1
|
Alamri SH, Haque S, Alghamdi BS, Tayeb HO, Azhari S, Farsi RM, Elmokadem A, Alamri TA, Harakeh S, Prakash A, Kumar V. Comprehensive mapping of mutations in TDP-43 and α-Synuclein that affect stability and binding. J Biomol Struct Dyn 2025; 43:1818-1830. [PMID: 38126188 DOI: 10.1080/07391102.2023.2293258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
Abnormal aggregation and amyloid inclusions of TAR DNA-binding protein 43 (TDP-43) and α-Synuclein (α-Syn) are frequently co-observed in amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. Several reports showed TDP-43 C-terminal domain (CTD) and α-Syn interact with each other and the aggregates of these two proteins colocalized together in different cellular and animal models. Molecular dynamics simulation was conducted to elucidate the stability of the TDP-43 and Syn complex structure. The interfacial mutations in protein complexes changes the stability and binding affinity of the protein that may cause diseases. Here, we have utilized the computational saturation mutagenesis approach including structure-based stability and binding energy calculations to compute the systemic effects of missense mutations of TDP-43 CTD and α-Syn on protein stability and binding affinity. Most of the interfacial mutations of CTD and α-Syn were found to destabilize the protein and reduced the protein binding affinity. The results thus shed light on the functional consequences of missense mutations observed in TDP-43 associated proteinopathies and may provide the mechanisms of co-morbidities involving these two proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sultan H Alamri
- Department of Family Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Badra S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haythum O Tayeb
- The Mind and Brain Studies Initiative, Neuroscience Research Unit, Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shereen Azhari
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem M Farsi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abear Elmokadem
- Department of Hematology/Pediatric Oncology, King Abdulaziz University Hospital, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turki A Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Jeddah, Saudi Arabia
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health (AIISH), Amity University Haryana, Gurgaon, India
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, India
| |
Collapse
|
2
|
Cheng YW, Lin YJ, Lin YS, Hong WP, Kuan YC, Wu KY, Hsu JL, Wang PN, Pai MC, Chen CS, Fuh JL, Hu CJ, Chiu MJ. Application of blood-based biomarkers of Alzheimer's disease in clinical practice: Recommendations from Taiwan Dementia Society. J Formos Med Assoc 2024; 123:1210-1217. [PMID: 38296698 DOI: 10.1016/j.jfma.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/29/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Blood-based biomarkers (BBM) are potentially powerful tools that assist in the biological diagnosis of Alzheimer's disease (AD) in vivo with minimal invasiveness, relatively low cost, and good accessibility. This review summarizes current evidence for using BBMs in AD, focusing on amyloid, tau, and biomarkers for neurodegeneration. Blood-based phosphorylated tau and the Aβ42/Aβ40 ratio showed consistent concordance with brain pathology measured by CSF or PET in the research setting. In addition, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are neurodegenerative biomarkers that show the potential to assist in the differential diagnosis of AD. Other pathology-specific biomarkers, such as α-synuclein and TAR DNA-binding protein 43 (TDP-43), can potentially detect AD concurrent pathology. Based on current evidence, the working group from the Taiwan Dementia Society (TDS) achieved consensus recommendations on the appropriate use of BBMs for AD in clinical practice. BBMs may assist clinical diagnosis and prognosis in AD subjects with cognitive symptoms; however, the results should be interpreted by dementia specialists and combining biochemical, neuropsychological, and neuroimaging information. Further studies are needed to evaluate BBMs' real-world performance and potential impact on clinical decision-making.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ju Lin
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yung-Shuan Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Pin Hong
- Department of Neurology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Chun Kuan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology and Dementia Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yi Wu
- Department of Psychiatry, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jung-Lung Hsu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City, Taiwan; Graduate Institute of Mind, Brain, & Consciousness, Taipei Medical University, Taipei, Taiwan; Brain & Consciousness Research Center, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Alzheimer's Disease Research Center, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology and Dementia Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Pongrácová E, Buratti E, Romano M. Prion-like Spreading of Disease in TDP-43 Proteinopathies. Brain Sci 2024; 14:1132. [PMID: 39595895 PMCID: PMC11591745 DOI: 10.3390/brainsci14111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
TDP-43 is a ubiquitous nuclear protein that plays a central role in neurodegenerative disorders collectively known as TDP-43 proteinopathies. Under physiological conditions, TDP-43 is primarily localized to the nucleus, but in its pathological form it aggregates in the cytoplasm, contributing to neuronal death. Given its association with numerous diseases, particularly ALS and FTLD, the mechanisms underlying TDP-43 aggregation and its impact on neuronal function have been extensively investigated. However, little is still known about the spreading of this pathology from cell to cell. Recent research has unveiled the possibility that TDP-43 may possess prion-like properties. Specifically, misfolded TDP-43 aggregates can act as templates inducing conformational changes in native TDP-43 molecules and propagating the misfolded state across neural networks. This review summarizes the mounting and most recent evidence from in vitro and in vivo studies supporting the prion-like hypothesis and its underlying mechanisms. The prion-like behavior of TDP-43 has significant implications for diagnostics and therapeutics. Importantly, emerging strategies such as small molecule inhibitors, immunotherapies, and gene therapies targeting TDP-43 propagation offer promising avenues for developing effective treatments. By elucidating the mechanisms of TDP-43 spreading, we therefore aim to pave the way for novel therapies for TDP-43-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Emma Pongrácová
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio, 28, 34127 Trieste, Italy
| |
Collapse
|
4
|
Thumbadoo KM, Dieriks BV, Murray HC, Swanson MEV, Yoo JH, Mehrabi NF, Turner C, Dragunow M, Faull RLM, Curtis MA, Siddique T, Shaw CE, Newell KL, Henden L, Williams KL, Nicholson GA, Scotter EL. Hippocampal aggregation signatures of pathogenic UBQLN2 in amyotrophic lateral sclerosis and frontotemporal dementia. Brain 2024; 147:3547-3561. [PMID: 38703371 PMCID: PMC11449146 DOI: 10.1093/brain/awae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 05/06/2024] Open
Abstract
Pathogenic variants in the UBQLN2 gene cause X-linked dominant amyotrophic lateral sclerosis and/or frontotemporal dementia characterized by ubiquilin 2 aggregates in neurons of the motor cortex, hippocampus and spinal cord. However, ubiquilin 2 neuropathology is also seen in sporadic and familial amyotrophic lateral sclerosis and/or frontotemporal dementia cases not caused by UBQLN2 pathogenic variants, particularly C9orf72-linked cases. This makes the mechanistic role of mutant ubiquilin 2 protein and the value of ubiquilin 2 pathology for predicting genotype unclear. Here we examine a cohort of 44 genotypically diverse amyotrophic lateral sclerosis cases with or without frontotemporal dementia, including eight cases with UBQLN2 variants [resulting in p.S222G, p.P497H, p.P506S, p.T487I (two cases) and p.P497L (three cases)]. Using multiplexed (five-label) fluorescent immunohistochemistry, we mapped the co-localization of ubiquilin 2 with phosphorylated TDP-43, dipeptide repeat aggregates and p62 in the hippocampus of controls (n = 6), or amyotrophic lateral sclerosis with or without frontotemporal dementia in sporadic (n = 20), unknown familial (n = 3), SOD1-linked (n = 1), FUS-linked (n = 1), C9orf72-linked (n = 5) and UBQLN2-linked (n = 8) cases. We differentiate between (i) ubiquilin 2 aggregation together with phosphorylated TDP-43 or dipeptide repeat proteins; and (ii) ubiquilin 2 self-aggregation promoted by UBQLN2 pathogenic variants that cause amyotrophic lateral sclerosis and/or frontotemporal dementia. Overall, we describe a hippocampal protein aggregation signature that fully distinguishes mutant from wild-type ubiquilin 2 in amyotrophic lateral sclerosis with or without frontotemporal dementia, whereby mutant ubiquilin 2 is more prone than wild-type to aggregate independently of driving factors. This neuropathological signature can be used to assess the pathogenicity of UBQLN2 gene variants and to understand the mechanisms of UBQLN2-linked disease.
Collapse
Affiliation(s)
- Kyrah M Thumbadoo
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
| | - Birger V Dieriks
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Helen C Murray
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Molly E V Swanson
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Ji Hun Yoo
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1010, New Zealand
| | - Nasim F Mehrabi
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Clinton Turner
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland 1010, New Zealand
| | - Michael Dragunow
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1010, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Teepu Siddique
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Christopher E Shaw
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- UK Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lyndal Henden
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kelly L Williams
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Garth A Nicholson
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Northcott Neuroscience Laboratory, Australian and New Zealand Army Corps (ANZAC) Research Institute, Concord, New South Wales 2139, Australia
- Faculty of Medicine, University of Sydney, Sydney, New South Wales 2050, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia
| | - Emma L Scotter
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
5
|
Kiernan MC, Kaji R. Emerging concepts and therapies for amyotrophic lateral sclerosis. Curr Opin Neurol 2024; 37:558-559. [PMID: 39224919 DOI: 10.1097/wco.0000000000001308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Affiliation(s)
- Matthew C Kiernan
- Neuroscience Research Australia; University of New South Wales
- Neurology Department, South Eastern Sydney Local Health District, Sydney, New South Wales, Australia
| | - Ryuji Kaji
- Department of Neurology, Tokushima University, Tokushima, Japan
| |
Collapse
|
6
|
Devenney EM, Anh N Nguyen Q, Tse NY, Kiernan MC, Tan RH. A scoping review of the unique landscape and challenges associated with dementia in the Western Pacific region. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 50:101192. [PMID: 39399870 PMCID: PMC11471059 DOI: 10.1016/j.lanwpc.2024.101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/14/2024] [Accepted: 08/22/2024] [Indexed: 10/15/2024]
Abstract
Dementia is a leading public health crisis that is projected to affect 152.8 million individuals by 2050, over half of whom will be living in the Western Pacific region. To determine the challenges and opportunities for capacity building in the region, this scoping review searched databases. Our findings reveal national and ethnoracial differences in the prevalence, literacy and genetic risk factors associated with dementia syndromes, underscoring the need to identify and mitigate relevant risk factors in this region. Importantly, ∼80% of research was derived from higher income countries, where the establishment of patient registries and biobanks reflect increased efforts and allocation of resources towards understanding the pathogenesis of dementia. We discuss the need for increased public awareness through culturally-relevant policies, the potential to support patients and caregivers through digital strategies and development of regional networks to mitigate the growing social impact and economic burden of dementia in this region. Funding FightMND Mid-Career Fellowship, NHMRC EL1 Fellowship, NHMRC Practitioner Fellowship (1156093), NHMRC Postgraduate scholarship (2022387).
Collapse
Affiliation(s)
- Emma M. Devenney
- Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales, 2050, Australia
- Faculty of Medicine and Health Translative Collective, University of Sydney, 3 Parramatta Road, Camperdown, New South Wales, 2050, Australia
| | - Quynh Anh N Nguyen
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 3 Parramatta Road, Camperdown, New South Wales, 2050, Australia
| | - Nga Yan Tse
- Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales, 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, G02 - Jane Foss Russell Building, The University of Sydney New South Wales, 2006, Australia
| | - Matthew C. Kiernan
- Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales, 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, G02 - Jane Foss Russell Building, The University of Sydney New South Wales, 2006, Australia
- Neuroscience Research Australia, 139 Barker Street, Randwick, New South Wales, 2031, Australia
| | - Rachel H. Tan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 3 Parramatta Road, Camperdown, New South Wales, 2050, Australia
- Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales, 2050, Australia
| |
Collapse
|
7
|
Mihailescu S, Hlava Q, Cook PA, Mandelli ML, Lee SE, Boeve BF, Dickerson BC, Gorno-Tempini ML, Rogalski E, Grossman M, Gee J, McMillan CT, Olm CA. Boundary-based registration improves sensitivity for detecting hypoperfusion in sporadic frontotemporal lobar degeneration. Front Neurol 2024; 15:1452944. [PMID: 39233675 PMCID: PMC11371585 DOI: 10.3389/fneur.2024.1452944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Frontotemporal lobar degeneration (FTLD) is associated with FTLD due to tau (FTLD-tau) or TDP (FTLD-TDP) inclusions found at autopsy. Arterial Spin Labeling (ASL) MRI is often acquired in the same session as a structural T1-weighted image (T1w), enabling detection of regional changes in cerebral blood flow (CBF). We hypothesize that ASL-T1w registration with more degrees of freedom using boundary-based registration (BBR) will better align ASL and T1w images and show increased sensitivity to regional hypoperfusion differences compared to manual registration in patient participants. We hypothesize that hypoperfusion will be associated with a clinical measure of disease severity, the FTLD-modified clinical dementia rating scale sum-of-boxes (FTLD-CDR). Materials and methods Patients with sporadic likely FTLD-tau (sFTLD-tau; N = 21), with sporadic likely FTLD-TDP (sFTLD-TDP; N = 14), and controls (N = 50) were recruited from the Connectomic Imaging in Familial and Sporadic Frontotemporal Degeneration project (FTDHCP). Pearson's Correlation Coefficients (CC) were calculated on cortical vertex-wise CBF between each participant for each of 3 registration methods: (1) manual registration, (2) BBR initialized with manual registration (manual+BBR), (3) and BBR initialized using FLIRT (FLIRT+BBR). Mean CBF was calculated in the same regions of interest (ROIs) for each registration method after image alignment. Paired t-tests of CC values for each registration method were performed to compare alignment. Mean CBF in each ROI was compared between groups using t-tests. Differences were considered significant at p < 0.05 (Bonferroni-corrected). We performed linear regression to relate FTLD-CDR to mean CBF in patients with sFTLD-tau and sFTLD-TDP, separately (p < 0.05, uncorrected). Results All registration methods demonstrated significant hypoperfusion in frontal and temporal regions in each patient group relative to controls. All registration methods detected hypoperfusion in the left insular cortex, middle temporal gyrus, and temporal pole in sFTLD-TDP relative to sFTLD-tau. FTLD-CDR had an inverse association with CBF in right temporal and orbitofrontal ROIs in sFTLD-TDP. Manual+BBR performed similarly to FLIRT+BBR. Discussion ASL is sensitive to distinct regions of hypoperfusion in patient participants relative to controls, and in patients with sFTLD-TDP relative to sFTLD-tau, and decreasing perfusion is associated with increasing disease severity, at least in sFTLD-TDP. BBR can register ASL-T1w images adequately for controls and patients.
