1
|
Libedinsky I, Helwegen K, Boonstra J, Guerrero Simón L, Gruber M, Repple J, Kircher T, Dannlowski U, van den Heuvel MP. Polyconnectomic scoring of functional connectivity patterns across eight neuropsychiatric and three neurodegenerative disorders. Biol Psychiatry 2024:S0006-3223(24)01665-2. [PMID: 39424166 DOI: 10.1016/j.biopsych.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Neuropsychiatric and neurodegenerative disorders involve diverse changes in brain functional connectivity. As an alternative to approaches searching for specific mosaic patterns of affected connections and networks, we used polyconnectomic scoring to quantify disorder-related whole-brain connectivity signatures into interpretable, personalized scores. METHODS The polyconnectomic score (PCS) measures the extent to which an individual's functional connectivity (FC) mirrors the whole-brain circuitry characteristics of a trait. We computed PCS for eight neuropsychiatric conditions (attention-deficit/hyperactivity disorder, anxiety-related disorders, autism spectrum disorder, obsessive-compulsive disorder, bipolar disorder, major depressive disorder, schizoaffective disorder, and schizophrenia) and three neurodegenerative conditions (Alzheimer's disease, frontotemporal dementia, and Parkinson's disease) across 22 datasets with resting-state functional MRI of 10,667 individuals (5,325 patients, 5,342 controls). We further examined PCS in 26,673 individuals from the population-based UK Biobank cohort. RESULTS PCS was consistently higher in out-of-sample patients across six of the eight neuropsychiatric and across all three investigated neurodegenerative disorders ([min, max]: AUC = [0.55, 0.73], pFDR = [1.8 x 10-16, 4.5 x 10-2]). Individuals with elevated PCS levels for neuropsychiatric conditions exhibited higher neuroticism (pFDR < 9.7 x 10-5), lower cognitive performance (pFDR < 5.3 x 10-5), and lower general wellbeing (pFDR < 9.7 x 10-4). CONCLUSIONS Our findings reveal generalizable whole-brain connectivity alterations in brain disorders. PCS effectively aggregates disorder-related signatures across the entire brain into an interpretable, subject-specific metric. A toolbox is provided for PCS computation.
Collapse
Affiliation(s)
- Ilan Libedinsky
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Koen Helwegen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jackson Boonstra
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Laura Guerrero Simón
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Child and Adolescent Psychiatry and Psychology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Phan TX, Baratono S, Drew W, Tetreault AM, Fox MD, Darby RR. Increased Cortical Thickness in Alzheimer's Disease. Ann Neurol 2024; 95:929-940. [PMID: 38400760 PMCID: PMC11060923 DOI: 10.1002/ana.26894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVE Patients with Alzheimer's disease (AD) have diffuse brain atrophy, but some regions, such as the anterior cingulate cortex (ACC), are spared and may even show increase in size compared to controls. The extent, clinical significance, and mechanisms associated with increased cortical thickness in AD remain unknown. Recent work suggested neural facilitation of regions anticorrelated to atrophied regions in frontotemporal dementia. Here, we aim to determine whether increased thickness occurs in sporadic AD, whether it relates to clinical symptoms, and whether it occur in brain regions functionally connected to-but anticorrelated with-locations of atrophy. METHODS Cross-sectional clinical, neuropsychological, and neuroimaging data from the Alzheimer's Disease Neuroimaging Initiative were analyzed to investigate cortical thickness in AD subjects versus controls. Atrophy network mapping was used to identify brain regions functionally connected to locations of increased thickness and atrophy. RESULTS AD patients showed increased thickness in the ACC in a region-of-interest analysis and the visual cortex in an exploratory analysis. Increased thickness in the left ACC was associated with preserved cognitive function, while increased thickness in the left visual cortex was associated with hallucinations. Finally, we found that locations of increased thickness were functionally connected to, but anticorrelated with, locations of brain atrophy (r = -0.81, p < 0.05). INTERPRETATION Our results suggest that increased cortical thickness in Alzheimer's disease is relevant to AD symptoms and preferentially occur in brain regions functionally connected to, but anticorrelated with, areas of brain atrophy. Implications for models of compensatory neuroplasticity in response to neurodegeneration are discussed. ANN NEUROL 2024;95:929-940.
