effector. However, in many situations, it would be useful to obtain MEPs in both hands simultaneously, to track CSE bilaterally. Such an approach requires stimulating both M1 concurrently while avoiding interference between the two descending stimuli. NEW METHOD We examined MEPs obtained at rest using a double-coil TMS approach where the two M1 are stimulated with a 1ms inter-pulse interval (double-coil1ms). MEPs were acquired using double-coil1ms (MEPdouble) or single-coil (MEPsingle) TMS, at five different intensities of stimulation (100, 115, 130, 145 or 160% of the resting motor threshold, rMT). Given the 1ms inter-pulse interval in double-coil1ms trials, MEPdouble were either evoked by a 1st (MEPdouble-1) or a 2nd (MEPdouble-2) TMS pulse. RESULTS All MEPTYPE (MEPTYPE=MEPsingle, MEPdouble-1 and MEPdouble-2) were equivalent, regardless of the hand within which they were elicited, the intensity of stimulation or the pulse order. COMPARISON WITH EXISTING METHOD This method allows one to observe state-related CSE changes for the two hands simultaneously on a trial-by-trial basis. CONCLUSION These results infer the absence of any neural interactions between the two cortico-spinal volleys with double-coil1ms TMS. Hence, this technique can be reliably used to assess CSE bilaterally, opening new research perspectives for scientists interested in physiological markers of activity in the motor output system.
Collapse
Affiliation(s)
- Julien Grandjean
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.
| | - Gerard Derosiere
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Pierre Vassiliadis
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Louise Quemener
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Ysaline de Wilde
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Julie Duque
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
33
|
Smith A, Weber C. How Stuttering Develops: The Multifactorial Dynamic Pathways Theory. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2017; 60:2483-2505. [PMID: 28837728 PMCID: PMC5831617 DOI: 10.1044/2017_jslhr-s-16-0343] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/21/2017] [Accepted: 04/19/2017] [Indexed: 05/12/2023]
Abstract
Purpose We advanced a multifactorial, dynamic account of the complex, nonlinear interactions of motor, linguistic, and emotional factors contributing to the development of stuttering. Our purpose here is to update our account as the multifactorial dynamic pathways theory. Method We review evidence related to how stuttering develops, including genetic/epigenetic factors; motor, linguistic, and emotional features; and advances in neuroimaging studies. We update evidence for our earlier claim: Although stuttering ultimately reflects impairment in speech sensorimotor processes, its course over the life span is strongly conditioned by linguistic and emotional factors. Results Our current account places primary emphasis on the dynamic developmental context in which stuttering emerges and follows its course during the preschool years. Rapid changes in many neurobehavioral systems are ongoing, and critical interactions among these systems likely play a major role in determining persistence of or recovery from stuttering. Conclusion Stuttering, or childhood onset fluency disorder (Diagnostic and Statistical Manual of Mental Disorders, 5th edition; American Psychiatric Association [APA], 2013), is a neurodevelopmental disorder that begins when neural networks supporting speech, language, and emotional functions are rapidly developing. The multifactorial dynamic pathways theory motivates experimental and clinical work to determine the specific factors that contribute to each child's pathway to the diagnosis of stuttering and those most likely to promote recovery.
Collapse
Affiliation(s)
- Anne Smith
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana
| | - Christine Weber
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
34
|
Metzger FL, Auer T, Helms G, Paulus W, Frahm J, Sommer M, Neef NE. Shifted dynamic interactions between subcortical nuclei and inferior frontal gyri during response preparation in persistent developmental stuttering. Brain Struct Funct 2017; 223:165-182. [PMID: 28741037 PMCID: PMC5772149 DOI: 10.1007/s00429-017-1476-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 07/07/2017] [Indexed: 11/29/2022]
Abstract
Persistent developmental stuttering is associated with basal ganglia dysfunction or dopamine dysregulation. Here, we studied whole-brain functional connectivity to test how basal ganglia structures coordinate and reorganize sensorimotor brain networks in stuttering. To this end, adults who stutter and fluent speakers (control participants) performed a response anticipation paradigm in the MRI scanner. The preparation of a manual Go/No-Go response reliably produced activity in the basal ganglia and thalamus and particularly in the substantia nigra. Strikingly, in adults who stutter, substantia nigra activity correlated positively with stuttering severity. Furthermore, functional connectivity analyses yielded altered task-related network formations in adults who stutter compared to fluent speakers. Specifically, in adults who stutter, the globus pallidus and the thalamus showed increased network synchronization with the inferior frontal gyrus. This implies dynamic shifts in the response preparation-related network organization through the basal ganglia in the context of a non-speech motor task in stuttering. Here we discuss current findings in the traditional framework of how D1 and D2 receptor activity shapes focused movement selection, thereby suggesting a disproportional involvement of the direct and the indirect pathway in stuttering.