Collapse
Affiliation(s)
- Sylvia Mihailescu
- School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Quinn Hlava
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Philip A Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Maria Luisa Mandelli
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Emily Rogalski
- Healthy Aging & Alzheimer's Care Center, University of Chicago, Chicago, IL, United States
- Department of Neurology, University of Chicago, Chicago, IL, United States
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - James Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher A Olm
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Zheng X, Wang M, He Q, Chen S, Simayi D, Ma X, Zhao J, Sun X, Yang P, Mao Q, Xia H. Production and characterization of novel monoclonal antibodies against pathological human TDP-43 proteins. J Neuropathol Exp Neurol 2024; 83:655-669. [PMID: 38728009 PMCID: PMC11258413 DOI: 10.1093/jnen/nlae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
The RNA/DNA-binding protein TDP-43 plays a pivotal role in the ubiquitinated inclusions characteristic of TDP-43 proteinopathies, including most cases of frontotemporal lobar degeneration (FTLD-TDP) and Alzheimer disease (AD). To understand the mechanisms of pathological TDP-43 processing and identify potential biomarkers, we generated novel phosphorylation-independent monoclonal antibodies (MAbs) using bacteria-expressed human full-length recombinant TDP-43. Remarkably, we identified a distinctive MAb, No. 9, targeting an epitope in amino acid (aa) region 311-360 of the C-terminus. This antibody showed preferential reactivity for pathological TDP-43 inclusions, with only mild reactivity for normal nuclear TDP-43. MAb No. 9 revealed more pathology in FTLD-TDP type A and type B brains and in AD brains compared to the commercial p409/410 MAb. Using synthetic phosphorylated peptides, we also obtained MAbs targeting the p409/410 epitope. Interestingly, MAb No. 14 was found to reveal additional pathology in AD compared to the commercial p409/410 MAb, specifically, TDP-43-immunopositive deposits with amyloid plaques in AD brains. These unique immunopositivities observed with MAbs No. 9 and No. 14 are likely attributed to their conformation-dependent binding to TDP-43 inclusions. We expect that this novel set of MAbs will prove valuable as tools for future patient-oriented investigations into TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Xiaojing Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Mengtian Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Qiongyan He
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Shuyu Chen
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Dilihumaer Simayi
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Xia Ma
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Xiaohong Sun
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Peiyan Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| |
Collapse
|
9
|
Tomé SO, Gawor K, Thal DR. LATE-NC in Alzheimer's disease: Molecular aspects and synergies. Brain Pathol 2024; 34:e13213. [PMID: 37793659 PMCID: PMC11189776 DOI: 10.1111/bpa.13213] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Alzheimer's disease (AD) is classically characterized by senile plaques and neurofibrillary tangles (NFTs). However, multiple copathologies can be observed in the AD brain and contribute to the development of cognitive decline. Limbic-predominant age-related TDP-43 encephalopathy neuropathological changes (LATE-NC) accumulates in the majority of AD cases and leads to more severe cognitive decline compared with AD pathology alone. In this review, we focus on the synergistic relationship between LATE-NC and tau in AD, highlighting the aggravating role of TDP-43 aggregates on tau pathogenesis and its impact on the clinical picture and therapeutic strategies. Additionally, we discuss to what extent the molecular patterns of LATE-NC in AD differ from frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) neuropathological changes. Thus, we highlight the importance of tau and TDP-43 synergies for subtyping AD patients, which may respond differently to therapeutic interventions depending on the presence of comorbid LATE-NC.
Collapse
Grants
- 10810 Alzheimer Forschung Initiative (Germany)
- 13803 Alzheimer Forschung Initiative (Germany)
- 22-AAIIA-963171 Alzheimer's Association (USA)
- A2022019F BrightFocus Foundation (USA)
- TH-624-4-1 Deutsche Forschungsgemeinschaft (DFG, Germany)
- 4-2 Deutsche Forschungsgemeinschaft (DFG, Germany)
- 6-1 Deutsche Forschungsgemeinschaft (DFG, Germany)
- G065721N Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- G0F8516N Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- 2020/017 Stichting Alzheimer Onderzoek (SAO/FRA, Belgium)
- C3/20/057 Onderzoeksraad, KU Leuven (Belgium)
- PDMT2/21/069 Onderzoeksraad, KU Leuven (Belgium)
- IWT 135043 Vlaamse Impulsfinanciering voor Netwerken voor Dementie-onderzoek (Belgium)
- Alzheimer Forschung Initiative (Germany)
- Alzheimer's Association (USA)
- BrightFocus Foundation (USA)
- Deutsche Forschungsgemeinschaft (DFG, Germany)
- Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- Onderzoeksraad, KU Leuven (Belgium)
Collapse
Affiliation(s)
- Sandra O. Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Department of PathologyUniversity Hospitals of LeuvenLeuvenBelgium
| |
Collapse
|
10
|
Tan RH, McCann H, Shepherd CE, Pinkerton M, Mazumder S, Devenney EM, Adler GL, Rowe DB, Kril J, Halliday GM, Kiernan MC. Heterogeneity of cortical pTDP-43 inclusion morphologies in amyotrophic lateral sclerosis. Acta Neuropathol Commun 2023; 11:180. [PMID: 37957721 PMCID: PMC10642010 DOI: 10.1186/s40478-023-01670-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Despite the presence of significant cortical pTDP-43 inclusions of heterogeneous morphologies in patients diagnosed with amyotrophic lateral sclerosis (ALS), pathological subclassification is routinely performed in the minority of patients with concomitant frontotemporal dementia (FTD). OBJECTIVE In order to improve current understanding of the presence and relevance of pathological pTDP-43 subtypes in ALS, the present study examined the pattern of cortical pTDP-43 aggregates in 61 ALS cases without FTD. RESULTS Based on the presence, morphology and composition of pTDP-43 pathology, three distinct ALS-TDP subtypes were delineated: (1) A predominant pattern of pTDP-43 granulofilamentous neuronal inclusions (GFNIs) and grains that were immuno-negative for p62 was identified in 18% of cases designated ALS-TDP type E; (2) neuronal cytoplasmic inclusions (NCIs) that were immuno-positive for both pTDP-43 and p62 were observed in 67% of cases assigned ALS-TDP type B; and (3) scarce cortical pTDP-43 and p62 aggregates were identified in 15% of cases coined ALS-TDP type SC (scarce cortical). Quantitative analyses revealed a significantly greater burden of pTDP-43 GFNI and grains in ALS-TDP type E. Principal component analysis demonstrated significant relationships between GFNIs, grains and ALS-TDP subtypes to support the distinction of subtypes E and B. No significant difference in age at death or disease duration was found between ALS-TDP subgroups to suggest that these subtypes represent earlier or later stages of the same disease process. Instead, a significantly higher ALS-TDP stage, indicating greater topographical spread of pTDP-43, was identified in ALS-TDP type E. Alzheimer's disease neuropathological change (ABC score ≥ intermediate) and Lewy body disease (Braak stage ≥ IV) was more prevalent in the ALS-TDP type SC cohort, which also demonstrated a significantly lower overall cognitive score. CONCLUSION In summary, the present study demonstrates that ALS-TDP does not represent a single homogenous neuropathology. We propose the subclassification of ALS-TDP into three distinct subtypes using standard immuno-stains for pTDP-43 and p62 in the motor cortex, which is routinely sampled and evaluated for diagnostic neuropathological characterisation of ALS. We propose that future studies specify both clinicopathological group and pTDP-43 subtype to advance current understanding of the pathogenesis of clinical phenotypes in pTDP-43 proteinopathies, which will have significant relevance to the development of targeted therapies for this heterogeneous disorder.
Collapse
Affiliation(s)
- Rachel H Tan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| | - Heather McCann
- Neuroscience Research Australia, Randwick, NSW, Australia
| | | | - Monica Pinkerton
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Srestha Mazumder
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Emma M Devenney
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Gabrielle L Adler
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Dominic B Rowe
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Jillian Kril
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- Dementia Research Centre, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
11
|
Estades Ayuso V, Pickles S, Todd T, Yue M, Jansen-West K, Song Y, González Bejarano J, Rawlinson B, DeTure M, Graff-Radford NR, Boeve BF, Knopman DS, Petersen RC, Dickson DW, Josephs KA, Petrucelli L, Prudencio M. TDP-43-regulated cryptic RNAs accumulate in Alzheimer's disease brains. Mol Neurodegener 2023; 18:57. [PMID: 37605276 PMCID: PMC10441763 DOI: 10.1186/s13024-023-00646-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Inclusions of TAR DNA-binding protein 43 kDa (TDP-43) has been designated limbic-predominant, age-related TDP-43 encephalopathy (LATE), with or without co-occurrence of Alzheimer's disease (AD). Approximately, 30-70% AD cases present TDP-43 proteinopathy (AD-TDP), and a greater disease severity compared to AD patients without TDP-43 pathology. However, it remains unclear to what extent TDP-43 dysfunction is involved in AD pathogenesis. METHODS To investigate whether TDP-43 dysfunction is a prominent feature in AD-TDP cases, we evaluated whether non-conserved cryptic exons, which serve as a marker of TDP-43 dysfunction in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP), accumulate in AD-TDP brains. We assessed a cohort of 192 post-mortem brains from three different brain regions: amygdala, hippocampus, and frontal cortex. Following RNA and protein extraction, qRT-PCR and immunoassays were performed to quantify the accumulation of cryptic RNA targets and phosphorylated TDP-43 pathology, respectively. RESULTS We detected the accumulation of misspliced cryptic or skiptic RNAs of STMN2, KCNQ2, UNC13A, CAMK2B, and SYT7 in the amygdala and hippocampus of AD-TDP cases. The topographic distribution of cryptic RNA accumulation mimicked that of phosphorylated TDP-43, regardless of TDP-43 subtype classification. Further, cryptic RNAs efficiently discriminated AD-TDP cases from controls. CONCLUSIONS Overall, our results indicate that cryptic RNAs may represent an intriguing new therapeutic and diagnostic target in AD, and that methods aimed at detecting and measuring these species in patient biofluids could be used as a reliable tool to assess TDP-43 pathology in AD. Our work also raises the possibility that TDP-43 dysfunction and related changes in cryptic splicing could represent a common molecular mechanism shared between AD-TDP and FTLD-TDP.
Collapse
Affiliation(s)
- Virginia Estades Ayuso
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Sarah Pickles
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Tiffany Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Yuping Song
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | | | | | | | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | | | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA.
- Department of Research, Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.
| |
Collapse
|
12
|
Pinkerton M, Lourenco G, Pacheco MT, Halliday GM, Kiernan MC, Tan RH. Survival in sporadic ALS is associated with lower p62 burden in the spinal cord. J Neuropathol Exp Neurol 2023; 82:769-773. [PMID: 37414530 PMCID: PMC10440721 DOI: 10.1093/jnen/nlad051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
The autophagy marker p62 appears as a consistent component of pathological aggregates in amyotrophic lateral sclerosis (ALS) and its modulation to facilitate protein degradation has been proposed as a potential therapeutic target. Importantly, recent studies have implicated diffuse phosphorylated TDP-43 inclusions that are immuno-negative for p62 in more rapid disease, highlighting the need for better understanding of p62 involvement in ALS pathogenesis. The present study set out to assess p62 pathology in the motor neurons of 31 patients with sporadic ALS that had either a short (<2 years) or longer (4-7 years) disease duration to determine its association with pTDP-43 pathology, motor neuron loss, and survival in sporadic disease. Our results identified significantly more cytoplasmic p62 aggregates in the spinal cord of patients with a shorter survival. Disease duration demonstrated a negative association with p62 burden and density of remaining motor neurons in the spinal cord, suggesting that survival in sporadic ALS is associated with the successful clearance of lower motor neurons with p62 aggregates. These findings implicate the autophagy pathway in ALS survival and provide support for further study of p62 as a potential prognostic biomarker in ALS.
Collapse
Affiliation(s)
- Monica Pinkerton
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Guinevere Lourenco
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | | | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Rachel H Tan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
13
|
Yang Y, Rowe D, McCann H, Shepherd CE, Kril JJ, Kiernan MC, Halliday GM, Tan RH. Treatment with the copper compound CuATSM has no significant effect on motor neuronal pathology in patients with ALS. Neuropathol Appl Neurobiol 2023; 49:e12919. [PMID: 37317638 PMCID: PMC10947464 DOI: 10.1111/nan.12919] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/26/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
AIMS Although the orally available brain-penetrant copper compound CuATSM has demonstrated promising effects in SOD1-linked mouse models, the impact of CuATSM on disease pathology in patients with amyotrophic lateral sclerosis (ALS) remains unknown. METHODS The present study set out to address this deficit by performing the first pilot comparative analysis of ALS pathology in patients that had been administered CuATSM and riluzole [N = 6 cases composed of ALS-TDP (n = 5) and ALS-SOD1 (n = 1)] versus riluzole only [N = 6 cases composed of ALS-TDP (n = 4) and ALS-SOD1 (n = 2)]. RESULTS Our results revealed no significant difference in neuron density or TDP-43 burden in the motor cortex and spinal cord of patients that had received CuATSM compared with patients that had not. In patients that had received CuATSM, p62-immunoreactive astrocytes were observed in the motor cortex and reduced Iba1 density was found in the spinal cord. However, no significant difference in measures of astrocytic activity and SOD1 immunoreactivity was found with CuATSM treatment. DISCUSSION These findings, in this first postmortem investigation of patients with ALS in CuATSM trials, demonstrate that in contrast to that seen in preclinical models of disease, CuATSM does not significantly alleviate neuronal pathology or astrogliosis in patients with ALS.
