1
|
Bartolomei F. The epileptogenic network concept: Applications in the SEEG exploration of lesional focal epilepsies. Neurophysiol Clin 2024; 54:103023. [PMID: 39481212 DOI: 10.1016/j.neucli.2024.103023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
The advent of advanced brain imaging techniques has significantly enhanced the understanding and treatment of focal epilepsies, with identifiable brain lesions present in 80 % of cases. Despite this, surgical outcomes remain varied, often influenced by lesion type and location. Traditional lesion-centric approaches may overlook the complex organization of the epileptogenic zone (EZ), which often extends beyond the visible lesion, emphasizing the need for comprehensive presurgical evaluations like stereo-electroencephalography (SEEG) in some cases. This article delves into the concept of epileptogenic networks, moving beyond the notion of a lesional epileptic focus. Through SEEG, three primary network types have been identified: the Epileptogenic Zone Network (EZN), characterized by regions with heightened epileptogenicity and seizure initiation; the Propagation Zone Network (PZN), involving regions with delayed and less intense epileptic activity; and Non-Involved networks (NI). Quantitative measures, such as the epileptogenicity index (EI), aid in delineating these networks, revealing that EZN can be focal or networked, with the latter being more prevalent. The relationship between epilepsy-associated lesions and network organization is complex. Intrinsically epileptogenic lesions, like focal cortical dysplasia and periventricular nodular heterotopias, often generate epileptiform activities but may still involve broader epileptogenic networks. Non-intrinsically epileptogenic lesions, such as cavernomas and post-stroke lesions, typically lack inherent neuronal activity but can facilitate the development of extensive epileptogenic networks. Understanding the intricacies of these networks is crucial for optimizing surgical interventions. Recognizing that lesions may represent just one node within a broader epileptogenic network underscores the importance of comprehensive SEEG evaluations to achieve better surgical outcomes.
Collapse
Affiliation(s)
- Fabrice Bartolomei
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille 13005, France.
| |
Collapse
|
2
|
Köksal-Ersöz E, Makhalova J, Yochum M, Bénar CG, Guye M, Bartolomei F, Wendling F, Merlet I. Whole-brain simulation of interictal epileptic discharges for patient-specific interpretation of interictal SEEG data. Neurophysiol Clin 2024; 54:103005. [PMID: 39029213 DOI: 10.1016/j.neucli.2024.103005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
In patients with refractory epilepsy, the clinical interpretation of stereoelectroencephalographic (SEEG) signals is crucial to delineate the epileptogenic network that should be targeted by surgery. We propose a pipeline of patient-specific computational modeling of interictal epileptic activity to improve the definition of regions of interest. Comparison between the computationally defined regions of interest and the resected region confirmed the efficiency of the pipeline. This result suggests that computational modeling can be used to reconstruct signals and aid clinical interpretation.
Collapse
Affiliation(s)
| | - Julia Makhalova
- Assistance Publique-Hôpitaux de Marseille, Service d'Épileptologie et de Rythmologie Cérébrale, Hôpital La Timone, Marseille, France; Aix Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France
| | - Maxime Yochum
- Univ Rennes, INSERM, LTSI - UMR 1099, Rennes, France
| | - Christian-G Bénar
- Aix Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France; Institut de Neurosciences des Systèmes (INS, UMR 1106), Aix Marseille Université, INSERM, Marseille, France
| | - Maxime Guye
- APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Fabrice Bartolomei
- Assistance Publique-Hôpitaux de Marseille, Service d'Épileptologie et de Rythmologie Cérébrale, Hôpital La Timone, Marseille, France; Institut de Neurosciences des Systèmes (INS, UMR 1106), Aix Marseille Université, INSERM, Marseille, France
| | | | | |
Collapse
|
3
|
Young JJ, Chan AHW, Jette N, Bender HA, Saad AE, Saez I, Panov F, Ghatan S, Yoo JY, Singh A, Fields MC, Marcuse LV, Mayberg HS. Elevated phase amplitude coupling as a depression biomarker in epilepsy. Epilepsy Behav 2024; 152:109659. [PMID: 38301454 PMCID: PMC10923038 DOI: 10.1016/j.yebeh.2024.109659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
Depression is prevalent in epilepsy patients and their intracranial brain activity recordings can be used to determine the types of brain activity that are associated with comorbid depression. We performed case-control comparison of spectral power and phase amplitude coupling (PAC) in 34 invasively monitored drug resistant epilepsy patients' brain recordings. The values of spectral power and PAC for one-minute segments out of every hour in a patient's study were correlated with pre-operative assessment of depressive symptoms by Beck Depression Inventory-II (BDI). We identified an elevated PAC signal (theta-alpha-beta phase (5-25 Hz)/gamma frequency (80-100 Hz) band) that is present in high BDI scores but not low BDI scores adult epilepsy patients in brain regions implicated in primary depression, including anterior cingulate cortex, amygdala and orbitofrontal cortex. Our results showed the application of PAC as a network-specific, electrophysiologic biomarker candidate for comorbid depression and its potential as treatment target for neuromodulation.