Collapse
Affiliation(s)
- Tony X. Phan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Sheena Baratono
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - William Drew
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Aaron M. Tetreault
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Michael D. Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - R. Ryan Darby
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
3
|
Darby RR, Considine C, Weinstock R, Darby WC. Forensic neurology: a distinct subspecialty at the intersection of neurology, neuroscience and law. Nat Rev Neurol 2024; 20:183-193. [PMID: 38228905 DOI: 10.1038/s41582-023-00920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/18/2024]
Abstract
Neurological evidence is increasingly used in criminal cases to argue that a defendant is less responsible for their behaviour, is not competent to stand trial or should receive a reduced punishment for the crime. Unfortunately, neurologists are rarely involved in such cases despite having the expertise to help to inform these decisions in court. In this Perspective, we advocate for the development of 'forensic neurology', a subspecialty of neurology focused on using neurological clinical and scientific expertise to address legal questions for the criminal justice system. We review literature suggesting that the incidence of criminal behaviour is higher in people with certain neurological disorders than the general public and that undiagnosed neurological abnormalities are common in people who commit crimes. We discuss the need for forensic neurologists in criminal cases to provide an opinion on what neurological diagnoses are present, the resulting symptoms and ultimately whether the symptoms affect legal determinations such as criminal responsibility or competency.
Collapse
Affiliation(s)
- R Ryan Darby
- Department of Neurology, Division Behavioral Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Ciaran Considine
- Department of Neurology, Division Behavioral Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert Weinstock
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - William C Darby
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
4
|
Darby RR. Network localization of antisocial behavior in neurological patients: Evidence and implications. HANDBOOK OF CLINICAL NEUROLOGY 2023; 197:45-54. [PMID: 37633717 DOI: 10.1016/b978-0-12-821375-9.00009-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
Antisocial behavior may develop in otherwise normal persons as a result of neurological diseases, including patients with focal brain lesions, frontotemporal dementia, and Parkinson Disease patients taking dopamine agonist medications. Evidence from these neurological patients demonstrates that antisocial behaviors relate to dysfunction in several different brain regions that form a specific brain network, rather than any single location alone. This network associated with acquired antisocial behavior is involved in social decision-making (measured using moral decision-making tasks) and value-based decision-making (measured using neuroeconomic and reward-based tasks). Collectively, this work supports the hypothesis that antisocial behavior across different neurological diseases results from dysfunction within a common network of brain regions associated with social valuation and decision-making, providing insight into the neural mechanisms leading to acquired antisocial behavior. These findings have important implications, but also important limitations, for understanding criminal behavior in patients with psychopathy, for rehabilitation in criminals, for ethical discussions regarding moral and legal responsibility, and for forensic neurological evaluations in persons accused of crimes.
Collapse
Affiliation(s)
- R Ryan Darby
- Department of Neurology, Division of Behavioral Neurology, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
5
|
Tetreault AM, Phan T, Petersen KJ, Claassen DO, Neth BJ, Graff-Radford J, Albrecht F, Fliessbach K, Schneider A, Synofzik M, Diehl-Schmid J, Otto M, Schroeter ML, Darby RR. Network Localization of Alien Limb in Patients with Corticobasal Syndrome. Ann Neurol 2020; 88:1118-1131. [PMID: 32935385 DOI: 10.1002/ana.25901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Perirolandic atrophy occurs in corticobasal syndrome (CBS) but is not specific versus progressive supranuclear palsy (PSP). There is heterogeneity in the locations of atrophy outside the perirolandic cortex and it remains unknown why atrophy in different locations would cause the same CBS-specific symptoms. In prior work, we used a wiring diagram of the brain called the human connectome to localize lesion-induced disorders to symptom-specific brain networks. Here, we use a similar technique termed "atrophy network mapping" to localize single-subject atrophy maps to symptom-specific brain networks. METHODS Single-subject atrophy maps were generated by comparing cortical thickness in patients with CBS versus controls. Next, we performed seed-based functional connectivity using a large normative connectome to determine brain regions functionally connected to each patient's atrophied locations. RESULTS Patients with CBS had perirolandic atrophy versus controls at the group level, but locations of atrophy in CBS were heterogeneous outside of the perirolandic cortex at the single-subject level (mean spatial correlation = 0.04). In contrast, atrophy occurred in locations functionally connected to the perirolandic cortex in all patients with CBS (spatial correlation = 0.66). Compared with PSP, patients with CBS had atrophy connected to a network of higher-order sensorimotor regions beyond perirolandic cortex, matching a CBS atrophy network from a recent meta-analysis. Finally, atrophy network mapping identified a symptom-specific network for alien limb, matching a lesion-induced alien limb network and a network associated with agency in healthy subjects. INTERPRETATION We identified a syndrome-specific network for CBS and symptom-specific network for alien limb using single-subject atrophy maps and the human connectome. ANN NEUROL 2020;88:1118-1131.