Collapse
Affiliation(s)
- Yue Yang
- Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
- Faculty of Medicine and Health, School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Dominic Rowe
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Heather McCann
- Neuroscience Research AustraliaRandwickNew South WalesAustralia
| | | | - Jillian J. Kril
- Faculty of Medicine and Health, School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
- Dementia Research Centre, Macquarie Medical SchoolMacquarie UniversitySydneyNew South WalesAustralia
| | - Matthew C. Kiernan
- Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
- Institute of Clinical NeurosciencesRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
| | - Glenda M. Halliday
- Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
- Faculty of Medicine and Health, School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Rachel H. Tan
- Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
- Faculty of Medicine and Health, School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
14
|
Fiondella L, Gami-Patel P, Blok CA, Rozemuller AJM, Hoozemans JJM, Pijnenburg YAL, Scarioni M, Dijkstra AA. Movement disorders are linked to TDP-43 burden in the substantia nigra of FTLD-TDP brain donors. Acta Neuropathol Commun 2023; 11:63. [PMID: 37046309 PMCID: PMC10091586 DOI: 10.1186/s40478-023-01560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Movement disorders (MD) have been linked to degeneration of the substantia nigra (SN) in Parkinson's disease and include bradykinesia, rigidity, and tremor. They are also present in frontotemporal dementia (FTD), where MD have been linked to frontotemporal lobar degeneration with tau pathology (FTLD-tau). Although MD can also occur in FTLD with TDP-43 pathology (FTLD-TDP), the local pathology in the SN of FTLD-TDP patients with MD is currently unexplored. The aims of this study are to characterize the frequency and the nature of MD in a cohort of FTLD-TDP brain donors and to investigate the relationship between the presence of MD, the nigral neuronal loss, and the TDP-43 burden in the SN. From our cohort of FTLD-TDP patients (n = 53), we included 13 donors who presented with MD (FTLD-MD+), and nine age-sex matched donors without MD (FTLD-MD-) for whom the SN was available. In these donors, the TDP-43 burden and the neuronal density in the SN were assessed with ImageJ and Qupath software. The results were compared between the two groups using T-test. We found that the TDP-43 burden in the SN was higher in FTLD-MD+ (mean 3,43%, SD ± 2,7) compared to FTLD-MD- (mean 1,21%, SD ± 0,67) (p = 0,04), while no significant difference in nigral neuronal density was found between the groups (p = 0,09). 17% of FTLD-TDP patients developed MD, which present as symmetric akinetic-rigid parkinsonism or CBS. Given the absence of a significant nigral neuronal cell loss, TDP-43 induced neuronal dysfunction could be sufficient to cause MD.
Collapse
Affiliation(s)
- Luigi Fiondella
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, De Boelelaan 1118, Amsterdam, 1081 HZ, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Priya Gami-Patel
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Christian A Blok
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, De Boelelaan 1118, Amsterdam, 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Marta Scarioni
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, De Boelelaan 1118, Amsterdam, 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Anke A Dijkstra
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, De Boelelaan 1118, Amsterdam, 1081 HZ, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Nelson PT, Lee EB, Cykowski MD, Alafuzoff I, Arfanakis K, Attems J, Brayne C, Corrada MM, Dugger BN, Flanagan ME, Ghetti B, Grinberg LT, Grossman M, Grothe MJ, Halliday GM, Hasegawa M, Hokkanen SRK, Hunter S, Jellinger K, Kawas CH, Keene CD, Kouri N, Kovacs GG, Leverenz JB, Latimer CS, Mackenzie IR, Mao Q, McAleese KE, Merrick R, Montine TJ, Murray ME, Myllykangas L, Nag S, Neltner JH, Newell KL, Rissman RA, Saito Y, Sajjadi SA, Schwetye KE, Teich AF, Thal DR, Tomé SO, Troncoso JC, Wang SHJ, White CL, Wisniewski T, Yang HS, Schneider JA, Dickson DW, Neumann M. LATE-NC staging in routine neuropathologic diagnosis: an update. Acta Neuropathol 2023; 145:159-173. [PMID: 36512061 PMCID: PMC9849315 DOI: 10.1007/s00401-022-02524-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.
Collapse
Affiliation(s)
- Peter T Nelson
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, USA.
| | - Edward B Lee
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología Y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Qinwen Mao
- University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Liisa Myllykangas
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | - Janna H Neltner
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, USA
| | | | | | - Yuko Saito
- Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology, Tokyo, Japan
| | | | | | | | - Dietmar R Thal
- Laboratory for Neuropathology, Department of Imaging and Pathoogy, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathoogy, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | | | - Charles L White
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Hyun-Sik Yang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, BostonBoston, MAMA, USA
| | | | | | | |
Collapse
|
16
|
Carlos AF, Machulda MM, Rutledge MH, Nguyen AT, Reichard RR, Baker MC, Rademakers R, Dickson DW, Petersen RC, Josephs KA. Comparison of Clinical, Genetic, and Pathologic Features of Limbic and Diffuse Transactive Response DNA-Binding Protein 43 Pathology in Alzheimer's Disease Neuropathologic Spectrum. J Alzheimers Dis 2023; 93:1521-1535. [PMID: 37182869 PMCID: PMC10923399 DOI: 10.3233/jad-221094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Increasing evidence suggests that TAR DNA-binding protein 43 (TDP-43) pathology in Alzheimer's disease (AD), or AD-TDP, can be diffuse or limbic-predominant. Understanding whether diffuse AD-TDP has genetic, clinical, and pathological features that differ from limbic AD-TDP could have clinical and research implications. OBJECTIVE To better characterize the clinical and pathologic features of diffuse AD-TDP and differentiate it from limbic AD-TDP. METHODS 363 participants from the Mayo Clinic Study of Aging, Alzheimer's Disease Research Center, and Neurodegenerative Research Group with autopsy confirmed AD and TDP-43 pathology were included. All underwent genetic, clinical, neuropsychologic, and neuropathologic evaluations. AD-TDP pathology distribution was assessed using the Josephs 6-stage scale. Stages 1-3 were classified as Limbic, those 4-6 as Diffuse. Multivariable logistic regression was used to identify clinicopathologic features that independently predicted diffuse pathology. RESULTS The cohort was 61% female and old at onset (median: 76 years [IQR:70-82]) and death (median: 88 years [IQR:82-92]). Fifty-four percent were Limbic and 46% Diffuse. Clinically, ∼10-20% increases in odds of being Diffuse associated with 5-year increments in age at onset (p = 0.04), 1-year longer disease duration (p = 0.02), and higher Neuropsychiatric Inventory scores (p = 0.03), while 15-second longer Trailmaking Test-B times (p = 0.02) and higher Block Design Test scores (p = 0.02) independently decreased the odds by ~ 10-15%. There was evidence for association of APOEɛ4 allele with limbic AD-TDP and of TMEM106B rs3173615 C allele with diffuse AD-TDP. Pathologically, widespread amyloid-β plaques (Thal phases: 3-5) decreased the odds of diffuse TDP-43 pathology by 80-90%, while hippocampal sclerosis increased it sixfold (p < 0.001). CONCLUSION Diffuse AD-TDP shows clinicopathologic and genetic features different from limbic AD-TDP.
Collapse
Affiliation(s)
- Arenn F. Carlos
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary M. Machulda
- Department of Psychology and Psychiatry, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Aivi T. Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - R. Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew C. Baker
- Department of Neuroscience (Neuropathology), Mayo Clinic, Jacksonville, FL 32224, USA
| | - Rosa Rademakers
- Department of Neuroscience (Neuropathology), Mayo Clinic, Jacksonville, FL 32224, USA
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Flanders 2000, Belgium
| | - Dennis W. Dickson
- Department of Neuroscience (Neuropathology), Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
17
|
Phan K, He Y, Bhatia S, Pickford R, McDonald G, Mazumder S, Timmins HC, Hodges JR, Piguet O, Dzamko N, Halliday GM, Kiernan MC, Kim WS. Multiple pathways of lipid dysregulation in amyotrophic lateral sclerosis. Brain Commun 2022; 5:fcac340. [PMID: 36632187 PMCID: PMC9825811 DOI: 10.1093/braincomms/fcac340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/02/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic lateral sclerosis is a rapidly progressing neurodegenerative disease characterized by the degeneration of motor neurons and loss of various muscular functions. Dyslipidaemia is prevalent in amyotrophic lateral sclerosis with aberrant changes mainly in cholesterol ester and triglyceride. Despite this, little is known about global lipid changes in amyotrophic lateral sclerosis or in relation to disease progression. The present study incorporated a longitudinal lipidomic analysis of amyotrophic lateral sclerosis serum with a comparison with healthy controls using advanced liquid chromatography-mass spectrometry. The results established that diglyceride, the precursor of triglyceride, was enriched the most, while ceramide was depleted the most in amyotrophic lateral sclerosis compared with controls, with the diglyceride species (18:1/18:1) correlating significantly to neurofilament light levels. The prenol lipid CoQ8 was also decreased in amyotrophic lateral sclerosis and correlated to neurofilament light levels. Most interestingly, the phospholipid phosphatidylethanolamine and its three derivatives decreased with disease progression, in contrast to changes with normal ageing. Unsaturated lipids that are prone to lipid peroxidation were elevated with disease progression with increases in the formation of toxic lipid products. Furthermore, in vitro studies revealed that phosphatidylethanolamine synthesis modulated TARDBP expression in SH-SY5Y neuronal cells. Finally, diglyceride, cholesterol ester and ceramide were identified as potential lipid biomarkers for amyotrophic lateral sclerosis diagnosis and monitoring disease progression. In summary, this study represents a longitudinal lipidomics analysis of amyotrophic lateral sclerosis serum and has provided new insights into multiple pathways of lipid dysregulation in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
| | | | | | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Gordon McDonald
- The University of Sydney, Sydney Informatics Hub, Sydney, NSW, Australia
| | - Srestha Mazumder
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia
| | - Hannah C Timmins
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia
| | - John R Hodges
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia
| | - Olivier Piguet
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia,The University of Sydney, School of Psychology, Sydney, NSW, Australia
| | - Nicolas Dzamko
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Glenda M Halliday
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Matthew C Kiernan
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Woojin Scott Kim
- Correspondence to: W. S. Kim, Associate Professor Brain and Mind Centre, The University of Sydney Camperdown NSW 2050, Australia E-mail:
| |
Collapse
|
18
|
Mazumder S, Kiernan MC, Halliday GM, Timmins HC, Mahoney CJ. The contribution of brain banks to knowledge discovery in amyotrophic lateral sclerosis: A systematic review. Neuropathol Appl Neurobiol 2022; 48:e12845. [PMID: 35921237 PMCID: PMC9804699 DOI: 10.1111/nan.12845] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/17/2022] [Accepted: 07/23/2022] [Indexed: 01/09/2023]
Abstract
Over the past decade, considerable efforts have been made to accelerate pathophysiological understanding of fatal neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) with brain banks at the forefront. In addition to exploratory disease mechanisms, brain banks have aided our understanding with regard to clinical diagnosis, genetics and cell biology. Across neurodegenerative disorders, the impact of brain tissue in ALS research has yet to be quantified. This review aims to outline (i) how postmortem tissues from brain banks have influenced our understanding of ALS over the last 15 years, (ii) correlate the location of dedicated brain banks with the geographical prevalence of ALS, (iii) identify the frequency of features reported from postmortem studies and (iv) propose common reporting standards for materials obtained from dedicated brain banks. A systematic review was conducted using PubMed and Web of Science databases using key words. From a total of 1439 articles, 73 articles were included in the final review, following PRISMA guidelines. Following a thematic analysis, articles were categorised into five themes; clinico-pathological (13), genetic (20), transactive response DNA binding protein 43 (TDP-43) pathology (12), non-TDP-43 neuronal pathology (nine) and extraneuronal pathology (19). Research primarily focused on the genetics of ALS, followed by protein pathology. About 63% of the brain banks were in the United States of America and United Kingdom. The location of brain banks overall aligned with the incidence of ALS worldwide with 88% of brain banks situated in Europe and North America. An overwhelming lack of consistency in reporting and replicability was observed, strengthening the need for a standardised reporting system. Overall, postmortem material from brain banks generated substantial new knowledge in areas of genetics and proteomics and supports their ongoing role as an important research tool.
Collapse
Affiliation(s)
- Srestha Mazumder
- ForeFront Clinic, Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Matthew C. Kiernan
- ForeFront Clinic, Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Glenda M. Halliday
- Frontier, Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Hannah C. Timmins
- ForeFront Clinic, Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Colin J. Mahoney
- ForeFront Clinic, Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
19
|
Steele OG, Stuart AC, Minkley L, Shaw K, Bonnar O, Anderle S, Penn AC, Rusted J, Serpell L, Hall C, King S. A multi-hit hypothesis for an APOE4-dependent pathophysiological state. Eur J Neurosci 2022; 56:5476-5515. [PMID: 35510513 PMCID: PMC9796338 DOI: 10.1111/ejn.15685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 01/01/2023]
Abstract
The APOE gene encoding the Apolipoprotein E protein is the single most significant genetic risk factor for late-onset Alzheimer's disease. The APOE4 genotype confers a significantly increased risk relative to the other two common genotypes APOE3 and APOE2. Intriguingly, APOE4 has been associated with neuropathological and cognitive deficits in the absence of Alzheimer's disease-related amyloid or tau pathology. Here, we review the extensive literature surrounding the impact of APOE genotype on central nervous system dysfunction, focussing on preclinical model systems and comparison of APOE3 and APOE4, given the low global prevalence of APOE2. A multi-hit hypothesis is proposed to explain how APOE4 shifts cerebral physiology towards pathophysiology through interconnected hits. These hits include the following: neurodegeneration, neurovascular dysfunction, neuroinflammation, oxidative stress, endosomal trafficking impairments, lipid and cellular metabolism disruption, impaired calcium homeostasis and altered transcriptional regulation. The hits, individually and in combination, leave the APOE4 brain in a vulnerable state where further cumulative insults will exacerbate degeneration and lead to cognitive deficits in the absence of Alzheimer's disease pathology and also a state in which such pathology may more easily take hold. We conclude that current evidence supports an APOE4 multi-hit hypothesis, which contributes to an APOE4 pathophysiological state. We highlight key areas where further study is required to elucidate the complex interplay between these individual mechanisms and downstream consequences, helping to frame the current landscape of existing APOE-centric literature.
