1
|
Weiner HL. Immune mechanisms and shared immune targets in neurodegenerative diseases. Nat Rev Neurol 2025; 21:67-85. [PMID: 39681722 DOI: 10.1038/s41582-024-01046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The immune system plays a major part in neurodegenerative diseases. In some, such as multiple sclerosis, it is the primary driver of the disease. In others, such as Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, it has an amplifying role. Immunotherapeutic approaches that target the adaptive and innate immune systems are being explored for the treatment of almost all neurological diseases, and the targets and approaches are often common across diseases. Microglia are the primary immune cells in the brain that contribute to disease pathogenesis, and are consequently a common immune target for therapy. Other therapeutic approaches target components of the peripheral immune system, such as regulatory T cells and monocytes, which in turn act within the CNS. This Review considers in detail how microglia, monocytes and T cells contribute to the pathogenesis of multiple sclerosis, Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, and their potential as shared therapeutic targets across these diseases. The microbiome is also highlighted as an emerging therapeutic target that indirectly modulates the immune system. Therapeutic approaches being developed to target immune function in neurodegenerative diseases are discussed, highlighting how immune-based approaches developed to treat one disease could be applicable to multiple other neurological diseases.
Collapse
Affiliation(s)
- Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Chevalier C, Tournier BB, Marizzoni M, Park R, Paquis A, Ceyzériat K, Badina AM, Lathuiliere A, Saleri S, Cillis FD, Cattaneo A, Millet P, Frisoni GB. Fecal Microbiota Transplantation (FMT) From a Human at Low Risk for Alzheimer's Disease Improves Short-Term Recognition Memory and Increases Neuroinflammation in a 3xTg AD Mouse Model. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70012. [PMID: 39801363 PMCID: PMC11725982 DOI: 10.1111/gbb.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/15/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Human microbiota-associated murine models, using fecal microbiota transplantation (FMT) from human donors, help explore the microbiome's role in diseases like Alzheimer's disease (AD). This study examines how gut bacteria from donors with protective factors against AD influence behavior and brain pathology in an AD mouse model. Female 3xTgAD mice received weekly FMT for 2 months from (i) an 80-year-old AD patient (AD-FMT), (ii) a cognitively healthy 73-year-old with the protective APOEe2 allele (APOEe2-FMT), (iii) a 22-year-old healthy donor (Young-FMT), and (iv) untreated mice (Mice-FMT). Behavioral assessments included novel object recognition (NOR), Y-maze, open-field, and elevated plus maze tests; brain pathology (amyloid and tau), neuroinflammation (in situ autoradiography of the 18 kDa translocator protein in the hippocampus); and gut microbiota were analyzed. APOEe2-FMT improved short-term memory in the NOR test compared to AD-FMT, without significant changes in other behavioral tests. This was associated with increased neuroinflammation in the hippocampus, but no effect was detected on brain amyloidosis and tauopathy. Specific genera, such as Parabacteroides and Prevotellaceae_UGC001, were enriched in the APOEe2-FMT group and associated with neuroinflammation, while genera like Desulfovibrio were reduced and linked to decreased neuroinflammation. Gut microbiota from a donor with a protective factor against AD improved short-term memory and induced neuroinflammation in regions strategic to AD. The association of several genera with neuroinflammation in the APOEe2-FMT group suggests a collegial effect of the transplanted microbiome rather than a single-microbe driver effect. These data support an association between gut bacteria, glial cell activation, and cognitive function in AD.
Collapse
Affiliation(s)
- Claire Chevalier
- Département de Readaptation et gériatrieUniversity of GenevaGenevaSwitzerland
| | | | - Moira Marizzoni
- Biological Psychiatry UnitIRCCS Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Rahel Park
- Département de Readaptation et gériatrieUniversity of GenevaGenevaSwitzerland
| | - Arthur Paquis
- Département de Readaptation et gériatrieUniversity of GenevaGenevaSwitzerland
| | - Kelly Ceyzériat
- Département de PsychiatrieUniversity of GenevaGenevaSwitzerland
| | | | | | - Samantha Saleri
- Biological Psychiatry UnitIRCCS Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Floriana De Cillis
- Biological Psychiatry UnitIRCCS Centro San Giovanni di Dio FatebenefratelliBresciaItaly
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Annamaria Cattaneo
- Biological Psychiatry UnitIRCCS Centro San Giovanni di Dio FatebenefratelliBresciaItaly
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Philippe Millet
- Département de PsychiatrieUniversity of GenevaGenevaSwitzerland
| | - Giovanni B. Frisoni
- Département de Readaptation et gériatrieUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
3
|
Johnston KG, Berackey BT, Tran KM, Gelber A, Yu Z, MacGregor GR, Mukamel EA, Tan Z, Green KN, Xu X. Single-cell spatial transcriptomics reveals distinct patterns of dysregulation in non-neuronal and neuronal cells induced by the Trem2 R47H Alzheimer's risk gene mutation. Mol Psychiatry 2025; 30:461-477. [PMID: 39103533 PMCID: PMC11746152 DOI: 10.1038/s41380-024-02651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024]
Abstract
The R47H missense mutation of the TREM2 gene is a known risk factor for development of Alzheimer's Disease. In this study, we analyze the impact of the Trem2R47H mutation on specific cell types in multiple cortical and subcortical brain regions in the context of wild-type and 5xFAD mouse background. We profile 19 mouse brain sections consisting of wild-type, Trem2R47H, 5xFAD and Trem2R47H; 5xFAD genotypes using MERFISH spatial transcriptomics, a technique that enables subcellular profiling of spatial gene expression. Spatial transcriptomics and neuropathology data are analyzed using our custom pipeline to identify plaque and Trem2R47H-induced transcriptomic dysregulation. We initially analyze cell type-specific transcriptomic alterations induced by plaque proximity. Next, we analyze spatial distributions of disease associated microglia and astrocytes, and how they vary between 5xFAD and Trem2R47H; 5xFAD mouse models. Finally, we analyze the impact of the Trem2R47H mutation on neuronal transcriptomes. The Trem2R47H mutation induces consistent upregulation of Bdnf and Ntrk2 across many cortical excitatory neuron types, independent of amyloid pathology. Spatial investigation of genotype enriched subclusters identified spatially localized neuronal subpopulations reduced in 5xFAD and Trem2R47H; 5xFAD mice. Overall, our MERFISH spatial transcriptomics analysis identifies glial and neuronal transcriptomic alterations induced independently by 5xFAD and Trem2R47H mutations, impacting inflammatory responses in microglia and astrocytes, and activity and BDNF signaling in neurons.
Collapse
Affiliation(s)
- Kevin G Johnston
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Bereket T Berackey
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA
| | - Kristine M Tran
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697, USA
| | - Alon Gelber
- Department of Cognitive Science, University of California, San Diego, CA, 92037, USA
| | - Zhaoxia Yu
- Department of Statistics, School of Computer and Information Science, University of California, Irvine, CA, 92697, USA
- Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - Grant R MacGregor
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), Irvine, USA
| | - Eran A Mukamel
- Department of Cognitive Science, University of California, San Diego, CA, 92037, USA
| | - Zhiqun Tan
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
- Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), Irvine, USA
- Department of Molecular Biology and Biochemistry School of Biological Sciences, University of California, Irvine, CA, 92697, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), Irvine, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.
- Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), Irvine, USA.
| |
Collapse
|
4
|
Li B, Yu K, Zhou X, Sun J, Qi L, Li W, Yang T, Li W, Wang N, Gu X, Cui S, Cao R. Increased TSPO alleviates neuropathic pain by preventing pyroptosis via the AMPK-PGC-1α pathway. J Headache Pain 2025; 26:16. [PMID: 39871133 PMCID: PMC11771075 DOI: 10.1186/s10194-025-01953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
Neuropathic pain poses a significant clinical challenge, largely due to the incomplete understanding of its molecular mechanisms, particularly the role of mitochondrial dysfunction. Bioinformatics analysis revealed that pyroptosis and inflammatory responses induced by spared nerve injury (SNI) in the spinal dorsal horn play a critical role in the initiation and persistence of neuropathic pain. Among the factors involved, TSPO (translocator protein) emerged as a key regulator. Our experimental findings showed that TSPO expression was upregulated during neuropathic pain, accompanied by mitochondrial dysfunction, specifically manifested as impaired mitochondrial biogenesis, disrupted mitochondrial dynamics (including insufficient expression of mitochondrial biogenesis and fusion-related proteins, as well as significantly increased expression of fission-related proteins), and activation of pyroptosis. Pharmacological upregulation of TSPO, but not its downregulation, effectively alleviated SNI-induced pain hypersensitivity, improving mitochondrial function and reducing pyroptosis. Immunofluorescence staining confirmed that TSPO was primarily localized in astrocytes, and its expression mirrored the protective effects on mitochondrial health and pyroptosis prevention. PCR array analysis suggested a strong association between TSPO and the mitochondrial regulation pathway AMPK-PGC-1α. Notably, inhibition of AMPK-PGC-1α abolished TSPO effects on mitochondrial balance and pyroptosis suppression. Furthermore, Mendelian randomization analysis of GWAS data indicated that increased TSPO expression was linked to pain relief. Through drug screening, molecular docking, and behavioral assays, we identified zopiclone as a promising TSPO-targeting drug for pain treatment. In summary, this study enhances our understanding of the molecular interplay between TSPO, mitochondrial health, and neuropathic pain, highlighting TSPO as a potential therapeutic target for pain management.
Collapse
Affiliation(s)
- Baolong Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Kaiming Yu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Xiongyao Zhou
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Jialu Sun
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Le Qi
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Weiye Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Tuo Yang
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Weizhen Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Ningning Wang
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| | - Shusen Cui
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China.
| | - Rangjuan Cao
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China.
| |
Collapse
|
5
|
Zhang Z, Niu K, Huang T, Guo J, Xarbat G, Gong X, Gao Y, Liu F, Cheng S, Su W, Yang F, Liu Z, Ginhoux F, Zhang T. Microglia depletion reduces neurodegeneration and remodels extracellular matrix in a mouse Parkinson's disease model triggered by α-synuclein overexpression. NPJ Parkinsons Dis 2025; 11:15. [PMID: 39779738 PMCID: PMC11711755 DOI: 10.1038/s41531-024-00846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic neuroinflammation with sustained microglial activation occurs in Parkinson's disease (PD), yet the mechanisms and exact contribution of these cells to the neurodegeneration remains poorly understood. In this study, we induced progressive dopaminergic neuron loss in mice via rAAV-hSYN injection to cause the neuronal expression of α-synuclein, which produced neuroinflammation and behavioral alterations. We administered PLX5622, a colony-stimulating factor 1 receptor inhibitor, for 3 weeks prior to rAAV-hSYN injection, maintaining it for 8 weeks to eliminate microglia. This chronic treatment paradigm prevented the development of motor deficits and concomitantly preserved dopaminergic neuron cell and weakened α-synuclein phosphorylation. Gene expression profiles related to extracellular matrix (ECM) remodeling were increased after microglia depletion in PD mice, which were further validated on protein level. We demonstrated that microglia exert adverse effects during α-synuclein-overexpression-induced neuronal lesion formation, and their depletion remodels ECM and aids recovery following insult.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Kun Niu
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Taoying Huang
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Jiali Guo
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Gongbikai Xarbat
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Xiaoli Gong
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, 100069, China
| | - Yunke Gao
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Feiyang Liu
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Shan Cheng
- Department of Medical Genetics and Developmental Biology, Capital Medical University, Beijing, 100069, China
| | - Wenting Su
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Fei Yang
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Republic of Singapore
- Gustave Roussy Cancer Campus, Villejuif, 94800, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Ting Zhang
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
6
|
Zhuang X, Lin J, Song Y, Ban R, Zhao X, Xia Z, Wang Z, Zhang G. The Interplay Between Accumulation of Amyloid-Beta and Tau Proteins, PANoptosis, and Inflammation in Alzheimer's Disease. Neuromolecular Med 2024; 27:2. [PMID: 39751702 DOI: 10.1007/s12017-024-08815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 01/04/2025]
Abstract
Alzheimer's disease (AD) is a common progressive neurodegenerative disorder, and the vast majority of cases occur in elderly patients. Recently, the accumulation of Aβ and tau proteins has drawn considerable attention in AD research. This review explores the multifaceted interactions between these proteins and their contribution to the pathological landscape of AD, encompassing synaptic dysfunction, neuroinflammation, and PANoptosis. PANoptosis is a collective term for programmed cell death (PCD) modalities that encompass elements of apoptosis, pyroptosis, and necroptosis. The accumulation of Aβ peptides and tau proteins, along with the immune response in brain cells, may trigger PANoptosis, thus advancing the progression of the disease. Recent advancements in molecular imaging and genetics have provided deeper insights into the interactions between Aβ peptides, tau proteins, and the immune response. The review also discusses the role of mitochondrial dysregulation in AD. The exploration of the interplay between neurodegeneration, immune responses, and cell death offers promising avenues for the development of innovative treatments.