Collapse
Affiliation(s)
- F Luise Metzger
- Department of Clinical Neurophysiology, Georg August University, Göttingen, Germany
| | - Tibor Auer
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany.,MRC Cognition and Brain Sciences Unit, Cambridge, UK.,Department of Psychology, Royal Holloway, University of London, Egham, UK
| | - Gunther Helms
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg August University, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Martin Sommer
- Department of Clinical Neurophysiology, Georg August University, Göttingen, Germany
| | - Nicole E Neef
- Department of Clinical Neurophysiology, Georg August University, Göttingen, Germany. .,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.
| |
Collapse
|
35
|
Busan P, Battaglini P, Sommer M. Transcranial magnetic stimulation in developmental stuttering: Relations with previous neurophysiological research and future perspectives. Clin Neurophysiol 2017; 128:952-964. [DOI: 10.1016/j.clinph.2017.03.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 10/19/2022]
|
36
|
Kornisch M, Robb MP, Jones RD. Estimates of functional cerebral hemispheric differences in monolingual and bilingual people who stutter: Dual-task paradigm. CLINICAL LINGUISTICS & PHONETICS 2017; 31:409-423. [PMID: 28409657 DOI: 10.1080/02699206.2017.1305448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The inter-relationship of stuttering and bilingualism to functional cerebral hemispheric processing was examined on a dual-task paradigm. Eighty native German (L1) speakers, half of whom were sequential bilinguals (L2 = English), were recruited. The participants (mean age = 38.9 years) were organised into four different groups according to speech status and language ability: 20 bilinguals who stutter (BWS), 20 monolinguals who stutter (MWS), 20 bilinguals who do not stutter (BWNS), and 20 monolinguals who do not stutter (MWNS). All participants completed a dual-task paradigm involving simultaneous speaking and finger tapping. No performance differences between BWS and BWNS were found. In contrast, MWS showed greater dual-task interference compared to BWS and MWNS, as well as greater right- than left-hand disruption. A prevailing finding was that bilingualism seems to offset deficits in executive functioning associated with stuttering. Cognitive reserve may have been reflected in the present study, resulting in a bilingual advantage.
Collapse
Affiliation(s)
- Myriam Kornisch
- a Montreal Neurological Institute, McGill University , Montreal , Québec , Canada
| | - Michael P Robb
- b Department of Communication Disorders , University of Canterbury , Christchurch , New Zealand
| | - Richard D Jones
- b Department of Communication Disorders , University of Canterbury , Christchurch , New Zealand
| |
Collapse
|
37
|
Chesters J, Watkins KE, Möttönen R. Investigating the feasibility of using transcranial direct current stimulation to enhance fluency in people who stutter. BRAIN AND LANGUAGE 2017; 164:68-76. [PMID: 27810647 PMCID: PMC5240850 DOI: 10.1016/j.bandl.2016.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 10/17/2016] [Accepted: 10/23/2016] [Indexed: 05/02/2023]
Abstract
Developmental stuttering is a disorder of speech fluency affecting 1% of the adult population. Long-term reductions in stuttering are difficult for adults to achieve with behavioural therapies. We investigated whether a single session of transcranial direct current stimulation (TDCS) could improve fluency in people who stutter (PWS). In separate sessions, either anodal TDCS (1mA for 20min) or sham stimulation was applied over the left inferior frontal cortex while PWS read sentences aloud. Fluency was induced during the stimulation period by using choral speech, that is, participants read in unison with another speaker. Stuttering frequency during sentence reading, paragraph reading and conversation was measured at baseline and at two outcome time points: immediately after the stimulation period and 1h later. Stuttering was reduced significantly at both outcome time points for the sentence-reading task, presumably due to practice, but not during the paragraph reading or conversation tasks. None of the outcome measures were significantly modulated by anodal TDCS. Although the results of this single-session study showed no significant TDCS-induced improvements in fluency, there were some indications that further research is warranted. We discuss factors that we believe may have obscured the expected positive effects of TDCS on fluency, such as heterogeneity in stuttering severity for the sample and variations across sessions. Consideration of such factors may inform future studies aimed at determining the potential of TDCS in the treatment of developmental stuttering.