Collapse
Affiliation(s)
| | | | - Lucy Minkley
- School of Life SciencesUniversity of SussexBrightonUK
| | - Kira Shaw
- School of Life SciencesUniversity of SussexBrightonUK
| | - Orla Bonnar
- School of Life SciencesUniversity of SussexBrightonUK
| | | | | | | | | | | | - Sarah King
- School of PsychologyUniversity of SussexBrightonUK
| |
Collapse
|
20
|
Chiu PY, Yang FC, Chiu MJ, Lin WC, Lu CH, Yang SY. Relevance of plasma biomarkers to pathologies in Alzheimer's disease, Parkinson's disease and frontotemporal dementia. Sci Rep 2022; 12:17919. [PMID: 36289355 PMCID: PMC9605966 DOI: 10.1038/s41598-022-22647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/18/2022] [Indexed: 01/20/2023] Open
Abstract
Amyloid plaques and tau tangles are pathological hallmarks of Alzheimer's disease (AD). Parkinson's disease (PD) results from the accumulation of α-synuclein. TAR DNA-binding protein (TDP-43) and total tau protein (T-Tau) play roles in FTD pathology. All of the pathological evidence was found in the biopsy. However, it is impossible to perform stein examinations in clinical practice. Assays of biomarkers in plasma would be convenient. It would be better to investigate the combinations of various biomarkers in AD, PD and FTD. Ninety-one subjects without neurodegenerative diseases, 76 patients with amnesic mild cognitive impairment (aMCI) or AD dementia, combined as AD family, were enrolled. One hundred and nine PD patients with normal cognition (PD-NC) or dementia (PDD), combined as PD family, were enrolled. Twenty-five FTD patients were enrolled for assays of plasma amyloid β 1-40 (Aβ1-40), Aβ1-42, T-Tau, α-synuclein and TDP-43 using immunomagnetic reduction (IMR). The results show that Aβs and T-Tau are major domains in AD family. α-synuclein is highly dominant in PD family. FTD is closely associated with TDP-43 and T-Tau. The dominant plasma biomarkers in AD family, PD family and FTD are consistent with pathology. This implies that plasma biomarkers are promising for precise and differential assessments of AD, PD and FTD in clinical practice.
Collapse
Affiliation(s)
- Pai-Yi Chiu
- grid.452796.b0000 0004 0634 3637Department of Neurology, Show Chwan Memorial Hospital, Chunghwa, 500 Taiwan ,MR-Guided Focus Ultrasound Center, Chang Bin Shaw Chwan Memorial Hospital, Changhwa, 505 Taiwan
| | - Fu-Chi Yang
- grid.278244.f0000 0004 0638 9360Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114 Taiwan
| | - Ming-Jang Chiu
- grid.19188.390000 0004 0546 0241Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100 Taiwan ,grid.19188.390000 0004 0546 0241Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 100 Taiwan ,grid.19188.390000 0004 0546 0241Department of Psychology, National Taiwan University, Taipei, 106 Taiwan ,grid.19188.390000 0004 0546 0241Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106 Taiwan
| | - Wei-Che Lin
- grid.145695.a0000 0004 1798 0922Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833 Taiwan
| | - Cheng-Hsien Lu
- grid.145695.a0000 0004 1798 0922Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833 Taiwan
| | | |
Collapse
|
21
|
Behler A, Müller HP, Ludolph AC, Lulé D, Kassubek J. A multivariate Bayesian classification algorithm for cerebral stage prediction by diffusion tensor imaging in amyotrophic lateral sclerosis. Neuroimage Clin 2022; 35:103094. [PMID: 35772192 PMCID: PMC9253469 DOI: 10.1016/j.nicl.2022.103094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/04/2022] [Accepted: 06/19/2022] [Indexed: 02/06/2023]
Abstract
Novel DTI-based classification of ALS disease stages by a Bayesian approach is applied. Bayesian classification algorithm improves threshold-based staging method. Step forward in MRI-based patient stratification in ALS in vivo.
Background and Objective Diffusion tensor imaging (DTI) can be used to tract-wise map correlates of the sequential disease progression and, therefore, to assess disease stages of amyotrophic lateral sclerosis (ALS) in vivo. According to a threshold-based sequential scheme, a classification of ALS patients into disease stages is possible, however, several patients cannot be staged for methodological reasons. This study aims to implement a multivariate Bayesian classification algorithm for disease stage prediction at an individual ALS patient level based on DTI metrics of involved tract systems to improve disease stage mapping. Methods The analysis of fiber tracts involved in each stage of ALS was performed in 325 ALS patients and 130 age- and gender-matched healthy controls. Based on Bayes’ theorem and in accordance with the sequential disease progression, a multistage classifier was implemented. Patients were categorized into in vivo DTI stages using the threshold-based method and the Bayesian algorithm. By the margin of confidence, the reliability of the Bayesian categorizations was accessible. Results Based on the Bayesian multistage classifier, 88% of all ALS patients could be assigned into an ALS stage compared to 77% using the threshold-based staging scheme. Additionally, the confidence of all classifications could be estimated. Conclusions By the application of the multi-stage Bayesian classifier, an individualized in vivo cerebral staging of ALS patients was possible based on the sequentially involved tract systems and, furthermore, the reliability of the respective classifications could be determined. The Bayesian classification algorithm is an improvement of the threshold-based staging method and could provide a framework for extending the DTI-based in vivo cerebral staging in ALS.
Collapse
Affiliation(s)
- Anna Behler
- Department of Neurology, University of Ulm, Germany
| | | | - Albert C Ludolph
- Department of Neurology, University of Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | | | - Jan Kassubek
- Department of Neurology, University of Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
| |
Collapse
|
22
|
Thalamic and Cerebellar Regional Involvement across the ALS-FTD Spectrum and the Effect of C9orf72. Brain Sci 2022; 12:brainsci12030336. [PMID: 35326292 PMCID: PMC8945983 DOI: 10.3390/brainsci12030336] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are part of the same disease spectrum. While thalamic−cerebellar degeneration has been observed in C9orf72 expansion carriers, the exact subregions involved across the clinical phenotypes of the ALS−FTD spectrum remain unclear. Using MRIs from 58 bvFTD, 41 ALS−FTD and 52 ALS patients compared to 57 controls, we aimed to delineate thalamic and cerebellar subregional changes across the ALS−FTD spectrum and to contrast these profiles between cases with and without C9orf72 expansions. Thalamic involvement was evident across all ALS−FTD clinical phenotypes, with the laterodorsal nucleus commonly affected across all groups (values below the 2.5th control percentile). The mediodorsal nucleus was disproportionately affected in bvFTD and ALS−FTD but not in ALS. Cerebellar changes were only observed in bvFTD and ALS−FTD predominantly in the superior−posterior region. Comparison of genetic versus sporadic cases revealed significantly lower volumes exclusively in the pulvinar in C9orf72 expansion carriers compared to non-carriers, irrespective of clinical syndrome. Overall, bvFTD showed significant correlations between thalamic subregions, level of cognitive dysfunction and severity of behavioural symptoms. Notably, strong associations were evident between mediodorsal nucleus atrophy and severity of behavioural changes in C9orf72-bvFTD (r = −0.9, p < 0.0005). Our findings reveal distinct thalamic and cerebellar atrophy profiles across the ALS−FTD spectrum, with differential impacts on behaviour and cognition, and point to a unique contribution of C9orf72 expansions in the clinical profiles of these patients.
Collapse
|
23
|
Shapiro NL, Todd EG, Billot B, Cash DM, Iglesias JE, Warren JD, Rohrer JD, Bocchetta M. In vivo hypothalamic regional volumetry across the frontotemporal dementia spectrum. Neuroimage Clin 2022; 35:103084. [PMID: 35717886 PMCID: PMC9218583 DOI: 10.1016/j.nicl.2022.103084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Frontotemporal dementia (FTD) is a spectrum of diseases characterised by language, behavioural and motor symptoms. Among the different subcortical regions implicated in the FTD symptomatology, the hypothalamus regulates various bodily functions, including eating behaviours which are commonly present across the FTD spectrum. The pattern of specific hypothalamic involvement across the clinical, pathological, and genetic forms of FTD has yet to be fully investigated, and its possible associations with abnormal eating behaviours have yet to be fully explored. METHODS Using an automated segmentation tool for volumetric T1-weighted MR images, we measured hypothalamic regional volumes in a cohort of 439 patients with FTD (197 behavioural variant FTD [bvFTD]; 7 FTD with associated motor neurone disease [FTD-MND]; 99 semantic variant primary progressive aphasia [svPPA]; 117 non-fluent variant PPA [nfvPPA]; 19 PPA not otherwise specified [PPA-NOS]) and 118 age-matched controls. We compared volumes across the clinical, genetic (29 MAPT, 32 C9orf72, 23 GRN), and pathological diagnoses (61 tauopathy, 40 TDP-43opathy, 4 FUSopathy). We correlated the volumes with presence of abnormal eating behaviours assessed with the revised version of the Cambridge Behavioural Inventory (CBI-R). RESULTS On average, FTD patients showed 14% smaller hypothalamic volumes than controls. The groups with the smallest hypothalamic regions were FTD-MND (20%), MAPT (25%) and FUS (33%), with differences mainly localised in the anterior and posterior regions. The inferior tuberal region was only significantly smaller in tauopathies (MAPT and Pick's disease) and in TDP-43 type C compared to controls and was the only regions that did not correlate with eating symptoms. PPA-NOS and nfvPPA were the groups with the least frequent eating behaviours and the least hypothalamic involvement. CONCLUSIONS Abnormal hypothalamic volumes are present in all the FTD forms, but different hypothalamic regions might play a different role in the development of abnormal eating behavioural and metabolic symptoms. These findings might therefore help in the identification of different underlying pathological mechanisms, suggesting the potential use of hypothalamic imaging biomarkers and the research of potential therapeutic targets within the hypothalamic neuropeptides.
Collapse
Affiliation(s)
- Noah L Shapiro
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, UK
| | - Emily G Todd
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, UK
| | - Benjamin Billot
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, UK; Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK; UK Dementia Research Institute at UCL, UCL, London, UK
| | - Juan Eugenio Iglesias
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK; Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, USA
| | - Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, UK.
| |
Collapse
|
24
|
Parkin beyond Parkinson’s Disease—A Functional Meaning of Parkin Downregulation in TDP-43 Proteinopathies. Cells 2021; 10:cells10123389. [PMID: 34943897 PMCID: PMC8699658 DOI: 10.3390/cells10123389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Parkin and PINK1 are key regulators of mitophagy, an autophagic pathway for selective elimination of dysfunctional mitochondria. To this date, parkin depletion has been associated with recessive early onset Parkinson’s disease (PD) caused by loss-of-function mutations in the PARK2 gene, while, in sporadic PD, the activity and abundance of this protein can be compromised by stress-related modifications. Intriguingly, research in recent years has shown that parkin depletion is not limited to PD but is also observed in other neurodegenerative diseases—especially those characterized by TDP-43 proteinopathies, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here, we discuss the evidence of parkin downregulation in these disease phenotypes, its emerging connections with TDP-43, and its possible functional implications.
Collapse
|
25
|
Ahmed RM, Bocchetta M, Todd EG, Tse NY, Devenney EM, Tu S, Caga J, Hodges JR, Halliday GM, Irish M, Kiernan MC, Piguet O, Rohrer JD. Tackling clinical heterogeneity across the amyotrophic lateral sclerosis-frontotemporal dementia spectrum using a transdiagnostic approach. Brain Commun 2021; 3:fcab257. [PMID: 34805999 PMCID: PMC8599039 DOI: 10.1093/braincomms/fcab257] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/31/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022] Open
Abstract
The disease syndromes of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) display considerable clinical, genetic and pathological overlap, yet mounting evidence indicates substantial differences in progression and survival. To date, there has been limited examination of how profiles of brain atrophy might differ between clinical phenotypes. Here, we address this longstanding gap in the literature by assessing cortical and subcortical grey and white matter volumes on structural MRI in a large cohort of 209 participants. Cognitive and behavioural changes were assessed using the Addenbrooke’s Cognitive Examination and the Cambridge Behavioural Inventory. Relative to 58 controls, behavioural variant FTD (n = 58) and ALS–FTD (n = 41) patients displayed extensive atrophy of frontoinsular, cingulate, temporal and motor cortices, with marked subcortical atrophy targeting the hippocampus, amygdala, thalamus and striatum, with atrophy further extended to the brainstem, pons and cerebellum in the latter group. At the other end of the spectrum, pure-ALS patients (n = 52) displayed considerable frontoparietal atrophy, including right insular and motor cortices and pons and brainstem regions. Subcortical regions included the bilateral pallidum and putamen, but to a lesser degree than in the ALS–FTD and behavioural variant FTD groups. Across the spectrum the most affected region in all three groups was the insula, and specifically the anterior part (76–90% lower than controls). Direct comparison of the patient groups revealed disproportionate temporal atrophy and widespread subcortical involvement in ALS–FTD relative to pure-ALS. In contrast, pure-ALS displayed significantly greater parietal atrophy. Both behavioural variant FTD and ALS–FTD were characterized by volume decrease in the frontal lobes relative to pure-ALS. The motor cortex and insula emerged as differentiating structures between clinical syndromes, with bilateral motor cortex atrophy more pronounced in ALS–FTD compared with pure-ALS, and greater left motor cortex and insula atrophy relative to behavioural variant FTD. Taking a transdiagnostic approach, we found significant associations between abnormal behaviour and volume loss in a predominantly frontoinsular network involving the amygdala, striatum and thalamus. Our findings demonstrate the presence of distinct atrophy profiles across the ALS–FTD spectrum, with key structures including the motor cortex and insula. Notably, our results point to subcortical involvement in the origin of behavioural disturbances, potentially accounting for the marked phenotypic variability typically observed across the spectrum.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- Memory and Cognition Clinic, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney 2050, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1E, UK
| | - Emily G Todd
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1E, UK
| | - Nga Yan Tse
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Emma M Devenney
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Sicong Tu
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Jashelle Caga
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - John R Hodges
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.,School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Muireann Irish
- School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia
| | - Matthew C Kiernan
- Memory and Cognition Clinic, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney 2050, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Olivier Piguet
- School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1E, UK
| |
Collapse
|
26
|
Bright F, Chan G, van Hummel A, Ittner LM, Ke YD. TDP-43 and Inflammation: Implications for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Int J Mol Sci 2021; 22:ijms22157781. [PMID: 34360544 PMCID: PMC8346169 DOI: 10.3390/ijms22157781] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
The abnormal mislocalisation and ubiquitinated protein aggregation of the TAR DNA binding protein 43 (TDP-43) within the cytoplasm of neurons and glia in the central nervous system (CNS) is a pathological hallmark of early-onset neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The pathomechanisms underlying abnormal mislocalisation and aggregation of TDP-43 remain unknown. However, there is a growing body of evidence implicating neuroinflammation and immune-mediated mechanisms in the pathogenesis of neurodegeneration. Importantly, most of the evidence for an active role of immunity and inflammation in the pathogenesis of ALS and FTD relates specifically to TDP-43, posing the question as to whether immune-mediated mechanisms could hold the key to understanding TDP-43’s underlying role in neurodegeneration in both diseases. Therefore, this review aims to piece together key lines of evidence for the specific association of TDP-43 with key immune and inflammatory pathways to explore the nature of this relationship and the implications for potential pathomechanisms underlying neurodegeneration in ALS and FTD.