Collapse
Affiliation(s)
- Aaron M Tetreault
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tony Phan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kalen J Petersen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Byran J Neth
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Franziska Albrecht
- Max Planck Institute for Human Cognitive and Brain Sciences & Clinic of Cognitive Neurology, University of Leipzig, Leipzig, Germany.,FTLD Consortium Germany, Ulm, Germany
| | - Klaus Fliessbach
- FTLD Consortium Germany, Ulm, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Anja Schneider
- FTLD Consortium Germany, Ulm, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany.,University Medical Center Göttingen, Germany & German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Matthis Synofzik
- FTLD Consortium Germany, Ulm, Germany.,Department of Neurodegenerative Diseases, Centre for Neurology & Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Janine Diehl-Schmid
- FTLD Consortium Germany, Ulm, Germany.,Department of Psychiatry and Psychotherapy, Technical University of Munich, Munich, Germany
| | - Markus Otto
- FTLD Consortium Germany, Ulm, Germany.,Department of Neurology, University Clinic Ulm, Ulm, Germany
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences & Clinic of Cognitive Neurology, University of Leipzig, Leipzig, Germany.,FTLD Consortium Germany, Ulm, Germany
| | - Richard Ryan Darby
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
6
|
Cotovio G, Talmasov D, Barahona-Corrêa JB, Hsu J, Senova S, Ribeiro R, Soussand L, Velosa A, Silva VCE, Rost N, Wu O, Cohen AL, Oliveira-Maia AJ, Fox MD. Mapping mania symptoms based on focal brain damage. J Clin Invest 2020; 130:5209-5222. [PMID: 32831292 PMCID: PMC7524493 DOI: 10.1172/jci136096] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUNDAlthough mania is characteristic of bipolar disorder, it can also occur following focal brain damage. Such cases may provide unique insight into brain regions responsible for mania symptoms and identify therapeutic targets.METHODSLesion locations associated with mania were identified using a systematic literature search (n = 41) and mapped onto a common brain atlas. The network of brain regions functionally connected to each lesion location was computed using normative human connectome data (resting-state functional MRI, n = 1000) and contrasted with those obtained from lesion locations not associated with mania (n = 79). Reproducibility was assessed using independent cohorts of mania lesions derived from clinical chart review (n = 15) and of control lesions (n = 490). Results were compared with brain stimulation sites previously reported to induce or relieve mania symptoms.RESULTSLesion locations associated with mania were heterogeneous and no single brain region was lesioned in all, or even most, cases. However, these lesion locations showed a unique pattern of functional connectivity to the right orbitofrontal cortex, right inferior temporal gyrus, and right frontal pole. This connectivity profile was reproducible across independent lesion cohorts and aligned with the effects of therapeutic brain stimulation on mania symptoms.CONCLUSIONBrain lesions associated with mania are characterized by a specific pattern of brain connectivity that lends insight into localization of mania symptoms and potential therapeutic targets.FUNDINGFundação para a Ciência e Tecnologia (FCT), Harvard Medical School DuPont-Warren Fellowship, Portuguese national funds from FCT and Fundo Europeu de Desenvolvimento Regional, Child Neurology Foundation Shields Research, Sidney R. Baer, Jr. Foundation, Nancy Lurie Marks Foundation, Mather's Foundation, and the NIH.
