1
|
Abbasi H, Jourabchi-Ghadim N, Asgarzade A, Mirshekari M, Ebrahimi-Mameghani M. Unveiling the veil of adipokines: A meta-analysis and systematic review in amyotrophic lateral sclerosis. Neuroscience 2024; 563:1-9. [PMID: 39505137 DOI: 10.1016/j.neuroscience.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/20/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Adipokines are proposed to be associated with ALS progression through assorted pathways. Therefore, The present meta-analysis explored the link between various adipokines and ALS progression. METHOD International database like PubMed, Scopus, and Web of Science databases were searched to achieve eligible papers published before December 2023. The following PICO structure was utilized: Population (patients with ALS); Intervention (serum concentrations of ghrelin, leptin, and adiponectin), Comparison (with or without controls), and Outcome (ALS progression). the risk of bias of selected papers was assessed through the Newcastle-Ottawa Scale (NOS) tool. RESULTS 11 out of 240 papers were selected for this study which were published between 2010 and 2024. Lower serum leptin concentrations were detected in the ALS compared to control groups (WMD: -0.91, 95% CI:-1.77, -0.05). Serum concentrations of adiponectin were higher in ALS compared to control groups (WMD: 0.41, 95% CI:-0.7, 0.89). Ultimately, The serum concentrations of ghrelin in the ALS groups were lower than control groups (WMD: -1.21, 95% CI: -2.95, 0.53). CONCLUSION Our findings revealed that serum concentrations of ghrelin and leptin were higher in ALS patients compared to control, unlike adiponectin.
Collapse
Affiliation(s)
- Hamid Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Neda Jourabchi-Ghadim
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Asgarzade
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mobin Mirshekari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Xu Z, Xu R. Current potential diagnostic biomarkers of amyotrophic lateral sclerosis. Rev Neurosci 2024; 35:917-931. [PMID: 38976599 DOI: 10.1515/revneuro-2024-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) currently lacks the useful diagnostic biomarkers. The current diagnosis of ALS is mainly depended on the clinical manifestations, which contributes to the diagnostic delay and be difficult to make the accurate diagnosis at the early stage of ALS, and hinders the clinical early therapeutics. The more and more pathogenesis of ALS are found at the last 30 years, including excitotoxicity, the oxidative stress, the mitochondrial dysfunction, neuroinflammation, the altered energy metabolism, the RNA misprocessing and the most recent neuroimaging findings. The findings of these pathogenesis bring the new clues for searching the diagnostic biomarkers of ALS. At present, a large number of relevant studies about the diagnostic biomarkers are underway. The ALS pathogenesis related to the diagnostic biomarkers might lessen the diagnostic reliance on the clinical manifestations. Among them, the cortical altered signatures of ALS patients derived from both structural and functional magnetic resonance imaging and the emerging proteomic biomarkers of neuronal loss and glial activation in the cerebrospinal fluid as well as the potential biomarkers in blood, serum, urine, and saliva are leading a new phase of biomarkers. Here, we reviewed these current potential diagnostic biomarkers of ALS.
Collapse
Affiliation(s)
- Zheqi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- The Clinical College of Nanchang Medical College, Nanchang 330006, China
- Medical College of Nanchang University, Nanchang 330006, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- The Clinical College of Nanchang Medical College, Nanchang 330006, China
- Medical College of Nanchang University, Nanchang 330006, China
| |
Collapse
|
3
|
Cocozza G, Busdraghi LM, Chece G, Menini A, Ceccanti M, Libonati L, Cambieri C, Fiorentino F, Rotili D, Scavizzi F, Raspa M, Aronica E, Inghilleri M, Garofalo S, Limatola C. GDF15-GFRAL signaling drives weight loss and lipid metabolism in mouse model of amyotrophic lateral sclerosis. Brain Behav Immun 2024; 124:280-293. [PMID: 39672239 DOI: 10.1016/j.bbi.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/22/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024] Open
Abstract
Weight loss is a common early sign in amyotrophic lateral sclerosis (ALS) patients and negatively correlates with survival. In different cancers and metabolic disorders, high levels of serum growth differentiation factor 15 (GDF15) contribute to a decrease of food intake and body weight, acting through GDNF family receptor alpha-like (GFRAL). Here we report that GDF15 is highly expressed in the peripheral blood of ALS patients and in the hSOD1G93A mouse model and that GFRAL is upregulated in the brainstem of hSOD1G93A mice. We demonstrate that the localized GFRAL silencing by shRNA in the area postrema/nucleus tractus solitarius of hSOD1G93A mice induces weight gain, reduces adipose tissue wasting, ameliorates the motor function and muscle atrophy and prolongs the survival time. We report that microglial cells could be involved in mediating these effects because their depletion with PLX5622 reduces brainstem GDF15 expression, weight loss and the expression of lipolytic genes in adipose tissue. Altogether these results reveal a key role of GDF15-GFRAL signaling in regulating weight loss and the alteration of and lipid metabolism in the early phases of ALS.
Collapse
Affiliation(s)
- Germana Cocozza
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| | | | - Giuseppina Chece
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Antonio Menini
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Marco Ceccanti
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Laura Libonati
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Chiara Cambieri
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Francesco Fiorentino
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Dante Rotili
- Department of Science, Roma Tre University, Rome, Italy
| | | | | | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Maurizio Inghilleri
- Department of Human Neuroscience, Sapienza University, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
4
|
Michielsen A, van Veenhuijzen K, Janse van Mantgem MR, van Es MA, Veldink JH, van Eijk RPA, van den Berg LH, Westeneng HJ. Association Between Hypothalamic Volume and Metabolism, Cognition, and Behavior in Patients With Amyotrophic Lateral Sclerosis. Neurology 2024; 103:e209603. [PMID: 38875517 PMCID: PMC11244736 DOI: 10.1212/wnl.0000000000209603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Dysfunction of energy metabolism, cognition, and behavior are important nonmotor symptoms of amyotrophic lateral sclerosis (ALS), negatively affecting survival and quality of life, but poorly understood. Neuroimaging is ideally suited to studying nonmotor neurodegeneration in ALS, but few studies have focused on the hypothalamus, a key region for regulating energy homeostasis, cognition, and behavior. We evaluated, therefore, hypothalamic neurodegeneration in ALS and explored the relationship between hypothalamic volumes and dysregulation of energy metabolism, cognitive and behavioral changes, disease progression, and survival. METHODS Patients with ALS and population-based controls were included for this cross-sectional and longitudinal MRI study. The hypothalamus was segmented into 5 subregions and their volumes were calculated. Linear (mixed) models, adjusted for age, sex, and total intracranial volume, were used to compare hypothalamic volumes between groups and to analyze associations with metabolism, cognition, behavior, and disease progression. Cox proportional hazard models were used to investigate the relationship of hypothalamic volumes with survival. Permutation-based corrections for multiple hypothesis testing were applied to all analyses to control the family-wise error rate. RESULTS Data were available for 564 patients with ALS and 356 controls. The volume of the anterior superior subregion of the hypothalamus was smaller in patients with ALS than in controls (β = -0.70 [-1.15 to -0.25], p = 0.013). Weight loss, memory impairments, and behavioral disinhibition were associated with a smaller posterior hypothalamus (β = -4.79 [-8.39 to -2.49], p = 0.001, β = -10.14 [-15.88 to -4.39], p = 0.004, and β = -12.09 [-18.83 to -5.35], p = 0.003, respectively). Furthermore, the volume of this subregion decreased faster over time in patients than in controls (β = -0.25 [0.42 to -0.09], p = 0.013), and a smaller volume of this structure was correlated with shorter survival (hazard ratio = 0.36 [0.21-0.61], p = 0.029). DISCUSSION We obtained evidence for hypothalamic involvement in ALS, specifically marked by atrophy of the anterior superior subregion. Moreover, we found that atrophy of the posterior hypothalamus was associated with weight loss, memory dysfunction, behavioral disinhibition, and survival, and that this subregion deteriorated faster in patients with ALS than in controls. These findings improve our understanding of nonmotor involvement in ALS and could contribute to the identification of new treatment targets for this devastating disease.
Collapse
Affiliation(s)
- Annebelle Michielsen
- From the Department of Neurology (A.M., K.V.V., M.R.J.V.M., M.A.V.E., J.H.V., R.P.A.V.E., L.H.V.D.B., H.-J.W.), UMC Utrecht Brain Center, and Biostatistics & Research Support (R.P.A.V.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Kevin van Veenhuijzen
- From the Department of Neurology (A.M., K.V.V., M.R.J.V.M., M.A.V.E., J.H.V., R.P.A.V.E., L.H.V.D.B., H.-J.W.), UMC Utrecht Brain Center, and Biostatistics & Research Support (R.P.A.V.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Mark R Janse van Mantgem
- From the Department of Neurology (A.M., K.V.V., M.R.J.V.M., M.A.V.E., J.H.V., R.P.A.V.E., L.H.V.D.B., H.-J.W.), UMC Utrecht Brain Center, and Biostatistics & Research Support (R.P.A.V.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Michael A van Es
- From the Department of Neurology (A.M., K.V.V., M.R.J.V.M., M.A.V.E., J.H.V., R.P.A.V.E., L.H.V.D.B., H.-J.W.), UMC Utrecht Brain Center, and Biostatistics & Research Support (R.P.A.V.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Jan H Veldink
- From the Department of Neurology (A.M., K.V.V., M.R.J.V.M., M.A.V.E., J.H.V., R.P.A.V.E., L.H.V.D.B., H.-J.W.), UMC Utrecht Brain Center, and Biostatistics & Research Support (R.P.A.V.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Ruben P A van Eijk
- From the Department of Neurology (A.M., K.V.V., M.R.J.V.M., M.A.V.E., J.H.V., R.P.A.V.E., L.H.V.D.B., H.-J.W.), UMC Utrecht Brain Center, and Biostatistics & Research Support (R.P.A.V.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Leonard H van den Berg
- From the Department of Neurology (A.M., K.V.V., M.R.J.V.M., M.A.V.E., J.H.V., R.P.A.V.E., L.H.V.D.B., H.-J.W.), UMC Utrecht Brain Center, and Biostatistics & Research Support (R.P.A.V.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Henk-Jan Westeneng
- From the Department of Neurology (A.M., K.V.V., M.R.J.V.M., M.A.V.E., J.H.V., R.P.A.V.E., L.H.V.D.B., H.-J.W.), UMC Utrecht Brain Center, and Biostatistics & Research Support (R.P.A.V.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| |
Collapse
|
5
|
Bjelica B, Bartels MB, Hesebeck-Brinckmann J, Petri S. Non-motor symptoms in patients with amyotrophic lateral sclerosis: current state and future directions. J Neurol 2024; 271:3953-3977. [PMID: 38805053 PMCID: PMC11233299 DOI: 10.1007/s00415-024-12455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of both upper and lower motor neurons. A defining histopathological feature in approximately 97% of all ALS cases is the accumulation of phosphorylated trans-activation response (TAR) DNA-binding protein 43 protein (pTDP-43) aggregates in the cytoplasm of neurons and glial cells within the central nervous system. Traditionally, it was believed that the accumulation of TDP-43 aggregates and subsequent neurodegeneration primarily occurs in motor neurons. However, contemporary evidence suggests that as the disease progresses, other systems and brain regions are also affected. Despite this, there has been a limited number of clinical studies assessing the non-motor symptoms in ALS patients. These studies often employ various outcome measures, resulting in a wide range of reported frequencies of non-motor symptoms in ALS patients. The importance of assessing the non-motor symptoms reflects in a fact that they have a significant impact on patients' quality of life, yet they frequently go underdiagnosed and unreported during clinical evaluations. This review aims to provide an up-to-date overview of the current knowledge concerning non-motor symptoms in ALS. Furthermore, we address their diagnosis and treatment in everyday clinical practice.