Collapse
|
27
|
Root J, Merino P, Nuckols A, Johnson M, Kukar T. Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2021; 154:105360. [PMID: 33812000 PMCID: PMC8113138 DOI: 10.1016/j.nbd.2021.105360] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative disorders that are thought to exist on a clinical and pathological spectrum. FTD and ALS are linked by shared genetic causes (e.g. C9orf72 hexanucleotide repeat expansions) and neuropathology, such as inclusions of ubiquitinated, misfolded proteins (e.g. TAR DNA-binding protein 43; TDP-43) in the CNS. Furthermore, some genes that cause FTD or ALS when mutated encode proteins that localize to the lysosome or modulate endosome-lysosome function, including lysosomal fusion, cargo trafficking, lysosomal acidification, autophagy, or TFEB activity. In this review, we summarize evidence that lysosomal dysfunction, caused by genetic mutations (e.g. C9orf72, GRN, MAPT, TMEM106B) or toxic-gain of function (e.g. aggregation of TDP-43 or tau), is an important pathogenic disease mechanism in FTD and ALS. Further studies into the normal function of many of these proteins are required and will help uncover the mechanisms that cause lysosomal dysfunction in FTD and ALS. Mutations or polymorphisms in genes that encode proteins important for endosome-lysosome function also occur in other age-dependent neurodegenerative diseases, including Alzheimer's (e.g. APOE, PSEN1, APP) and Parkinson's (e.g. GBA, LRRK2, ATP13A2) disease. A more complete understanding of the common and unique features of lysosome dysfunction across the spectrum of neurodegeneration will help guide the development of therapies for these devastating diseases.
Collapse
Affiliation(s)
- Jessica Root
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Paola Merino
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Austin Nuckols
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Michelle Johnson
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia; Department of Neurology, Emory University, School of Medicine, Atlanta 30322, Georgia.
| |
Collapse
|
28
|
Sanchez II, Nguyen TB, England WE, Lim RG, Vu AQ, Miramontes R, Byrne LM, Markmiller S, Lau AL, Orellana I, Curtis MA, Faull RLM, Yeo GW, Fowler CD, Reidling JC, Wild EJ, Spitale RC, Thompson LM. Huntington's disease mice and human brain tissue exhibit increased G3BP1 granules and TDP43 mislocalization. J Clin Invest 2021; 131:140723. [PMID: 33945510 DOI: 10.1172/jci140723] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Chronic cellular stress associated with neurodegenerative disease can result in the persistence of stress granule (SG) structures, membraneless organelles that form in response to cellular stress. In Huntington's disease (HD), chronic expression of mutant huntingtin generates various forms of cellular stress, including activation of the unfolded protein response and oxidative stress. However, it has yet to be determined whether SGs are a feature of HD neuropathology. We examined the miRNA composition of extracellular vesicles (EVs) present in the cerebrospinal fluid (CSF) of patients with HD and show that a subset of their target mRNAs were differentially expressed in the prefrontal cortex. Of these targets, SG components were enriched, including the SG-nucleating Ras GTPase-activating protein-binding protein 1 (G3BP1). We investigated localization and levels of G3BP1 and found a significant increase in the density of G3BP1-positive granules in the cortex and hippocampus of R6/2 transgenic mice and in the superior frontal cortex of the brains of patients with HD. Intriguingly, we also observed that the SG-associated TAR DNA-binding protein 43 (TDP43), a nuclear RNA/DNA binding protein, was mislocalized to the cytoplasm of G3BP1 granule-positive HD cortical neurons. These findings suggest that G3BP1 SG dynamics may play a role in the pathophysiology of HD.
Collapse
Affiliation(s)
| | | | | | - Ryan G Lim
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Anthony Q Vu
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | - Ricardo Miramontes
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Lauren M Byrne
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | - Sebastian Markmiller
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | - Alice L Lau
- Department of Psychiatry & Human Behavior, and
| | - Iliana Orellana
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, USA
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, and.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Richard Lewis Maxwell Faull
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, and.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | | | - Jack C Reidling
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Edward J Wild
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, and.,Department of Chemistry, University of California, Irvine, California, USA
| | - Leslie M Thompson
- Department of Neurobiology & Behavior.,Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA.,Department of Psychiatry & Human Behavior, and.,Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, USA
| |
Collapse
|
29
|
Buciuc M, Whitwell JL, Baker MC, Rademakers R, Dickson DW, Josephs KA. Old age genetically confirmed frontotemporal lobar degeneration with TDP-43 has limbic predominant TDP-43 deposition. Neuropathol Appl Neurobiol 2021; 47:1050-1059. [PMID: 33969528 DOI: 10.1111/nan.12727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/20/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022]
Abstract
AIMS To assess the burden of transactive response DNA-binding protein of 43 kDa (TDP-43) inclusions in a unique cohort of old-age patients with genetic frontotemporal lobar degeneration (gFTLD-TDP) and compare these patients with sporadic old-age individuals with TDP-43, either in the presence of Alzheimer's disease (AD-TDP) or in isolation (pure-TDP). METHODS The brain bank at Mayo Clinic-Jacksonville was searched for cases ≥75 years old at death with TDP-43 extending into middle frontal cortex. Cases were split into the following groups: (1) gFTLD-TDP (n = 15) with progranulin (GRN)/C9ORF72 mutations; (2) AD-TDP (n = 10)-cases with median Braak neurofibrillary tangle (NFT) stage VI, Thal phase V; (3) pure-TDP (n = 10)-cases with median Braak NFT stage I, Thal phase I. Clinical data were abstracted; TDP-43 burden was calculated using digital pathology. RESULTS Amnestic Alzheimer's dementia was the clinical diagnosis in ≥50% patients in each group. The distribution of TDP-43 burden in gFTLD-TDP and AD-TDP, but not pure-TDP, was limbic-predominant targeting CA1 and subiculum. Patients with gFTLD-TDP had higher burden in entorhinal cortex compared to AD-TDP. TDP-43 burden in middle frontal cortex did not differ between the three groups. CONCLUSIONS In old age it is challenging to clinically and pathologically differentiate gFTLD-TDP from AD-TDP and pure-TDP-43 based on burden. Like AD-TDP, old age gFTLD-TDP have a limbic predominant TDP-43 distribution. The finding that amnestic Alzheimer's dementia was the most common clinical diagnosis regardless of group suggests that TDP-43 directly and indirectly targets limbic regions.
Collapse
Affiliation(s)
- Marina Buciuc
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | |
Collapse
|
30
|
Borrego‐Écija S, Turon‐Sans J, Ximelis T, Aldecoa I, Molina‐Porcel L, Povedano M, Rubio MA, Gámez J, Cano A, Paré‐Curell M, Bajo L, Sotoca J, Clarimón J, Balasa M, Antonell A, Lladó A, Sánchez‐Valle R, Rojas‐García R, Gelpi E. Cognitive decline in amyotrophic lateral sclerosis: Neuropathological substrate and genetic determinants. Brain Pathol 2021; 31:e12942. [PMID: 33576076 PMCID: PMC8412113 DOI: 10.1111/bpa.12942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/29/2022] Open
Abstract
Cognitive impairment and behavioral changes in amyotrophic lateral sclerosis (ALS) are now recognized as part of the disease. Whether it is solely related to the extent of TDP-43 pathology is currently unclear. We aim to evaluate the influence of age, genetics, neuropathological features, and concomitant pathologies on cognitive impairment in ALS patients. We analyzed a postmortem series of 104 ALS patients and retrospectively reviewed clinical and neuropathological data. We assessed the burden and extent of concomitant pathologies, the role of APOE ε4 and mutations, and correlated these findings with cognitive status. We performed a logistic regression model to identify which pathologies are related to cognitive impairment. Cognitive decline was recorded in 38.5% of the subjects. Neuropathological features of frontotemporal lobar degeneration (FTLD) were found in 32.7%, explaining most, but not all, cases with cognitive impairment. Extent of TDP-43 pathology and the presence of hippocampal sclerosis were associated with cognitive impairment. Mutation carriers presented a higher burden of TDP-43 pathology and FTLD more frequently than sporadic cases. Most cases (89.4%) presented some degree of concomitant pathologies. The presence of concomitant pathologies was associated with older age at death. FTLD, but also Alzheimer's disease, were the predominant underlying pathologies explaining the cognitive impairment in ALS patients. In sum, FTLD explained the presence of cognitive decline in most but not all ALS cases, while other non-FTLD related findings can influence the cognitive status, particularly in older age groups.
Collapse
Affiliation(s)
- Sergi Borrego‐Écija
- Alzheimer’s Disease and Other Cognitive Disorders UnitNeurology DepartmentHospital ClínicInstitut d’Investigacions Biomediques August Pi i SunyerUniversity of BarcelonaBarcelonaSpain
| | - Janina Turon‐Sans
- Neurology departmentResearch Institute, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
- Center for Networked Biomedical Research into Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Teresa Ximelis
- Neurological Tissue BankBiobanc‐Hospital Clínic‐IDIBAPSBarcelonaSpain
| | - Iban Aldecoa
- Neurological Tissue BankBiobanc‐Hospital Clínic‐IDIBAPSBarcelonaSpain
- Pathology DepartmentCDB, Hospital Clinic BarcelonaBarcelonaSpain
| | - Laura Molina‐Porcel
- Alzheimer’s Disease and Other Cognitive Disorders UnitNeurology DepartmentHospital ClínicInstitut d’Investigacions Biomediques August Pi i SunyerUniversity of BarcelonaBarcelonaSpain
- Neurological Tissue BankBiobanc‐Hospital Clínic‐IDIBAPSBarcelonaSpain
| | - Mónica Povedano
- Service of NeurologyMotor Neuron UnitIDIBELLBellvitge University HospitalHospitalet de LlobregatSpain
| | | | - Josep Gámez
- ALS UnitNeurology DepartmentVall d’Hebrón University HospitalVall d’Hebrón Research Institute (VHIR)
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO‐NMD)Department of MedicineUABBarcelonaSpain
| | - Antonio Cano
- Neurology DepartmentHospital de MataróMataróSpain
| | | | - Lorena Bajo
- Servei de GeriatriaFundació Hospital de la Santa CreuHospital Universitari de la Santa Creu de VicVicSpain
| | - Javier Sotoca
- Neurology DepartmentHospital Mutua de TerrassaTerrassaSpain
| | - Jordi Clarimón
- Neurology departmentResearch Institute, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
- Center for Networked Biomedical Research into Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Mircea Balasa
- Alzheimer’s Disease and Other Cognitive Disorders UnitNeurology DepartmentHospital ClínicInstitut d’Investigacions Biomediques August Pi i SunyerUniversity of BarcelonaBarcelonaSpain
| | - Anna Antonell
- Alzheimer’s Disease and Other Cognitive Disorders UnitNeurology DepartmentHospital ClínicInstitut d’Investigacions Biomediques August Pi i SunyerUniversity of BarcelonaBarcelonaSpain
| | - Albert Lladó
- Alzheimer’s Disease and Other Cognitive Disorders UnitNeurology DepartmentHospital ClínicInstitut d’Investigacions Biomediques August Pi i SunyerUniversity of BarcelonaBarcelonaSpain
| | - Raquel Sánchez‐Valle
- Alzheimer’s Disease and Other Cognitive Disorders UnitNeurology DepartmentHospital ClínicInstitut d’Investigacions Biomediques August Pi i SunyerUniversity of BarcelonaBarcelonaSpain
- Neurological Tissue BankBiobanc‐Hospital Clínic‐IDIBAPSBarcelonaSpain
| | - Ricard Rojas‐García
- Neurology departmentResearch Institute, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
- Center for Networked Biomedical Research into Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Ellen Gelpi
- Neurological Tissue BankBiobanc‐Hospital Clínic‐IDIBAPSBarcelonaSpain
- Division of Neuropathology and NeurochemistryDepartment of NeurologyMedical University of ViennaViennaAustria
| |
Collapse
|
31
|
Caga J, Tu S, Dharmadasa T, Tse NY, Zoing MC, Huynh W, Mahoney C, Ahmed RM, Kiernan MC. Apathy is associated with parietal cortical-subcortical dysfunction in ALS. Cortex 2021; 145:341-349. [PMID: 33867121 DOI: 10.1016/j.cortex.2021.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/27/2021] [Accepted: 02/28/2021] [Indexed: 12/15/2022]
Abstract
Apathy is the core behavioural feature of frontotemporal dysfunction in amyotrophic lateral sclerosis (ALS). Initiation and emotional manifestations of apathy significantly affect patients and carers, particularly in terms of quality of life. As such, the primary aim of the present study was to investigate the prevalence and neural correlates of initiation, and emotional subtypes of apathy in ALS. A total of 109 participants were recruited from a specialised, tertiary referral ALS/FTD clinic. Overall rates of apathy, including cognitive, initiation and emotion subtypes as assessed by the Dimensional Apathy Scale (DAS), were examined and correlated with brain volumes, including voxel-based morphometry on high resolution MRI. Clinically significant apathy ranged between 49% (patient-rated DAS) and 64% (carer-rated DAS), with the most common apathy subtypes being initiation (84-96%) and emotional (74-75%) apathy. The results of the two-way repeated measures ANOVA revealed significant differences across the DAS executive, emotional and initiation subscales (p = .0001). Multivariate analysis using a logistic regression model showed that only initiation; (odds ratio = 3.08, p = .004) and emotional (odds ratio = 2.40, p = .008) apathy were predictive of clinically significant apathy, controlling for education and depression. Increased initiation apathy correlated with reduced grey matter within bilateral superior frontal gyrus and increased emotional apathy correlated with reduced grey matter in prefrontal cortices and right anterior cingulate, previously implicated in apathy. Additional correlations were identified including the angular gyrus (or the temporo-parietal junction), important in reward valuation and subsequent goal-directed behaviour. Taken together, results from the present series highlight the frequency and multi-dimensionality of apathy in ALS. The pathophysiological mechanisms of apathy in ALS may be critically underpinned by neurodegeneration across a distributed brain network, with key roles in task initiation, emotion, reward processing and subsequent goal-directed behaviour.