Collapse
Affiliation(s)
- Xianbo Zhuang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Jie Lin
- School of Basic Medicine Sciences, Shandong University, Jinan, China
- Department of Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Yamin Song
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Ru Ban
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Xin Zhao
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China.
- Department of Neurology, Liaocheng People's Hospital, Shandong University, Jinan, 250012, China.
- Department of Neurology, the Second People's Hospital of Liaocheng, Liaocheng, China.
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, China.
| | - Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China.
| |
Collapse
|
7
|
Alvarez KLF, Davila-Del-Carpio G. The gut microbiota as a link between Alzheimer's disease and obesity. Am J Physiol Gastrointest Liver Physiol 2024; 327:G727-G732. [PMID: 39378307 DOI: 10.1152/ajpgi.00174.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/05/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Alzheimer's disease (AD) is a degenerative disease that causes a progressive decline in memory and thinking skills. Over the past few years, diverse studies have shown that there is no single cause of AD; instead, it has been reported that factors such as genetics, lifestyle, and environment contribute to the pathogenesis of the disease. In this sense, it has been shown that obesity during middle age is one of the most prominent modifiable risk factors for AD. Of the multiple potential mechanisms linking obesity and AD, the gut microbiota (GM) has gained increasing attention in recent years. However, the underlying mechanisms that connect the GM with the process of neurodegeneration remain unclear. Through this narrative review, we present a comprehensive understanding of how alterations in the GM of people with obesity may result in systemic inflammation and affect pathways related to the pathogenesis of AD. We conclude with an analysis of the relationship between GM and insulin resistance, a risk factor for AD that is highly prevalent in people with obesity. Understanding the crosstalk between obesity, GM, and the pathogenesis of AD will help to design new strategies aimed at preventing neurodegeneration.
Collapse
Affiliation(s)
- Karla Lucia F Alvarez
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, Peru
| | | |
Collapse
|
8
|
Roy N, Haq I, Ngo JC, Bennett DA, Teich AF, De Jager PL, Olah M, Sher F. Elevated expression of the retrotransposon LINE-1 drives Alzheimer's disease-associated microglial dysfunction. Acta Neuropathol 2024; 148:75. [PMID: 39604588 PMCID: PMC11602836 DOI: 10.1007/s00401-024-02835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Aberrant activity of the retrotransposable element long interspersed nuclear element-1 (LINE-1) has been hypothesized to contribute to cellular dysfunction in age-related disorders, including late-onset Alzheimer's disease (LOAD). However, whether LINE-1 is differentially expressed in cell types of the LOAD brain, and whether these changes contribute to disease pathology is largely unknown. Here, we examined patterns of LINE-1 expression across neurons, astrocytes, oligodendrocytes, and microglia in human postmortem prefrontal cortex tissue from LOAD patients and cognitively normal, age-matched controls. We report elevated immunoreactivity of the open reading frame 1 protein (ORF1p) encoded by LINE-1 in microglia from LOAD patients and find that this immunoreactivity correlates positively with disease-associated microglial morphology. In human iPSC-derived microglia (iMG), we found that CRISPR-mediated transcriptional activation of LINE-1 drives changes in microglial morphology and cytokine secretion and impairs the phagocytosis of amyloid beta (Aβ). We also find LINE-1 upregulation in iMG induces transcriptomic changes genes associated with antigen presentation and lipid metabolism as well as impacting the expression of many AD-relevant genes. Our data posit that heightened LINE-1 expression may trigger microglial dysregulation in LOAD and that these changes may contribute to disease pathogenesis, suggesting a central role for LINE-1 activity in human LOAD.
Collapse
Affiliation(s)
- Nainika Roy
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Imdadul Haq
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Jason C Ngo
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Andrew F Teich
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Marta Olah
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Falak Sher
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA.
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
9
|
Wu J, Tang J, Huang D, Wang Y, Zhou E, Ru Q, Xu G, Chen L, Wu Y. Effects and mechanisms of APP and its cleavage product Aβ in the comorbidity of sarcopenia and Alzheimer's disease. Front Aging Neurosci 2024; 16:1482947. [PMID: 39654807 PMCID: PMC11625754 DOI: 10.3389/fnagi.2024.1482947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Sarcopenia and AD are both classic degenerative diseases, and there is growing epidemiological evidence of their comorbidity with aging; however, the mechanisms underlying the biology of their commonality have not yet been thoroughly investigated. APP is a membrane protein that is expressed in tissues and is expressed not only in the nervous system but also in the NMJ and muscle. Deposition of its proteolytic cleavage product, Aβ, has been described as a central component of AD pathogenesis. Recent studies have shown that excessive accumulation and aberrant expression of APP in muscle lead to pathological muscle lesions, but the pathogenic mechanism by which APP and its proteolytic cleavage products act in skeletal muscle is less well understood. By summarizing and analyzing the literature concerning the role, pathogenicity and pathological mechanisms of APP and its cleavage products in the nervous system and muscles, we aimed to explore the intrinsic pathological mechanisms of myocerebral comorbidities and to provide new perspectives and theoretical foundations for the prevention and treatment of AD and sarcopenia comorbidities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| |
Collapse
|
10
|
Cómitre-Mariano B, Vellila-Alonso G, Segura-Collar B, Mondéjar-Ruescas L, Sepulveda JM, Gargini R. Sentinels of neuroinflammation: the crucial role of myeloid cells in the pathogenesis of gliomas and neurodegenerative diseases. J Neuroinflammation 2024; 21:304. [PMID: 39578808 PMCID: PMC11583668 DOI: 10.1186/s12974-024-03298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
The inflammatory processes that drive pathologies of the central nervous system (CNS) are complex and involve significant contributions from the immune system, particularly myeloid cells. Understanding the shared and distinct pathways of myeloid cell regulation in different CNS diseases may offer critical insights into therapeutic development. This review aims to elucidate the mechanisms underlying myeloid cell dysfunction and neuroinflammation in two groups of neurological pathologies with significant social impact and a limited efficacy of their treatments: the most common primary brain tumors -gliomas-, and the most prevalent neurodegenerative disorders -Alzheimer's and Parkinson's disease. Despite their distinct clinical manifestations, these diseases share key pathological features, including chronic inflammation and immune dysregulation. The role of myeloid cells in neuroinflammation has garnered special interest in recent years in both groups, as evidenced by the growing focus on therapeutic research centred on myeloid cells. By examining the cellular and molecular dynamics that govern these conditions, we hope to identify common and unique therapeutic targets that can inform the development of more effective treatments. Recent advances in single-cell technologies have revolutionized our understanding of myeloid cell heterogeneity, revealing diverse phenotypes and molecular profiles across different disease stages and microenvironments. Here, we present a comprehensive analysis of myeloid cell involvement in gliomas, Alzheimer's and Parkinson's disease, with a focus on phenotypic acquisition, molecular alterations, and therapeutic strategies targeting myeloid cells. This integrated approach not only addresses the limitations of current treatments but also suggests new avenues for therapeutic intervention, aimed at modulating the immune landscape to improve patient outcomes.
Collapse
Affiliation(s)
- Blanca Cómitre-Mariano
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
| | - Gabriel Vellila-Alonso
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
| | - Berta Segura-Collar
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
| | - Lucía Mondéjar-Ruescas
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
| | - Juan M Sepulveda
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.
| | - Ricardo Gargini
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain.
| |
Collapse
|
11
|
Garland EF, Antony H, Kulagowska L, Scott T, Rogien C, Bottlaender M, Nicoll JAR, Boche D. The microglial translocator protein (TSPO) in Alzheimer's disease reflects a phagocytic phenotype. Acta Neuropathol 2024; 148:62. [PMID: 39540994 PMCID: PMC11564344 DOI: 10.1007/s00401-024-02822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Translocator protein (TSPO) is a mitochondrial protein expressed by microglia, ligands for which are used as a marker of neuroinflammation in PET studies of Alzheimer's disease (AD). We previously showed increasing TSPO load in the cerebral cortex with AD progression, consistent with TSPO PET scan findings. Here, we aim to characterise the microglial phenotype associated with TSPO expression to aid interpretation of the signal generated by TSPO ligands in patients. Human post-mortem sections of temporal lobe (TL) and cerebellum (Cb) from cases classified by Braak group (0-II, III-IV, V-VI; each n = 10) were fluorescently double labelled for TSPO and microglial markers: Iba1, HLA-DR, CD68, MSR-A and CD64. Quantification was performed on scanned images using QuPath software to assess the microglial phenotype of TSPO. Qualitative analysis was also performed for TSPO with GFAP (astrocytes), CD31 (endothelial cells) and CD163 (perivascular macrophages) to characterise the cellular profile of TSPO. The percentage of CD68+TSPO+ double-labelled cells was significantly higher than for other microglial markers in both brain regions and in all Braak stages, followed by MSR-A+TSPO+ microglia. Iba1+TSPO+ cells were more numerous in the cerebellum than the temporal lobe, while CD64+TSPO+ cells were more numerous in the temporal lobe. No differences were observed for the other microglial markers. TSPO expression was also detected in endothelial cells, but not detected in astrocytes nor in perivascular macrophages. Our data suggest that TSPO is mainly related to a phagocytic profile of microglia (CD68+) in human AD, potentially highlighting the ongoing neurodegeneration.
Collapse
Affiliation(s)
- Emma F Garland
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Henrike Antony
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Laura Kulagowska
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Thomas Scott
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Charlotte Rogien
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Michel Bottlaender
- Paris-Saclay University, CEA, CNRS, Service Hospitalier Frederic Joliot, Orsay, Inserm, BioMaps, France
- UNIACT Neurospin, CEA, Gif-Sur-Yvette, France
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Trust, Southampton, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
12
|
AlQot HE, Rylett RJ. Primate-specific 82-kDa choline acetyltransferase attenuates progression of Alzheimer's disease-like pathology in the APP NL-G-F knock-in mouse model. Sci Rep 2024; 14:27614. [PMID: 39528509 PMCID: PMC11555257 DOI: 10.1038/s41598-024-78751-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by amyloidosis, neuroinflammation, cholinergic dysfunction and cognitive impairment. In AD, the cholinergic neuronal marker choline acetyltransferase (ChAT) is reduced and the primate-specific nuclear isoform, 82-kDa ChAT, is mislocalized to cytoplasm. Cell-based studies suggest a role for 82-kDa ChAT in regulating expression of AD-related genes with potential reductions in β-amyloid (Aβ) levels. To study this further, we crossed transgenic mice expressing human 82-kDa ChAT with the AD mouse model APPNL-G-F and used molecular techniques and neurobehavioral tests to study the impact of 82-kDa ChAT on AD pathology. These mice had altered expression of genes linked to Aβ clearance and inflammation, and reduced cognitive decline, amyloidosis and gliosis. These effects were inversely related to age and Aβ plaque load and correlated best with 82-kDa ChAT localized to nuclei of neurons. The study suggests a role for 82-kDa ChAT in decreasing AD-like pathology.
Collapse
Affiliation(s)
- Hadir E AlQot
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K8, Canada
| | - Rebecca Jane Rylett
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K8, Canada.
| |
Collapse
|
13
|
Madsen LS, Ismail R, Parbo P, Kjeldsen PL, Schaldemose JL, Hansen KV, Gottrup H, Aanerud J, Eskildsen SF, Brooks DJ. Microglial responses partially mediate the effect of Aβ on cognition in Alzheimer's disease. Alzheimers Dement 2024; 20:8028-8037. [PMID: 39392185 PMCID: PMC11567839 DOI: 10.1002/alz.14298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/24/2024] [Accepted: 09/07/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Microglial responses are an integral part of Alzheimer's disease (AD) pathology and are associated with amyloid beta (Aβ) deposition. This study aimed to investigate the effects of Aβ and microglial responses on global cognitive impairment. METHODS In this longitudinal study, 28 patients with mild cognitive impairment and 11 healthy controls underwent 11C-PK11195 and 11C-Pittsburgh compound B positron emission tomography (PET), structural magnetic resonance imaging scans, and global cognitive ratings at baseline and 2-year follow-up. Correlations between PET uptake and global cognition were assessed. Additionally, the mediation effect of the microglial response on the association between Aβ load and global cognition was assessed. RESULTS Aβ load and the microglial response were both independently detrimental to global cognitive performance at baseline; however, at 2-year follow-up the association between Aβ load and global cognitive ratings was partially mediated by the microglial response. DISCUSSION As AD progresses, the associated microglial response partially mediates the detrimental effect of aggregated Aβ on cognition. HIGHLIGHTS This was a longitudinal study of amyloid beta (Aβ), microglial responses, and global cognitive performance. Aβ and microglial responses both affect cognition in early Alzheimer's disease. Microglial response partially mediates the effect of Aβ on cognition in later stages.