Collapse
Affiliation(s)
- Bogdan Bjelica
- Department of Neurology, Hannover Medical School, 1, Carl-Neuberg-Strasse, 30625, Hannover, Germany.
| | - Maj-Britt Bartels
- Precision Neurology of Neuromuscular and Motoneuron Diseases, University of Luebeck, Lübeck, Germany
| | - Jasper Hesebeck-Brinckmann
- Neurology Department, Division for Neurodegenerative Diseases, University Medicine Mannheim, Heidelberg University, Mannheim Center for Translational Medicine, Mannheim, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 1, Carl-Neuberg-Strasse, 30625, Hannover, Germany
| |
Collapse
|
6
|
Fernández-Beltrán LC, Ali Z, Larrad-Sanz A, Lopez-Carbonero JI, Godoy-Corchuelo JM, Jimenez-Coca I, Garcia-Toledo I, Bentley L, Gomez-Pinedo U, Matias-Guiu JA, Gil-Moreno MJ, Matias-Guiu J, Corrochano S. Leptin haploinsufficiency exerts sex-dependent partial protection in SOD1 G93A mice by reducing inflammatory pathways in the adipose tissue. Sci Rep 2024; 14:2671. [PMID: 38302474 PMCID: PMC10834470 DOI: 10.1038/s41598-024-52439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by significant metabolic disruptions, including weight loss and hypermetabolism in both patients and animal models. Leptin, an adipose-derived hormone, displays altered levels in ALS. Genetically reducing leptin levels (Lepob/+) to maintain body weight improved motor performance and extended survival in female SOD1G93A mice, although the exact molecular mechanisms behind these effects remain elusive. Here, we corroborated the sexual dimorphism in circulating leptin levels in ALS patients and in SOD1G93A mice. We reproduced a previous strategy to generate a genetically deficient leptin SOD1G93A mice (SOD1G93ALepob/+) and studied the transcriptomic profile in the subcutaneous adipose tissue and the spinal cord. We found that leptin deficiency reduced the inflammation pathways activated by the SOD1G93A mutation in the adipose tissue, but not in the spinal cord. These findings emphasize the importance of considering sex-specific approaches in metabolic therapies and highlight the role of leptin in the systemic modulation of ALS by regulating immune responses outside the central nervous system.
Collapse
Affiliation(s)
- Luis C Fernández-Beltrán
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Zeinab Ali
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- Mary Lyon Centre at MRC Harwell, Oxfordshire, UK
| | - Angélica Larrad-Sanz
- Department of Endocrinology and Nutrition, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Juan I Lopez-Carbonero
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Juan M Godoy-Corchuelo
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Irene Jimenez-Coca
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Irene Garcia-Toledo
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Liz Bentley
- Mary Lyon Centre at MRC Harwell, Oxfordshire, UK
| | - Ulises Gomez-Pinedo
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Jordi A Matias-Guiu
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Maria Jose Gil-Moreno
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Jorge Matias-Guiu
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Silvia Corrochano
- Neurological Disorders Group, Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
7
|
Ludolph A, Dupuis L, Kasarskis E, Steyn F, Ngo S, McDermott C. Nutritional and metabolic factors in amyotrophic lateral sclerosis. Nat Rev Neurol 2023; 19:511-524. [PMID: 37500993 DOI: 10.1038/s41582-023-00845-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease that is classically thought to impact the motor system. Over the past 20 years, research has started to consider the contribution of non-motor symptoms and features of the disease, and how they might affect ALS prognosis. Of the non-motor features of the disease, nutritional status (for example, malnutrition) and metabolic balance (for example, weight loss and hypermetabolism) have been consistently shown to contribute to more rapid disease progression and/or earlier death. Several complex cellular changes observed in ALS, including mitochondrial dysfunction, are also starting to be shown to contribute to bioenergetic failure. The resulting energy depletion in high energy demanding neurons makes them sensitive to apoptosis. Given that nutritional and metabolic stressors at the whole-body and cellular level can impact the capacity to maintain optimal function, these factors present avenues through which we can identify novel targets for treatment in ALS. Several clinical trials are now underway evaluating the effectiveness of modifying energy balance in ALS, making this article timely in reviewing the evidence base for metabolic and nutritional interventions.
Collapse
Affiliation(s)
- Albert Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Site Ulm, Ulm, Germany
| | - Luc Dupuis
- Université de Strasbourg, Inserm, Mécanismes Centraux et Périphériques de la Neurodégénérescence, UMR-S1118, Centre de Recherches en Biomédecine, Strasbourg, France
| | - Edward Kasarskis
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Frederik Steyn
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Shyuan Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
8
|
Gnoni V, Zoccolella S, Giugno A, Urso D, Tamburrino L, Filardi M, Logroscino G. Hypothalamus and amyotrophic lateral sclerosis: potential implications in sleep disorders. Front Aging Neurosci 2023; 15:1193483. [PMID: 37465321 PMCID: PMC10350538 DOI: 10.3389/fnagi.2023.1193483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that affects both motor and non-motor functions, including sleep regulation. Emerging evidence suggests that the hypothalamus, a brain region that plays a critical role in sleep-wake regulation, may be involved in the pathogenesis of ALS-related sleep disturbances. In this review, we have summarized results of studies on sleep disorders in ALS published between 2000 and 2023. Thereafter, we examined possible mechanisms by which hypothalamic dysfunctions may contribute to ALS-related sleep disturbances. Achieving a deeper understanding of the relationship between hypothalamic dysfunction and sleep disturbances in ALS can help improve the overall management of ALS and reduce the burden on patients and their families.
Collapse
Affiliation(s)
- Valentina Gnoni
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Neurosciences, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, United Kingdom
| | - Stefano Zoccolella
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Neurology Unit, San Paolo Hospital, Azienda Sanitaria Locale (ASL) Bari, Bari, Italy
| | - Alessia Giugno
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
| | - Daniele Urso
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Neurosciences, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, United Kingdom
| | - Ludovica Tamburrino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
9
|
Maksimovic K, Youssef M, You J, Sung HK, Park J. Evidence of Metabolic Dysfunction in Amyotrophic Lateral Sclerosis (ALS) Patients and Animal Models. Biomolecules 2023; 13:biom13050863. [PMID: 37238732 DOI: 10.3390/biom13050863] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects motor neurons, leading to muscle weakness, paralysis, and eventual death. Research from the past few decades has appreciated that ALS is not only a disease of the motor neurons but also a disease that involves systemic metabolic dysfunction. This review will examine the foundational research of understanding metabolic dysfunction in ALS and provide an overview of past and current studies in ALS patients and animal models, spanning from full systems to various metabolic organs. While ALS-affected muscle tissue exhibits elevated energy demand and a fuel preference switch from glycolysis to fatty acid oxidation, adipose tissue in ALS undergoes increased lipolysis. Dysfunctions in the liver and pancreas contribute to impaired glucose homeostasis and insulin secretion. The central nervous system (CNS) displays abnormal glucose regulation, mitochondrial dysfunction, and increased oxidative stress. Importantly, the hypothalamus, a brain region that controls whole-body metabolism, undergoes atrophy associated with pathological aggregates of TDP-43. This review will also cover past and present treatment options that target metabolic dysfunction in ALS and provide insights into the future of metabolism research in ALS.
Collapse
Affiliation(s)
- Katarina Maksimovic
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mohieldin Youssef
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Justin You
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeehye Park
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
10
|
Morrone CD, Raghuraman R, Hussaini SA, Yu WH. Proteostasis failure exacerbates neuronal circuit dysfunction and sleep impairments in Alzheimer's disease. Mol Neurodegener 2023; 18:27. [PMID: 37085942 PMCID: PMC10119020 DOI: 10.1186/s13024-023-00617-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
Failed proteostasis is a well-documented feature of Alzheimer's disease, particularly, reduced protein degradation and clearance. However, the contribution of failed proteostasis to neuronal circuit dysfunction is an emerging concept in neurodegenerative research and will prove critical in understanding cognitive decline. Our objective is to convey Alzheimer's disease progression with the growing evidence for a bidirectional relationship of sleep disruption and proteostasis failure. Proteostasis dysfunction and tauopathy in Alzheimer's disease disrupts neurons that regulate the sleep-wake cycle, which presents behavior as impaired slow wave and rapid eye movement sleep patterns. Subsequent sleep loss further impairs protein clearance. Sleep loss is a defined feature seen early in many neurodegenerative disorders and contributes to memory impairments in Alzheimer's disease. Canonical pathological hallmarks, β-amyloid, and tau, directly disrupt sleep, and neurodegeneration of locus coeruleus, hippocampal and hypothalamic neurons from tau proteinopathy causes disruption of the neuronal circuitry of sleep. Acting in a positive-feedback-loop, sleep loss and circadian rhythm disruption then increase spread of β-amyloid and tau, through impairments of proteasome, autophagy, unfolded protein response and glymphatic clearance. This phenomenon extends beyond β-amyloid and tau, with interactions of sleep impairment with the homeostasis of TDP-43, α-synuclein, FUS, and huntingtin proteins, implicating sleep loss as an important consideration in an array of neurodegenerative diseases and in cases of mixed neuropathology. Critically, the dynamics of this interaction in the neurodegenerative environment are not fully elucidated and are deserving of further discussion and research. Finally, we propose sleep-enhancing therapeutics as potential interventions for promoting healthy proteostasis, including β-amyloid and tau clearance, mechanistically linking these processes. With further clinical and preclinical research, we propose this dynamic interaction as a diagnostic and therapeutic framework, informing precise single- and combinatorial-treatments for Alzheimer's disease and other brain disorders.
Collapse
Affiliation(s)
- Christopher Daniel Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
| | - Radha Raghuraman
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
| | - S Abid Hussaini
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
| | - Wai Haung Yu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Geriatric Mental Health Research Services, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
11
|
Bolborea M, Vercruysse P, Daria T, Reiners JC, Alami NO, Guillot SJ, Dieterlé S, Sinniger J, Scekic-Zahirovic J, Londo A, Arcay H, Goy MA, de Tapia CN, Thal DR, Shibuya K, Otani R, Arai K, Kuwabara S, Ludolph AC, Roselli F, Yilmazer-Hanke D, Dupuis L. Loss of hypothalamic MCH decreases food intake in amyotrophic lateral sclerosis. Acta Neuropathol 2023; 145:773-791. [PMID: 37058170 PMCID: PMC10175407 DOI: 10.1007/s00401-023-02569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is associated with impaired energy metabolism, including weight loss and decreased appetite which are negatively correlated with survival. Neural mechanisms underlying metabolic impairment in ALS remain unknown. ALS patients and presymptomatic gene carriers have early hypothalamic atrophy. The lateral hypothalamic area (LHA) controls metabolic homeostasis through the secretion of neuropeptides such as orexin/hypocretin and melanin-concentrating hormone (MCH). Here, we show loss of MCH-positive neurons in three mouse models of ALS based on SOD1 or FUS mutations. Supplementation with MCH (1.2 µg/d) through continuous intracerebroventricular delivery led to weight gain in male mutant Sod1G86R mice. MCH supplementation increased food intake, rescued expression of the key appetite-related neuropeptide AgRP (agouti-related protein) and modified respiratory exchange ratio, suggesting increased carbohydrate usage during the inactive phase. Importantly, we document pTDP-43 pathology and neurodegeneration in the LHA of sporadic ALS patients. Neuronal cell loss was associated with pTDP-43-positive inclusions and signs of neurodegeneration in MCH-positive neurons. These results suggest that hypothalamic MCH is lost in ALS and contributes to the metabolic changes, including weight loss and decreased appetite.
Collapse
Affiliation(s)
- Matei Bolborea
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France.