Collapse
Affiliation(s)
- Jashelle Caga
- Brain & Mind Centre, University of Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| | - Sicong Tu
- Brain & Mind Centre, University of Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| | - Thanuja Dharmadasa
- Brain & Mind Centre, University of Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| | - Nga Y Tse
- Brain & Mind Centre, University of Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| | - Margaret C Zoing
- Brain & Mind Centre, University of Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| | - William Huynh
- Brain & Mind Centre, University of Sydney, NSW, Australia; Prince of Wales Clinical School, University of New South Wales, Sydney, Australia.
| | - Colin Mahoney
- Brain & Mind Centre, University of Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| | - Rebekah M Ahmed
- Brain & Mind Centre, University of Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, NSW, Australia; Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| | - Matthew C Kiernan
- Brain & Mind Centre, University of Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, NSW, Australia; Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
32
|
Josephs KA, Martin PR, Weigand SD, Tosakulwong N, Buciuc M, Murray ME, Petrucelli L, Senjem ML, Spychalla AJ, Knopman DS, Boeve BF, Petersen RC, Parisi JE, Dickson DW, Jack CR, Whitwell JL. Protein contributions to brain atrophy acceleration in Alzheimer's disease and primary age-related tauopathy. Brain 2021; 143:3463-3476. [PMID: 33150361 DOI: 10.1093/brain/awaa299] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease is characterized by the presence of amyloid-β and tau deposition in the brain, hippocampal atrophy and increased rates of hippocampal atrophy over time. Another protein, TAR DNA binding protein 43 (TDP-43) has been identified in up to 75% of cases of Alzheimer's disease. TDP-43, tau and amyloid-β have all been linked to hippocampal atrophy. TDP-43 and tau have also been linked to hippocampal atrophy in cases of primary age-related tauopathy, a pathological entity with features that strongly overlap with those of Alzheimer's disease. At present, it is unclear whether and how TDP-43 and tau are associated with early or late hippocampal atrophy in Alzheimer's disease and primary age-related tauopathy, whether either protein is also associated with faster rates of atrophy of other brain regions and whether there is evidence for protein-associated acceleration/deceleration of atrophy rates. We therefore aimed to model how these proteins, particularly TDP-43, influence non-linear trajectories of hippocampal and neocortical atrophy in Alzheimer's disease and primary age-related tauopathy. In this longitudinal retrospective study, 557 autopsied cases with Alzheimer's disease neuropathological changes with 1638 ante-mortem volumetric head MRI scans spanning 1.0-16.8 years of disease duration prior to death were analysed. TDP-43 and Braak neurofibrillary tangle pathological staging schemes were constructed, and hippocampal and neocortical (inferior temporal and middle frontal) brain volumes determined using longitudinal FreeSurfer. Bayesian bivariate-outcome hierarchical models were utilized to estimate associations between proteins and volume, early rate of atrophy and acceleration in atrophy rates across brain regions. High TDP-43 stage was associated with smaller cross-sectional brain volumes, faster rates of brain atrophy and acceleration of atrophy rates, more than a decade prior to death, with deceleration occurring closer to death. Stronger associations were observed with hippocampus compared to temporal and frontal neocortex. Conversely, low TDP-43 stage was associated with slower early rates but later acceleration. This later acceleration was associated with high Braak neurofibrillary tangle stage. Somewhat similar, but less striking, findings were observed between TDP-43 and neocortical rates. Braak stage appeared to have stronger associations with neocortex compared to TDP-43. The association between TDP-43 and brain atrophy occurred slightly later in time (∼3 years) in cases of primary age-related tauopathy compared to Alzheimer's disease. The results suggest that TDP-43 and tau have different contributions to acceleration and deceleration of brain atrophy rates over time in both Alzheimer's disease and primary age-related tauopathy.
Collapse
Affiliation(s)
- Keith A Josephs
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, MN, USA
| | - Peter R Martin
- Department of Health Science Research (Biostatistics), Mayo Clinic, Rochester, MN, USA
| | - Stephen D Weigand
- Department of Health Science Research (Biostatistics), Mayo Clinic, Rochester, MN, USA
| | - Nirubol Tosakulwong
- Department of Health Science Research (Biostatistics), Mayo Clinic, Rochester, MN, USA
| | - Marina Buciuc
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, MN, USA
| | - Melissa E Murray
- Department of Neuroscience (Neuropathology), Mayo Clinic, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience (Molecular Neuroscience), Mayo Clinic, Jacksonville, FL, USA
| | - Matthew L Senjem
- Department of Radiology (Radiology Research) Mayo Clinic, Rochester, MN, USA.,Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Anthony J Spychalla
- Department of Radiology (Radiology Research) Mayo Clinic, Rochester, MN, USA.,Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - David S Knopman
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, MN, USA
| | - Bradley F Boeve
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, MN, USA
| | - Ronald C Petersen
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, MN, USA
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology (Neuropathology), Mayo Clinic, Rochester, MN, USA
| | - Dennis W Dickson
- Department of Neuroscience (Neuropathology), Mayo Clinic, Jacksonville, FL, USA
| | - Clifford R Jack
- Department of Radiology (Radiology Research) Mayo Clinic, Rochester, MN, USA
| | - Jennifer L Whitwell
- Department of Radiology (Radiology Research) Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
33
|
Kiernan MC, Vucic S, Talbot K, McDermott CJ, Hardiman O, Shefner JM, Al-Chalabi A, Huynh W, Cudkowicz M, Talman P, Van den Berg LH, Dharmadasa T, Wicks P, Reilly C, Turner MR. Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nat Rev Neurol 2021; 17:104-118. [PMID: 33340024 PMCID: PMC7747476 DOI: 10.1038/s41582-020-00434-z] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
Individuals who are diagnosed with amyotrophic lateral sclerosis (ALS) today face the same historically intransigent problem that has existed since the initial description of the disease in the 1860s - a lack of effective therapies. In part, the development of new treatments has been hampered by an imperfect understanding of the biological processes that trigger ALS and promote disease progression. Advances in our understanding of these biological processes, including the causative genetic mutations, and of the influence of environmental factors have deepened our appreciation of disease pathophysiology. The consequent identification of pathogenic targets means that the introduction of effective therapies is becoming a realistic prospect. Progress in precision medicine, including genetically targeted therapies, will undoubtedly change the natural history of ALS. The evolution of clinical trial designs combined with improved methods for patient stratification will facilitate the translation of novel therapies into the clinic. In addition, the refinement of emerging biomarkers of therapeutic benefits is critical to the streamlining of care for individuals. In this Review, we synthesize these developments in ALS and discuss the further developments and refinements needed to accelerate the introduction of effective therapeutic approaches.
Collapse
Affiliation(s)
- Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.
| | - Steve Vucic
- Sydney Medical School Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield, UK
| | - Orla Hardiman
- Academic Neurology Unit, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- National Neuroscience Centre, Beaumont Hospital, Dublin, Ireland
| | - Jeremy M Shefner
- Department of Neurology, Barrow Neurological Institute, University of Arizona College of Medicine Phoenix, Creighton University, Phoenix, AZ, USA
| | - Ammar Al-Chalabi
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, London, UK
| | - William Huynh
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Merit Cudkowicz
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Paul Talman
- Neurosciences Department, Barwon Health District, Melbourne, Victoria, Australia
| | - Leonard H Van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thanuja Dharmadasa
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Paul Wicks
- Wicks Digital Health, Lichfield, United Kingdom
| | - Claire Reilly
- The Motor Neurone Disease Association of New Zealand, Auckland, New Zealand
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Agarwal S, Highton-Williamson E, Caga J, Howells J, Dharmadasa T, Matamala JM, Ma Y, Shibuya K, Hodges JR, Ahmed RM, Vucic S, Kiernan MC. Motor cortical excitability predicts cognitive phenotypes in amyotrophic lateral sclerosis. Sci Rep 2021; 11:2172. [PMID: 33500476 PMCID: PMC7838179 DOI: 10.1038/s41598-021-81612-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 12/30/2020] [Indexed: 12/31/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are well-recognised as an extended disease spectrum. This study hypothesised that cortical hyperexcitability, an early pathophysiological abnormality in ALS, would distinguish cognitive phenotypes, as a surrogate marker of pathological disease burden. 61 patients with ALS, matched for disease duration (pure motor ALS, n = 39; ALS with coexistent FTD, ALS-FTD, n = 12; ALS with cognitive/behavioural abnormalities not meeting FTD criteria, ALS-Cog, n = 10) and 30 age-matched healthy controls. Cognitive function on the Addenbrooke's cognitive examination (ACE) scale, behavioural function on the motor neuron disease behavior scale (MiND-B) and cortical excitability using transcranial magnetic stimulation (TMS) were documented. Cortical resting motor threshold (RMT), lower threshold indicating hyperexcitability, was lower in ALS-FTD (50.2 ± 6.9) compared to controls (64.3 ± 12.6, p < 0.005), while ALS-Cog (63.3 ± 12.7) and ALS (60.8 ± 13.9, not significant) were similar to controls. Short interval intracortical inhibition (SICI) was reduced across all ALS groups compared to controls, indicating hyperexcitability. On receiver operating characteristic curve analysis, RMT differentiated ALS-FTD from ALS (area under the curve AUC = 0.745, p = 0.011). The present study has identified a distinct pattern of cortical excitability across cognitive phenotypes in ALS. As such, assessment of cortical physiology may provide more precise clinical prognostication in ALS.
Collapse
Affiliation(s)
- Smriti Agarwal
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia. .,Neurology Unit, A5, Box 165, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| | | | - Jashelle Caga
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia
| | - James Howells
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Thanuja Dharmadasa
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia
| | - José M Matamala
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Yan Ma
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Kazumoto Shibuya
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia
| | - John R Hodges
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Rebekah M Ahmed
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Steve Vucic
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Frontotemporal dementia (FTD) is a rare dementia, that accounts for about 15% of all dementia cases. Despite consensus diagnostic criteria, FTD remains difficult to diagnose in life because of its complex and variable clinical phenomenology and heterogeneous disorders. This review provides an update on the current knowledge of the main FTD syndromes -- the behavioural variant, semantic variant, and nonfluent/agrammatic variant-- their brain abnormalities and genetic profiles. RECENT FINDINGS The complexity of the clinical features in FTD has become increasingly apparent, particularly in the domain of behaviour. Such behaviour changes are now also being recognized in the language variants of FTD. Initial interest on emotion processing and social cognition is now complemented by studies on other behavioural disturbance, that spans gambling, antisocial behaviours, repetitive behaviours, and apathy. At a biological level, novel pathological subcategories continue to be identified. From a genetic viewpoint, abnormalities in three genes explain nearly three quarters of familial cases of FTD. SUMMARY In the absence of effective drug treatments, novel approaches are needed to target some of the most disabling features of FTD, such as language loss or behaviour disturbance. Recent interventions appear promising but will require confirmation.
Collapse
|
36
|
Ahmed RM, Halliday G, Hodges JR. Hypothalamic symptoms of frontotemporal dementia disorders. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:269-280. [PMID: 34266598 DOI: 10.1016/b978-0-12-819973-2.00019-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Frontotemporal dementia (FTD) has traditionally been regarded as a disease of cognition and behavior, but emerging evidence suggests that the disease also affects body functions including changes in eating behavior and metabolism, autonomic function, sleep behavior, and sexual function. Central to these changes are potentially complex neural networks involving the hypothalamus, with hypothalamic atrophy shown in behavioral variant FTD. The physiological changes found in FTD are reviewed and the key neural networks and neuroendocrine changes mediating these changes in function discussed, including the ability to use these changes as biomarkers to aid in disease diagnosis, monitoring disease progression, and as potential treatment targets.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Central Sydney Medical School and Brain & Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| | - Glenda Halliday
- Central Sydney Medical School and Brain & Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - John R Hodges
- Central Sydney Medical School and Brain & Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
37
|
Ahmed RM, Steyn F, Dupuis L. Hypothalamus and weight loss in amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:327-338. [PMID: 34225938 DOI: 10.1016/b978-0-12-820107-7.00020-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disorder. While initially pathophysiology was thought to be restricted to motor deficits, it is increasingly recognized that patients develop prominent changes in weight and eating behavior that result from and mediate the underlying neurodegenerative process. These changes include alterations in metabolism, lipid levels, and insulin resistance. Emerging research suggests that these alterations may be mediated through changes in the hypothalamic function, with atrophy of the hypothalamus shown in both ALS patients and also presymptomatic genetic at-risk patients. This chapter reviews the evidence for hypothalamic involvement in ALS, including melanocortin pathways and potential treatment targets.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Central Sydney Medical School and Brain & Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Frederik Steyn
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia; Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
| | - Luc Dupuis
- Université de Strasbourg, Inserm, UMR-S 1118, Centre de Recherches en Biomédecine, Strasbourg, France.