Collapse
Affiliation(s)
- Lasse S. Madsen
- Department of Clinical MedicineCenter of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
| | - Rola Ismail
- Department of Nuclear MedicineSygehus LillebaeltVejleDenmark
| | - Peter Parbo
- Department of Nuclear MedicineOdense University HospitalOdenseDenmark
| | - Pernille L. Kjeldsen
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
- Department of NeurologyAalborg University HospitalAalborgDenmark
| | - Jeppe L. Schaldemose
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Kim V. Hansen
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Hanne Gottrup
- Department of NeurologyAarhus University HospitalAarhusDenmark
| | - Joel Aanerud
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Simon F. Eskildsen
- Department of Clinical MedicineCenter of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
| | - David J. Brooks
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
- Institute of Translational and Clinical ResearchUniversity of Newcastle upon TyneNewcastle upon TyneUK
| |
Collapse
|
14
|
Swann P, Mirza-Davies A, O'Brien J. Associations Between Neuropsychiatric Symptoms and Inflammation in Neurodegenerative Dementia: A Systematic Review. J Inflamm Res 2024; 17:6113-6141. [PMID: 39262651 PMCID: PMC11389708 DOI: 10.2147/jir.s385825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Background Neuropsychiatric symptoms are common in dementia and linked to adverse outcomes. Inflammation is increasingly recognized as playing a role as a driver of early disease progression in Alzheimer's disease (AD) and related dementias. Inflammation has also been linked to primary psychiatric disorders, however its association with neuropsychiatric symptoms in neurodegenerative dementias remains uncertain. Methods We conducted a systematic literature review investigating associations between inflammation and neuropsychiatric symptoms in neurodegenerative dementias, including AD, Lewy body, Frontotemporal, Parkinson's (PD) and Huntington's disease dementias. Results Ninety-nine studies met our inclusion criteria, and the majority (n = 59) investigated AD and/or mild cognitive impairment (MCI). Thirty-five studies included PD, and only 6 investigated non-AD dementias. Inflammation was measured in blood, CSF, by genotype, brain tissue and PET imaging. Overall, studies exhibited considerable heterogeneity and evidence for specific inflammatory markers was inconsistent, with lack of replication and few longitudinal studies with repeat biomarkers. Depression was the most frequently investigated symptom. In AD, some studies reported increases in peripheral IL-6, TNF-a associated with depressive symptoms. Preliminary investigations using PET measures of microglial activation found an association with agitation. In PD, studies reported positive associations between TNF-a, IL-6, CRP, MCP-1, IL-10 and depression. Conclusion Central and peripheral inflammation may play a role in neuropsychiatric symptoms in neurodegenerative dementias; however, the evidence is inconsistent. There is a need for multi-site longitudinal studies with detailed assessments of neuropsychiatric symptoms combined with replicable peripheral and central markers of inflammation.
Collapse
Affiliation(s)
- Peter Swann
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | - Anastasia Mirza-Davies
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | - John O'Brien
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
15
|
Zatcepin A, Gnörich J, Rauchmann BS, Bartos LM, Wagner S, Franzmeier N, Malpetti M, Xiang X, Shi Y, Parhizkar S, Grosch M, Wind-Mark K, Kunte ST, Beyer L, Meyer C, Brösamle D, Wendeln AC, Osei-Sarpong C, Heindl S, Liesz A, Stoecklein S, Biechele G, Finze A, Eckenweber F, Lindner S, Rominger A, Bartenstein P, Willem M, Tahirovic S, Herms J, Buerger K, Simons M, Haass C, Rupprecht R, Riemenschneider MJ, Albert NL, Beyer M, Neher JJ, Paeger L, Levin J, Höglinger GU, Perneczky R, Ziegler SI, Brendel M. Regional desynchronization of microglial activity is associated with cognitive decline in Alzheimer's disease. Mol Neurodegener 2024; 19:64. [PMID: 39238030 PMCID: PMC11375924 DOI: 10.1186/s13024-024-00752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Microglial activation is one hallmark of Alzheimer disease (AD) neuropathology but the impact of the regional interplay of microglia cells in the brain is poorly understood. We hypothesized that microglial activation is regionally synchronized in the healthy brain but experiences regional desynchronization with ongoing neurodegenerative disease. We addressed the existence of a microglia connectome and investigated microglial desynchronization as an AD biomarker. METHODS To validate the concept, we performed microglia depletion in mice to test whether interregional correlation coefficients (ICCs) of 18 kDa translocator protein (TSPO)-PET change when microglia are cleared. Next, we evaluated the influence of dysfunctional microglia and AD pathophysiology on TSPO-PET ICCs in the mouse brain, followed by translation to a human AD-continuum dataset. We correlated a personalized microglia desynchronization index with cognitive performance. Finally, we performed single-cell radiotracing (scRadiotracing) in mice to ensure the microglial source of the measured desynchronization. RESULTS Microglia-depleted mice showed a strong ICC reduction in all brain compartments, indicating microglia-specific desynchronization. AD mouse models demonstrated significant reductions of microglial synchronicity, associated with increasing variability of cellular radiotracer uptake in pathologically altered brain regions. Humans within the AD-continuum indicated a stage-depended reduction of microglia synchronicity associated with cognitive decline. scRadiotracing in mice showed that the increased TSPO signal was attributed to microglia. CONCLUSION Using TSPO-PET imaging of mice with depleted microglia and scRadiotracing in an amyloid model, we provide first evidence that a microglia connectome can be assessed in the mouse brain. Microglia synchronicity is closely associated with cognitive decline in AD and could serve as an independent personalized biomarker for disease progression.
Collapse
Affiliation(s)
- Artem Zatcepin
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Boris-Stephan Rauchmann
- Institute of Neuroradiology, University Hospital LMU, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Laura M Bartos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Stephan Wagner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Maura Malpetti
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Xianyuan Xiang
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, ShenzhenShenzhen, 518055, China
| | - Yuan Shi
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Samira Parhizkar
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Maximilian Grosch
- German Center for Vertigo and Balance Disorders, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Karin Wind-Mark
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sebastian T Kunte
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Carolin Meyer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Desirée Brösamle
- German Center for Neurodegenerative Disease (DZNE), Neuroimmunology and Neurodegenerative Diseases, Göttingen, Germany
- Dept. of Cellular Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Metabolic Biochemistry, Faculty of Medicine, Biomedical Center Munich (BMC), LMU Munich, Munich, Germany
| | - Ann-Christin Wendeln
- German Center for Neurodegenerative Disease (DZNE), Neuroimmunology and Neurodegenerative Diseases, Göttingen, Germany
- Dept. of Cellular Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Collins Osei-Sarpong
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseasesand , University of Bonn and West German Genome Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Immunogenomics & Neurodegeneration, Bonn, Germany
| | - Steffanie Heindl
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sophia Stoecklein
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Anika Finze
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, Inselpital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Michael Willem
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Molecular Neurosciences, Regensburg, Germany
| | | | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Munich, 69120, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| | - Marc Beyer
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseasesand , University of Bonn and West German Genome Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Immunogenomics & Neurodegeneration, Bonn, Germany
| | - Jonas J Neher
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Disease (DZNE), Neuroimmunology and Neurodegenerative Diseases, Göttingen, Germany
- Dept. of Cellular Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Metabolic Biochemistry, Faculty of Medicine, Biomedical Center Munich (BMC), LMU Munich, Munich, Germany
| | - Lars Paeger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, W6 8RP, UK
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, S10 2HQ, UK
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
16
|
Islam MR, Rabbi MA, Hossain T, Sultana S, Uddin S. Mechanistic Approach to Immunity and Immunotherapy of Alzheimer's Disease: A Review. ACS Chem Neurosci 2024. [PMID: 39173186 DOI: 10.1021/acschemneuro.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative condition characterized by progressive cognitive decline and memory loss, affecting millions of people worldwide. Traditional treatments, such as cholinesterase inhibitors and NMDA receptor antagonists, offer limited symptomatic relief without addressing the underlying disease mechanisms. These limitations have driven the development of more potent and effective therapies. Recent advances in immunotherapy present promising avenues for AD treatment. Immunotherapy strategies, including both active and passive approaches, harness the immune system to target and mitigate AD-related pathology. Active immunotherapy stimulates the patient's immune response to produce antibodies against AD-specific antigens, while passive immunotherapy involves administering preformed antibodies or immune cells that specifically target amyloid-β (Aβ) or tau proteins. Monoclonal antibodies, such as aducanumab and lecanemab, have shown potential in reducing Aβ plaques and slowing cognitive decline in clinical trials, despite challenges related to adverse immune responses and the need for precise targeting. This comprehensive review explores the role of the immune system in AD, evaluates the current successes and limitations of immunotherapeutic approaches, and discusses future directions for enhancing the treatment efficacy.
Collapse
Affiliation(s)
- Md Rubiath Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md Afser Rabbi
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Tanbir Hossain
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Sadia Sultana
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Shihab Uddin
- Department of Bioengineering, King Fahad University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Bio Systems and Machines, King Fahad University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia
| |
Collapse
|
17
|
Noche JA, Vanderlip C, Wright S, Sordo L, Head E, Stark C. Myo-inositol and total NAA in the hippocampus are linked to CSF tau pathology in cognitively normal older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607353. [PMID: 39211099 PMCID: PMC11361118 DOI: 10.1101/2024.08.09.607353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Understanding relationships between in vivo neurometabolic changes and Alzheimer's disease (AD) pathology in the hippocampus, a region vulnerable to early changes in AD, will support early diagnosis. METHODS Two studies using 1 H-MRS examined concentrations of myo-inositol (MI), total creatine (tCr) and total NAA (tNAA) in the hippocampus. The first study compared hippocampal metabolite concentrations in healthy young and older adults and the second study assessed relationships between hippocampal metabolites and cerebrospinal fluid (CSF) measurements of Aβ42, phosphotau 181 (pTau181), and total tau (t-Tau) while adjusting for demographic covariates and spectral characteristics (linewidth, signal- to-noise ratio) in a separate group of older adults ranging from cognitively normal (CN) to AD-dementia. RESULTS Hippocampal MI, but not tCr or tNAA, was increased in cognitively normal older versus young adults. Within the second older adult group, MI and tNAA, but not tCr, were linked to increases in CSF pTau181 and t-Tau, but not Aβ42. DISCUSSION Tau deposition in cognitively normal individuals is associated with biochemical changes related to glial reactivity and neural integrity in the hippocampus.
Collapse
|
18
|
Sun W, Gong J, Li S, Wang P, Han X, Xu C, Luan H, Li R, Wen B, Wei C. Bibliometric analysis of neuroinflammation and Alzheimer's disease. Front Aging Neurosci 2024; 16:1423139. [PMID: 39076205 PMCID: PMC11284157 DOI: 10.3389/fnagi.2024.1423139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Background Alzheimer's disease (AD) is the predominant cause of dementia on a global scale, significantly impacting the health of the elderly population. The pathogenesis of AD is closely linked to neuroinflammation. The present study employs a bibliometric analysis to examine research pertaining to neuroinflammation and AD within the last decade, with the objective of providing a comprehensive overview of the current research profile, hotspots and trends. Methods This research conducted a comprehensive review of publications within the Science Citation Index Expanded of the Web of Science Core Collection Database spanning the years 2014 to 2024. Bibliometric analyses were performed using VOSviewer (version 1.6.19) and CiteSpace (version 6.3.R1) software to visualize data on countries, institutions, authors, journals, keywords, and references. Results A total of 3,833 publications on neuroinflammation and AD were included from January 2014 to January 2024. Publications were mainly from the United States and China. Zetterberg, Henrik emerged as the author with the highest publication output, while Edison, Paul was identified as the most cited author. The most productive journal was Journal of Alzheimers Disease, and the most co-cited was Journal of Neuroinflammation. Research hotspot focused on microglia, mouse models, oxidative stress, and amyloid-beta through keyword analysis. Additionally, keywords such as blood-brain barrier and tau protein exhibited prolonged citation bursts from 2022 to 2024. Conclusion This study provides a comprehensive review of the last 10 years of research on neuroinflammation and AD, including the number and impact of research findings, research hotspots, and future trends. The quantity of publications in this field is increasing, mainly in the United States and China, and there is a need to further strengthen close cooperation with different countries and institutions worldwide. Presently, research hotspots are primarily concentrated on microglia, with a focus on inhibiting their pro-inflammatory responses and promoting their anti-inflammatory functions as a potential direction for future investigations.