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Pauline Vercruysse
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Tselmen Daria
- Clinical Neuroanatomy Section, Department of Neurology, Ulm University, Ulm, Germany
| | - Johanna C Reiners
- Clinical Neuroanatomy Section, Department of Neurology, Ulm University, Ulm, Germany
- Institute for Neurobiochemistry, Ulm University, Ulm, Germany
| | - Najwa Ouali Alami
- Clinical Neuroanatomy Section, Department of Neurology, Ulm University, Ulm, Germany
| | - Simon J Guillot
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Stéphane Dieterlé
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Jérôme Sinniger
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Jelena Scekic-Zahirovic
- Department of Neurology, Neurology Clinic, Ulm University, Ulm, Germany
- Laboratory for Neuropathology, Institute for Pathology, Ulm University, Ulm, Germany
| | - Amela Londo
- Department of Neurology, Neurology Clinic, Ulm University, Ulm, Germany
- Laboratory for Neuropathology, Institute for Pathology, Ulm University, Ulm, Germany
| | - Hippolyte Arcay
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Marc-Antoine Goy
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Claudia Nelson de Tapia
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Dietmar R Thal
- Laboratory for Neuropathology, Institute for Pathology, Ulm University, Ulm, Germany
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, KU louvain, Belgium
- Department of Pathology, UZ Leuven, Japan
| | - Kazumoto Shibuya
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Ryo Otani
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Kimihito Arai
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Albert C Ludolph
- Department of Neurology, Neurology Clinic, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Neurology Clinic, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Deniz Yilmazer-Hanke
- Clinical Neuroanatomy Section, Department of Neurology, Ulm University, Ulm, Germany.
| | - Luc Dupuis
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France.
| |
Collapse
|
12
|
Dupuis L, Chio A. The "metabolic axis" of ALS: The role of body weight in disease pathogenesis. Muscle Nerve 2023; 67:191-192. [PMID: 36602891 DOI: 10.1002/mus.27784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Affiliation(s)
- Luc Dupuis
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Adriano Chio
- Neurology 1, ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Association of blood lipids with onset and prognosis of amyotrophic lateral sclerosis: results from the ALS Swabia registry. J Neurol 2023; 270:3082-3090. [PMID: 36853389 DOI: 10.1007/s00415-023-11630-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND To date, the role of blood lipid levels and their association with the onset and prognosis of ALS is controversial. We explored these associations in a large, population-based case-control study. METHODS Between October 2010 and June 2014, 336 ALS patients (mean age 65.7 ± 10.7; 57.7% male) and 487 sex- and age-matched controls from the same geographic region were recruited within the ALS registry in Southwest Germany. Triglycerides and cholesterol (high-density lipoprotein (HDL), low-density lipoprotein (LDL), total) were measured. The ALS cohort was followed up for vital status. Conditional logistic regression models were applied to calculate odds ratio (OR) for risk of ALS associated with serum lipid concentrations. In ALS patients only, survival models were used to appraise the prognostic value. RESULTS High concentration of total cholesterol (OR 1.60, 95% confidence interval (CI) 1.03-2.49, top vs. bottom quartile), but not HDL, LDL, LDL-HDL ratio, or triglycerides, was positively associated with the risk of ALS. During the median follow-up time of 88.9 months, 291 deaths occurred among 336 ALS patients. In the adjusted survival analysis, higher HDL (HR 1.72, 95% CI 1.19-2.50) and LDL cholesterol levels (HR 1.58, 95% CI 1.11-2.26) were associated with higher mortality in ALS patients. In contrast, higher triglyceride levels were associated with lower mortality (HR 0.68, 95% CI 0.48-0.96). CONCLUSION The results highlight the importance to distinguish cholesterol from triglycerides when considering the prognostic role of lipid metabolism in ALS. It further strengthens the rationale for a triglyceride-rich diet, while the negative impact of cholesterol must be further explored.
Collapse
|
14
|
Yang L, Cheng Y, Zhu Y, Cui L, Li X. The Serotonergic System and Amyotrophic Lateral Sclerosis: A Review of Current Evidence. Cell Mol Neurobiol 2023:10.1007/s10571-023-01320-0. [PMID: 36729314 DOI: 10.1007/s10571-023-01320-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the premature death of motor neurons. Serotonin (5-HT) is a crucial neurotransmitter, and its dysfunction, whether as a contributor or by-product, has been implicated in ALS pathogenesis. Here, we summarize current evidence linking serotonergic alterations to ALS, including results from post-mortem and neuroimaging studies, biofluid testing, and studies of ALS animal models. We also discuss the possible role of 5-HT in modulating some important mechanisms of ALS (i.e. glutamate excitotoxity and neuroinflammation) and in regulating ALS phenotypes (i.e. breathing dysfunction and metabolic defects). Finally, we discuss the promise and limitations of the serotonergic system as a target for the development of ALS biomarkers and therapeutic approaches. However, due to a relative paucity of data and standardized methodologies in previous studies, proper interpretation of existing results remains a challenge. Future research is needed to unravel the mechanisms linking serotonergic pathways and ALS and to provide valid, reproducible, and translatable findings.
Collapse
Affiliation(s)
- Lu Yang
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
| | - Yanfei Cheng
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
| | - Yicheng Zhu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China.,Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China.,Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiaoguang Li
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China. .,Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
15
|
Xia K, Witzel S, Witzel C, Klose V, Fan D, Ludolph AC, Dorst J. Mutation-specific metabolic profiles in presymptomatic amyotrophic lateral sclerosis. Eur J Neurol 2023; 30:87-95. [PMID: 36169607 DOI: 10.1111/ene.15584] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/10/2022] [Accepted: 09/25/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Growing evidence shows that ALS patients feature a disturbed energy metabolism. However, these features have rarely been investigated in the presymptomatic stage. METHODS A total of 60 presymptomatic ALS mutation carriers and 70 age- and gender-matched controls (non-mutation carriers from the same families) were recruited. All subjects underwent assessments of their metabolic profiles under fasting conditions at enrollment, including body mass index (BMI), blood pressure and serum levels of blood glucose, total cholesterol, triglycerides, high-density lipoprotein (HDL) and low-density lipoprotein. RESULTS All mutations combined, no differences between presymptomatic ALS gene carriers and controls were found. From a cardiovascular point of view, presymptomatic chromosome 9 open reading frame 72 (C9ORF72) gene carriers showed lower cardiovascular risk profiles compared to healthy controls, including lower BMI (median 22.9, interquartile range [IQR] 20.6-26.1 kg/m2 vs. 24.9, IQR 22.7-30.5 kg/m2 ; p = 0.007), lower systolic blood pressure (120, IQR 110-130 mmHg vs. 128, IQR 120-140 mmHg; p = 0.02), lower fasting serum glucose (89.0, IQR 85.0-97.0 mg/dl vs. 96.0, IQR 89.3-102.0 mg/dl; p = 0.005) and higher HDL (1.6, IQR 1.3-1.8 mmol/l vs. 1.2, IQR 1.0-1.4 mmol/l; p = 0.04). However, presymptomatic superoxide dismutase 1 (SOD1) gene mutation carriers showed higher cardiovascular risk profiles compared to healthy controls, including higher BMI (28.0, IQR 26.1-31.5 kg/m2 vs. 24.9, IQR 22.7-30.5 kg/m2 ; p = 0.02), higher fasting serum glucose (100.0, IQR 94.0-117.0 mg/dl vs. 96.0, IQR 89.3-102.0 mg/dl; p = 0.04) and lower HDL (1.2, IQR 1.0-1.4 mmol/l vs. 1.4, IQR 1.2-1.7 mmol/l; p = 0.01). These features were most prominent in patients carrying SOD1 gene mutations associated with slow disease progression. CONCLUSIONS This study identified distinct metabolic profiles in presymptomatic ALS gene carriers, which might be associated with disease progression in the symptomatic phase.
Collapse
Affiliation(s)
- Kailin Xia
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China.,Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China.,Department of Neurology, Ulm University, Ulm, Germany
| | - Simon Witzel
- Department of Neurology, Ulm University, Ulm, Germany
| | | | - Veronika Klose
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China.,Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | | |
Collapse
|
16
|
Tse NY, Bocchetta M, Todd EG, Devenney EM, Tu S, Caga J, Hodges JR, Halliday GM, Irish M, Kiernan MC, Piguet O, Rohrer JD, Ahmed RM. Distinct hypothalamic involvement in the amyotrophic lateral sclerosis-frontotemporal dementia spectrum. Neuroimage Clin 2022; 37:103281. [PMID: 36495857 PMCID: PMC9731897 DOI: 10.1016/j.nicl.2022.103281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hypothalamic dysregulation plays an established role in eating abnormalities in behavioural variant frontotemporal dementia (bvFTD) and amyotrophic lateral sclerosis (ALS). Its contribution to cognitive and behavioural impairments, however, remains unexplored. METHODS Correlation between hypothalamic subregion atrophy and cognitive and behavioural impairments was examined in a large sample of 211 participants (52 pure ALS, 42 mixed ALS-FTD, 59 bvFTD, and 58 age- and education- matched healthy controls). RESULTS Graded variation in hypothalamic involvement but relative sparing of the inferior tuberal region was evident across all patient groups. Bilateral anterior inferior, anterior superior, and posterior hypothalamic subregions were selectively implicated in memory, fluency and processing speed impairments in addition to apathy and abnormal eating habits, taking into account disease duration, age, sex, total intracranial volume, and acquisition parameters (all p ≤ .001). CONCLUSIONS These findings revealed that subdivisions of the hypothalamus are differentially affected in the ALS-FTD spectrum and contribute to canonical cognitive and behavioural disturbances beyond eating abnormalities. The anterior superior and superior tuberal subregions containing the paraventricular nucleus (housing oxytocin-producing neurons) displayed the greatest volume loss in bvFTD and ALS-FTD, and ALS, respectively. Importantly, the inferior tuberal subregion housing the arcuate nucleus (containing different groups of neuroendocrine neurons) was selectively preserved across the ALS-FTD spectrum, supporting pathophysiological findings of discrete neuropeptide expression abnormalities that may underlie the pathogenesis of autonomic and metabolic abnormalities and potentially certain cognitive and behavioural symptom manifestations, representing avenues for more refined symptomatic treatment targets.
Collapse
Affiliation(s)
- Nga Yan Tse
- The University of Sydney, Brain & Mind Centre, Sydney, Australia; Royal Prince Alfred Hospital, Sydney, Australia
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Emily G Todd
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Emma M Devenney
- The University of Sydney, Brain & Mind Centre, Sydney, Australia; Royal Prince Alfred Hospital, Sydney, Australia
| | - Sicong Tu
- The University of Sydney, Brain & Mind Centre, Sydney, Australia; Royal Prince Alfred Hospital, Sydney, Australia
| | - Jashelle Caga
- The University of Sydney, Brain & Mind Centre, Sydney, Australia; Royal Prince Alfred Hospital, Sydney, Australia
| | - John R Hodges
- The University of Sydney, Brain & Mind Centre, Sydney, Australia; Royal Prince Alfred Hospital, Sydney, Australia; The University of Sydney, School of Psychology and Brain & Mind Centre, Sydney, Australia
| | - Glenda M Halliday
- The University of Sydney, Sydney Medical School and Brain & Mind Centre, Sydney, Australia
| | - Muireann Irish
- The University of Sydney, School of Psychology and Brain & Mind Centre, Sydney, Australia
| | - Matthew C Kiernan
- The University of Sydney, Brain & Mind Centre, Sydney, Australia; Royal Prince Alfred Hospital, Sydney, Australia; The University of Sydney, Sydney Medical School and Brain & Mind Centre, Sydney, Australia
| | - Olivier Piguet
- The University of Sydney, School of Psychology and Brain & Mind Centre, Sydney, Australia
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rebekah M Ahmed
- The University of Sydney, Brain & Mind Centre, Sydney, Australia; Royal Prince Alfred Hospital, Sydney, Australia; Memory and Cognition Clinic, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
17
|
Fast Versus Slow Disease Progression in Amyotrophic Lateral Sclerosis – Clinical and Genetic Factors at the Edges of the Survival Spectrum. Neurobiol Aging 2022; 119:117-126. [DOI: 10.1016/j.neurobiolaging.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
|
18
|
Nelson AT, Trotti D. Altered Bioenergetics and Metabolic Homeostasis in Amyotrophic Lateral Sclerosis. Neurotherapeutics 2022; 19:1102-1118. [PMID: 35773551 PMCID: PMC9587161 DOI: 10.1007/s13311-022-01262-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 01/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that primarily affects motor neurons and causes muscle atrophy, paralysis, and death. While a great deal of progress has been made in deciphering the underlying pathogenic mechanisms, no effective treatments for the disease are currently available. This is mainly due to the high degree of complexity and heterogeneity that characterizes the disease. Over the last few decades of research, alterations to bioenergetic and metabolic homeostasis have emerged as a common denominator across many different forms of ALS. These alterations are found at the cellular level (e.g., mitochondrial dysfunction and impaired expression of monocarboxylate transporters) and at the systemic level (e.g., low BMI and hypermetabolism) and tend to be associated with survival or disease outcomes in patients. Furthermore, an increasing amount of preclinical evidence and some promising clinical evidence suggests that targeting energy metabolism could be an effective therapeutic strategy. This review examines the evidence both for and against these ALS-associated metabolic alterations and highlights potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Andrew T Nelson
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, JHN Bldg., 4th floor, room 416, Philadelphia, PA, 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, JHN Bldg., 4th floor, room 416, Philadelphia, PA, 19107, USA.