Collapse
Affiliation(s)
- Jennifer Chesters
- Department of Experimental Psychology, South Parks Road, University of Oxford, Oxford, UK.
| | - Kate E Watkins
- Department of Experimental Psychology, South Parks Road, University of Oxford, Oxford, UK
| | - Riikka Möttönen
- Department of Experimental Psychology, South Parks Road, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Sengupta R, Shah S, Gore K, Loucks T, Nasir SM. Anomaly in neural phase coherence accompanies reduced sensorimotor integration in adults who stutter. Neuropsychologia 2016; 93:242-250. [DOI: 10.1016/j.neuropsychologia.2016.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/07/2016] [Accepted: 11/03/2016] [Indexed: 01/22/2023]
|
39
|
Busan P, Del Ben G, Bernardini S, Natarelli G, Bencich M, Monti F, Manganotti P, Battaglini PP. Altered Modulation of Silent Period in Tongue Motor Cortex of Persistent Developmental Stuttering in Relation to Stuttering Severity. PLoS One 2016; 11:e0163959. [PMID: 27711148 PMCID: PMC5053488 DOI: 10.1371/journal.pone.0163959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022] Open
Abstract
Motor balance in developmental stuttering (DS) was investigated with Transcranial Magnetic Stimulation (TMS), with the aim to define novel neural markers of persistent DS in adulthood. Eleven DS adult males were evaluated with TMS on tongue primary motor cortex, compared to 15 matched fluent speakers, in a “state” condition (i.e. stutterers vs. fluent speakers, no overt stuttering). Motor and silent period thresholds (SPT), recruitment curves, and silent period durations were acquired by recording tongue motor evoked potentials. Tongue silent period duration was increased in DS, especially in the left hemisphere (P<0.05; Hedge’s g or Cohen’s dunbiased = 1.054, i.e. large effect size), suggesting a “state” condition of higher intracortical inhibition in left motor cortex networks. Differences in motor thresholds (different excitatory/inhibitory ratios in DS) were evident, as well as significant differences in SPT. In fluent speakers, the left hemisphere may be marginally more excitable than the right one in motor thresholds at lower muscular activation, while active motor thresholds and SPT were higher in the left hemisphere of DS with respect to the right one, resulting also in a positive correlation with stuttering severity. Pre-TMS electromyography data gave overlapping evidence. Findings suggest the existence of a complex intracortical balance in DS tongue primary motor cortex, with a particular interplay between excitatory and inhibitory mechanisms, also in neural substrates related to silent periods. Findings are discussed with respect to functional and structural impairments in stuttering, and are also proposed as novel neural markers of a stuttering “state” in persistent DS, helping to define more focused treatments (e.g. neuro-modulation).