| |
Collapse
|
38
|
Ahmed RM, Hodges JR, Piguet O. Behavioural Variant Frontotemporal Dementia: Recent Advances in the Diagnosis and Understanding of the Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:1-15. [PMID: 33433865 DOI: 10.1007/978-3-030-51140-1_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Frontotemporal dementia (FTD), particularly the behavioural variant (bvFTD) form, has fascinated researchers. Recent years have seen an increasing interest in aspects of bvFTD that extend beyond the initial focus on cognitive changes and frontal executive dysfunction. Changes have been identified in aspects including fundamental changes in physiology and metabolism, and cognitive domains such as episodic memory. Work on social cognition has emphasised the importance of a breakdown in interpreting and expressing emotions, while the overlap between psychiatric disorders and bvFTD has been brought into focus by the finding of high rates of psychotic features in carriers of the c9orf72 gene expansion. We review these aspects in the chapter " Behavioural variant frontotemporal dementia: Recent advances in diagnosis and understanding of the disorder" and also potential markers of disease progression and early diagnosis that may aid in the development of treatment options, which have thus far eluded us.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia. .,Central Sydney Medical School and Brain & Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - John R Hodges
- Central Sydney Medical School and Brain & Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Olivier Piguet
- School of Psychology and Brain & Mind Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
39
|
Wang C, Foxley S, Ansorge O, Bangerter-Christensen S, Chiew M, Leonte A, Menke RA, Mollink J, Pallebage-Gamarallage M, Turner MR, Miller KL, Tendler BC. Methods for quantitative susceptibility and R2* mapping in whole post-mortem brains at 7T applied to amyotrophic lateral sclerosis. Neuroimage 2020; 222:117216. [PMID: 32745677 PMCID: PMC7775972 DOI: 10.1016/j.neuroimage.2020.117216] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Susceptibility weighted magnetic resonance imaging (MRI) is sensitive to the local concentration of iron and myelin. Here, we describe a robust image processing pipeline for quantitative susceptibility mapping (QSM) and R2* mapping of fixed post-mortem, whole-brain data. Using this pipeline, we compare the resulting quantitative maps in brains from patients with amyotrophic lateral sclerosis (ALS) and controls, with validation against iron and myelin histology. Twelve post-mortem brains were scanned with a multi-echo gradient echo sequence at 7T, from which susceptibility and R2* maps were generated. Semi-quantitative histological analysis for ferritin (the principal iron storage protein) and myelin proteolipid protein was performed in the primary motor, anterior cingulate and visual cortices. Magnetic susceptibility and R2* values in primary motor cortex were higher in ALS compared to control brains. Magnetic susceptibility and R2* showed positive correlations with both myelin and ferritin estimates from histology. Four out of nine ALS brains exhibited clearly visible hyperintense susceptibility and R2* values in the primary motor cortex. Our results demonstrate the potential for MRI-histology studies in whole, fixed post-mortem brains to investigate the biophysical source of susceptibility weighted MRI signals in neurodegenerative diseases like ALS.
Collapse
Affiliation(s)
- Chaoyue Wang
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom.
| | - Sean Foxley
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom; Department of Radiology, University of Chicago, United States
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Sarah Bangerter-Christensen
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom; Brigham Young University, Provo, United States
| | - Mark Chiew
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom
| | - Anna Leonte
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom; University of Groningen,the Netherlands
| | - Ricarda Al Menke
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom
| | - Jeroen Mollink
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom; Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, the Netherlands
| | | | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Karla L Miller
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom
| | - Benjamin C Tendler
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom
| |
Collapse
|
40
|
Ohm DT, Peterson C, Lobrovich R, Cousins KAQ, Gibbons GS, McMillan CT, Wolk DA, Van Deerlin V, Elman L, Spindler M, Deik A, Siderowf A, Trojanowski JQ, Lee EB, Grossman M, Irwin DJ. Degeneration of the locus coeruleus is a common feature of tauopathies and distinct from TDP-43 proteinopathies in the frontotemporal lobar degeneration spectrum. Acta Neuropathol 2020; 140:675-693. [PMID: 32804255 DOI: 10.1007/s00401-020-02210-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Neurodegeneration of the locus coeruleus (LC) in age-related neurodegenerative diseases such as Alzheimer's disease (AD) is well documented. However, detailed studies of LC neurodegeneration in the full spectrum of frontotemporal lobar degeneration (FTLD) proteinopathies comparing tauopathies (FTLD-tau) to TDP-43 proteinopathies (FTLD-TDP) are lacking. Here, we tested the hypothesis that there is greater LC neuropathology and neurodegeneration in FTLD-tau compared to FTLD-TDP. We examined 280 patients including FTLD-tau (n = 94), FTLD-TDP (n = 135), and two reference groups: clinical/pathological AD (n = 32) and healthy controls (HC, n = 19). Adjacent sections of pons tissue containing the LC were immunostained for phosphorylated TDP-43 (1D3-p409/410), hyperphosphorylated tau (PHF-1), and tyrosine hydroxylase (TH) to examine neuromelanin-containing noradrenergic neurons. Blinded to clinical and pathologic diagnoses, we semi-quantitatively scored inclusions of tau and TDP-43 both inside LC neuronal somas and in surrounding neuropil. We also digitally measured the percent area occupied of neuromelanin inside of TH-positive LC neurons and in surrounding neuropil to calculate a ratio of extracellular-to-intracellular neuromelanin as an objective composite measure of neurodegeneration. We found that LC tau burden in FTLD-tau was greater than LC TDP-43 burden in FTLD-TDP (z = - 11.38, p < 0.0001). Digital measures of LC neurodegeneration in FTLD-tau were comparable to AD (z = - 1.84, p > 0.05) but greater than FTLD-TDP (z = - 3.85, p < 0.0001) and HC (z = - 4.12, p < 0.0001). Both tau burden and neurodegeneration were consistently elevated in the LC across pathologic and clinical subgroups of FTLD-tau compared to FTLD-TDP subgroups. Moreover, LC tau burden positively correlated with neurodegeneration in the total FTLD group (rho = 0.24, p = 0.001), while TDP-43 burden did not correlate with LC neurodegeneration in FTLD-TDP (rho = - 0.01, p = 0.90). These findings suggest that patterns of disease propagation across all tauopathies include prominent LC tau and neurodegeneration that are relatively distinct from the minimal degenerative changes to the LC in FTLD-TDP and HC. Antemortem detection of LC neurodegeneration and/or function could potentially improve antemortem differentiation of underlying FTLD tauopathies from clinically similar FTLD-TDP proteinopathies.
Collapse
Affiliation(s)
- Daniel T Ohm
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Claire Peterson
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rebecca Lobrovich
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katheryn A Q Cousins
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Garrett S Gibbons
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Corey T McMillan
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David A Wolk
- Alzheimer's Disease Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Memory Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivianna Van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Alzheimer's Disease Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lauren Elman
- Comprehensive Amyotrophic Lateral Sclerosis Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Meredith Spindler
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andres Deik
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew Siderowf
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Alzheimer's Disease Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Alzheimer's Disease Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Murray Grossman
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David J Irwin
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
41
|
Targeting nuclear protein TDP-43 by cell division cycle kinase 7 inhibitors: A new therapeutic approach for amyotrophic lateral sclerosis. Eur J Med Chem 2020; 210:112968. [PMID: 33139113 DOI: 10.1016/j.ejmech.2020.112968] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no known cure. Aggregates of the nuclear protein TDP-43 have been recognized as a hallmark of proteinopathy in both familial and sporadic cases of ALS. Post-translational modifications of this protein, include hyperphosphorylation, cause disruption of TDP-43 homeostasis and as a consequence, promotion of its neurotoxicity. Among the kinases involved in these changes, cell division cycle kinase 7 (CDC7) plays an important role by directly phosphorylating TDP-43. In the present manuscript the discovery, synthesis, and optimization of a new family of selective and ATP-competitive CDC7 inhibitors based on 6-mercaptopurine scaffold are described. Moreover, we demonstrate the ability of these inhibitors to reduce TDP-43 phosphorylation in both cell cultures and transgenic animal models such as C. elegans and Prp-hTDP43 (A315T) mice. Altogether, the compounds described here may be useful as versatile tools to explore the role of CDC7 in TDP-43 phosphorylation and also as new drug candidates for the future development of ALS therapies.
Collapse
|
42
|
Insight into the Folding and Dimerization Mechanisms of the N-Terminal Domain from Human TDP-43. Int J Mol Sci 2020; 21:ijms21176259. [PMID: 32872449 PMCID: PMC7504384 DOI: 10.3390/ijms21176259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a 414-residue long nuclear protein whose deposition into intraneuronal insoluble inclusions has been associated with the onset of amyotrophic lateral sclerosis (ALS) and other diseases. This protein is physiologically a homodimer, and dimerization occurs through the N-terminal domain (NTD), with a mechanism on which a full consensus has not yet been reached. Furthermore, it has been proposed that this domain is able to affect the formation of higher molecular weight assemblies. Here, we purified this domain and carried out an unprecedented characterization of its folding/dimerization processes in solution. Exploiting a battery of biophysical approaches, ranging from FRET to folding kinetics, we identified a head-to-tail arrangement of the monomers within the dimer. We found that folding of NTD proceeds through the formation of a number of conformational states and two parallel pathways, while a subset of molecules refold slower, due to proline isomerism. The folded state appears to be inherently prone to form high molecular weight assemblies. Taken together, our results indicate that NTD is inherently plastic and prone to populate different conformations and dimeric/multimeric states, a structural feature that may enable this domain to control the assembly state of TDP-43.
Collapse
|
43
|
Josephs KA, Mackenzie I, Frosch MP, Bigio EH, Neumann M, Arai T, Dugger BN, Ghetti B, Grossman M, Hasegawa M, Herrup K, Holton J, Jellinger K, Lashley T, McAleese KE, Parisi JE, Revesz T, Saito Y, Vonsattel JP, Whitwell JL, Wisniewski T, Hu W. LATE to the PART-y. Brain 2020; 142:e47. [PMID: 31359030 PMCID: PMC6736234 DOI: 10.1093/brain/awz224] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
| | - Ian Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia and Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Matthew P Frosch
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eileen H Bigio
- Feinberg School of Medicine, Northwesterm University, Chicago, IL, USA
| | - Manuela Neumann
- Department of Neuropathology, University of Tübingen and German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Tetsuaki Arai
- Department of Psychiatry, Division of Clinical Medicine, University of Tsukuba, Tsukuba, Japan
| | - Brittany N Dugger
- Department of Pathology and Laboratory Medicine, UC Davis, Sacramento, CA, USA
| | - Bernardino Ghetti
- Pathology and Laboratory Medicine, Indiana University, Indiana, IL, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Karl Herrup
- Department of Neurology, Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janice Holton
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kurt Jellinger
- Institute of Clinical Neurobiology, Medical University of Vienna, Vienna, Austria
| | - Tammaryn Lashley
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Tamas Revesz
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Yuko Saito
- National Center of Neurology and Pathology Brain Bank, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | | | - William Hu
- Department of Neurology and Center for Neurodegenerative Diseases Research, Emory University, Atlanta, GA, USA
| |
Collapse
|
44
|
Ahmed RM, Devenney EM, Strikwerda-Brown C, Hodges JR, Piguet O, Kiernan MC. Phenotypic variability in ALS-FTD and effect on survival. Neurology 2020; 94:e2005-e2013. [PMID: 32277059 DOI: 10.1212/wnl.0000000000009398] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To determine if survival and cognitive profile is affected by initial presentation in amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) (motor vs cognitive), we compared survival patterns in ALS-FTD based on initial phenotypic presentation and their cognitive profile compared to behavioral variant FTD (bvFTD). METHODS Cognitive/behavioral profiles were examined in 98 patients (59 ALS-FTD and 39 bvFTD). The initial presentation of ALS-FTD was categorized into either motor or cognitive. Survival was calculated from initial symptom onset. MRI brain atrophy patterns were examined using a validated visual rating scale. RESULTS In the ALS-FTD group, 41 (69%) patients were categorized as having an initial cognitive presentation and 18 (31%) a motor presentation. Patients with motor presentation experienced a significantly shorter median survival of 2.7 years compared to 4.4 years (p < 0.001) in those with a cognitive presentation. No differences between motor vs cognitive onset ALS-FTD were found on cognitive testing. When compared to bvFTD, ALS-FTD-cognitive presentation was characterized by reduced language function (p < 0.001), verbal fluency (p = 0.001), and naming (p = 0.007). Both motor and cognitive onset ALS-FTD showed reduced emotion processing (p = 0.01) and exhibited greater motor cortex and dorsal lateral prefrontal cortex atrophy than bvFTD. Increased motor cortex atrophy was associated with 1.5-fold reduction in survival. CONCLUSIONS Initial motor presentation in ALS-FTD leads to faster progression than in those with a cognitive presentation, despite similar overall cognitive deficits. These findings suggest that disease progression in ALS-FTD may be critically linked to physiologic and motor changes.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- From the Memory and Cognition Clinic, Department of Clinical Neurosciences (R.M.A., M.C.K.), Royal Prince Alfred Hospital; Central Sydney Medical School and Brain & Mind Centre (R.M.A., E.M.D., J.R.H., M.C.K.) and School of Psychology and Brain & Mind Centre (C.S.-B., O.P.), The University of Sydney; and ARC Centre of Excellence of Cognition and its Disorders (C.S.-B., O.P.), Sydney, Australia.