| |
Collapse
|
19
|
Body Weight Gain Is Associated with the Disease Stage in Advanced Amyotrophic Lateral Sclerosis with Invasive Ventilation. Metabolites 2022; 12:metabo12020191. [PMID: 35208264 PMCID: PMC8874426 DOI: 10.3390/metabo12020191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/05/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
We investigated the incidence of weight gain and its related factors in patients with amyotrophic lateral sclerosis (ALS) who underwent tracheostomy and invasive ventilation (TIV). Seventy-eight patients with ALS and TIV were enrolled and followed up prospectively. We clarified the clinical profiles of patients with increased weight following TIV and examined chronological variations in their body mass index (BMI), energy intake, and serum albumin levels. Post follow-up, we determined their disease stage according to their communication impairment (stage I to V) and investigated factors associated with BMI increase following TIV. Patients with a post-TIV BMI increase ≥1.86 kg/m2 demonstrated a higher incidence of ophthalmoplegia (76.2%), total quadriplegia (61.9%), severe communication impairment (stage V; 33.3%), and hypoalbuminemia than those with a BMI increase <1.86 kg/m2. Patients with stage V communication impairment exhibited a larger and faster BMI decrease before TIV (mean −4.2 kg/m2 and −2.5 kg/m2/year, respectively); a larger BMI increase (mean +4.6 kg/m2) following TIV, despite lower energy intake; and lower albumin levels post follow-up than those with lower-stage communication impairment. Multilevel linear regression analysis demonstrated an independent association between communication impairment stages (stage V) and a post-TIV BMI increase (p = 0.030). Weight gain and hypoalbuminemia during TIV in patients with ALS were associated with the disease stage and may be attributable to the neurodegenerative processes that are peculiar to ALS.
Collapse
|
20
|
Ye S, Luo Y, Jin P, Wang Y, Zhang N, Zhang G, Chen L, Shi L, Fan D. MRI Volumetric Analysis of the Thalamus and Hypothalamus in Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 13:610332. [PMID: 35046789 PMCID: PMC8763328 DOI: 10.3389/fnagi.2021.610332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Increasing evidence has shown that amyotrophic lateral sclerosis (ALS) can result in abnormal energy metabolism and sleep disorders, even before motor dysfunction. Although the hypothalamus and thalamus are important structures in these processes, few ALS studies have reported abnormal MRI structural findings in the hypothalamus and thalamus. Purpose: We aimed to investigate volumetric changes in the thalamus and hypothalamus by using the automatic brain structure volumetry tool AccuBrain®. Methods: 3D T1-weighted magnetization-prepared gradient echo imaging (MPRAGE) scans were acquired from 16 patients with ALS with normal cognitive scores and 16 age-, sex- and education-matched healthy controls. Brain tissue and structure volumes were automatically calculated using AccuBrain®. Results: There were no significant differences in bilateral thalamic (F = 1.31, p = 0.287) or hypothalamic volumes (F = 1.65, p = 0.213) between the ALS and control groups by multivariate analysis of covariance (MANCOVA). Left and right hypothalamic volumes were correlated with whole-brain volume in patients with ALS (t = 3.19, p = 0.036; t = 3.03, p = 0.044), while the correlation between age and bilateral thalamic volumes tended to be significant after Bonferroni correction (t = 2.76, p = 0.068; t = 2.83, p = 0.06). In the control group, left and right thalamic volumes were correlated with whole-brain volume (t = 4.26, p = 0.004; t = 4.52, p = 0.004). Conclusion: Thalamic and hypothalamic volumes did not show differences between patients with normal frontotemporal function ALS and healthy controls, but further studies are still needed.
Collapse
Affiliation(s)
- Shan Ye
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Yishan Luo
- Brain Research Institute, Shenzhen, China.,Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Pingping Jin
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Yajun Wang
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Nan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Gan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Lu Chen
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Lin Shi
- Brain Research Institute, Shenzhen, China.,Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| |
Collapse
|
21
|
Wang Y, He Y, Zhu Y, He T, Xu J, Kuang Q, Ji Y, Xu R, Li F, Zhou F. Effect of the Minor C Allele of CNTN4 rs2619566 on Medial Hypothalamic Connectivity in Early-Stage Patients of Chinese Han Ancestry with Sporadic Amyotrophic Lateral Sclerosis. Neuropsychiatr Dis Treat 2022; 18:437-448. [PMID: 35250268 PMCID: PMC8888333 DOI: 10.2147/ndt.s339456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Clinical symptoms such as major defects in energy metabolism may involve the hypothalamus in amyotrophic lateral sclerosis (ALS) patients. Our recent study discovered that the single-nucleotide polymorphisms (SNPs) of rs2619566, rs79609816 and rs10260404 are associated with sporadic ALS (sALS). Thus, this study aims to investigate the hypothalamic functional reorganization and its association with the above polymorphisms risk alleles in sALS patients of Chinese Han ancestry. METHODS Forty-four sALS patients (28 males/16 females) and 40 healthy subjects (HS; 28 males/12 females) underwent resting-state functional MRI, genotyping and clinical assessments. A two-sample t test (P < 0.01, GRF correction at P < 0.05) was performed to compare hypothalamic connectivity for group-level analysis in disease diagnosis and genotype, and then the genotype-diagnosis interaction effect was assessed. Finally, Spearman correlation analyses were performed to assess the relationship between the altered functional connectivity and their clinical characteristics. RESULTS The sALS patients showed a short disease duration (median = 12 months). Regarding the diagnosis effect, the sALS patients showed widespread hypothalamic hyperconnectivity with the left superior temporal gyrus/middle temporal gyrus, right inferior frontal gyrus, and left precuneus/posterior cingulate gyrus. For the genotype effect of SNPs, hyperconnectivity was observed in only the medial hypothalamus when the sALS patients harboring the minor C allele of rs2619566 in contactin-4 (CNTN4), while the sALS patients with the TT allele showed a hyperconnectivity network in the right lateral hypothalamus. This connectivity pattern was not observed in other SNPs. No significant genotype-diagnosis interaction was found. Moreover, altered functional connectivity was not significantly correlated with clinical characteristics (P : 0.11-0.90). CONCLUSION These results demonstrated widespread hypothalamic hyperconnectivity in sALS. The risk allele C of the CNTN4 gene may therefore influence functional reorganization of the medial hypothalamus. The effects of the CNTN4 rs2619566 polymorphism may exist in the hypothalamic functional connectivity of patients with sALS.
Collapse
Affiliation(s)
- Yao Wang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Yujie He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Ting He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Jie Xu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Qinmei Kuang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Yuqi Ji
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006, People's Republic of China
| | - Fangjun Li
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| |
Collapse
|
22
|
Arnoux A, Ayme-Dietrich E, Dieterle S, Goy MA, Schann S, Frauli M, Monassier L, Dupuis L. Evaluation of a 5-HT 2B receptor agonist in a murine model of amyotrophic lateral sclerosis. Sci Rep 2021; 11:23582. [PMID: 34880312 PMCID: PMC8654833 DOI: 10.1038/s41598-021-02900-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/24/2021] [Indexed: 12/29/2022] Open
Abstract
Degeneration of brainstem serotonin neurons has been demonstrated in ALS patients and mouse models and was found responsible for the development of spasticity. Consistent with involvement of central serotonin pathways, 5-HT2B receptor (5-HT2BR) was upregulated in microglia of ALS mice. Its deletion worsened disease outcome in the Sod1G86R mouse model and led to microglial degeneration. In ALS patients, a polymorphism in HTR2B gene leading to higher receptor expression in CNS, was associated with increased survival in patients as well as prevention of microglial degeneration. Thus, the aim of our study was to determine the effect of a 5-HT2BR agonist : BW723C86 (BW), in the Sod1G86R mouse model. Despite good pharmacokinetic and pharmacological profiles, BW did not ameliorate disease outcome or motor neuron degeneration in a fast progressing mouse model of ALS despite evidence of modulation of microglial gene expression.
Collapse
Affiliation(s)
- Alizée Arnoux
- Mécanismes Centraux et Périphériques de la Neurodégénérescence, U1118, Inserm, UMR-S1118, CRBS, Université de Strasbourg, 1 rue Eugène Boeckel, 67000, Strasbourg Cedex, France.,Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR7296, Université de Strasbourg, 67000, Strasbourg, France.,Domain Therapeutics, 67400, Illkirch-Graffenstaden, France
| | - Estelle Ayme-Dietrich
- Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR7296, Université de Strasbourg, 67000, Strasbourg, France
| | - Stéphane Dieterle
- Mécanismes Centraux et Périphériques de la Neurodégénérescence, U1118, Inserm, UMR-S1118, CRBS, Université de Strasbourg, 1 rue Eugène Boeckel, 67000, Strasbourg Cedex, France
| | - Marc-Antoine Goy
- Mécanismes Centraux et Périphériques de la Neurodégénérescence, U1118, Inserm, UMR-S1118, CRBS, Université de Strasbourg, 1 rue Eugène Boeckel, 67000, Strasbourg Cedex, France
| | - Stephan Schann
- Domain Therapeutics, 67400, Illkirch-Graffenstaden, France
| | - Mélanie Frauli
- Domain Therapeutics, 67400, Illkirch-Graffenstaden, France
| | - Laurent Monassier
- Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR7296, Université de Strasbourg, 67000, Strasbourg, France
| | - Luc Dupuis
- Mécanismes Centraux et Périphériques de la Neurodégénérescence, U1118, Inserm, UMR-S1118, CRBS, Université de Strasbourg, 1 rue Eugène Boeckel, 67000, Strasbourg Cedex, France.
| |
Collapse
|
23
|
Bongioanni P, Del Carratore R, Corbianco S, Diana A, Cavallini G, Masciandaro SM, Dini M, Buizza R. Climate change and neurodegenerative diseases. ENVIRONMENTAL RESEARCH 2021; 201:111511. [PMID: 34126048 DOI: 10.1016/j.envres.2021.111511] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
The climate change induced global warming, and in particular the increased frequency and intensity of heat waves, have been linked to health problems. Among them, scientific works have been reporting an increased incidence of neurological diseases, encompassing also neurodegenerative ones, such as Dementia of Alzheimer's type, Parkinson's Disease, and Motor Neuron Diseases. Although the increase in prevalence of neurodegenerative diseases is well documented by literature reports, the link between global warming and the enhanced prevalence of such diseases remains elusive. This is the main theme of our work, which aims to examine the connection between high temperature exposure and neurodegenerative diseases. Firstly, we evaluate the influence of high temperatures exposure on the pathophysiology of these disorders. Secondly, we discuss its effects on the thermoregulation, already compromised in affected patients, and its interference with processes of excitotoxicity, oxidative stress and neuroinflammation, all of them related with neurodegeneration. Finally, we investigate chronic versus acute stressors on body warming, and put forward a possible interpretation of the beneficial or detrimental effects on the brain, which is responsible for the incidence or progression of neurological disorders.