Collapse
Affiliation(s)
- Pierpaolo Busan
- IRCCS Fondazione Ospedale San Camillo, Venice, Italy
- * E-mail:
| | - Giovanni Del Ben
- B.R.A.I.N. Center for Neuroscience, Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Giulia Natarelli
- Department of Developmental and Social Psychology, University of Padua, Padua, Italy
| | - Marco Bencich
- B.R.A.I.N. Center for Neuroscience, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Fabrizio Monti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Paolo Manganotti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Piero Paolo Battaglini
- B.R.A.I.N. Center for Neuroscience, Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
40
|
Mersov AM, Jobst C, Cheyne DO, De Nil L. Sensorimotor Oscillations Prior to Speech Onset Reflect Altered Motor Networks in Adults Who Stutter. Front Hum Neurosci 2016; 10:443. [PMID: 27642279 PMCID: PMC5009120 DOI: 10.3389/fnhum.2016.00443] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/19/2016] [Indexed: 12/19/2022] Open
Abstract
Adults who stutter (AWS) have demonstrated atypical coordination of motor and sensory regions during speech production. Yet little is known of the speech-motor network in AWS in the brief time window preceding audible speech onset. The purpose of the current study was to characterize neural oscillations in the speech-motor network during preparation for and execution of overt speech production in AWS using magnetoencephalography (MEG). Twelve AWS and 12 age-matched controls were presented with 220 words, each word embedded in a carrier phrase. Controls were presented with the same word list as their matched AWS participant. Neural oscillatory activity was localized using minimum-variance beamforming during two time periods of interest: speech preparation (prior to speech onset) and speech execution (following speech onset). Compared to controls, AWS showed stronger beta (15–25 Hz) suppression in the speech preparation stage, followed by stronger beta synchronization in the bilateral mouth motor cortex. AWS also recruited the right mouth motor cortex significantly earlier in the speech preparation stage compared to controls. Exaggerated motor preparation is discussed in the context of reduced coordination in the speech-motor network of AWS. It is further proposed that exaggerated beta synchronization may reflect a more strongly inhibited motor system that requires a stronger beta suppression to disengage prior to speech initiation. These novel findings highlight critical differences in the speech-motor network of AWS that occur prior to speech onset and emphasize the need to investigate further the speech-motor assembly in the stuttering population.
Collapse
Affiliation(s)
- Anna-Maria Mersov
- Department of Speech-Language Pathology, University of Toronto Toronto, ON, Canada
| | - Cecilia Jobst
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute Toronto, ON, Canada
| | - Douglas O Cheyne
- Department of Speech-Language Pathology, University of TorontoToronto, ON, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children Research InstituteToronto, ON, Canada; Department of Medical Imaging, University of TorontoToronto, ON, Canada
| | - Luc De Nil
- Department of Speech-Language Pathology, University of Toronto Toronto, ON, Canada
| |
Collapse
|
41
|
Neef NE, Bütfering C, Anwander A, Friederici AD, Paulus W, Sommer M. Left posterior-dorsal area 44 couples with parietal areas to promote speech fluency, while right area 44 activity promotes the stopping of motor responses. Neuroimage 2016; 142:628-644. [PMID: 27542724 DOI: 10.1016/j.neuroimage.2016.08.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/03/2016] [Accepted: 08/15/2016] [Indexed: 01/03/2023] Open
Abstract
Area 44 is a cytoarchitectonically distinct portion of Broca's region. Parallel and overlapping large-scale networks couple with this region thereby orchestrating heterogeneous language, cognitive, and motor functions. In the context of stuttering, area 44 frequently comes into focus because structural and physiological irregularities affect developmental trajectories, stuttering severity, persistency, and etiology. A remarkable phenomenon accompanying stuttering is the preserved ability to sing. Speaking and singing are connatural behaviours recruiting largely overlapping brain networks including left and right area 44. Analysing which potential subregions of area 44 are malfunctioning in adults who stutter, and what effectively suppresses stuttering during singing, may provide a better understanding of the coordination and reorganization of large-scale brain networks dedicated to speaking and singing in general. We used fMRI to investigate functionally distinct subregions of area 44 during imagery of speaking and imaginary of humming a melody in 15 dextral males who stutter and 17 matched control participants. Our results are fourfold. First, stuttering was specifically linked to a reduced activation of left posterior-dorsal area 44, a subregion that is involved in speech production, including phonological word processing, pitch processing, working memory processes, sequencing, motor planning, pseudoword learning, and action inhibition. Second, functional coupling between left posterior area 44 and left inferior parietal lobule was deficient in stuttering. Third, despite the preserved ability to sing, males who stutter showed bilaterally a reduced activation of area 44 when imagine humming a melody, suggesting that this fluency-enhancing condition seems to bypass posterior-dorsal area 44 to achieve fluency. Fourth, time courses of the posterior subregions in area 44 showed delayed peak activations in the right hemisphere in both groups, possibly signaling the offset response. Because these offset response-related activations in the right hemisphere were comparably large in males who stutter, our data suggest a hyperactive mechanism to stop speech motor responses and thus possibly reflect a pathomechanism, which, until now, has been neglected. Overall, the current results confirmed a recently described co-activation based parcellation supporting the idea of functionally distinct subregions of left area 44.