Collapse
Affiliation(s)
- Wenxian Sun
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jin Gong
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shaoqi Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Pin Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xiaodong Han
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Chang Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Heya Luan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Ruina Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Boye Wen
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Cuibai Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
19
|
Urrestizala-Arenaza N, Cerchio S, Cavaliere F, Magliaro C. Limitations of human brain organoids to study neurodegenerative diseases: a manual to survive. Front Cell Neurosci 2024; 18:1419526. [PMID: 39049825 PMCID: PMC11267621 DOI: 10.3389/fncel.2024.1419526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
In 2013, M. Lancaster described the first protocol to obtain human brain organoids. These organoids, usually generated from human-induced pluripotent stem cells, can mimic the three-dimensional structure of the human brain. While they recapitulate the salient developmental stages of the human brain, their use to investigate the onset and mechanisms of neurodegenerative diseases still faces crucial limitations. In this review, we aim to highlight these limitations, which hinder brain organoids from becoming reliable models to study neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Specifically, we will describe structural and biological impediments, including the lack of an aging footprint, angiogenesis, myelination, and the inclusion of functional and immunocompetent microglia—all important factors in the onset of neurodegeneration in AD, PD, and ALS. Additionally, we will discuss technical limitations for monitoring the microanatomy and electrophysiology of these organoids. In parallel, we will propose solutions to overcome the current limitations, thereby making human brain organoids a more reliable tool to model neurodegeneration.
Collapse
Affiliation(s)
- Nerea Urrestizala-Arenaza
- Achucarro Basque Center for Neuroscience, The Basque Biomodels Platform for Human Research (BBioH), Leioa, Spain
| | - Sonia Cerchio
- Centro di Ricerca “E. Piaggio” – University of Pisa, Pisa, Italy
| | - Fabio Cavaliere
- Achucarro Basque Center for Neuroscience, The Basque Biomodels Platform for Human Research (BBioH), Leioa, Spain
- Fundación Biofisica Bizkaia, Leioa, Spain
| | - Chiara Magliaro
- Centro di Ricerca “E. Piaggio” – University of Pisa, Pisa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Vrillon A, Bousiges O, Götze K, Demuynck C, Muller C, Ravier A, Schorr B, Philippi N, Hourregue C, Cognat E, Dumurgier J, Lilamand M, Cretin B, Blanc F, Paquet C. Plasma biomarkers of amyloid, tau, axonal, and neuroinflammation pathologies in dementia with Lewy bodies. Alzheimers Res Ther 2024; 16:146. [PMID: 38961441 PMCID: PMC11221164 DOI: 10.1186/s13195-024-01502-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Increasing evidence supports the use of plasma biomarkers of amyloid, tau, neurodegeneration, and neuroinflammation for diagnosis of dementia. However, their performance for positive and differential diagnosis of dementia with Lewy bodies (DLB) in clinical settings is still uncertain. METHODS We conducted a retrospective biomarker study in two tertiary memory centers, Paris Lariboisière and CM2RR Strasbourg, France, enrolling patients with DLB (n = 104), Alzheimer's disease (AD, n = 76), and neurological controls (NC, n = 27). Measured biomarkers included plasma Aβ40/Aβ42 ratio, p-tau181, NfL, and GFAP using SIMOA and plasma YKL-40 and sTREM2 using ELISA. DLB patients with available CSF analysis (n = 90) were stratified according to their CSF Aβ profile. RESULTS DLB patients displayed modified plasma Aβ ratio, p-tau181, and GFAP levels compared with NC and modified plasma Aβ ratio, p-tau181, GFAP, NfL, and sTREM2 levels compared with AD patients. Plasma p-tau181 best differentiated DLB from AD patients (ROC analysis, area under the curve [AUC] = 0.80) and NC (AUC = 0.78), and combining biomarkers did not improve diagnosis performance. Plasma p-tau181 was the best standalone biomarker to differentiate amyloid-positive from amyloid-negative DLB cases (AUC = 0.75) and was associated with cognitive status in the DLB group. Combining plasma Aβ ratio, p-tau181 and NfL increased performance to identify amyloid copathology (AUC = 0.79). Principal component analysis identified different segregation patterns of biomarkers in the DLB and AD groups. CONCLUSIONS Amyloid, tau, neurodegeneration and neuroinflammation plasma biomarkers are modified in DLB, albeit with moderate diagnosis performance. Plasma p-tau181 can contribute to identify Aβ copathology in DLB.
Collapse
Affiliation(s)
- Agathe Vrillon
- AP-HP Nord, Cognitive Neurology Center Hôpital Lariboisière-Fernand Widal, Université Paris Cité, 200 rue du Faubourg Saint-Denis, Paris, 75010, France.
- Université Paris Cité, INSERM, UMRS 1144, Paris, France.
- University of California San Francisco, San Francisco, USA.
| | - Olivier Bousiges
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Strasbourg, France
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS Strasbourg, Strasbourg, France
| | - Karl Götze
- Université Paris Cité, INSERM, UMRS 1144, Paris, France
| | - Catherine Demuynck
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
| | - Candice Muller
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
| | - Alix Ravier
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
| | - Benoît Schorr
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
| | - Nathalie Philippi
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS Strasbourg, Strasbourg, France
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
- Neuropsychology unit, Service of Neurology Strasbourg, University Hospital of Strasbourg, Strasbourg, France
| | - Claire Hourregue
- AP-HP Nord, Cognitive Neurology Center Hôpital Lariboisière-Fernand Widal, Université Paris Cité, 200 rue du Faubourg Saint-Denis, Paris, 75010, France
| | - Emmanuel Cognat
- AP-HP Nord, Cognitive Neurology Center Hôpital Lariboisière-Fernand Widal, Université Paris Cité, 200 rue du Faubourg Saint-Denis, Paris, 75010, France
- Université Paris Cité, INSERM, UMRS 1144, Paris, France
| | - Julien Dumurgier
- AP-HP Nord, Cognitive Neurology Center Hôpital Lariboisière-Fernand Widal, Université Paris Cité, 200 rue du Faubourg Saint-Denis, Paris, 75010, France
| | - Matthieu Lilamand
- AP-HP Nord, Cognitive Neurology Center Hôpital Lariboisière-Fernand Widal, Université Paris Cité, 200 rue du Faubourg Saint-Denis, Paris, 75010, France
| | - Benjamin Cretin
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS Strasbourg, Strasbourg, France
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
- Neuropsychology unit, Service of Neurology Strasbourg, University Hospital of Strasbourg, Strasbourg, France
| | - Frédéric Blanc
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS Strasbourg, Strasbourg, France
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
- Neuropsychology unit, Service of Neurology Strasbourg, University Hospital of Strasbourg, Strasbourg, France
| | - Claire Paquet
- AP-HP Nord, Cognitive Neurology Center Hôpital Lariboisière-Fernand Widal, Université Paris Cité, 200 rue du Faubourg Saint-Denis, Paris, 75010, France
- Université Paris Cité, INSERM, UMRS 1144, Paris, France
| |
Collapse
|
21
|
Pumo A, Legeay S. The dichotomous activities of microglia: A potential driver for phenotypic heterogeneity in Alzheimer's disease. Brain Res 2024; 1832:148817. [PMID: 38395249 DOI: 10.1016/j.brainres.2024.148817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/28/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, characterized by two defining neuropathological hallmarks: amyloid plaques composed of Aβ aggregates and neurofibrillary pathology. Recent research suggests that microglia have both beneficial and detrimental effects in the development of AD. A new theory proposes that microglia play a beneficial role in the early stages of the disease but become harmful in later stages. Further investigations are needed to gain a comprehensive understanding of this shift in microglia's function. This transition is likely influenced by specific conditions, including spatial, temporal, and transcriptional factors, which ultimately lead to the deterioration of microglial functionality. Additionally, recent studies have also highlighted the potential influence of microglia diversity on the various manifestations of AD. By deciphering the multiple states of microglia and the phenotypic heterogeneity in AD, significant progress can be made towards personalized medicine and better treatment outcomes for individuals affected by AD.
Collapse
Affiliation(s)
- Anna Pumo
- Université d'Angers, Faculté de Santé, Département Pharmacie, 16, Boulevard Daviers, Angers 49045, France.
| | - Samuel Legeay
- Université d'Angers, Faculté de Santé, Département Pharmacie, 16, Boulevard Daviers, Angers 49045, France; Univ Angers, Inserm, CNRS, MINT, SFR ICAT, Angers F-49000, France
| |
Collapse
|
22
|
Cai Y, Shi D, Lan G, Chen L, Jiang Y, Zhou L, Guo T. Association of β-Amyloid, Microglial Activation, Cortical Thickness, and Metabolism in Older Adults Without Dementia. Neurology 2024; 102:e209205. [PMID: 38489560 DOI: 10.1212/wnl.0000000000209205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/13/2023] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Plasma β-amyloid42 (Aβ42)/Aβ40 levels have shown promise in identifying Aβ-PET positive individuals. This study explored the concordance and discordance of plasma Aβ42/Aβ40 positivity (Plasma±) with CSF Aβ42/Aβ40 positivity (CSF±) and Aβ-PET positivity (PET±) in older adults without dementia. Associations of Aβ deposition, cortical thickness, glucose metabolism, and microglial activation were also investigated. METHODS We selected participants without dementia who had concurrent plasma Aβ42/Aβ40 and Aβ-PET scans from the Alzheimer's Disease Neuroimaging Initiative cohort. Participants were categorized into Plasma±/PET± based on thresholds of composite 18F-florbetapir (FBP) standardized uptake value ratio (SUVR) ≥1.11 and plasma Aβ42/Aβ40 ≤0.1218. Aβ-PET-negative individuals were further divided into Plasma±/CSF± (CSF Aβ42/Aβ40 ≤0.138), and the concordance and discordance of Aβ42/Aβ40 in the plasma and CSF were investigated. Baseline and slopes of regional FBP SUVR were compared among Plasma±/PET± groups, and associations of regional FBP SUVR, FDG SUVR, cortical thickness, and CSF soluble Triggering Receptor Expressed on Myeloid Cell 2 (sTREM2) levels were analyzed. RESULTS One hundred eighty participants (mean age 72.7 years, 51.4% female, 96 cognitively unimpaired, and 84 with mild cognitive impairment) were included. We found that the proportion of Plasma+/PET- individuals was 6.14 times higher (odds ratio (OR) = 6.143, 95% confidence interval (CI) 2.740-16.185, p < 0.001) than that of Plasma-/PET+ individuals, and Plasma+/CSF- individuals showed 8.5 times larger percentage (OR = 8.5, 95% CI: 3.031-32.974, p < 0.001) than Plasma-/CSF+ individuals in Aβ-PET-negative individuals. Besides, Plasma+/PET- individuals exhibited faster (p < 0.05) Aβ accumulation predominantly in bilateral banks of superior temporal sulcus (BANKSSTS) and supramarginal, and superior parietal cortices compared with Plasma-/PET- individuals, despite no difference in baseline FBP SUVRs. In Plasma+/PET+ individuals, higher CSF sTREM2 levels correlated with slower BANKSSTS Aβ accumulation (standardized β (βstd) = -0.418, 95% CI -0.681 to -0.154, p = 0.002). Conversely, thicker cortical thickness and higher glucose metabolism in supramarginal and superior parietal cortices were associated with faster (p < 0.05) CSF sTREM2 increase in Plasma+/PET- individuals rather than in Plasma+/PET+ individuals. DISCUSSION These findings suggest that plasma Aβ42/Aβ40 abnormalities may predate CSF Aβ42/Aβ40 and Aβ-PET abnormalities. Higher sTREM2-related microglial activation is linked to thicker cortical thickness and higher metabolism in early amyloidosis stages but tends to mitigate Aβ accumulation primarily at relatively advanced stages.
Collapse
Affiliation(s)
- Yue Cai
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Dai Shi
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Guoyu Lan
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Linting Chen
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Yanni Jiang
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Liemin Zhou
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Tengfei Guo
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| |
Collapse
|
23
|
Yu Y, Chen R, Mao K, Deng M, Li Z. The Role of Glial Cells in Synaptic Dysfunction: Insights into Alzheimer's Disease Mechanisms. Aging Dis 2024; 15:459-479. [PMID: 37548934 PMCID: PMC10917533 DOI: 10.14336/ad.2023.0718] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that impacts a substantial number of individuals globally. Despite its widespread prevalence, there is currently no cure for AD. It is widely acknowledged that normal synaptic function holds a key role in memory, cognitive abilities, and the interneuronal transfer of information. As AD advances, symptoms including synaptic impairment, decreased synaptic density, and cognitive decline become increasingly noticeable. The importance of glial cells in the formation of synapses, the growth of neurons, brain maturation, and safeguarding the microenvironment of the central nervous system is well recognized. However, during AD progression, overactive glial cells can cause synaptic dysfunction, neuronal death, and abnormal neuroinflammation. Both neuroinflammation and synaptic dysfunction are present in the early stages of AD. Therefore, focusing on the changes in glia-synapse communication could provide insights into the mechanisms behind AD. In this review, we aim to provide a summary of the role of various glial cells, including microglia, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells, in regulating synaptic dysfunction. This may offer a new perspective on investigating the underlying mechanisms of AD.