Collapse
Affiliation(s)
- Paolo Bongioanni
- Severe Acquired Brain Injuries Dpt Section, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; NeuroCare Onlus, Pisa, Italy
| | | | - Silvia Corbianco
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Italy; Human Movement and Rehabilitation Research Laboratory, Pisa, Italy
| | - Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Gabriella Cavallini
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Italy
| | - Silvia M Masciandaro
- NeuroCare Onlus, Pisa, Italy; Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Marco Dini
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Italy; Human Movement and Rehabilitation Research Laboratory, Pisa, Italy
| | - Roberto Buizza
- Scuola Superiore Sant'Anna and Centre for Climate Change Studies and Sustainable Actions (3CSA), Pisa, Italy
| |
Collapse
|
24
|
Alterations in Leptin Signaling in Amyotrophic Lateral Sclerosis (ALS). Int J Mol Sci 2021; 22:ijms221910305. [PMID: 34638645 PMCID: PMC8508891 DOI: 10.3390/ijms221910305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
Leptin has been suggested to play a role in amyotrophic lateral sclerosis (ALS), a fatal progressive neurodegenerative disease. This adipokine has previously been shown to be associated with a lower risk of ALS and to confer a survival advantage in ALS patients. However, the role of leptin in the progression of ALS is unknown. Indeed, our understanding of the mechanisms underlying leptin's effects in the pathogenesis of ALS is very limited, and it is fundamental to determine whether alterations in leptin's actions take place in this neurodegenerative disease. To characterize the association between leptin signaling and the clinical course of ALS, we assessed the mRNA and protein expression profiles of leptin, the long-form of the leptin receptor (Ob-Rb), and leptin-related signaling pathways at two different stages of the disease (onset and end-stage) in TDP-43A315T mice compared to age-matched WT littermates. In addition, at selected time-points, an immunoassay analysis was conducted to characterize plasma levels of total ghrelin, the adipokines resistin and leptin, and metabolic proteins (plasminogen activator inhibitor type 1 (PAI-1), gastric inhibitory peptide (GIP), glucagon-like peptide 1 (GLP-1), insulin and glucagon) in TDP-43A315T mice compared to WT controls. Our results indicate alterations in leptin signaling in the spinal cord and the hypothalamus on the backdrop of TDP-43-induced deficits in mice, providing new evidence about the pathways that could link leptin signaling to ALS.
Collapse
|
25
|
Cocozza G, Garofalo S, Morotti M, Chece G, Grimaldi A, Lecce M, Scavizzi F, Menghini R, Casagrande V, Federici M, Raspa M, Wulff H, Limatola C. The feeding behaviour of Amyotrophic Lateral Sclerosis mouse models is modulated by the Ca 2+ -activated K Ca 3.1 channels. Br J Pharmacol 2021; 178:4891-4906. [PMID: 34411281 PMCID: PMC9293222 DOI: 10.1111/bph.15665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/20/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Amyotrophic lateral sclerosis (ALS) patients exhibit dysfunctional energy metabolism and weight loss, which is negatively correlated with survival, together with neuroinflammation. However, the possible contribution of neuroinflammation to deregulations of feeding behaviour in ALS has not been studied in detail. We here investigated if microglial KCa 3.1 is linked to hypothalamic neuroinflammation and affects feeding behaviours in ALS mouse models. EXPERIMENTAL APPROACH hSOD1G93A and TDP43A315T mice were treated daily with 120 mg·kg-1 of TRAM-34 or vehicle by intraperitoneal injection from the presymptomatic until the disease onset phase. Body weight and food intake were measured weekly. The later by weighing food provided minus that left in the cage. RT-PCR and immunofluorescence analysis were used to characterize microglia phenotype and the main populations of melanocortin neurons in the hypothalamus of hSOD1G93A and age-matched non-tg mice. The cannabinoid-opioid interactions in feeding behaviour of hSOD1G93A mice were studied using an inverse agonist and an antagonist of the cannabinoid receptor CB1 (rimonabant) and μ-opioid receptors (naloxone), respectively. KEY RESULTS We found that treatment of hSOD1G93A mice with the KCa 3.1 inhibitor TRAM-34 (i), attenuates the pro-inflammatory phenotype of hypothalamic microglia, (ii) increases food intake and promotes weight gain, (iii) increases the number of healthy pro-opiomelanocortin (POMC) neurons and (iv), changes the expression of cannabinoid receptors involved in energy homeostasis. CONCLUSION AND IMPLICATIONS Using ALS mouse models, we describe defects in the hypothalamic melanocortin system that affect appetite control. These results reveal a new regulatory role for KCa 3.1 to counteract weight loss in ALS.
Collapse
Affiliation(s)
- Germana Cocozza
- Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Marta Morotti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giuseppina Chece
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Alfonso Grimaldi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
| | - Mario Lecce
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Rossella Menghini
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Viviana Casagrande
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Massimo Federici
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | | | - Heike Wulff
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Cristina Limatola
- Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease targeting upper and lower motor neurons, inexorably leading to an early death. Defects in energy metabolism have been associated with ALS, including weight loss, increased energy expenditure, decreased body fat mass and increased use of lipid nutrients at the expense of carbohydrates. We review here recent findings on impaired energy metabolism in ALS, and its clinical importance. RECENT FINDINGS Hypothalamic atrophy, as well as alterations in hypothalamic peptides controlling energy metabolism, have been associated with metabolic derangements. Recent studies showed that mutations causing familial ALS impact various metabolic pathways, in particular mitochondrial function, and lipid and carbohydrate metabolism, which could underlie these metabolic defects in patients. Importantly, slowing weight loss, through high caloric diets, is a promising therapeutic strategy, and early clinical trials indicated that it might improve survival in at least a subset of patients. More research is needed to improve these therapeutic strategies, define pharmacological options, and refine the population of ALS patients that would benefit from these approaches. SUMMARY Dysfunctional energy homeostasis is a major feature of ALS clinical picture and emerges as a potential therapeutic target.
Collapse
|
27
|
Bayer D, Antonucci S, Müller HP, Saad R, Dupuis L, Rasche V, Böckers TM, Ludolph AC, Kassubek J, Roselli F. Disruption of orbitofrontal-hypothalamic projections in a murine ALS model and in human patients. Transl Neurodegener 2021; 10:17. [PMID: 34059131 PMCID: PMC8168014 DOI: 10.1186/s40035-021-00241-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background Increased catabolism has recently been recognized as a clinical manifestation of amyotrophic lateral sclerosis (ALS). The hypothalamic systems have been shown to be involved in the metabolic dysfunction in ALS, but the exact extent of hypothalamic circuit alterations in ALS is yet to be determined. Here we explored the integrity of large-scale cortico-hypothalamic circuits involved in energy homeostasis in murine models and in ALS patients. Methods The rAAV2-based large-scale projection mapping and image analysis pipeline based on Wholebrain and Ilastik software suites were used to identify and quantify projections from the forebrain to the lateral hypothalamus in the SOD1(G93A) ALS mouse model (hypermetabolic) and the FusΔNLS ALS mouse model (normo-metabolic). 3 T diffusion tensor imaging (DTI)-magnetic resonance imaging (MRI) was performed on 83 ALS and 65 control cases to investigate cortical projections to the lateral hypothalamus (LHA) in ALS. Results Symptomatic SOD1(G93A) mice displayed an expansion of projections from agranular insula, ventrolateral orbitofrontal and secondary motor cortex to the LHA. These findings were reproduced in an independent cohort by using a different analytic approach. In contrast, in the FusΔNLS ALS mouse model hypothalamic inputs from insula and orbitofrontal cortex were maintained while the projections from motor cortex were lost. The DTI-MRI data confirmed the disruption of the orbitofrontal-hypothalamic tract in ALS patients. Conclusion This study provides converging murine and human data demonstrating the selective structural disruption of hypothalamic inputs in ALS as a promising factor contributing to the origin of the hypermetabolic phenotype. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-021-00241-6.
Collapse
Affiliation(s)
- David Bayer
- Department of Neurology, Ulm University, Ulm, Germany.,CEMMA (Cellular and Molecular Mechanisms in Aging) Research Training Group, Ulm, Germany
| | | | | | - Rami Saad
- Department of Neurology, Ulm University, Ulm, Germany
| | - Luc Dupuis
- University of Strasbourg, Strasbourg, France
| | - Volker Rasche
- Department of Internal Medicine II, Ulm University Medical Centre, Ulm, Germany
| | - Tobias M Böckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases-DZNE, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases-DZNE, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases-DZNE, Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany. .,German Center for Neurodegenerative Diseases-DZNE, Ulm, Germany.
| |
Collapse
|
28
|
Ahmed RM, Tse NY, Chen Y, Henning E, Hodges JR, Kiernan MC, Irish M, Farooqi IS, Piguet O. Neural correlates of fat preference in frontotemporal dementia: translating insights from the obesity literature. Ann Clin Transl Neurol 2021; 8:1318-1329. [PMID: 33973740 PMCID: PMC8164857 DOI: 10.1002/acn3.51369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/28/2021] [Accepted: 04/11/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Alterations in eating behaviour are one of the diagnostic features of behavioural variant frontotemporal dementia (bvFTD). It is hypothesised that underlying brain network disturbances and atrophy to key structures may affect macronutrient preference in bvFTD. We aimed to establish whether a preference for dietary fat exists in bvFTD, its association with cognitive symptoms and the underlying neural mechanisms driving these changes. METHODS Using a test meal paradigm, adapted from the obesity literature, with variable fat content (low 20%, medium 40% and high 60%), preference for fat in 20 bvFTD was compared to 16 Alzheimer's disease (AD) and 13 control participants. MRI brain scans were analysed to determine the neural correlates of fat preference. RESULTS Behavioural variant FTD patients preferred the high-fat meal compared to both AD (U = 61.5; p = 0.001) and controls (U = 41.5; p = 0.001), with 85% of bvFTD participants consistently rating the high-fat content meal as their preferred option. This increased preference for the high-fat meal was associated with total behavioural change (Cambridge Behavioural Inventory: rs = 0.462; p = 0.001), as well as overall functional decline (Frontotemporal Dementia Rating Scale: rs = -0.420; p = 0.03). A preference for high-fat content in bvFTD was associated with atrophy in an extended brain network including frontopolar, anterior cingulate, insular cortices, putamen and amygdala extending into lateral temporal, posteromedial parietal and occipital cortices. CONCLUSIONS Increased preference for fat content is associated with many of the canonical features of bvFTD. These findings offer new insights into markers of disease progression and pathogenesis, providing potential treatment targets.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Central Sydney Medical School and Brain & Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nga Yan Tse
- Central Sydney Medical School and Brain & Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Yu Chen
- Central Sydney Medical School and Brain & Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, the NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - John R Hodges
- Central Sydney Medical School and Brain & Mind Centre, The University of Sydney, Sydney, NSW, Australia.,ARC Centre of Excellence of Cognition and its Disorders, Sydney, NSW, Australia
| | - Matthew C Kiernan
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Central Sydney Medical School and Brain & Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Muireann Irish
- ARC Centre of Excellence of Cognition and its Disorders, Sydney, NSW, Australia.,School of Psychology and Brain & Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, the NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Olivier Piguet
- ARC Centre of Excellence of Cognition and its Disorders, Sydney, NSW, Australia.,School of Psychology and Brain & Mind Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
29
|
Loss of appetite in patients with amyotrophic lateral sclerosis is associated with weight loss and anxiety/depression. Sci Rep 2021; 11:9119. [PMID: 33907295 PMCID: PMC8079393 DOI: 10.1038/s41598-021-88755-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/14/2021] [Indexed: 12/29/2022] Open
Abstract
Weight loss is common in patients with Amyotrophic lateral sclerosis (ALS), and associated with disease progression. Loss of appetite has been shown to be a contributor to weight loss in patients with amyotrophic lateral sclerosis (ALS). However, the reason of loss of appetite is not clear. The Council on Nutrition appetite questionnaire (CNAQ) and the simplified nutritional appetite questionnaire (SNAQ) are short and simple appetite assessment tools, which were using in ALS patients. In our study, the CNAQ and SNAQ were translated into Chinese, and their reliability and validity were tested. The Chinese version of the CNAQ (CNAQ-C) presented more appropriate reliability and validity than the SNAQ. Among the 94 ALS patients, 50 patients (53.2%) had loss of appetite, and we found that anxiety and/or depression contributed to the loss of appetite in the ALS patients. We reconfirmed that loss of appetite was associated with greater weight loss but not with clinical features of ALS. The loss of appetite caused by emotional problems in ALS patients should be taken seriously, and early intervention should be implemented to reduce weight loss.