Collapse
Affiliation(s)
- Nicole E Neef
- Department of Clinical Neurophysiology, Georg-August-University, Robert-Koch-Straße 40, 37075 Göttingen, Germany; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 03104 Leipzig, Germany.
| | - Christoph Bütfering
- Department of Clinical Neurophysiology, Georg-August-University, Robert-Koch-Straße 40, 37075 Göttingen, Germany.
| | - Alfred Anwander
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 03104 Leipzig, Germany.
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 03104 Leipzig, Germany.
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg-August-University, Robert-Koch-Straße 40, 37075 Göttingen, Germany.
| | - Martin Sommer
- Department of Clinical Neurophysiology, Georg-August-University, Robert-Koch-Straße 40, 37075 Göttingen, Germany.
| |
Collapse
|
42
|
Berthier ML, Roé-Vellvé N, Moreno-Torres I, Falcon C, Thurnhofer-Hemsi K, Paredes-Pacheco J, Torres-Prioris MJ, De-Torres I, Alfaro F, Gutiérrez-Cardo AL, Baquero M, Ruiz-Cruces R, Dávila G. Mild Developmental Foreign Accent Syndrome and Psychiatric Comorbidity: Altered White Matter Integrity in Speech and Emotion Regulation Networks. Front Hum Neurosci 2016; 10:399. [PMID: 27555813 PMCID: PMC4977429 DOI: 10.3389/fnhum.2016.00399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/26/2016] [Indexed: 11/13/2022] Open
Abstract
Foreign accent syndrome (FAS) is a speech disorder that is defined by the emergence of a peculiar manner of articulation and intonation which is perceived as foreign. In most cases of acquired FAS (AFAS) the new accent is secondary to small focal lesions involving components of the bilaterally distributed neural network for speech production. In the past few years FAS has also been described in different psychiatric conditions (conversion disorder, bipolar disorder, and schizophrenia) as well as in developmental disorders (specific language impairment, apraxia of speech). In the present study, two adult males, one with atypical phonetic production and the other one with cluttering, reported having developmental FAS (DFAS) since their adolescence. Perceptual analysis by naïve judges could not confirm the presence of foreign accent, possibly due to the mildness of the speech disorder. However, detailed linguistic analysis provided evidence of prosodic and segmental errors previously reported in AFAS cases. Cognitive testing showed reduced communication in activities of daily living and mild deficits related to psychiatric disorders. Psychiatric evaluation revealed long-lasting internalizing disorders (neuroticism, anxiety, obsessive-compulsive disorder, social phobia, depression, alexithymia, hopelessness, and apathy) in both subjects. Diffusion tensor imaging (DTI) data from each subject with DFAS were compared with data from a group of 21 age- and gender-matched healthy control subjects. Diffusion parameters (MD, AD, and RD) in predefined regions of interest showed changes of white matter microstructure in regions previously related with AFAS and psychiatric disorders. In conclusion, the present findings militate against the possibility that these two subjects have FAS of psychogenic origin. Rather, our findings provide evidence that mild DFAS occurring in the context of subtle, yet persistent, developmental speech disorders may be associated with structural brain anomalies. We suggest that the simultaneous involvement of speech and emotion regulation networks might result from disrupted neural organization during development, or compensatory or maladaptive plasticity. Future studies are required to examine whether the interplay between biological trait-like diathesis (shyness, neuroticism) and the stressful experience of living with mild DFAS lead to the development of internalizing psychiatric disorders.