Collapse
Affiliation(s)
- Gonçalo Cotovio
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Daniel Talmasov
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, New York University School of Medicine, New York, New York, USA
| | - J. Bernardo Barahona-Corrêa
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joey Hsu
- Berenson-Allen Center for Non-Invasive Brain Stimulation and
- Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Suhan Senova
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Neurosurgery Department and
- PePsy Department, Groupe Henri-Mondor Albert-Chenevier, Assistance Publique-Hôpitaux de Paris (APHP), Créteil, France
- Equipe 14, U955 INSERM, Institut Mondor de Recherche Biomedicale and
- Faculté de Médecine, Université Paris Est, Créteil, France
| | - Ricardo Ribeiro
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Louis Soussand
- Berenson-Allen Center for Non-Invasive Brain Stimulation and
- Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Velosa
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Vera Cruz e Silva
- Department of Neuroradiology, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Natalia Rost
- J. Philip Kistler Stroke Research Center, Department of Neurology and
| | - Ona Wu
- Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital
| | - Alexander L. Cohen
- Berenson-Allen Center for Non-Invasive Brain Stimulation and
- Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Boston Children’s Hospital, and
| | - Albino J. Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Michael D. Fox
- Berenson-Allen Center for Non-Invasive Brain Stimulation and
- Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Department of Psychiatry, Department of Neurosurgery, and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Tetreault AM, Phan T, Orlando D, Lyu I, Kang H, Landman B, Darby RR. Network localization of clinical, cognitive, and neuropsychiatric symptoms in Alzheimer's disease. Brain 2020; 143:1249-1260. [PMID: 32176777 PMCID: PMC7174048 DOI: 10.1093/brain/awaa058] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/10/2020] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
There is both clinical and neuroanatomical variability at the single-subject level in Alzheimer's disease, complicating our understanding of brain-behaviour relationships and making it challenging to develop neuroimaging biomarkers to track disease severity, progression, and response to treatment. Prior work has shown that both group-level atrophy in clinical dementia syndromes and complex neurological symptoms in patients with focal brain lesions localize to brain networks. Here, we use a new technique termed 'atrophy network mapping' to test the hypothesis that single-subject atrophy maps in patients with a clinical diagnosis of Alzheimer's disease will also localize to syndrome-specific and symptom-specific brain networks. First, we defined single-subject atrophy maps by comparing cortical thickness in each Alzheimer's disease patient versus a group of age-matched, cognitively normal subjects across two independent datasets (total Alzheimer's disease patients = 330). No more than 42% of Alzheimer's disease patients had atrophy at any given location across these datasets. Next, we determined the network of brain regions functionally connected to each Alzheimer's disease patient's location of atrophy using seed-based functional connectivity in a large (n = 1000) normative connectome. Despite the heterogeneity of atrophied regions at the single-subject level, we found that 100% of patients with a clinical diagnosis of Alzheimer's disease had atrophy functionally connected to the same brain regions in the mesial temporal lobe, precuneus cortex, and angular gyrus. Results were specific versus control subjects and replicated across two independent datasets. Finally, we used atrophy network mapping to define symptom-specific networks for impaired memory and delusions, finding that our results matched symptom networks derived from patients with focal brain lesions. Our study supports atrophy network mapping as a method to localize clinical, cognitive, and neuropsychiatric symptoms to brain networks, providing insight into brain-behaviour relationships in patients with dementia.
Collapse
Affiliation(s)
- Aaron M Tetreault
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tony Phan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dana Orlando
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ilwoo Lyu
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bennett Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - R Ryan Darby
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
8
|
Abstract
Corlett (Corlett, P. (this issue). Factor one, familiarity and frontal cortex: A challenge to the two-factor theory of delusions. Cognitive Neuropsychiatry) provides a robust critique of the two-factor theory of delusions. The heart of his critique is two challenges he derives from a paper by Tranel and Damasio (Tranel, D., & Damasio, H. (1994). Neuroanatomical correlates of electrodermal skin conductance responses. Psychophysiology, 31(5), 427-438), who illuminate the autonomic responses and brain damage of four patients often cited in support of the two-factor theory of Capgras delusion. I defend the two-factor theory against Corlett's two key challenges, arguing that his first challenge has been previously addressed, and that his second challenge is overstated. In my view, these challenges do not negate the two-factor account. Nevertheless, two-factor theorists - and computational psychiatrists - should continue to devise and test falsifiable predictions of their respective theories.
Collapse
Affiliation(s)
- Ryan McKay
- a Department of Psychology , Royal Holloway, University of London , Egham , UK
| |
Collapse
|
9
|
Abstract
In response to Dr. Corlett's paper regarding the two factor theory of delusional misidentifications, I discuss further evidence that VMPFC damaged patients do not have an isolated factor 1 defect. I then discuss more broadly the limitations in the modular view of brain function that leads to the 2-factor theory. Finally, I propose a connectionist based interpretation of delusional misidentifications that better fits with the clinical data from patients with focal brain lesions showing how these lesion locations relate to complex brain networks.
Collapse
Affiliation(s)
- R Ryan Darby
- a Department of Neurology , Vanderbilt University Medical Center , Nashville , TN , USA
| |
Collapse
|
10
|
Darby RR, Joutsa J, Fox MD. Network localization of heterogeneous neuroimaging findings. Brain 2019; 142:70-79. [PMID: 30551186 PMCID: PMC6308311 DOI: 10.1093/brain/awy292] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/06/2018] [Accepted: 10/02/2018] [Indexed: 01/23/2023] Open
Abstract
Studies of the same disease often implicate different brain regions, contributing to a perceived reproducibility crisis in neuroimaging. Here, we leverage the normative human brain connectome to test whether seemingly heterogeneous neuroimaging findings localize to connected brain networks. We use neurodegenerative disease, and specifically Alzheimer's disease, as our example as it is one of the diseases that has been studied the most using neuroimaging. First, we show that neuroimaging findings in Alzheimer's disease occur in different brain regions across different studies but localize to the same functionally connected brain network. Second, we show that neuroimaging findings across different neurodegenerative diseases (Alzheimer's disease, frontotemporal dementia, corticobasal syndrome, and progressive non-fluent aphasia) localize to different disease-specific brain networks. Finally, we show that neuroimaging findings for a specific symptom within a disease (delusions in Alzheimer's disease) localize to a symptom-specific brain network. Our results suggest that neuroimaging studies that appear poorly reproducible may identify different regions within the same connected brain network. Human connectome data can be used to link heterogeneous neuroimaging findings to common neuroanatomy, improving localization of neuropsychiatric diseases and symptoms.