Collapse
|
30
|
Wei QQ, Ou R, Cao B, Chen Y, Hou Y, Zhang L, Wu F, Shang H. Early weight instability is associated with cognitive decline and poor survival in amyotrophic lateral sclerosis. Brain Res Bull 2021; 171:10-15. [PMID: 33636227 DOI: 10.1016/j.brainresbull.2021.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Our aim was to measure the monthly rate of weight loss during 6 months prior to a diagnosis of amyotrophic lateral sclerosis (ALS) and to explore the effect on prognosis. METHODS We enrolled 522 patients free from eating difficulties and with short diagnostic delay between June 2014 to June 2019. The calculating formula for the monthly rate of weight loss=[(weight at baseline-weight at diagnosis)/(weight at baseline*100 %)]/time interval. We employed logistic regression analysis to reveal any association between weight loss and cognitive dysfunction. Survival analysis was performed using the Kaplan-Meier curves and Cox proportional hazard models. RESULTS Weight loss was observed in 272 patients (52.1 %). Patients with severe weight loss had an older age of onset, a lower ALS Functional Rating Scale-Revised score, a faster disease progression rate, and higher frequencies of executive dysfunction and cognitive decline. The monthly rate of weight loss was associated with executive dysfunction and cognitive decline after adjusting for the emotional state. The stratified monthly rate of weight loss was strongly and independently related to ALS survival after adjusting for confounding factors (HR = 1.473, P trend<0.001). Each upper ladder of the rate of weight loss was correlated with worse survival and a 47.3 % (95 % CI: 25.0-73.6 %) increased risk of mortality. CONCLUSIONS Weight loss is very common in patients with ALS and is associated with poor survival. It is also associated with executive dysfunction and cognitive decline. An important mechanism of weight loss in the early stage of this disease may be hypermetabolism.
Collapse
Affiliation(s)
- Qian-Qian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bei Cao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingyu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fanyi Wu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
31
|
Mentis AFA, Bougea AM, Chrousos GP. Amyotrophic lateral sclerosis (ALS) and the endocrine system: Are there any further ties to be explored? AGING BRAIN 2021; 1:100024. [PMID: 36911507 PMCID: PMC9997134 DOI: 10.1016/j.nbas.2021.100024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) belongs to the family of neurodegenerative disorders and is classified as fronto-temporal dementia (FTD), progressive muscular atrophy, primary lateral sclerosis, and pseudobulbar palsy. Even though endocrine dysfunction independently impacts the ALS-related survival rate, the complex connection between ALS and the endocrine system has not been studied in depth. Here we review earlier and recent findings on how ALS interacts with hormones a) of the hypothalamus and pituitary gland, b) the thyroid gland, c) the pancreas, d) the adipose tissue, e) the parathyroid glands, f) the bones, g) the adrenal glands, and h) the gonads (ovaries and testes). Of note, endocrine issues should always be explored in patients with ALS, especially those with low skeletal muscle and bone mass, vitamin D deficiency, and decreased insulin sensitivity (diabetes mellitus). Because ALS is a progressively deteriorating disease, addressing any potential endocrine co-morbidities in patients with this malady is quite important for decreasing the overall ALS-associated disease burden. Importantly, as this burden is estimated to increase globally in the decades to follow, in part because of an increasingly aging population, it is high time for future multi-center, multi-ethnic studies to assess the link between ALS and the endocrine system in significantly larger patient populations. Last, the psychosocial stress experienced by patients with ALS and its psycho-neuro-endocrinological sequelae, including hypothalamic-pituitaryadrenal dysregulation, should become an area of intensive study in the future.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Anastasia M Bougea
- Memory & Movement Disorders Clinic, 1st Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
32
|
Ahmed RM, Steyn F, Dupuis L. Hypothalamus and weight loss in amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:327-338. [PMID: 34225938 DOI: 10.1016/b978-0-12-820107-7.00020-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disorder. While initially pathophysiology was thought to be restricted to motor deficits, it is increasingly recognized that patients develop prominent changes in weight and eating behavior that result from and mediate the underlying neurodegenerative process. These changes include alterations in metabolism, lipid levels, and insulin resistance. Emerging research suggests that these alterations may be mediated through changes in the hypothalamic function, with atrophy of the hypothalamus shown in both ALS patients and also presymptomatic genetic at-risk patients. This chapter reviews the evidence for hypothalamic involvement in ALS, including melanocortin pathways and potential treatment targets.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Central Sydney Medical School and Brain & Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Frederik Steyn
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia; Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
| | - Luc Dupuis
- Université de Strasbourg, Inserm, UMR-S 1118, Centre de Recherches en Biomédecine, Strasbourg, France.
| |
Collapse
|
33
|
Korf HW, Møller M. Arcuate nucleus, median eminence, and hypophysial pars tuberalis. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:227-251. [PMID: 34225932 DOI: 10.1016/b978-0-12-820107-7.00015-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The arcuate nucleus (ARC) is located in the mediobasal hypothalamus and forms a morphological and functional entity with the median eminence (ME), the ARC-ME. The ARC comprises several distinct types of neurons controlling prolactin release, food intake, and metabolism as well as reproduction and onset of puberty. The ME lacks a blood-brain barrier and provides an entry for peripheral signals (nutrients, leptin, ghrelin). ARC neurons are adjacent to the wall of the third ventricle. This facilitates the exchange of signals from and to the cerebrospinal fluid. The ventricular wall is composed of tanycytes that serve different functions. Axons of ARC neurons contribute to the tuberoinfundibular tract terminating in the ME on the hypophysial portal vessels (HPV) and establish one of the neurohumoral links between the hypothalamus and the pituitary. ARC neurons are reciprocally connected with several other hypothalamic nuclei, the brainstem, and reward pathways. The hypophysial pars tuberalis (PT) is attached to the ME and the HPV. The PT, an important interface of the neuroendocrine system, is mandatory for the control of seasonal functions. This contribution provides an update of our knowledge about the ARC-ME complex and the PT which, inter alia, is needed to understand the pathophysiology of metabolic diseases and reproduction.
Collapse
Affiliation(s)
- Horst-Werner Korf
- Center for Anatomy and Brain Research, Institute for Anatomy, Düsseldorf, Germany.
| | - Morten Møller
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Carter GT, McLaughlin RJ, Cuttler C, Sauber GJ, Weeks DL, Hillard CJ, Weiss MD. Endocannabinoids and related lipids in serum from patients with amyotrophic lateral sclerosis. Muscle Nerve 2020; 63:120-126. [PMID: 33094490 DOI: 10.1002/mus.27096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/09/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The goals of this study were to determine whether serum concentrations of endocannabinoids (eCB) and related lipids predict disease status in patients with amyotrophic lateral sclerosis (ALS) relative to healthy controls, and whether concentrations correlate with disease duration and severity. METHODS Serum concentrations of the eCBs 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA), and related lipids palmitoylethanolamine (PEA), oleoylethanolamine (OEA), and 2-oleoylglycerol (2-OG), were measured in samples from 47 patients with ALS and 19 healthy adults. Hierarchical binary logistic and linear regression analyses assessed whether lipid concentrations predicted disease status (ALS or healthy control), duration, or severity. RESULTS Binary logistic regression revealed that, after controlling for age and gender, 2-AG, 2-OG and AEA concentrations were unique predictors of the presence of ALS, demonstrating odds ratios of 0.86 (P = .039), 1.03 (P = .023), and 42.17 (P = .026), respectively. When all five lipids and covariates (age, sex, race, ethnicity, body mass index, presence of a feeding tube) were included, the resulting model had an overall classification accuracy of 92.9%. Hierarchical linear regression analyses indicated that in patients with ALS, AEA and OEA inversely correlated with disease duration (P = .030 and .031 respectively), while PEA demonstrated a positive relationship with disease duration (P = .013). None of the lipids examined predicted disease severity. CONCLUSIONS These findings support previous studies indicating significant alterations in concentrations of circulating lipids in patients with ALS. They suggest that arachidonic and oleic acid containing small lipids may serve as biomarkers for identifying the presence and duration of this disease.
Collapse
Affiliation(s)
| | - Ryan J McLaughlin
- Department of Integrative Physiology & Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Carrie Cuttler
- Department of Psychology, Washington State University, Pullman, Washington, USA
| | - Garrett J Sauber
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Douglas L Weeks
- St. Luke's Rehabilitation Institute, Spokane, Washington, USA
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael D Weiss
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
35
|
Jésus P, Fayemendy P, Marin B, Nicol M, Sourisseau H, Boirie Y, Walrand S, Achamrah N, Coëffier M, Preux PM, Lautrette G, Couratier P, Desport JC. Increased resting energy expenditure compared with predictive theoretical equations in amyotrophic lateral sclerosis. Nutrition 2020; 77:110805. [DOI: 10.1016/j.nut.2020.110805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/12/2020] [Accepted: 03/01/2020] [Indexed: 12/12/2022]
|
36
|
Schumacher J, Peter RS, Nagel G, Rothenbacher D, Rosenbohm A, Ludolph AC, Dorst J. Statins, diabetes mellitus and prognosis of amyotrophic lateral sclerosis: data from 501 patients of a population-based registry in southwest Germany. Eur J Neurol 2020; 27:1405-1414. [PMID: 32396653 DOI: 10.1111/ene.14300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/30/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE A wide variety of metabolic changes, including an increased incidence of diabetes mellitus (DM) and dyslipidaemia, has been described in amyotrophic lateral sclerosis (ALS). The aim of this study was to investigate the associations of statin use and history of DM with onset of disease and survival in patients with ALS. METHODS In all, 501 patients (mean age 65.2 ± 10.9 years; 58.5% male) from the ALS Registry Swabia recruited between October 2010 and April 2016 were included in this prospective cohort study. Data were collected using a standardized questionnaire. RESULTS Statin use (n = 65) was not associated with overall survival (P = 0.62). Age of ALS onset in patients with DM was 4.2 years later (95% confidence interval 1.3-7.2 years) than in patients without DM (P < 0.01). The overall survival of patients with high body mass index at study entry (>27.0 kg/m2 , upper quartile, n = 127) was prolonged by more than 5 months compared to patients with low body mass index (<22.0 kg/m2 , lower quartile, n = 123; P = 0.04). CONCLUSIONS This study supports the view that statin use is not associated with overall survival of ALS patients, suggesting that statins are not harmful and should not be discontinued in ALS. Furthermore, the delayed onset of ALS in patients with DM may mirror the potentially protective metabolic profile associated with type 2 DM. Consistently, this study provides further evidence that high body mass index is a positive prognostic factor in ALS.