Collapse
Affiliation(s)
- Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga Malaga, Spain
| | - Núria Roé-Vellvé
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga Malaga, Spain
| | | | - Carles Falcon
- Barcelonabeta Brain Research Center, Pasqual Maragall Foundation Barcelona, Spain
| | - Karl Thurnhofer-Hemsi
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, University of MalagaMalaga, Spain; Department of Applied Mathematics, Superior Technical School of Engineering in Informatics, University of MalagaMalaga, Spain
| | - José Paredes-Pacheco
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, University of MalagaMalaga, Spain; Department of Applied Mathematics, Superior Technical School of Engineering in Informatics, University of MalagaMalaga, Spain
| | - María J Torres-Prioris
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of MalagaMalaga, Spain; Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of MalagaMalaga, Spain
| | - Irene De-Torres
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of MalagaMalaga, Spain; Unit of Physical Medicine and Rehabilitation, Regional University Hospital, MalagaMalaga, Spain
| | - Francisco Alfaro
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga Malaga, Spain
| | - Antonio L Gutiérrez-Cardo
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga Malaga, Spain
| | - Miquel Baquero
- Service of Neurology, Hospital Universitari i Politècnic La Fe Valencia, Spain
| | - Rafael Ruiz-Cruces
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga Malaga, Spain
| | - Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of MalagaMalaga, Spain; Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of MalagaMalaga, Spain
| |
Collapse
|
43
|
Falk S, Maslow E, Thum G, Hoole P. Temporal variability in sung productions of adolescents who stutter. JOURNAL OF COMMUNICATION DISORDERS 2016; 62:101-114. [PMID: 27323225 DOI: 10.1016/j.jcomdis.2016.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 05/09/2016] [Accepted: 05/24/2016] [Indexed: 06/06/2023]
Abstract
UNLABELLED Singing has long been used as a technique to enhance and reeducate temporal aspects of articulation in speech disorders. In the present study, differences in temporal structure of sung versus spoken speech were investigated in stuttering. In particular, the question was examined if singing helps to reduce VOT variability of voiceless plosives, which would indicate enhanced temporal coordination of oral and laryngeal processes. Eight German adolescents who stutter and eight typically fluent peers repeatedly spoke and sang a simple German congratulation formula in which a disyllabic target word (e.g., /'ki:ta/) was repeated five times. Every trial, the first syllable of the word was varied starting equally often with one of the three voiceless German stops /p/, /t/, /k/. Acoustic analyses showed that mean VOT and stop gap duration reduced during singing compared to speaking while mean vowel and utterance duration was prolonged in singing in both groups. Importantly, adolescents who stutter significantly reduced VOT variability (measured as the Coefficient of Variation) during sung productions compared to speaking in word-initial stressed positions while the control group showed a slight increase in VOT variability. However, in unstressed syllables, VOT variability increased in both adolescents who do and do not stutter from speech to song. In addition, vowel and utterance durational variability decreased in both groups, yet, adolescents who stutter were still more variable in utterance duration independent of the form of vocalization. These findings shed new light on how singing alters temporal structure and in particular, the coordination of laryngeal-oral timing in stuttering. Future perspectives for investigating how rhythmic aspects could aid the management of fluent speech in stuttering are discussed. LEARNING OUTCOMES Readers will be able to describe (1) current perspectives on singing and its effects on articulation and fluency in stuttering and (2) acoustic parameters such as VOT variability which indicate the efficiency of control and coordination of laryngeal-oral movements. They will understand and be able to discuss (3) how singing reduces temporal variability in the productions of adolescents who do and do not stutter and 4) how this is linked to altered articulatory patterns in singing as well as to its rhythmic structure.