Collapse
Affiliation(s)
- Yang Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Ran Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Kaiyue Mao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Maoyan Deng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China.
| |
Collapse
|
24
|
Gu X, Qi L, Qi Q, Zhou J, Chen S, Wang L. Monoclonal antibody therapy for Alzheimer's disease focusing on intracerebral targets. Biosci Trends 2024; 18:49-65. [PMID: 38382942 DOI: 10.5582/bst.2023.01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Due to the complexity of the disorder and the presence of the blood-brain barrier (BBB), its drug discovery and development are facing enormous challenges, especially after several failures of monoclonal antibody (mAb) trials. Nevertheless, the Food and Drug Administration's approval of the mAb aducanumab has ushered in a new day. As we better understand the disease's pathogenesis and identify novel intracerebral therapeutic targets, antibody-based therapies have advanced over the past few years. The mAb drugs targeting β-amyloid or hyperphosphorylated tau protein are the focus of the current research. Massive neuronal loss and glial cell-mediated inflammation are also the vital pathological hallmarks of AD, signaling a new direction for research on mAb drugs. We have elucidated the mechanisms by which AD-specific mAbs cross the BBB to bind to targets. In order to investigate therapeutic approaches to treat AD, this review focuses on the promising mAbs targeting intracerebral dysfunction and related strategies to cross the BBB.
Collapse
Affiliation(s)
- Xiaolei Gu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Long Qi
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Qing Qi
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Song Chen
- Postdoctoral Station of Xiamen University, Fujian, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
25
|
Chen BR, Wu T, Chen TH, Wang Y. Neuroimmune interactions and their roles in neurodegenerative diseases. FUNDAMENTAL RESEARCH 2024; 4:251-261. [PMID: 38933502 PMCID: PMC11197660 DOI: 10.1016/j.fmre.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/10/2023] [Accepted: 04/03/2023] [Indexed: 06/28/2024] Open
Abstract
The nervous system possesses bidirectional, sophisticated and delicate communications with the immune system. These neuroimmune interactions play a vitally important role in the initiation and development of many disorders, especially neurodegenerative diseases. Although scientific advancements have made tremendous progress in this field during the last few years, neuroimmune communications are still far from being elucidated. By organizing recent research, in this review, we discuss the local and intersystem neuroimmune interactions and their roles in Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Unveiling these will help us gain a better understanding of the process of interplay inside the body and how the organism maintains homeostasis. It will also facilitate a view of the diseases from a holistic, pluralistic and interconnected perspective, thus providing a basis of developing novel and effective methods to diagnose, intervene and treat diseases.
Collapse
Affiliation(s)
- Bai-Rong Chen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Ting Wu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Ting-Hui Chen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
26
|
Weathered C, Bardehle S, Yoon C, Kumar N, Leyns CEG, Kennedy ME, Bloomingdale P, Pienaar E. Microglial roles in Alzheimer's disease: An agent-based model to elucidate microglial spatiotemporal response to beta-amyloid. CPT Pharmacometrics Syst Pharmacol 2024; 13:449-463. [PMID: 38078626 PMCID: PMC10941569 DOI: 10.1002/psp4.13095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 02/03/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by beta-amyloid (Aβ) plaques in the brain and widespread neuronal damage. Because of the high drug attrition rates in AD, there is increased interest in characterizing neuroimmune responses to Aβ plaques. In response to AD pathology, microglia are innate phagocytotic immune cells that transition into a neuroprotective state and form barriers around plaques. We seek to understand the role of microglia in modifying Aβ dynamics and barrier formation. To quantify the influence of individual microglia behaviors (activation, chemotaxis, phagocytosis, and proliferation) on plaque size and barrier coverage, we developed an agent-based model to characterize the spatiotemporal interactions between microglia and Aβ. Our model qualitatively reproduces mouse data trends where the fraction of microglia coverage decreases as plaques become larger. In our model, the time to microglial arrival at the plaque boundary is significantly negatively correlated (p < 0.0001) with plaque size, indicating the importance of the time to microglial activation for regulating plaque size. In addition, in silico behavioral knockout simulations show that phagocytosis knockouts have the strongest impact on plaque size, but modest impacts on microglial coverage and activation. In contrast, the chemotaxis knockouts had a strong impact on microglial coverage with a more modest impact on plaque volume and microglial activation. These simulations suggest that phagocytosis, chemotaxis, and replication of activated microglia have complex impacts on plaque volume and coverage, whereas microglial activation remains fairly robust to perturbations of these functions. Thus, our work provides insights into the potential and limitations of targeting microglial activation as a pharmacological strategy for the treatment of AD.
Collapse
Affiliation(s)
- Catherine Weathered
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Sophia Bardehle
- NeuroimmunologyMerck & Co., Inc.RahwayNew JerseyUSA
- Present address:
Cerevel TherapeuticsCambridgeMassachusettsUSA
| | - Choya Yoon
- NeuroimmunologyMerck & Co., Inc.RahwayNew JerseyUSA
| | - Niyanta Kumar
- Pharmacokinetics and PharmacodynamicsMerck & Co., Inc.RahwayNew JerseyUSA
- Present address:
Mersana TherapeuticsCambridgeMassachusettsUSA
| | | | | | - Peter Bloomingdale
- Quantitative Pharmacology and PharmacometricsMerck & Co., Inc.RahwayNew JerseyUSA
- Present address:
Boehringer IngelheimIngelheim am RheinGermany
| | - Elsje Pienaar
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Regenstrief Center for Healthcare EngineeringWest LafayetteIndianaUSA
| |
Collapse
|
27
|
Parekh P, Badachhape AA, Tanifum EA, Annapragada AV, Ghaghada KB. Advances in nanoprobes for molecular MRI of Alzheimer's disease. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1946. [PMID: 38426638 PMCID: PMC10983770 DOI: 10.1002/wnan.1946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Alzheimer's disease is the most common cause of dementia and a leading cause of mortality in the elderly population. Diagnosis of Alzheimer's disease has traditionally relied on evaluation of clinical symptoms for cognitive impairment with a definitive diagnosis requiring post-mortem demonstration of neuropathology. However, advances in disease pathogenesis have revealed that patients exhibit Alzheimer's disease pathology several decades before the manifestation of clinical symptoms. Magnetic resonance imaging (MRI) plays an important role in the management of patients with Alzheimer's disease. The clinical availability of molecular MRI (mMRI) contrast agents can revolutionize the diagnosis of Alzheimer's disease. In this article, we review advances in nanoparticle contrast agents, also referred to as nanoprobes, for mMRI of Alzheimer's disease. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Parag Parekh
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| | - Andrew A. Badachhape
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| | - Eric A. Tanifum
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| | - Ananth V. Annapragada
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| | - Ketan B. Ghaghada
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
28
|
Fan H, Zhang M, Wen J, Wang S, Yuan M, Sun H, Shu L, Yang X, Pu Y, Cai Z. Microglia in brain aging: An overview of recent basic science and clinical research developments. J Biomed Res 2024; 38:122-136. [PMID: 38403286 PMCID: PMC11001587 DOI: 10.7555/jbr.37.20220220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/25/2022] [Accepted: 01/12/2023] [Indexed: 02/27/2024] Open
Abstract
Aging is characterized by progressive degeneration of tissues and organs, and it is positively associated with an increased mortality rate. The brain, as one of the most significantly affected organs, experiences age-related changes, including abnormal neuronal activity, dysfunctional calcium homeostasis, dysregulated mitochondrial function, and increased levels of reactive oxygen species. These changes collectively contribute to cognitive deterioration. Aging is also a key risk factor for neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. For many years, neurodegenerative disease investigations have primarily focused on neurons, with less attention given to microglial cells. However, recently, microglial homeostasis has emerged as an important mediator in neurological disease pathogenesis. Here, we provide an overview of brain aging from the perspective of the microglia. In doing so, we present the current knowledge on the correlation between brain aging and the microglia, summarize recent progress of investigations about the microglia in normal aging, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, and then discuss the correlation between the senescent microglia and the brain, which will culminate with a presentation of the molecular complexity involved in the microglia in brain aging with suggestions for healthy aging.
Collapse
Affiliation(s)
- Haixia Fan
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
- Department of Neurology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Minheng Zhang
- Department of Gerontology, the First People's Hospital of Jinzhong, Jinzhong, Shanxi 030009, China
| | - Jie Wen
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Shengyuan Wang
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Minghao Yuan
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Houchao Sun
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Liu Shu
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Xu Yang
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Yinshuang Pu
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Zhiyou Cai
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| |
Collapse
|
29
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
30
|
Wang Q, Schindler SE, Chen G, Mckay NS, McCullough A, Flores S, Liu J, Sun Z, Wang S, Wang W, Hassenstab J, Cruchaga C, Perrin RJ, Fagan AM, Morris JC, Wang Y, Benzinger TLS. Investigating White Matter Neuroinflammation in Alzheimer Disease Using Diffusion-Based Neuroinflammation Imaging. Neurology 2024; 102:e208013. [PMID: 38315956 PMCID: PMC10890836 DOI: 10.1212/wnl.0000000000208013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/13/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Alzheimer disease (AD) is primarily associated with accumulations of amyloid plaques and tau tangles in gray matter, however, it is now acknowledged that neuroinflammation, particularly in white matter (WM), significantly contributes to the development and progression of AD. This study aims to investigate WM neuroinflammation in the continuum of AD and its association with AD pathologies and cognition using diffusion-based neuroinflammation imaging (NII). METHODS This is a cross-sectional, single-center, retrospective evaluation conducted on an observational study of 310 older research participants who were enrolled in the Knight Alzheimer's Disease Research Center cohort. Hindered water ratio (HR), an index of WM neuroinflammation, was quantified by a noninvasive diffusion MRI method, NII. The alterations of NII-HR were investigated at different AD stages, classified based on CSF concentrations of β-amyloid (Aβ) 42/Aβ40 for amyloid and phosphorylated tau181 (p-tau181) for tau. On the voxel and regional levels, the relationship between NII-HR and CSF markers of amyloid, tau, and neuroinflammation were examined, as well as cognition. RESULTS This cross-sectional study included 310 participants (mean age 67.1 [±9.1] years), with 52 percent being female. Subgroups included 120 individuals (38.7%) with CSF measures of soluble triggering receptor expressed on myeloid cells 2, 80 participants (25.8%) with CSF measures of chitinase-3-like protein 1, and 110 individuals (35.5%) with longitudinal cognitive measures. The study found that cognitively normal individuals with positive CSF Aβ42/Aβ40 and p-tau181 had higher HR than healthy controls and those with positive CSF Aβ42/Aβ40 but negative p-tau181. WM tracts with elevated NII-HR in individuals with positive CSF Aβ42/Aβ40 and p-tau181 were primarily located in the posterior brain regions while those with elevated NII-HR in individuals with positive CSF Aβ42/Aβ40 and p-tau181 connected the posterior and anterior brain regions. A significant negative correlation between NII-HR and CSF Aβ42/Aβ40 was found in individuals with positive CSF Aβ42/Aβ40. Baseline NII-HR correlated with baseline cognitive composite score and predicted longitudinal cognitive decline. DISCUSSION Those findings suggest that WM neuroinflammation undergoes alterations before the onset of AD clinical symptoms and that it interacts with amyloidosis. This highlights the potential value of noninvasive monitoring of WM neuroinflammation in AD progression and treatment.