Collapse
Affiliation(s)
- J Schumacher
- Department of Neurology, University of Ulm, Ulm, Germany
| | - R S Peter
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - G Nagel
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - D Rothenbacher
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - A Rosenbohm
- Department of Neurology, University of Ulm, Ulm, Germany
| | - A C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
| | - J Dorst
- Department of Neurology, University of Ulm, Ulm, Germany
| | | |
Collapse
|
37
|
Zhang L, Tang L, Huang T, Fan D. Life Course Adiposity and Amyotrophic Lateral Sclerosis: A Mendelian Randomization Study. Ann Neurol 2020; 87:434-441. [PMID: 31916305 DOI: 10.1002/ana.25671] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Observational studies have indicated that life course adiposity is associated with amyotrophic lateral sclerosis (ALS). However, whether such an association reflects causality remains unclear. We aimed to determine whether life course adiposity such as birth weight (BW), childhood body mass index (BMI), adult BMI, body fat percentage (BF%), and waist-to-hip ratio (WHR) have causal effects on ALS. METHODS Single nucleotide polymorphisms (SNPs) significantly associated with life course adiposity were used as instrumental variables to estimate the causal effects on ALS. We used summary-level data from a cohort of 20,806 cases and 59,804 controls in a Mendelian randomization (MR) framework. RESULTS Genetically predicted one standard deviation (1-SD) increase in BF% was associated with lower risk of ALS (odds ratio [OR] = 0.67, 95% confidence interval [CI] = 0.54-0.83, p = 3.25E-04) after Bonferroni correction (p < 0.05/5). Genetically predicted 1-SD higher childhood BMI was suggestively associated with lower risk of ALS (OR = 0.88, 95% CI = 0.78-0.99, p = 0.031). The weighted median method indicated a suggestive association between BMI and ALS (OR = 0.86, 95% CI = 0.69-0.96, p = 0.016). Neither a genetically predicted 1-SD increase in BW (inverse variance weighted [IVW]: OR = 1.01, 95% CI = 0.87-1.17, p = 0.939) nor WHR adjusted for BMI (IVW: OR = 0.90, 95% CI = 0.76-1.05, p = 0.178) was associated with ALS. INTERPRETATION Our findings provide novel evidence supporting a causal role of higher adiposity, taken as a whole, on lower risk of ALS. A deeper understanding of the energy metabolism of ALS is more likely to identify feasible nutritional interventions and even novel therapeutic targets that might improve the survival of ALS patients. Ann Neurol 2020;87:434-441.
Collapse
Affiliation(s)
- Linjing Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Lu Tang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
38
|
Ludolph AC, Dorst J, Dreyhaupt J, Weishaupt JH, Kassubek J, Weiland U, Meyer T, Petri S, Hermann A, Emmer A, Grosskreutz J, Grehl T, Zeller D, Boentert M, Schrank B, Prudlo J, Winkler AS, Gorbulev S, Roselli F, Schuster J, Dupuis L. Effect of High-Caloric Nutrition on Survival in Amyotrophic Lateral Sclerosis. Ann Neurol 2020; 87:206-216. [PMID: 31849093 DOI: 10.1002/ana.25661] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Weight loss has been identified as a negative prognostic factor in amyotrophic lateral sclerosis, but there is no evidence regarding whether a high-caloric diet increases survival. Therefore, we sought to evaluate the efficacy of a high-caloric fatty diet (HCFD) for increasing survival. METHODS A 1:1 randomized, placebo-controlled, parallel-group, double-blinded trial (LIPCAL-ALS study) was conducted between February 2015 and September 2018. Patients were followed up at 3, 6, 9, 12, 15, and 18 months after randomization. The study was performed at 12 sites of the clinical and scientific network of German motor neuron disease centers (ALS/MND-NET). Eligible patients were randomly assigned (1:1) to receive either HCFD (405kcal/day, 100% fat) or placebo in addition to riluzole (100mg/day). The primary endpoint was survival time, defined as time to death or time to study cutoff date. RESULTS Two hundred one patients (80 female, 121 male, age = 62.4 ± 10.8 years) were included. The confirmatory analysis of the primary outcome survival showed a survival probability of 0.39 (95% confidence interval [CI] = 0.27-0.51) in the placebo group and 0.37 (95% CI = 0.25-0.49) in the HCFD group, both after 28 months (point in time of the last event). The hazard ratio was 0.97, 1-sided 97.5% CI = -∞ to 1.44, p = 0.44. INTERPRETATION The results provide no evidence for a life-prolonging effect of HCFD for the whole amyotrophic lateral sclerosis population. However, post hoc analysis revealed a significant survival benefit for the subgroup of fast-progressing patients. ANN NEUROL 2020;87:206-216.
Collapse
Affiliation(s)
- Albert C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany.,German Center for Neurodegenerative Diseases, Ulm, Germany
| | - Johannes Dorst
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jens Dreyhaupt
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | | | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Ulrike Weiland
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Thomas Meyer
- Charité-Universitätsmedizin Berlin, Humboldt University of Berlin, Berlin, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Andreas Hermann
- Department of Neurology, Dresden University of Technology and German Center for Neurodegenerative Diseases, Dresden, Germany.,Albrecht Kossel Translational Neurodegeneration Section, Department of Neurology, University of Rostock, Rostock, Germany
| | - Alexander Emmer
- Department of Neurology, Halle University Hospital, Halle/Saale, Germany
| | | | - Torsten Grehl
- Department of Neurology, Bergmannsheil University Hospital, Bochum, Germany
| | - Daniel Zeller
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Matthias Boentert
- Department of Neurology, Institute of Translational Neurology, Münster University Hospital, Münster, Germany
| | - Bertold Schrank
- Department of Neurology, Deutsche Klinik für Diagnostik HELIOS Clinic of Wiesbaden, Wiesbaden, Germany
| | - Johannes Prudlo
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Andrea S Winkler
- Department of Neurology, Technical University of Munich, Munich, Germany
| | - Stanislav Gorbulev
- Interdisciplinary Center for Clinical Trials, Mainz University Medical Center, Mainz, Germany
| | | | | | - Luc Dupuis
- National Institute of Health and Medical Research, University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
39
|
Zhang L, Chen L, Fan D. The protective role of pre-morbid type 2 diabetes in patients with amyotrophic lateral sclerosis: a center-based survey in China. Amyotroph Lateral Scler Frontotemporal Degener 2019; 21:209-215. [PMID: 31852260 DOI: 10.1080/21678421.2019.1704010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective: To assess the role of premorbid type 2 diabetes in patients with amyotrophic lateral sclerosis (ALS) in China.Methods: We compared data from ALS patients with premorbid type 2 diabetes (T2D) and ALS patients without T2D with regard to the age of onset of ALS. In addition, survival was compared between these two groups of patients using propensity score matching (PSM). Results: Among 1331 consecutive sporadic ALS patients, 100 (7.5%) were labeled as ALS-T2D and 1231 were labeled as ALS-control according to the presence or absence of premorbid T2D. The mean age of onset in patients in the ALS-T2D group was 57.0 years, with a 4.4-year delay compared to that in the ALS-control group [57.0 (SD, 9.6) years vs 52.6 (SD, 10.3) years, respectively; p = 0.000]. This 4.4-year delay was significant after adjusting for sex and the site of onset in a multiple linear regression model. Additionally, after comparison with matched pairs, a nonsignificant increase in survival was observed among the ALS patients with premorbid T2D. Conclusions: The results support the protective role of diabetes in ALS. It is possible to infer that these beneficial effects occur mainly in the preclinical and early stages of the disease course.
Collapse
Affiliation(s)
- Linjing Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative diseases, Beijing, China, and
| | - Lu Chen
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative diseases, Beijing, China, and
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative diseases, Beijing, China, and.,Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
40
|
Body weight variation predicts disease progression after invasive ventilation in amyotrophic lateral sclerosis. Sci Rep 2019; 9:12262. [PMID: 31439899 PMCID: PMC6706382 DOI: 10.1038/s41598-019-48831-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/07/2019] [Indexed: 12/02/2022] Open
Abstract
Weight loss is an independent predictor of survival in the early stages of amyotrophic lateral sclerosis (ALS). However, the effects of weight variations on the functional prognosis after tracheostomy and invasive ventilation (TIV) in ALS remain unknown. This prospective cohort study aimed to investigate the relationship between weight loss before TIV and disease progression after TIV in ALS patients. Sixty ALS patients with TIV were enrolled and classified into subgroups based on the rate of decline in body mass index, from onset to TIV utilization (ΔBMI). During follow-up, we assessed the patients for presence of communication impairments, ophthalmoplegia, total quadriplegia, mouth opening disability, and dysuria. We analyzed the relationship between ΔBMI and the communication stage or motor disabilities. The log-rank test showed that patients with a ΔBMI ≥ 1.7 kg/m2/year showed a shorter period of preserved communication ability (p = 0.0001), shorter time to develop ophthalmoplegia (p = 0.0001), total quadriplegia (p < 0.0001), mouth opening disability (p < 0.0001), and dysuria (p = 0.0455). Cox multivariate analyses showed that a larger ΔBMI was an independent prognostic factor for the early development of ophthalmoplegia (p = 0.0400) and total quadriplegia (p = 0.0445). Weight loss in the early stages of ALS predicts disease progression in patients with advanced stages of ALS using TIV.
Collapse
|
41
|
Ngo ST, van Eijk RPA, Chachay V, van den Berg LH, McCombe PA, Henderson RD, Steyn FJ. Loss of appetite is associated with a loss of weight and fat mass in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:497-505. [PMID: 31144522 DOI: 10.1080/21678421.2019.1621346] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: Weight loss in amyotrophic lateral sclerosis (ALS) is associated with faster disease progression and shorter survival. It has different possible causes, including loss of appetite. Our objective is to determine the prevalence and impact of loss of appetite on change in body weight and composition in patients with ALS. Methods: We conducted a prospective case-control study, comparing demographic, clinical, appetite and prognostic features between 62 patients with ALS and 45 healthy non-neurodegenerative disease (NND) controls. To determine the impact of loss of appetite on weight throughout disease course, we conducted serial assessments at ∼three to four-month intervals. Results: Loss of appetite is more prevalent in patients with ALS than NND controls (29 vs. 11.1%, odds ratio = 3.27 (1.1-9.6); p < 0.01). In patients with ALS, loss of appetite is associated with greater weight loss and greater loss of fat mass. Appetite scores in patients with ALS worsens as disease progresses and are correlated with worsening ALS Functional Rating Scale-Revised scores. Conclusion: We confirm that loss of appetite is prevalent in patients with ALS and is significantly associated with weight loss and loss of fat mass. Appetite worsens with disease progression. Identification and early interventions to address loss of appetite in patients with ALS may prevent or slow weight loss; this could improve disease outcome.
Collapse
Affiliation(s)
- Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane , Australia.,Queensland Brain Institute, The University of Queensland , Brisbane , Australia.,Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane , Australia.,Wesley Medical Research, The Wesley Hospital , Brisbane , Australia
| | - Ruben P A van Eijk
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht , Utrecht , The Netherlands.,Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht , Utrecht , The Netherlands , and
| | - V Chachay
- School of Human Movement and Nutrition Sciences, The University of Queensland , Brisbane , Australia
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht , Utrecht , The Netherlands
| | - Pamela A McCombe
- Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane , Australia.,Wesley Medical Research, The Wesley Hospital , Brisbane , Australia
| | - Robert D Henderson
- Queensland Brain Institute, The University of Queensland , Brisbane , Australia.,Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane , Australia.,Wesley Medical Research, The Wesley Hospital , Brisbane , Australia
| | - Frederik J Steyn
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane , Australia.,Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane , Australia.,Wesley Medical Research, The Wesley Hospital , Brisbane , Australia
| |
Collapse
|
42
|
González De Aguilar JL. Lipid Biomarkers for Amyotrophic Lateral Sclerosis. Front Neurol 2019; 10:284. [PMID: 31019485 PMCID: PMC6458258 DOI: 10.3389/fneur.2019.00284] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal degenerative disease primarily characterized by the selective loss of upper and lower motor neurons. To date, there is still an unmet need for robust and practical biomarkers that could estimate the risk of the disease and its progression. Based on metabolic modifications observed at the level of the whole body, different classes of lipids have been proposed as potential biomarkers. This review summarizes investigations carried out over the last decade that focused on changes in three major lipid species, namely cholesterol, triglycerides and fatty acids. Despite some contradictory findings, it is becoming increasingly accepted that dyslipidemia, and related aberrant energy homeostasis, must be considered as essential components of the pathological process. Therefore, it is tempting to envisage dietary interventions as a means to counterbalance the metabolic disturbances and ameliorate the patient's quality of life.