Collapse
Affiliation(s)
- Simone Falk
- Institute of German Philology, Ludwig-Maximilians-University, Schellingstr. 3, 80799 Munich, Germany; Laboratoire Parole et Langage, UMR 7309, Aix-Marseille University, CNRS, Aix-en-Provence, France.
| | - Elena Maslow
- Institute of Phonetics and Speech Processing, Ludwig-Maximilians-University, Munich, Germany
| | - Georg Thum
- Counselling Service for Stuttering, Institute of Clinical Speech Therapy and Education (Spra-chheilpädagogik), Ludwig-Maximilians-University, Munich, Germany
| | - Philip Hoole
- Institute of Phonetics and Speech Processing, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
44
|
Rogić Vidaković M, Jerković A, Jurić T, Vujović I, Šoda J, Erceg N, Bubić A, Zmajević Schönwald M, Lioumis P, Gabelica D, Đogaš Z. Neurophysiologic markers of primary motor cortex for laryngeal muscles and premotor cortex in caudal opercular part of inferior frontal gyrus investigated in motor speech disorder: a navigated transcranial magnetic stimulation (TMS) study. Cogn Process 2016; 17:429-442. [PMID: 27130564 DOI: 10.1007/s10339-016-0766-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/18/2016] [Indexed: 11/24/2022]
Abstract
Transcranial magnetic stimulation studies have so far reported the results of mapping the primary motor cortex (M1) for hand and tongue muscles in stuttering disorder. This study was designed to evaluate the feasibility of repetitive navigated transcranial magnetic stimulation (rTMS) for locating the M1 for laryngeal muscle and premotor cortical area in the caudal opercular part of inferior frontal gyrus, corresponding to Broca's area in stuttering subjects by applying new methodology for mapping these motor speech areas. Sixteen stuttering and eleven control subjects underwent rTMS motor speech mapping using modified patterned rTMS. The subjects performed visual object naming task during rTMS applied to the (a) left M1 for laryngeal muscles for recording corticobulbar motor-evoked potentials (CoMEP) from cricothyroid muscle and (b) left premotor cortical area in the caudal opercular part of inferior frontal gyrus while recording long latency responses (LLR) from cricothyroid muscle. The latency of CoMEP in control subjects was 11.75 ± 2.07 ms and CoMEP amplitude was 294.47 ± 208.87 µV, and in stuttering subjects CoMEP latency was 12.13 ± 0.75 ms and 504.64 ± 487.93 µV CoMEP amplitude. The latency of LLR in control subjects was 52.8 ± 8.6 ms and 54.95 ± 4.86 in stuttering subjects. No significant differences were found in CoMEP latency, CoMEP amplitude, and LLR latency between stuttering and control-fluent speakers. These results indicate there are probably no differences in stuttering compared to controls in functional anatomy of the pathway used for transmission of information from premotor cortex to the M1 cortices for laryngeal muscle representation and from there via corticobulbar tract to laryngeal muscles.
Collapse
Affiliation(s)
- Maja Rogić Vidaković
- School of Medicine, Laboratory for Human and Experimental Neurophysiology (LAHEN), Department of Neuroscience, University of Split, Šoltanska 2, 21000, Split, Croatia.