Collapse
Affiliation(s)
- R Ryan Darby
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical Center, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Juho Joutsa
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical Center, Boston, MA, USA
- Athinoula A. Martinos Centre for Biomedical Imaging, Massachusett General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Michael D Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical Center, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Centre for Biomedical Imaging, Massachusett General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
11
|
Affiliation(s)
- Michael D Fox
- From the Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, the Department of Neurology, Massachusetts General Hospital and Harvard Medical School, and the Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital - all in Boston
| |
Collapse
|
12
|
Abstract
Our perception of free will is composed of a desire to act (volition) and a sense of responsibility for our actions (agency). Brain damage can disrupt these processes, but which regions are most important for free will perception remains unclear. Here, we study focal brain lesions that disrupt volition, causing akinetic mutism (n = 28), or disrupt agency, causing alien limb syndrome (n = 50), to better localize these processes in the human brain. Lesion locations causing either syndrome were highly heterogeneous, occurring in a variety of different brain locations. We next used a recently validated technique termed lesion network mapping to determine whether these heterogeneous lesion locations localized to specific brain networks. Lesion locations causing akinetic mutism all fell within one network, defined by connectivity to the anterior cingulate cortex. Lesion locations causing alien limb fell within a separate network, defined by connectivity to the precuneus. Both findings were specific for these syndromes compared with brain lesions causing similar physical impairments but without disordered free will. Finally, our lesion-based localization matched network localization for brain stimulation locations that disrupt free will and neuroimaging abnormalities in patients with psychiatric disorders of free will without overt brain lesions. Collectively, our results demonstrate that lesions in different locations causing disordered volition and agency localize to unique brain networks, lending insight into the neuroanatomical substrate of free will perception.
Collapse
|
13
|
Neuroimaging Abnormalities in Neurological Patients with Criminal Behavior. Curr Neurol Neurosci Rep 2018; 18:47. [DOI: 10.1007/s11910-018-0853-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Abstract
Cases like that of Charles Whitman, who murdered 16 people after growth of a brain tumor, have sparked debate about why some brain lesions, but not others, might lead to criminal behavior. Here we systematically characterize such lesions and compare them with lesions that cause other symptoms. We find that lesions in multiple different brain areas are associated with criminal behavior. However, these lesions all fall within a unique functionally connected brain network involved in moral decision making. Furthermore, connectivity to competing brain networks predicts the abnormal moral decisions observed in these patients. These results provide insight into why some brain lesions, but not others, might predispose to criminal behavior, with potential neuroscience, medical, and legal implications. Following brain lesions, previously normal patients sometimes exhibit criminal behavior. Although rare, these cases can lend unique insight into the neurobiological substrate of criminality. Here we present a systematic mapping of lesions with known temporal association to criminal behavior, identifying 17 lesion cases. The lesion sites were spatially heterogeneous, including the medial prefrontal cortex, orbitofrontal cortex, and different locations within the bilateral temporal lobes. No single brain region was damaged in all cases. Because lesion-induced symptoms can come from sites connected to the lesion location and not just the lesion location itself, we also identified brain regions functionally connected to each lesion location. This technique, termed lesion network mapping, has recently identified regions involved in symptom generation across a variety of lesion-induced disorders. All lesions were functionally connected to the same network of brain regions. This criminality-associated connectivity pattern was unique compared with lesions causing four other neuropsychiatric syndromes. This network includes regions involved in morality, value-based decision making, and theory of mind, but not regions involved in cognitive control or empathy. Finally, we replicated our results in a separate cohort of 23 cases in which a temporal relationship between brain lesions and criminal behavior was implied but not definitive. Our results suggest that lesions in criminals occur in different brain locations but localize to a unique resting state network, providing insight into the neurobiology of criminal behavior.
Collapse
|