Collapse
Affiliation(s)
- Qing Wang
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Suzanne E Schindler
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Gengsheng Chen
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Nicole S Mckay
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Austin McCullough
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Shaney Flores
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Jingxia Liu
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Zhexian Sun
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Sicheng Wang
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Wenshang Wang
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Jason Hassenstab
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Carlos Cruchaga
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Richard J Perrin
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Anne M Fagan
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - John C Morris
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Yong Wang
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Tammie L S Benzinger
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
31
|
Etebar F, Harkin DG, White AR, Dando SJ. Non-invasive in vivo imaging of brain and retinal microglia in neurodegenerative diseases. Front Cell Neurosci 2024; 18:1355557. [PMID: 38348116 PMCID: PMC10859418 DOI: 10.3389/fncel.2024.1355557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Microglia play crucial roles in immune responses and contribute to fundamental biological processes within the central nervous system (CNS). In neurodegenerative diseases, microglia undergo functional changes and can have both protective and pathogenic roles. Microglia in the retina, as an extension of the CNS, have also been shown to be affected in many neurological diseases. While our understanding of how microglia contribute to pathological conditions is incomplete, non-invasive in vivo imaging of brain and retinal microglia in living subjects could provide valuable insights into their role in the neurodegenerative diseases and open new avenues for diagnostic biomarkers. This mini-review provides an overview of the current brain and retinal imaging tools for studying microglia in vivo. We focus on microglia targets, the advantages and limitations of in vivo microglia imaging approaches, and applications for evaluating the pathogenesis of neurological conditions, such as Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Fazeleh Etebar
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Damien G. Harkin
- Centre for Vision and Eye Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Anthony R. White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Samantha J. Dando
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Vision and Eye Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
32
|
Shinozaki Y, Namekata K, Guo X, Harada T. Glial cells as a promising therapeutic target of glaucoma: beyond the IOP. FRONTIERS IN OPHTHALMOLOGY 2024; 3:1310226. [PMID: 38983026 PMCID: PMC11182302 DOI: 10.3389/fopht.2023.1310226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 07/11/2024]
Abstract
Glial cells, a type of non-neuronal cell found in the central nervous system (CNS), play a critical role in maintaining homeostasis and regulating CNS functions. Recent advancements in technology have paved the way for new therapeutic strategies in the fight against glaucoma. While intraocular pressure (IOP) is the most well-known modifiable risk factor, a significant number of glaucoma patients have normal IOP levels. Because glaucoma is a complex, multifactorial disease influenced by various factors that contribute to its onset and progression, it is imperative that we consider factors beyond IOP to effectively prevent or slow down the disease's advancement. In the realm of CNS neurodegenerative diseases, glial cells have emerged as key players due to their pivotal roles in initiating and hastening disease progression. The inhibition of dysregulated glial function holds the potential to protect neurons and restore brain function. Consequently, glial cells represent an enticing therapeutic candidate for glaucoma, even though the majority of glaucoma research has historically concentrated solely on retinal ganglion cells (RGCs). In addition to the neuroprotection of RGCs, the proper regulation of glial cell function can also facilitate structural and functional recovery in the retina. In this review, we offer an overview of recent advancements in understanding the non-cell-autonomous mechanisms underlying the pathogenesis of glaucoma. Furthermore, state-of-the-art technologies have opened up possibilities for regenerating the optic nerve, which was previously believed to be incapable of regeneration. We will also delve into the potential roles of glial cells in the regeneration of the optic nerve and the restoration of visual function.
Collapse
Affiliation(s)
- Youichi Shinozaki
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
33
|
Zhang M, Qian XH, Hu J, Zhang Y, Lin X, Hai W, Shi K, Jiang X, Li Y, Tang HD, Li B. Integrating TSPO PET imaging and transcriptomics to unveil the role of neuroinflammation and amyloid-β deposition in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2024; 51:455-467. [PMID: 37801139 PMCID: PMC10774172 DOI: 10.1007/s00259-023-06446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE Despite the revealed role of immunological dysfunctions in the development and progression of Alzheimer's disease (AD) through animal and postmortem investigations, direct evidence regarding the impact of genetic factors on microglia response and amyloid-β (Aβ) deposition in AD individuals is lacking. This study aims to elucidate this mechanism by integrating transcriptomics and TSPO, Aβ PET imaging in clinical AD cohort. METHODS We analyzed 85 patients with PET/MR imaging for microglial activation (TSPO, [18F]DPA-714) and Aβ ([18F]AV-45) within the prospective Alzheimer's Disease Immunization and Microbiota Initiative Study Cohort (ADIMIC). Immune-related differentially expressed genes (IREDGs), identified based on AlzData, were screened and verified using blood samples from ADIMIC. Correlation and mediation analyses were applied to investigate the relationships between immune-related genes expression, TSPO and Aβ PET imaging. RESULTS TSPO uptake increased significantly both in aMCI (P < 0.05) and AD participants (P < 0.01) and showed a positive correlation with Aβ deposition (r = 0.42, P < 0.001). Decreased expression of TGFBR3, FABP3, CXCR4 and CD200 was observed in AD group. CD200 expression was significantly negatively associated with TSPO PET uptake (r =-0.33, P = 0.013). Mediation analysis indicated that CD200 acted as a significant mediator between TSPO uptake and Aβ deposition (total effect B = 1.92, P = 0.004) and MMSE score (total effect B =-54.01, P = 0.003). CONCLUSION By integrating transcriptomics and TSPO PET imaging in the same clinical AD cohort, this study revealed CD200 played an important role in regulating neuroinflammation, Aβ deposition and cognitive dysfunction.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Hang Qian
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Center On Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yaoyu Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaozhu Lin
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kuangyu Shi
- Department of Nuclear Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Informatics, Technische Universität München, Munich, Germany
| | - Xufeng Jiang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Hui-Dong Tang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Medical Center On Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
34
|
Ottoy J, De Picker L, Kang MS. Microglial Positron Emission Tomography Imaging In Vivo : Positron Emission Tomography Radioligands: Utility in Research and Clinical Practice. ADVANCES IN NEUROBIOLOGY 2024; 37:579-589. [PMID: 39207714 DOI: 10.1007/978-3-031-55529-9_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia, the resident immune cells of the central nervous system (CNS) play a key role in regulating and maintaining homeostasis in the brain. However, the CNS is also vulnerable to infections and inflammatory processes. In response to CNS perturbations, microglia become reactive, notably with expression of the translocator protein (TSPO), primarily on their outer mitochondrial membrane. Despite TSPO being commonly used as a marker for microglia, it is also present in other cell types such as astrocytes. Positron emission tomography (PET) ligands that target the TSPO enable the noninvasive detection and quantification of glial reactivity. While some limitations were raised, TSPO PET remains an attractive biomarker of CNS infection and inflammation. This book chapter delves into the development and application of microglial PET imaging with a focus on the TSPO PET. First, we provide an overview of the evolution of TSPO PET radioligands from first-generation to second-generation ligands and their applications in studying neuroinflammation (or CNS inflammation). Subsequently, we discuss the limitations and challenges associated with TSPO PET. Then we go on to explore non-TSPO targets for microglial PET imaging. Finally, we conclude with future directions for research and clinical practice in this field.
Collapse
Affiliation(s)
- Julie Ottoy
- Dr. Sandra E. Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Livia De Picker
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
- University Psychiatric Hospital Campus Duffel, Duffel, Belgium
| | - Min Su Kang
- Dr. Sandra E. Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Sadlon A, Takousis P, Evangelou E, Prokopenko I, Alexopoulos P, Udeh-Momoh CM, Price G, Middleton L, Perneczky R. Association of Blood MicroRNA Expression and Polymorphisms with Cognitive and Biomarker Changes in Older Adults. J Prev Alzheimers Dis 2024; 11:230-240. [PMID: 38230736 PMCID: PMC10994991 DOI: 10.14283/jpad.2023.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/13/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Identifying individuals before the onset of overt symptoms is key in the prevention of Alzheimer's disease (AD). OBJECTIVES Investigate the use of miRNA as early blood-biomarker of cognitive decline in older adults. DESIGN Cross-sectional. SETTING Two observational cohorts (CHARIOT-PRO, Alzheimer's Disease Neuroimaging Initiative (ADNI)). PARTICIPANTS 830 individuals without overt clinical symptoms from CHARIOT-PRO and 812 individuals from ADNI. MEASUREMENTS qPCR analysis of a prioritised set of 38 miRNAs in the blood of individuals from CHARIOT-PRO, followed by a brain-specific functional enrichment analysis for the significant miRNAs. In ADNI, genetic association analysis for polymorphisms within the significant miRNAs' genes and CSF levels of phosphorylated-tau, total-tau, amyloid-β42, soluble-TREM2 and BACE1 activity using whole genome sequencing data. Post-hoc analysis using multi-omics datasets. RESULTS Six miRNAs (hsa-miR-128-3p, hsa-miR-144-5p, hsa-miR-146a-5p, hsa-miR-26a-5p, hsa-miR-29c-3p and hsa-miR-363-3p) were downregulated in the blood of individuals with low cognitive performance on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). The pathway enrichment analysis indicated involvement of apoptosis and inflammation, relevant in early AD stages. Polymorphisms within genes encoding for hsa-miR-29c-3p and hsa-miR-146a-5p were associated with CSF levels of amyloid-β42, soluble-TREM2 and BACE1 activity, and 21 variants were eQTL for hippocampal MIR29C expression. CONCLUSIONS six miRNAs may serve as potential blood biomarker of subclinical cognitive deficits in AD. Polymorphisms within these miRNAs suggest a possible interplay between the amyloid cascade and microglial activation at preclinical stages of AD.
Collapse
Affiliation(s)
- A Sadlon
- Prof. Dr. Robert Perneczky, Division of Mental Health of Older Adults, Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Nußbaumstr. 7, 80336 Munich, Germany, Tel.: +49 89 4400 55772, Fax: +49 89 4400-55448,
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nordengen K, Kirsebom BE, Richter G, Pålhaugen L, Gísladóttir B, Siafarikas N, Nakling A, Rongve A, Bråthen G, Grøntvedt GR, Gonzalez F, Waterloo K, Sharma K, Karikari T, Vromen EM, Tijms BM, Visser PJ, Selnes P, Kramberger MG, Winblad B, Blennow K, Fladby T. Longitudinal cerebrospinal fluid measurements show glial hypo- and hyperactivation in predementia Alzheimer's disease. J Neuroinflammation 2023; 20:298. [PMID: 38093257 PMCID: PMC10720118 DOI: 10.1186/s12974-023-02973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Brain innate immune activation is associated with Alzheimer's disease (AD), but degrees of activation may vary between disease stages. Thus, brain innate immune activation must be assessed in longitudinal clinical studies that include biomarker negative healthy controls and cases with established AD pathology. Here, we employ longitudinally sampled cerebrospinal fluid (CSF) core AD, immune activation and glial biomarkers to investigate early (predementia stage) innate immune activation levels and biomarker profiles. METHODS We included non-demented cases from a longitudinal observational cohort study, with CSF samples available at baseline (n = 535) and follow-up (n = 213), between 1 and 6 years from baseline (mean 2.8 years). We measured Aβ42/40 ratio, p-tau181, and total-tau to determine Ab (A+), tau-tangle pathology (T+), and neurodegeneration (N+), respectively. We classified individuals into these groups: A-/T-/N-, A+/T-/N-, A+/T+ or N+, or A-/T+ or N+. Using linear and mixed linear regression, we compared levels of CSF sTREM2, YKL-40, clusterin, fractalkine, MCP-1, IL-6, IL-1, IL-18, and IFN-γ both cross-sectionally and longitudinally between groups. A post hoc analysis was also performed to assess biomarker differences between cognitively healthy and impaired individuals in the A+/T+ or N+ group. RESULTS Cross-sectionally, CSF sTREM2, YKL-40, clusterin and fractalkine were higher only in groups with tau pathology, independent of amyloidosis (p < 0.001, A+/T+ or N+ and A-/T+ or N+, compared to A-/T-/N-). No significant group differences were observed for the cytokines CSF MCP-1, IL-6, IL-10, IL18 or IFN-γ. Longitudinally, CSF YKL-40, fractalkine and IFN-γ were all significantly lower in stable A+/T-/N- cases (all p < 0.05). CSF sTREM2, YKL-40, clusterin, fractalkine (p < 0.001) and MCP-1 (p < 0.05) were all higher in T or N+, with or without amyloidosis at baseline, but remained stable over time. High CSF sTREM2 was associated with preserved cognitive function within the A+/T+ or N+ group, relative to the cognitively impaired with the same A/T/N biomarker profile (p < 0.01). CONCLUSIONS Immune hypoactivation and reduced neuron-microglia communication are observed in isolated amyloidosis while activation and increased fractalkine accompanies tau pathology in predementia AD. Glial hypo- and hyperactivation through the predementia AD continuum suggests altered glial interaction with Ab and tau pathology, and may necessitate differential treatments, depending on the stage and patient-specific activation patterns.