Collapse
Affiliation(s)
- Jose-Luis González De Aguilar
- Université de Strasbourg, UMR_S1118, Strasbourg, France.,INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénerescence, Strasbourg, France
| |
Collapse
|
43
|
Prognostic significance of body weight variation after diagnosis in ALS: a single-centre prospective cohort study. J Neurol 2019; 266:1412-1420. [PMID: 30868220 DOI: 10.1007/s00415-019-09276-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Body weight reduction after disease onset is an independent predictor of survival in amyotrophic lateral sclerosis (ALS), but significance of weight variation after diagnosis remains to be established. OBJECTIVE To investigate weight variation after diagnosis and its prognostic significance in patients with ALS as a prospective cohort study. METHODS Seventy-nine patients with ALS were enrolled in this study. At the time of diagnosis and about 1 year later, we evaluated the following parameters: age, sex, onset age, onset region, body mass index (BMI) and premorbid BMI, forced vital capacity and the revised ALS functional rating scale. Annual BMI decline rates (∆BMI) from onset to diagnosis and from diagnosis to about 1 year later were calculated. Patients were followed to the endpoints (death or tracheostomy), and the relationships between ∆BMIs and survival were investigated. RESULTS Patients with post-diagnostic ∆BMI ≥ 2.0 kg/m2/year showed shorter survival length than those with < 2.0 kg/m2/year (log-rank test, p < 0.0001), and multivariate analysis using the Cox model revealed post-diagnostic ∆BMI as an independent prognostic factor. No correlation was identified between pre- and post-diagnostic ∆BMIs. Female patients with post-diagnostic ∆BMI < pre-diagnostic ∆BMI showed longer survival than those with the opposite ∆BMI trend (log-rank test, p = 0.0147). Female patients with post-diagnostic weight increase showed longer survival than those with weight decrease (log-rank test, p = 0.0228). CONCLUSION Body weight changes after diagnosis strongly predicts survival in ALS, and weight gain after diagnosis may improve survival prognosis, particularly in female ALS patients.
Collapse
|
44
|
Ahmed RM, Highton-Williamson E, Caga J, Thornton N, Ramsey E, Zoing M, Kim WS, Halliday GM, Piguet O, Hodges JR, Farooqi IS, Kiernan MC. Lipid Metabolism and Survival Across the Frontotemporal Dementia-Amyotrophic Lateral Sclerosis Spectrum: Relationships to Eating Behavior and Cognition. J Alzheimers Dis 2019; 61:773-783. [PMID: 29254092 DOI: 10.3233/jad-170660] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) exhibit changes in eating behavior that could potentially affect lipid levels. OBJECTIVE This study aimed to document changes in lipid metabolism across the ALS-FTD spectrum to identify potential relationships to eating behavior (including fat intake), cognitive change, body mass index (BMI), and effect on survival. METHODS One hundred and twenty-eight participants were recruited: 37 ALS patients, 15 ALS patients with cognitive and behavioral change (ALS-Plus), 13 ALS-FTD, 31 behavioral variant FTD, and 32 healthy controls. Fasting total cholesterol, low density lipoprotein cholesterol (LDL), high density lipoprotein cholesterol (HDL) and triglyceride levels were measured and correlated to eating behavior (caloric, fat intake), cognitive change, and BMI; effect on survival was examined using cox regression analyses. RESULTS There was a spectrum of lipid changes from ALS to FTD with increased triglyceride (p < 0.001), total cholesterol/HDL ratio (p < 0.001), and lower HDL levels (p = 0.001) in all patient groups compared to controls. While there was no increase in total cholesterol levels, a higher cholesterol level was found to correlate with 3.25 times improved survival (p = 0.008). Triglyceride and HDL cholesterol levels correlated to fat intake, BMI, and measures of cognition and disease duration. CONCLUSION A spectrum of changes in lipid metabolism has been identified in ALS-FTD, with total cholesterol levels found to potentially impact on survival. These changes were mediated by changes in fat intake, and BMI, and may also be mediated by the neurodegenerative process, offering the potential to modify these factors to slow disease progression and improve survival.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia.,ARC Centre of Excellence in Cognition and its Disorders, Sydney, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia
| | | | - Jashelle Caga
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia
| | - Nicolette Thornton
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia
| | - Eleanor Ramsey
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia
| | - Margaret Zoing
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia
| | - Woojin Scott Kim
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia
| | - Glenda M Halliday
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia.,Neuroscience Research Australia and the University of NSW, Faculty of Medicine, Sydney, Australia
| | - Olivier Piguet
- ARC Centre of Excellence in Cognition and its Disorders, Sydney, Australia.,Neuroscience Research Australia and the University of NSW, Faculty of Medicine, Sydney, Australia.,The University of Sydney, School of Psychology and Brain and Mind Centre, Sydney, Australia
| | - John R Hodges
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia.,ARC Centre of Excellence in Cognition and its Disorders, Sydney, Australia.,Neuroscience Research Australia and the University of NSW, Faculty of Medicine, Sydney, Australia
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science and the NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Matthew C Kiernan
- The University of Sydney, Brain and Mind Centre and Sydney Medical School, Sydney, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
45
|
Theme 8 Clinical imaging and electrophysiology. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:240-263. [DOI: 10.1080/21678421.2018.1510575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Ahmed RM, Dupuis L, Kiernan MC. Paradox of amyotrophic lateral sclerosis and energy metabolism. J Neurol Neurosurg Psychiatry 2018; 89:1013-1014. [PMID: 29735514 DOI: 10.1136/jnnp-2018-318428] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 04/22/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Rebekah M Ahmed
- Memory and Cognition Clinic, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Luc Dupuis
- Fédération de médecine translationnelle, Université de Strasbourg, Inserm, UMR-S1118, Strasbourg, France
| | - Matthew C Kiernan
- Memory and Cognition Clinic, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
47
|
Defective daily temperature regulation in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 2018; 311:305-312. [PMID: 30031021 DOI: 10.1016/j.expneurol.2018.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 01/10/2023]
Abstract
Current understanding of the pathogenesis of the familial form of amyotrophic lateral sclerosis has been aided by the study of transgenic mice that over-express mutated forms of the human CuZn-superoxide dismutase (SOD1) gene. While mutant SOD1 in motor neurons determines disease onset, other non-cell autonomous factors are critical for disease progression, and altered energy metabolism has been implicated as a contributing factor. Since most energy expended by laboratory mice is utilized to defend body temperature (Tb), we analyzed thermoregulation in transgenic mice carrying the G93A mutation of the human SOD1 gene, using implantable temperature data loggers to continuously record Tb for up to 85 days. At room (22 °C) ambient temperature, G93A mice exhibited a diminished amplitude of the daily Tb rhythm compared to C57BL/6J controls, secondary to decreased Tb values during the dark (behaviorally active) phase of the light-dark cycle. The defect arose at 85-99 days of age, around the age of symptom onset (as assessed by grip strength), well before observable weakness and weight loss, and could not be accounted for by decreased levels of locomotor activity or food consumption. Housing under thermoneutral (29 °C) ambient temperature partially rescued the defect, but age-dependently (only in animals >100 days of age), suggesting that the deficit in older mice was due in part to inadequate thermogenesis by "peripheral" thermogenic organs as the disease progressed. In younger mice, we found that cold-induced thermogenesis and energy expenditure were intact, hinting that an initial "central" defect might localize to the subparaventricular zone, involving neural output pathways from the circadian clock in the hypothalamic suprachiasmatic nucleus to forebrain thermoregulatory circuitry.
Collapse
|
48
|
Vandoorne T, De Bock K, Van Den Bosch L. Energy metabolism in ALS: an underappreciated opportunity? Acta Neuropathol 2018; 135:489-509. [PMID: 29549424 PMCID: PMC5978930 DOI: 10.1007/s00401-018-1835-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive and fatal neurodegenerative disorder that primarily affects motor neurons. Despite our increased understanding of the genetic factors contributing to ALS, no effective treatment is available. A growing body of evidence shows disturbances in energy metabolism in ALS. Moreover, the remarkable vulnerability of motor neurons to ATP depletion has become increasingly clear. Here, we review metabolic alterations present in ALS patients and models, discuss the selective vulnerability of motor neurons to energetic stress, and provide an overview of tested and emerging metabolic approaches to treat ALS. We believe that a further understanding of the metabolic biology of ALS can lead to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Tijs Vandoorne
- Department of Neurosciences, Experimental Neurology, KU Leuven-University of Leuven, Campus Gasthuisberg O&N 4, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000, Leuven, Belgium
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, KU Leuven-University of Leuven, Campus Gasthuisberg O&N 4, Herestraat 49, PB 602, 3000, Leuven, Belgium.
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000, Leuven, Belgium.
| |
Collapse
|
49
|
Zhang CC, Zhu JX, Wan Y, Tan L, Wang HF, Yu JT, Tan L. Meta-analysis of the association between variants in MAPT and neurodegenerative diseases. Oncotarget 2018; 8:44994-45007. [PMID: 28402959 PMCID: PMC5546535 DOI: 10.18632/oncotarget.16690] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/16/2017] [Indexed: 01/11/2023] Open
Abstract
Microtubule-associated protein tau (MAPT) gene is compelling among the susceptibility genes of neurodegenerative diseases which include Alzheimer’s disease (AD), Parkinson’s disease (PD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Our meta-analysis aimed to find the association between MAPT and the risk of these diseases. Published literatures were retrieved from MEDLINE and other databases, and 82 case-control studies were recruited. Six haplotype tagging single-nucleotide polymorphisms (rs1467967, rs242557, rs3785883, rs2471738, del-In9 and rs7521) and haplotypes (H2 and H1c) were significantly associated with the above diseases. The odds ratios (ORs) and 95 % confidence intervals (CIs) were evaluated by comparison in minor and major allele frequency using the R software. This study demonstrated that different variants in MAPT were associated with AD (rs2471738: OR= 1.04, 95%CI = 1.00 - 1.09; H2: OR = 0.94, 95% CI = 0.91 - 0.97), PD (H2: OR = 0.76, 95% CI = 0.74 - 0.79), PSP (rs242557: OR = 1. 96, 95% CI = 1. 71 - 2.25; rs2471738: OR = 1. 85, 95% CI = 1. 48 - 2.31; H2: OR = 0.20, 95% CI = 0.18 - 0.23), CBD (rs242557: OR = 2.51, 95%CI = 1. 66 -3.78; rs2471738: OR = 2.07, 95%CI = 1. 32 -3.23; H2: OR = OR = 0.30, 95% CI = 0.23 - 0.41) and ALS (H2: OR = 0.92, 95% CI = 0.86 - 0.98) instead of FTD (H2: OR = 1.02, 95% CI = 0.78 - 1.32). In conclusion, MAPT is associated with risk of neurodegenerative diseases, suggesting crucial roles of tau in neurodegenerative processes.
Collapse
Affiliation(s)
- Cheng-Cheng Zhang
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, PR China
| | - Jun-Xia Zhu
- Clinical Skills Training Center, Qingdao Municipal Hospital, Qingdao University, PR China
| | - Yu Wan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, PR China
| | - Lin Tan
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | - Hui-Fu Wang
- Clinical Skills Training Center, Qingdao Municipal Hospital, Qingdao University, PR China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, PR China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, PR China.,Department of Neurology, Qingdao Municipal Hospital, Qingdao University, PR China.,College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| |
Collapse
|
50
|
Physiological changes in neurodegeneration - mechanistic insights and clinical utility. Nat Rev Neurol 2018; 14:259-271. [PMID: 29569624 DOI: 10.1038/nrneurol.2018.23] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effects of neurodegenerative syndromes extend beyond cognitive function to involve key physiological processes, including eating and metabolism, autonomic nervous system function, sleep, and motor function. Changes in these physiological processes are present in several conditions, including frontotemporal dementia, amyotrophic lateral sclerosis, Alzheimer disease and the parkinsonian plus conditions. Key neural structures that mediate physiological changes across these conditions include neuroendocrine and hypothalamic pathways, reward pathways, motor systems and the autonomic nervous system. In this Review, we highlight the key changes in physiological processing in neurodegenerative syndromes and the similarities in these changes between different progressive neurodegenerative brain conditions. The changes and similarities between disorders might provide novel insights into the human neural correlates of physiological functioning. Given the evidence that physiological changes can arise early in the neurodegenerative process, these changes could provide biomarkers to aid in the early diagnosis of neurodegenerative diseases and in treatment trials.
Collapse
|