| | - Emma M Devenney
- From the Memory and Cognition Clinic, Department of Clinical Neurosciences (R.M.A., M.C.K.), Royal Prince Alfred Hospital; Central Sydney Medical School and Brain & Mind Centre (R.M.A., E.M.D., J.R.H., M.C.K.) and School of Psychology and Brain & Mind Centre (C.S.-B., O.P.), The University of Sydney; and ARC Centre of Excellence of Cognition and its Disorders (C.S.-B., O.P.), Sydney, Australia
| | - Cherie Strikwerda-Brown
- From the Memory and Cognition Clinic, Department of Clinical Neurosciences (R.M.A., M.C.K.), Royal Prince Alfred Hospital; Central Sydney Medical School and Brain & Mind Centre (R.M.A., E.M.D., J.R.H., M.C.K.) and School of Psychology and Brain & Mind Centre (C.S.-B., O.P.), The University of Sydney; and ARC Centre of Excellence of Cognition and its Disorders (C.S.-B., O.P.), Sydney, Australia
| | - John R Hodges
- From the Memory and Cognition Clinic, Department of Clinical Neurosciences (R.M.A., M.C.K.), Royal Prince Alfred Hospital; Central Sydney Medical School and Brain & Mind Centre (R.M.A., E.M.D., J.R.H., M.C.K.) and School of Psychology and Brain & Mind Centre (C.S.-B., O.P.), The University of Sydney; and ARC Centre of Excellence of Cognition and its Disorders (C.S.-B., O.P.), Sydney, Australia
| | - Olivier Piguet
- From the Memory and Cognition Clinic, Department of Clinical Neurosciences (R.M.A., M.C.K.), Royal Prince Alfred Hospital; Central Sydney Medical School and Brain & Mind Centre (R.M.A., E.M.D., J.R.H., M.C.K.) and School of Psychology and Brain & Mind Centre (C.S.-B., O.P.), The University of Sydney; and ARC Centre of Excellence of Cognition and its Disorders (C.S.-B., O.P.), Sydney, Australia
| | - Matthew C Kiernan
- From the Memory and Cognition Clinic, Department of Clinical Neurosciences (R.M.A., M.C.K.), Royal Prince Alfred Hospital; Central Sydney Medical School and Brain & Mind Centre (R.M.A., E.M.D., J.R.H., M.C.K.) and School of Psychology and Brain & Mind Centre (C.S.-B., O.P.), The University of Sydney; and ARC Centre of Excellence of Cognition and its Disorders (C.S.-B., O.P.), Sydney, Australia
| |
Collapse
|
45
|
de Boer EMJ, Barritt AW, Elamin M, Anderson SJ, Broad R, Nisbet A, Goedee HS, Vázquez Costa JF, Prudlo J, Vedeler CA, Fernandez JP, Panades MP, Albertí Aguilo MA, Bella ED, Lauria G, Pinto WBVR, de Souza PVS, Oliveira ASB, Toro C, van Iersel J, Parson M, Harschnitz O, van den Berg LH, Veldink JH, Al-Chalabi A, Leigh PN, van Es MA. Facial Onset Sensory and Motor Neuronopathy: New Cases, Cognitive Changes, and Pathophysiology. Neurol Clin Pract 2020; 11:147-157. [PMID: 33842068 PMCID: PMC8032419 DOI: 10.1212/cpj.0000000000000834] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Purpose of Review To improve our clinical understanding of facial onset sensory and motor neuronopathy (FOSMN). Recent Findings We identified 29 new cases and 71 literature cases, resulting in a cohort of 100 patients with FOSMN. During follow-up, cognitive and behavioral changes became apparent in 8 patients, suggesting that changes within the spectrum of frontotemporal dementia (FTD) are a part of the natural history of FOSMN. Another new finding was chorea, seen in 6 cases. Despite reports of autoantibodies, there is no consistent evidence to suggest an autoimmune pathogenesis. Four of 6 autopsies had TAR DNA-binding protein (TDP) 43 pathology. Seven cases had genetic mutations associated with neurodegenerative diseases. Summary FOSMN is a rare disease with a highly characteristic onset and pattern of disease progression involving initial sensory disturbances, followed by bulbar weakness with a cranial to caudal spread of pathology. Although not conclusive, the balance of evidence suggests that FOSMN is most likely to be a TDP-43 proteinopathy within the amyotrophic lateral sclerosis–FTD spectrum.
Collapse
Affiliation(s)
- Eva M J de Boer
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Andrew W Barritt
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Marwa Elamin
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Stuart J Anderson
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Rebecca Broad
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Angus Nisbet
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - H Stephan Goedee
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Juan F Vázquez Costa
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Johannes Prudlo
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Christian A Vedeler
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Julio Pardo Fernandez
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Mónica Povedano Panades
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Maria A Albertí Aguilo
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Eleonora Dalla Bella
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Giuseppe Lauria
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Wladimir B V R Pinto
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Paulo V S de Souza
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Acary S B Oliveira
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Camilo Toro
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Joost van Iersel
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Malu Parson
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Oliver Harschnitz
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Leonard H van den Berg
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Jan H Veldink
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Ammar Al-Chalabi
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Peter N Leigh
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Michael A van Es
- Universitair Medisch Centrum Utrecht (EMJB, HSG, JI, MP, LHB, JHV, MAE), Department of Neurology, Utrecht, The Netherlands; Brighton and Sussex Medical School (AWB, ME, RB, PNL), Clinical Imaging Sciences Centre, Brighton, United Kingdom; Hurstwood Park Neurological Centre (AWB, ME, SJA, RB, AN), Haywards Heath, United Kingdom; Hospital Universitari i Politècnic La Fe (JFVC), ALS Unit, Department of Neurology, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (JFVC), Madrid, Spain; Department of Neurology (JP), Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Germany; Department of Neurology (CAV), Haukeland University Hospital and Department of Clinical Medicine, Bergen, Norway; Department of Neurology (JPF), Hospital Clínico Universitario de Santiago, Santiago, Spain; Department of Neurology (MPP, MAAA), Hospital Universitari de Bellvitge, Barcelona, Spain; ALS/MND Centre (EDB, GL), 3rd Neurology Unit, Fondazione IRCCS Institute Neurologico Carlo Besta, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (GL), University of Milan, Milan, Italy; Department of Neurology and Neurosurgery (WBVRP, PVSS, ASBO), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; National Institutes of Health (CT), National Human Genome Research Institute, Bethesda, United States of America; Memorial Sloan Kettering Cancer Center (OH), NY; King's College Hospital NHS Foundation Trust (AA-C), London, United Kingdom; and Department of Neuroscience (PNL), Brighton and Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
46
|
Buciuc M, Wennberg AM, Weigand SD, Murray ME, Senjem ML, Spychalla AJ, Boeve BF, Knopman DS, Jack CR, Kantarci K, Parisi JE, Dickson DW, Petersen RC, Whitwell JL, Josephs KA. Effect Modifiers of TDP-43-Associated Hippocampal Atrophy Rates in Patients with Alzheimer's Disease Neuropathological Changes. J Alzheimers Dis 2020; 73:1511-1523. [PMID: 31929165 PMCID: PMC7081101 DOI: 10.3233/jad-191040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Transactive response DNA-binding protein of 43 kDa (TDP-43) is associated with hippocampal atrophy in Alzheimer's disease (AD), but whether the association is modified by other factors is unknown. OBJECTIVE To evaluate whether the associations between TDP-43 and hippocampal volume and atrophy rate are affected by age, gender, apolipoprotein E (APOE) ɛ4, Lewy bodies (LBs), amyloid-β (Aβ), or Braak neurofibrillary tangle (NFT) stage. METHODS In this longitudinal neuroimaging-clinicopathological study of 468 cases with AD neuropathological changes (Aβ-positive) that had completed antemortem head MRI, we investigated how age, gender, APOEɛ4, presence of LBs, Aβ, TDP-43, and Braak NFT stages are associated with hippocampal volumes and rates of atrophy over time. We included field strength in the models since our cohort included 1.5T and 3T scans. We then determined whether the associations between hippocampal atrophy and TDP-43 are modified by these factors using mixed effects models. RESULTS Older age, female gender, APOEɛ4, higher field strength, higher TDP-43, and Braak NFT stages were associated with smaller hippocampi. Rate of atrophy was greater with higher TDP-43 and Braak NFT stage, but lower in older patients. The association of TDP-43 with greater rate of atrophy was enhanced in APOEɛ4 carriers (p = 0.04). CONCLUSION Neurodegenerative effects of TDP-43 seem to be independent of most factors except perhaps APOE in cases with AD neuropathological changes. TDP-43 and tau appear to behave independently of one another.
Collapse
Affiliation(s)
- Marina Buciuc
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Joseph E. Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
47
|
Bejanin A, Murray ME, Martin P, Botha H, Tosakulwong N, Schwarz CG, Senjem ML, Chételat G, Kantarci K, Jack CR, Boeve BF, Knopman DS, Petersen RC, Giannini C, Parisi JE, Dickson DW, Whitwell JL, Josephs KA. Antemortem volume loss mirrors TDP-43 staging in older adults with non-frontotemporal lobar degeneration. Brain 2019; 142:3621-3635. [PMID: 31562527 PMCID: PMC6821218 DOI: 10.1093/brain/awz277] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/26/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
Over the past decade, the transactive response DNA-binding protein of 43 kDa (TDP-43) has been recognized as a major protein in normal and pathological ageing, increasing the risk of cognitive impairment and dementia. In conditions distinct from the frontotemporal lobar degenerations, TDP-43 appears to progress in a stereotypical pattern. In the present study, we aimed at providing a better understanding of the effects of TDP-43 and other age-related neuropathologies on cross-sectional grey matter volume in a cohort of non-FTLD subjects. We included 407 individuals with an antemortem MRI and post-mortem brain tissue from the Mayo Clinic Alzheimer's Disease Research Center, Mayo Clinic Alzheimer's Disease Patient Registry, or the Mayo Clinic Study of Aging. All individuals were assigned pathological stages for TDP-43, tau, amyloid-β, Lewy bodies, argyrophilic grain disease and vascular pathologies. Robust regressions were performed in regions of interest and voxel-wise to explore the relationships between TDP-43 stages and grey matter volume while controlling for other pathologies. Grey matter volumes adjusted for pathological and demographic variables were also computed for each TDP-43-positive case to further characterize the sequential involvement of brain structures associated with TDP-43, irrespective of the TDP-43 staging scheme. Robust regressions showed that the extent of TDP-43 pathology was associated with the extent of grey matter atrophy. Specifically, we found that the volume in medial temporal regions (i.e. amygdala, entorhinal cortex, hippocampus) decreased progressively with advancing TDP-43 stages. Importantly, these effects were of similar magnitude to those related to tau stages. Additional analyses using adjusted grey matter volume demonstrated a sequential pattern of volume loss associated with TDP-43, starting within the medial temporal lobe, followed by early involvement of the temporal pole, and eventually encompassing additional temporal and frontal regions. Altogether, this study demonstrates the major and independent contribution of TDP-43 pathology on neurodegeneration and provides further insight into the regional distribution of TDP-43 in non-FTLD subjects. Along with previous studies, these findings emphasized the importance of targeting TDP-43 in future clinical trials to prevent its detrimental effect on grey matter volume and, eventually, cognition.
Collapse
Affiliation(s)
- Alexandre Bejanin
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Inserm, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Caen, France
| | | | - Peter Martin
- Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Gael Chételat
- Inserm, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Caen, France
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
48
|
Vega MV, Nigro A, Luti S, Capitini C, Fani G, Gonnelli L, Boscaro F, Chiti F. Isolation and characterization of soluble human full‐length TDP‐43 associated with neurodegeneration. FASEB J 2019; 33:10780-10793. [DOI: 10.1096/fj.201900474r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mirella Vivoli Vega
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Alessia Nigro
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Simone Luti
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Claudia Capitini
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Giulia Fani
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Leonardo Gonnelli
- Centro di Ricerca di Risonanze Magnetiche (CERM)University of FlorenceFlorenceItaly
| | | | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| |
Collapse
|
49
|
Schwab N, Tator C, Hazrati LN. DNA damage as a marker of brain damage in individuals with history of concussions. J Transl Med 2019; 99:1008-1018. [PMID: 30760862 DOI: 10.1038/s41374-019-0199-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is common in many populations, including athletes, veterans, and domestic abuse victims. mTBI can cause chronic symptoms, including depression, irritability, memory problems, and attention deficits. A history of repetitive mTBI has been epidemiologically associated with developing early-onset dementia and neurodegenerative diseases and, in particular, is thought to be the underlying cause of chronic traumatic encephalopathy (CTE)-a progressive tauopathy diagnosed by the presence of perivascular hyperphosphorylated tau protein (p-tau) in the depths of cortical sulci. However, the scarce and focal pathology often seen in CTE does not correlate with the severity of symptoms experienced by patients. This paper proposes accumulation of γH2AX, a marker of double-stranded DNA damage, as a novel pathological marker to identify brain damage post-mTBI. We present two cases of men with history of mTBI. Immunohistochemistry revealed extensive DNA damage throughout the frontal cortex, hippocampus, and brainstem areas. Furthermore, gene expression profiling showed increases of ataxia telangiectasia mutated (ATM) and checkpoint kinase 2 (CHEK2), two serine/threonine kinases recruited in response to double-strand breaks in the DNA damage response pathway. These cases highlight the complex pathophysiology of head trauma, and suggest DNA damage as the molecular mechanism behind mTBI-induced pathology and symptoms.
Collapse
Affiliation(s)
- Nicole Schwab
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,The Hospital for Sick Children, Toronto, ON, Canada.,Canadian Concussion Centre, Toronto Western Hospital, Toronto, ON, Canada
| | - Charles Tator
- Canadian Concussion Centre, Toronto Western Hospital, Toronto, ON, Canada.,Division of Neurosurgery, University Health Network, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada. .,The Hospital for Sick Children, Toronto, ON, Canada. .,Canadian Concussion Centre, Toronto Western Hospital, Toronto, ON, Canada.
| |
Collapse
|
50
|
Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, Rademakers R, Alafuzoff I, Attems J, Brayne C, Coyle-Gilchrist ITS, Chui HC, Fardo DW, Flanagan ME, Halliday G, Hokkanen SRK, Hunter S, Jicha GA, Katsumata Y, Kawas CH, Keene CD, Kovacs GG, Kukull WA, Levey AI, Makkinejad N, Montine TJ, Murayama S, Murray ME, Nag S, Rissman RA, Seeley WW, Sperling RA, White III CL, Yu L, Schneider JA. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 2019; 142:1503-1527. [PMID: 31039256 PMCID: PMC6536849 DOI: 10.1093/brain/awz099] [Citation(s) in RCA: 897] [Impact Index Per Article: 149.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer's-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, ∼25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-β plaques and tauopathy. Given that the 'oldest-old' are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer's disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | - Helena C Chui
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Glenda Halliday
- The University of Sydney Brain and Mind Centre and Central Clinical School Faculty of Medicine and Health, Sydney, Australia
| | | | | | | | | | | | | | - Gabor G Kovacs
- Institute of Neurology Medical University of Vienna, Vienna, Austria
| | | | | | | | | | - Shigeo Murayama
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | | | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | - Lei Yu
- Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|