Collapse
Affiliation(s)
- Kaja Nordengen
- Department of Neurology, Akershus University Hospital, P.B. 1000, 1478, Lørenskog, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway
- Department of Psychology, Faculty Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Grit Richter
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway
| | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, P.B. 1000, 1478, Lørenskog, Norway
| | - Berglind Gísladóttir
- Department of Neurology, Akershus University Hospital, P.B. 1000, 1478, Lørenskog, Norway
- Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital and University of Oslo, Oslo, Norway
| | - Nikias Siafarikas
- Department of Old Age Psychiatry, Akershus University Hospital, Lørenskog, Norway
| | - Arne Nakling
- Institute of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Arvid Rongve
- Department of Research and Innovation, Haugesund Hospital, Helse Fonna, Haugesund, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Geir Bråthen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
| | - Gøril Rolfseng Grøntvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
| | - Fernando Gonzalez
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Knut Waterloo
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway
- Department of Psychology, Faculty Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Kulbhushan Sharma
- Department of Neurology, Akershus University Hospital, P.B. 1000, 1478, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thomas Karikari
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburg, PA, USA
| | - Eleonora M Vromen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location Vumc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location Vumc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Pieter J Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location Vumc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Psychiatry, Maastricht University, Maastricht, the Netherlands
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, P.B. 1000, 1478, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Milicia G Kramberger
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, P.B. 1000, 1478, Lørenskog, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
37
|
Congdon EE, Ji C, Tetlow AM, Jiang Y, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease: current status and future directions. Nat Rev Neurol 2023; 19:715-736. [PMID: 37875627 PMCID: PMC10965012 DOI: 10.1038/s41582-023-00883-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia in older individuals. AD is characterized pathologically by amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain, with associated loss of synapses and neurons, which eventually results in dementia. Many of the early attempts to develop treatments for AD focused on Aβ, but a lack of efficacy of these treatments in terms of slowing disease progression led to a change of strategy towards targeting of tau pathology. Given that tau shows a stronger correlation with symptom severity than does Aβ, targeting of tau is more likely to be efficacious once cognitive decline begins. Anti-tau therapies initially focused on post-translational modifications, inhibition of tau aggregation and stabilization of microtubules. However, trials of many potential drugs were discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting agents in clinical trials are immunotherapies. In this Review, we provide an update on the results from the initial immunotherapy trials and an overview of new therapeutic candidates that are in clinical development, as well as considering future directions for tau-targeting therapies.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
38
|
Cousins O, Schubert JJ, Chandra A, Veronese M, Valkimadi P, Creese B, Khan Z, Arathimos R, Hampshire A, Rosenzweig I, Ballard C, Corbett A, Aasland D, Velayudhan L, O'Neill M, Collier D, Awais R, Sander K, Årstad E, Howes O, Turkheimer F, Hodges A. Microglial activation, tau and amyloid deposition in TREM2 p.R47H carriers and mild cognitive impairment patients: a multi-modal/multi-tracer PET/MRI imaging study with influenza vaccine immune challenge. J Neuroinflammation 2023; 20:272. [PMID: 37990275 PMCID: PMC10664604 DOI: 10.1186/s12974-023-02945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Microglia are increasingly understood to play an important role in the pathogenesis of Alzheimer's disease. The rs75932628 (p.R47H) TREM2 variant is a well-established risk factor for Alzheimer's disease. TREM2 is a microglial cell surface receptor. In this multi-modal/multi-tracer PET/MRI study we investigated the effect of TREM2 p.R47H carrier status on microglial activation, tau and amyloid deposition, brain structure and cognitive profile. METHODS We compared TREM2 p.R47H carriers (n = 8; median age = 62.3) and participants with mild cognitive impairment (n = 8; median age = 70.7). Participants underwent two [18F]DPA-714 PET/MRI scans to assess TSPO signal, indicative of microglial activation, before and after receiving the seasonal influenza vaccination, which was used as an immune stimulant. Participants also underwent [18F]florbetapir and [18F]AV1451 PET scans to assess amyloid and tau burden, respectively. Regional tau and TSPO signal were calculated for regions of interest linked to Braak stage. An additional comparison imaging healthy control group (n = 8; median age = 45.5) had a single [18F]DPA-714 PET/MRI. An expanded group of participants underwent neuropsychological testing, to determine if TREM2 status influenced clinical phenotype. RESULTS Compared to participants with mild cognitive impairment, TREM2 carriers had lower TSPO signal in Braak II (P = 0.04) and Braak III (P = 0.046) regions, despite having a similar burden of tau and amyloid. There were trends to suggest reduced microglial activation following influenza vaccine in TREM2 carriers. Tau deposition in the Braak VI region was higher in TREM2 carriers (P = 0.04). Furthermore, compared to healthy controls TREM2 carriers had smaller caudate (P = 0.02), total brain (P = 0.049) and white matter volumes (P = 0.02); and neuropsychological assessment revealed worse ADAS-Cog13 (P = 0.03) and Delayed Matching to Sample (P = 0.007) scores. CONCLUSIONS TREM2 p.R47H carriers had reduced levels of microglial activation in brain regions affected early in the Alzheimer's disease course and differences in brain structure and cognition. Changes in microglial response may underlie the increased Alzheimer's disease risk in TREM2 p.R47H carriers. Future therapeutic agents in Alzheimer's disease should aim to enhance protective microglial actions.
Collapse
Affiliation(s)
- Oliver Cousins
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Julia J Schubert
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Avinash Chandra
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Mattia Veronese
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
- Department of Information Engineering, University of Padua, 35131, Padua, Italy
| | - Polena Valkimadi
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Byron Creese
- College of Medicine and Health, University of Exeter, Exeter, EX1 2HZ, UK
- Division of Psychology, Department of Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Zunera Khan
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Ryan Arathimos
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Adam Hampshire
- Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Ivana Rosenzweig
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, EX1 2HZ, UK
| | - Anne Corbett
- College of Medicine and Health, University of Exeter, Exeter, EX1 2HZ, UK
| | - Dag Aasland
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Latha Velayudhan
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | | | | | - Ramla Awais
- Centre for Radiopharmaceutical Chemistry, University College London, London, WC1E 6BS, UK
| | - Kerstin Sander
- Centre for Radiopharmaceutical Chemistry, University College London, London, WC1E 6BS, UK
| | - Erik Årstad
- Centre for Radiopharmaceutical Chemistry, University College London, London, WC1E 6BS, UK
| | - Oliver Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Federico Turkheimer
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Angela Hodges
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK.
| |
Collapse
|
39
|
Gouilly D, Rafiq M, Nogueira L, Salabert AS, Payoux P, Péran P, Pariente J. Beyond the amyloid cascade: An update of Alzheimer's disease pathophysiology. Rev Neurol (Paris) 2023; 179:812-830. [PMID: 36906457 DOI: 10.1016/j.neurol.2022.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/02/2022] [Accepted: 12/02/2022] [Indexed: 03/13/2023]
Abstract
Alzheimer's disease (AD) is a multi-etiology disease. The biological system of AD is associated with multidomain genetic, molecular, cellular, and network brain dysfunctions, interacting with central and peripheral immunity. These dysfunctions have been primarily conceptualized according to the assumption that amyloid deposition in the brain, whether from a stochastic or a genetic accident, is the upstream pathological change. However, the arborescence of AD pathological changes suggests that a single amyloid pathway might be too restrictive or inconsistent with a cascading effect. In this review, we discuss the recent human studies of late-onset AD pathophysiology in an attempt to establish a general updated view focusing on the early stages. Several factors highlight heterogenous multi-cellular pathological changes in AD, which seem to work in a self-amplifying manner with amyloid and tau pathologies. Neuroinflammation has an increasing importance as a major pathological driver, and perhaps as a convergent biological basis of aging, genetic, lifestyle and environmental risk factors.
Collapse
Affiliation(s)
- D Gouilly
- Toulouse Neuroimaging Center, Toulouse, France.
| | - M Rafiq
- Toulouse Neuroimaging Center, Toulouse, France; Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France
| | - L Nogueira
- Department of Cell Biology and Cytology, CHU Toulouse Purpan, France
| | - A-S Salabert
- Toulouse Neuroimaging Center, Toulouse, France; Department of Nuclear Medicine, CHU Toulouse Purpan, France
| | - P Payoux
- Toulouse Neuroimaging Center, Toulouse, France; Department of Nuclear Medicine, CHU Toulouse Purpan, France; Center of Clinical Investigation, CHU Toulouse Purpan (CIC1436), France
| | - P Péran
- Toulouse Neuroimaging Center, Toulouse, France
| | - J Pariente
- Toulouse Neuroimaging Center, Toulouse, France; Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France; Center of Clinical Investigation, CHU Toulouse Purpan (CIC1436), France
| |
Collapse
|
40
|
Lopes JR, Zhang X, Mayrink J, Tatematsu BK, Guo L, LeServe DS, Abou-El-Hassan H, Rong F, Dalton MJ, Oliveira MG, Lanser TB, Liu L, Butovsky O, Rezende RM, Weiner HL. Nasal administration of anti-CD3 monoclonal antibody ameliorates disease in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 2023; 120:e2309221120. [PMID: 37669383 PMCID: PMC10500187 DOI: 10.1073/pnas.2309221120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Emerging evidence suggests that dysregulation of neuroinflammation, particularly that orchestrated by microglia, plays a significant role in the pathogenesis of Alzheimer's disease (AD). Danger signals including dead neurons, dystrophic axons, phosphorylated tau, and amyloid plaques alter the functional phenotype of microglia from a homeostatic (M0) to a neurodegenerative or disease-associated phenotype, which in turn drives neuroinflammation and promotes disease. Thus, therapies that target microglia activation constitute a unique approach for treating AD. Here, we report that nasally administered anti-CD3 monoclonal antibody in the 3xTg AD mouse model reduced microglial activation and improved cognition independent of amyloid beta deposition. In addition, gene expression analysis demonstrated decreased oxidative stress, increased axogenesis and synaptic organization, and metabolic changes in the hippocampus and cortex of nasal anti-CD3 treated animals. The beneficial effect of nasal anti-CD3 was associated with the accumulation of T cells in the brain where they were in close contact with microglial cells. Taken together, our findings identify nasal anti-CD3 as a unique form of immunotherapy to treat Alzheimer's disease independent of amyloid beta targeting.
Collapse
Affiliation(s)
- Juliana R. Lopes
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Xiaoming Zhang
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Julia Mayrink
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Bruna K. Tatematsu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Lydia Guo
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Danielle S. LeServe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Hadi Abou-El-Hassan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Felipe Rong
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Maria J. Dalton
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Marilia G. Oliveira
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Toby B. Lanser
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Lei Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Rafael M. Rezende
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Howard L. Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| |
Collapse
|
41
|
Darwish SF, Elbadry AMM, Elbokhomy AS, Salama GA, Salama RM. The dual face of microglia (M1/M2) as a potential target in the protective effect of nutraceuticals against neurodegenerative diseases. FRONTIERS IN AGING 2023; 4:1231706. [PMID: 37744008 PMCID: PMC10513083 DOI: 10.3389/fragi.2023.1231706] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
The pathophysiology of different neurodegenerative illnesses is significantly influenced by the polarization regulation of microglia and macrophages. Traditional classifications of macrophage phenotypes include the pro-inflammatory M1 and the anti-inflammatory M2 phenotypes. Numerous studies demonstrated dynamic non-coding RNA modifications, which are catalyzed by microglia-induced neuroinflammation. Different nutraceuticals focus on the polarization of M1/M2 phenotypes of microglia and macrophages, offering a potent defense against neurodegeneration. Caeminaxin A, curcumin, aromatic-turmerone, myricetin, aurantiamide, 3,6'-disinapoylsucrose, and resveratrol reduced M1 microglial inflammatory markers while increased M2 indicators in Alzheimer's disease. Amyloid beta-induced microglial M1 activation was suppressed by andrographolide, sulforaphane, triptolide, xanthoceraside, piperlongumine, and novel plant extracts which also prevented microglia-mediated necroptosis and apoptosis. Asarone, galangin, baicalein, and a-mangostin reduced oxidative stress and pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha in M1-activated microglia in Parkinson's disease. Additionally, myrcene, icariin, and tenuigenin prevented the nod-like receptor family pyrin domain-containing 3 inflammasome and microglial neurotoxicity, while a-cyperone, citronellol, nobiletin, and taurine prevented NADPH oxidase 2 and nuclear factor kappa B activation. Furthermore, other nutraceuticals like plantamajoside, swertiamarin, urolithin A, kurarinone, Daphne genkwa flower, and Boswellia serrata extracts showed promising neuroprotection in treating Parkinson's disease. In Huntington's disease, elderberry, curcumin, iresine celosia, Schisandra chinensis, gintonin, and pomiferin showed promising results against microglial activation and improved patient symptoms. Meanwhile, linolenic acid, resveratrol, Huperzia serrata, icariin, and baicalein protected against activated macrophages and microglia in experimental autoimmune encephalomyelitis and multiple sclerosis. Additionally, emodin, esters of gallic and rosmarinic acids, Agathisflavone, and sinomenine offered promising multiple sclerosis treatments. This review highlights the therapeutic potential of using nutraceuticals to treat neurodegenerative diseases involving microglial-related pathways.