| | - Ana Jerković
- Faculty of Philosophy, University of Zagreb, Ivana Lučića 3, 10000, Zagreb, Croatia
| | - Tomislav Jurić
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Department of Electronics, University of Split, R. Boškovića 32, Split, Croatia
| | - Igor Vujović
- Faculty of Maritime Studies, Signal Processing, Analysis and Advanced Diagnostics Research and Education Laboratory (SPAADREL), University of Split, Ruđera-Boškovića 37, Split, Croatia
| | - Joško Šoda
- Faculty of Maritime Studies, Signal Processing, Analysis and Advanced Diagnostics Research and Education Laboratory (SPAADREL), University of Split, Ruđera-Boškovića 37, Split, Croatia
| | - Nikola Erceg
- Faculty of Humanities and Social Sciences, University of Split, Put iza nove bolnice 10 C, Split, Croatia
| | - Andreja Bubić
- Faculty of Humanities and Social Sciences, University of Split, Put iza nove bolnice 10 C, Split, Croatia
| | - Marina Zmajević Schönwald
- Clinical Medical Centre "Sisters of Mercy", Department of Neurosurgery, Clinical Unit for Intraoperative Neurophysiologic Monitoring, Vinogradska 29 A, Zagreb, Croatia
| | - Pantelis Lioumis
- Bio Mag Laboratory HUS Medical Imaging center, Helsinki University Hospital, P.O. Box 340, 00029, HUS, Helsinki, Finland
| | - Dragan Gabelica
- School of Medicine, Laboratory for Human and Experimental Neurophysiology (LAHEN), Department of Neuroscience, University of Split, Šoltanska 2, 21000, Split, Croatia.,SGM Medical Monitoring, Grge Novaka 22A, 21000, Split, Croatia
| | - Zoran Đogaš
- School of Medicine, Laboratory for Human and Experimental Neurophysiology (LAHEN), Department of Neuroscience, University of Split, Šoltanska 2, 21000, Split, Croatia
| |
Collapse
|
45
|
When will a stuttering moment occur? The determining role of speech motor preparation. Neuropsychologia 2016; 86:93-102. [PMID: 27106391 DOI: 10.1016/j.neuropsychologia.2016.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/28/2016] [Accepted: 04/18/2016] [Indexed: 11/22/2022]
Abstract
The present study aimed to evaluate whether increased activity related to speech motor preparation preceding fluently produced words reflects a successful compensation strategy in stuttering. For this purpose, a contingent negative variation (CNV) was evoked during a picture naming task and measured by use of electro-encephalography. A CNV is a slow, negative event-related potential known to reflect motor preparation generated by the basal ganglia-thalamo-cortical (BGTC) - loop. In a previous analysis, the CNV of 25 adults with developmental stuttering (AWS) was significantly increased, especially over the right hemisphere, compared to the CNV of 35 fluent speakers (FS) when both groups were speaking fluently (Vanhoutte et al., (2015) doi: 10.1016/j.neuropsychologia.2015.05.013). To elucidate whether this increase is a compensation strategy enabling fluent speech in AWS, the present analysis evaluated the CNV of 7 AWS who stuttered during this picture naming task. The CNV preceding AWS stuttered words was statistically compared to the CNV preceding AWS fluent words and FS fluent words. Though no difference emerged between the CNV of the AWS stuttered words and the FS fluent words, a significant reduction was observed when comparing the CNV preceding AWS stuttered words to the CNV preceding AWS fluent words. The latter seems to confirm the compensation hypothesis: the increased CNV prior to AWS fluent words is a successful compensation strategy, especially when it occurs over the right hemisphere. The words are produced fluently because of an enlarged activity during speech motor preparation. The left CNV preceding AWS stuttered words correlated negatively with stuttering frequency and severity suggestive for a link between the left BGTC - network and the stuttering pathology. Overall, speech motor preparatory activity generated by the BGTC - loop seems to have a determining role in stuttering. An important divergence between left and right hemisphere is hypothesized.
Collapse
|
46
|
Vanhoutte S, Santens P, Cosyns M, van Mierlo P, Batens K, Corthals P, De Letter M, Van Borsel J. Increased motor preparation activity during fluent single word production in DS: A correlate for stuttering frequency and severity. Neuropsychologia 2015; 75:1-10. [PMID: 26004061 DOI: 10.1016/j.neuropsychologia.2015.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
|
47
|
Neef NE, Anwander A, Friederici AD. The Neurobiological Grounding of Persistent Stuttering: from Structure to Function. Curr Neurol Neurosci Rep 2015; 15:63. [PMID: 26228377 DOI: 10.1007/s11910-015-0579-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Nicole E Neef
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany,
| | | | | |
Collapse
|
48
|
Speech disorders reflect differing pathophysiology in Parkinson’s disease, progressive supranuclear palsy and multiple system atrophy. J Neurol 2015; 262:992-1001. [DOI: 10.1007/s00415-015-7671-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/20/2015] [Accepted: 02/06/2015] [Indexed: 01/09/2023]
|