Collapse
Affiliation(s)
- Samar F. Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Abdullah M. M. Elbadry
- Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Egypt
| | | | - Ghidaa A. Salama
- Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Rania M. Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
42
|
Shaikh A, Li YQ, Lu J. Perspectives on pain in Down syndrome. Med Res Rev 2023; 43:1411-1437. [PMID: 36924439 DOI: 10.1002/med.21954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/08/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Down syndrome (DS) or trisomy 21 is a genetic condition often accompanied by chronic pain caused by congenital abnormalities and/or conditions, such as osteoarthritis, recurrent infections, and leukemia. Although DS patients are more susceptible to chronic pain as compared to the general population, the pain experience in these individuals may vary, attributed to the heterogenous structural and functional differences in the central nervous system, which might result in abnormal pain sensory information transduction, transmission, modulation, and perception. We tried to elaborate on some key questions and possible explanations in this review. Further clarification of the mechanisms underlying such abnormal conditions induced by the structural and functional differences is needed to help pain management in DS patients.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Yun-Qing Li
- Department of Anatomy, Histology, and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
43
|
Ganesh T. Targeting EP2 Receptor for Drug Discovery: Strengths, Weaknesses, Opportunities, and Threats (SWOT) Analysis. J Med Chem 2023; 66:9313-9324. [PMID: 37458373 PMCID: PMC10388357 DOI: 10.1021/acs.jmedchem.3c00655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Indexed: 07/28/2023]
Abstract
Cyclooxygenase-1 and -2 (COX1 and COX2) derived endogenous ligand prostaglandin-E2 (PGE2) triggers several physiological and pathological conditions. It mediates signaling through four G-protein coupled receptors, EP1, EP2, EP3, and EP4. Among these, EP2 is expressed throughout the body including the brain and uterus. The functional role of EP2 has been extensively studied using EP2 gene knockout mice, cellular models, and selective small molecule agonists and antagonists for this receptor. The efficacy data from in vitro and in vivo animal models indicate that EP2 receptor is a major proinflammatory mediator with deleterious functions in a variety of diseases suggesting a path forward for EP2 inhibitors as the next generation of selective anti-inflammatory and antiproliferative agents. Interestingly in certain diseases, EP2 action is beneficial; therefore, EP2 agonists seem to be clinically useful. Here, we highlight the strengths, weaknesses, opportunities, and potential threats (SWOT analysis) for targeting EP2 receptor for therapeutic development for a variety of unmet clinical needs.
Collapse
Affiliation(s)
- Thota Ganesh
- Department of Pharmacology and Chemical
Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
44
|
Miao J, Ma H, Yang Y, Liao Y, Lin C, Zheng J, Yu M, Lan J. Microglia in Alzheimer's disease: pathogenesis, mechanisms, and therapeutic potentials. Front Aging Neurosci 2023; 15:1201982. [PMID: 37396657 PMCID: PMC10309009 DOI: 10.3389/fnagi.2023.1201982] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by protein aggregation in the brain. Recent studies have revealed the critical role of microglia in AD pathogenesis. This review provides a comprehensive summary of the current understanding of microglial involvement in AD, focusing on genetic determinants, phenotypic state, phagocytic capacity, neuroinflammatory response, and impact on synaptic plasticity and neuronal regulation. Furthermore, recent developments in drug discovery targeting microglia in AD are reviewed, highlighting potential avenues for therapeutic intervention. This review emphasizes the essential role of microglia in AD and provides insights into potential treatments.
Collapse
Affiliation(s)
- Jifei Miao
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Haixia Ma
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yang Yang
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuanpin Liao
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Cui Lin
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Juanxia Zheng
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Muli Yu
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jiao Lan
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
45
|
Snellman A, Ekblad LL, Tuisku J, Koivumäki M, Ashton NJ, Lantero-Rodriguez J, Karikari TK, Helin S, Bucci M, Löyttyniemi E, Parkkola R, Karrasch M, Schöll M, Zetterberg H, Blennow K, Rinne JO. APOE ε4 gene dose effect on imaging and blood biomarkers of neuroinflammation and beta-amyloid in cognitively unimpaired elderly. Alzheimers Res Ther 2023; 15:71. [PMID: 37016464 PMCID: PMC10071691 DOI: 10.1186/s13195-023-01209-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/13/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Neuroinflammation, characterized by increased reactivity of microglia and astrocytes in the brain, is known to be present at various stages of the Alzheimer's disease (AD) continuum. However, its presence and relationship with amyloid pathology in cognitively normal at-risk individuals is less clear. Here, we used positron emission tomography (PET) and blood biomarker measurements to examine differences in neuroinflammation and beta-amyloid (Aβ) and their association in cognitively unimpaired homozygotes, heterozygotes, or non-carriers of the APOE ε4 allele, the strongest genetic risk for sporadic AD. METHODS Sixty 60-75-year-old APOE ε4 homozygotes (n = 19), heterozygotes (n = 21), and non-carriers (n = 20) were recruited in collaboration with the local Auria biobank. The participants underwent 11C-PK11195 PET (targeting 18-kDa translocator protein, TSPO), 11C-PiB PET (targeting Aβ), brain MRI, and neuropsychological testing including a preclinical cognitive composite (APCC). 11C-PK11195 distribution volume ratios and 11C-PiB standardized uptake value ratios (SUVRs) were calculated for regions typical for early Aβ accumulation in AD. Blood samples were drawn for measuring plasma glial fibrillary acidic protein (GFAP) and plasma Aβ1-42/1.40. RESULTS In our cognitively unimpaired sample, cortical 11C-PiB-binding increased according to APOE ε4 gene dose (median composite SUVR 1.47 (range 1.38-1.66) in non-carriers, 1.55 (1.43-2.02) in heterozygotes, and 2.13 (1.61-2.83) in homozygotes, P = 0.002). In contrast, cortical composite 11C-PK11195-binding did not differ between the APOE ε4 gene doses (P = 0.27) or between Aβ-positive and Aβ-negative individuals (P = 0.81) and associated with higher Aβ burden only in APOE ε4 homozygotes (Rho = 0.47, P = 0.043). Plasma GFAP concentration correlated with cortical 11C-PiB (Rho = 0.35, P = 0.040), but not 11C-PK11195-binding (Rho = 0.13, P = 0.47) in Aβ-positive individuals. In the total cognitively unimpaired population, both higher composite 11C-PK11195-binding and plasma GFAP were associated with lower hippocampal volume, whereas elevated 11C-PiB-binding was associated with lower APCC scores. CONCLUSIONS Only Aβ burden measured by PET, but not markers of neuroinflammation, differed among cognitively unimpaired elderly with different APOE ε4 gene dose. However, APOE ε4 gene dose seemed to modulate the association between neuroinflammation and Aβ.
Collapse
Affiliation(s)
- Anniina Snellman
- Turku PET Centre, University of Turku, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
| | - Laura L Ekblad
- Turku PET Centre, University of Turku, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre, University of Turku, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Mikko Koivumäki
- Turku PET Centre, University of Turku, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Semi Helin
- Turku PET Centre, University of Turku, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Marco Bucci
- Turku PET Centre, University of Turku, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | - Riitta Parkkola
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Mira Karrasch
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Juha O Rinne
- Turku PET Centre, University of Turku, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
46
|
Karahan H, Smith DC, Kim B, McCord B, Mantor J, John SK, Al-Amin MM, Dabin LC, Kim J. The effect of Abi3 locus deletion on the progression of Alzheimer's disease-related pathologies. Front Immunol 2023; 14:1102530. [PMID: 36895556 PMCID: PMC9988916 DOI: 10.3389/fimmu.2023.1102530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Human genetics studies of Alzheimer's disease (AD) have identified the ABI3 gene as a candidate risk gene for AD. Because ABI3 is highly expressed in microglia, the brain's immune cells, it was suggested that ABI3 might impact AD pathogenesis by regulating the immune response. Recent studies suggest that microglia have multifaceted roles in AD. Their immune response and phagocytosis functions can have beneficial effects in the early stages of AD by clearing up amyloid-beta (Aβ) plaques. However, they can be harmful at later stages due to their continuous inflammatory response. Therefore, it is important to understand the role of genes in microglia functions and their impact on AD pathologies along the progression of the disease. To determine the role of ABI3 at the early stage of amyloid pathology, we crossed Abi3 knock-out mice with the 5XFAD Aβ-amyloidosis mouse model and aged them until 4.5-month-old. Here, we demonstrate that deletion of the Abi3 locus increased Aβ plaque deposition, while there was no significant change in microgliosis and astrogliosis. Transcriptomic analysis indicates alterations in the expression of immune genes, such as Tyrobp, Fcer1g, and C1qa. In addition to the transcriptomic changes, we found elevated cytokine protein levels in Abi3 knock-out mouse brains, strengthening the role of ABI3 in neuroinflammation. These findings suggest that loss of ABI3 function may exacerbate AD progression by increasing Aβ accumulation and inflammation starting from earlier stages of the pathology.
Collapse
Affiliation(s)
- Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Daniel C. Smith
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Byungwook Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brianne McCord
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jordan Mantor
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sutha K. John
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Md Mamun Al-Amin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Luke C. Dabin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
47
|
Vogrinc D, Gregorič Kramberger M, Emeršič A, Čučnik S, Goričar K, Dolžan V. Genetic Polymorphisms in Oxidative Stress and Inflammatory Pathways as Potential Biomarkers in Alzheimer's Disease and Dementia. Antioxidants (Basel) 2023; 12:antiox12020316. [PMID: 36829875 PMCID: PMC9952323 DOI: 10.3390/antiox12020316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Oxidative stress and neuroinflammation are important processes involved in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Numerous risk factors, including genetic background, can affect the complex interplay between those mechanisms in the aging brain and can also affect typical AD hallmarks: amyloid plaques and neurofibrillary tangles. Our aim was to evaluate the association of polymorphisms in oxidative stress- and inflammation-related genes with cerebrospinal fluid (CSF) biomarker levels and cognitive test results. The study included 54 AD patients, 14 MCI patients with pathological CSF biomarker levels, 20 MCI patients with normal CSF biomarker levels and 62 controls. Carriers of two polymorphic IL1B rs16944 alleles had higher CSF Aβ1-42 levels (p = 0.025), while carriers of at least one polymorphic NFE2L2 rs35652124 allele had lower CSF Aβ1-42 levels (p = 0.040). Association with IL1B rs16944 remained significant in the AD group (p = 0.029). Additionally, MIR146A rs2910164 was associated with Aβ42/40 ratio (p = 0.043) in AD. Significant associations with cognitive test scores were observed for CAT rs1001179 (p = 0.022), GSTP1 rs1138272 (p = 0.005), KEAP1 rs1048290 and rs9676881 (both p = 0.019), as well as NFE2L2 rs35652124 (p = 0.030). In the AD group, IL1B rs1071676 (p = 0.004), KEAP1 rs1048290 and rs9676881 (both p = 0.035) remained associated with cognitive scores. Polymorphisms in antioxidative and inflammation genes might be associated with CSF biomarkers and cognitive test scores and could serve as additional biomarkers contributing to early diagnosis of dementia.
Collapse
Affiliation(s)
- David Vogrinc
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Milica Gregorič Kramberger
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andreja Emeršič
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Saša Čučnik
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
48
|
Abstract
Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder with multifaceted neuropathological features, including β-amyloid plaques, neurofibrillary tangles, and neuroinflammation. Over the past decade, emerging evidence has implicated both beneficial and pathological roles for innate immune genes and immune cells, including peripheral immune cells such as T cells, which can infiltrate the brain and either ameliorate or exacerbate AD neuropathogenesis. These findings support a neuroimmune axis of AD, in which the interplay of adaptive and innate immune systems inside and outside the brain critically impacts the etiology and pathogenesis of AD. In this review, we discuss the complexities of AD neuropathology at the levels of genetics and cellular physiology, highlighting immune signaling pathways and genes associated with AD risk and interactions among both innate and adaptive immune cells in the AD brain. We emphasize the role of peripheral immune cells in AD and the mechanisms by which immune cells, such as T cells and monocytes, influence AD neuropathology, including microglial clearance of amyloid-β peptide, the key component of β-amyloid plaque cores, pro-inflammatory and cytotoxic activity of microglia, astrogliosis, and their interactions with the brain vasculature. Finally, we review the challenges and outlook for establishing immune-based therapies for treating and preventing AD.
Collapse
|
49
|
Kim J, Kim YK. Molecular Imaging of Neuroinflammation in Alzheimer's Disease and Mild Cognitive Impairment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:301-326. [PMID: 36949316 DOI: 10.1007/978-981-19-7376-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurocognitive disorder. Due to the ineffectiveness of treatments targeting the amyloid cascade, molecular biomarkers for neuroinflammation are attracting attention with increasing knowledge about the role of neuroinflammation in the pathogenesis of AD. This chapter will explore the results of studies using molecular imaging for diagnosing AD and mild cognitive impairment (MCI). Because it is critical to interpreting the data to understand which substances are targeted in molecular imaging, this chapter will discuss the two most significant targets, microglia and astrocytes, as well as the best-known radioligands for each. Then, neuroimaging results with PET neuroinflammation imaging will be reviewed for AD and MCI. Although a growing body of evidence has suggested that these molecular imaging biomarkers for neuroinflammation may have a role in the diagnosis of AD and MCI, the findings are inconsistent or cross-sectional, which indicates that it is difficult to apply the contents in practice due to the need for additional study. In particular, because the results of multiple interventions targeting neuroinflammation were inconclusive, molecular imaging markers for neuroinflammation can be used in combination with conventional markers to select appropriate patients for early intervention for neuroinflammation rather than as a single marker.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Psychiatry, Korea University College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
50
|
Liu Y, Si ZZ, Zou CJ, Mei X, Li XF, Luo H, Shen Y, Hu J, Li XX, Wu L. Targeting neuroinflammation in Alzheimer’s disease: from mechanisms to clinical applications. Neural Regen Res 2023; 18:708-715. [DOI: 10.4103/1673-5374.353484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|