Collapse
Affiliation(s)
- James J Young
- Departments of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Andy Ho Wing Chan
- Departments of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Nathalie Jette
- Departments of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Heidi A Bender
- Weill Cornell Medicine, Department of Neurological Surgery, 525 East 68th Street, New York, NY 10021, USA
| | - Adam E Saad
- Departments of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Ignacio Saez
- Departments of Neurocience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Fedor Panov
- Departments of Neurosurgery, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Saadi Ghatan
- Departments of Neurosurgery, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Ji Yeoun Yoo
- Departments of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Anuradha Singh
- Departments of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Madeline C Fields
- Departments of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Lara V Marcuse
- Departments of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Helen S Mayberg
- Departments of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Departments of Neurosurgery, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
4
|
Grimaldi S, Guye M, Bianciardi M, Eusebio A. Brain MRI Biomarkers in Isolated Rapid Eye Movement Sleep Behavior Disorder: Where Are We? A Systematic Review. Brain Sci 2023; 13:1398. [PMID: 37891767 PMCID: PMC10604962 DOI: 10.3390/brainsci13101398] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing number of MRI studies focused on prodromal Parkinson's Disease (PD) demonstrates a strong interest in identifying early biomarkers capable of monitoring neurodegeneration. In this systematic review, we present the latest information regarding the most promising MRI markers of neurodegeneration in relation to the most specific prodromal symptoms of PD, namely isolated rapid eye movement (REM) sleep behavior disorder (iRBD). We reviewed structural, diffusion, functional, iron-sensitive, neuro-melanin-sensitive MRI, and proton magnetic resonance spectroscopy studies conducted between 2000 and 2023, which yielded a total of 77 relevant papers. Among these markers, iron and neuromelanin emerged as the most robust and promising indicators for early neurodegenerative processes in iRBD. Atrophy was observed in several regions, including the frontal and temporal cortices, limbic cortices, and basal ganglia, suggesting that neurodegenerative processes had been underway for some time. Diffusion and functional MRI produced heterogeneous yet intriguing results. Additionally, reduced glymphatic clearance function was reported. Technological advancements, such as the development of ultra-high field MRI, have enabled the exploration of minute anatomical structures and the detection of previously undetectable anomalies. The race to achieve early detection of neurodegeneration is well underway.
Collapse
Affiliation(s)
- Stephan Grimaldi
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Centre d’Exploration Métabolique par Résonnance Magnétique, Assistance Publique des Hôpitaux de Marseille, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Center for Magnetic Resonance in Biology and Medicine, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Charlestown, MA 02129, USA
| | - Maxime Guye
- Centre d’Exploration Métabolique par Résonnance Magnétique, Assistance Publique des Hôpitaux de Marseille, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Center for Magnetic Resonance in Biology and Medicine, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
| | - Marta Bianciardi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Charlestown, MA 02129, USA
- Division of Sleep Medicine, Harvard University, Boston, MA 02114, USA
| | - Alexandre Eusebio
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Institut de Neurosciences de la Timone, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
| |
Collapse
|
5
|
Sinha N, Duncan JS, Diehl B, Chowdhury FA, de Tisi J, Miserocchi A, McEvoy AW, Davis KA, Vos SB, Winston GP, Wang Y, Taylor PN. Intracranial EEG Structure-Function Coupling and Seizure Outcomes After Epilepsy Surgery. Neurology 2023; 101:e1293-e1306. [PMID: 37652703 PMCID: PMC10558161 DOI: 10.1212/wnl.0000000000207661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 06/02/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Surgery is an effective treatment for drug-resistant epilepsy, which modifies the brain's structure and networks to regulate seizure activity. Our objective was to examine the relationship between brain structure and function to determine the extent to which this relationship affects the success of the surgery in controlling seizures. We hypothesized that a stronger association between brain structure and function would lead to improved seizure control after surgery. METHODS We constructed functional and structural brain networks in patients with drug-resistant focal epilepsy by using presurgery functional data from intracranial EEG (iEEG) recordings, presurgery and postsurgery structural data from T1-weighted MRI, and presurgery diffusion-weighted MRI. We quantified the relationship (coupling) between structural and functional connectivity by using the Spearman rank correlation and analyzed this structure-function coupling at 2 spatial scales: (1) global iEEG network level and (2) individual iEEG electrode contacts using virtual surgeries. We retrospectively predicted postoperative seizure freedom by incorporating the structure-function connectivity coupling metrics and routine clinical variables into a cross-validated predictive model. RESULTS We conducted a retrospective analysis on data from 39 patients who met our inclusion criteria. Brain areas implanted with iEEG electrodes had stronger structure-function coupling in seizure-free patients compared with those with seizure recurrence (p = 0.002, d = 0.76, area under the receiver operating characteristic curve [AUC] = 0.78 [95% CI 0.62-0.93]). Virtual surgeries on brain areas that resulted in stronger structure-function coupling of the remaining network were associated with seizure-free outcomes (p = 0.007, d = 0.96, AUC = 0.73 [95% CI 0.58-0.89]). The combination of global and local structure-function coupling measures accurately predicted seizure outcomes with a cross-validated AUC of 0.81 (95% CI 0.67-0.94). These measures were complementary to other clinical variables and, when included for prediction, resulted in a cross-validated AUC of 0.91 (95% CI 0.82-1.0), accuracy of 92%, sensitivity of 93%, and specificity of 91%. DISCUSSION Our study showed that the strength of structure-function connectivity coupling may play a crucial role in determining the success of epilepsy surgery. By quantitatively incorporating structure-function coupling measures and standard-of-care clinical variables into presurgical evaluations, we may be able to better localize epileptogenic tissue and select patients for epilepsy surgery. CLASSIFICATION OF EVIDENCE This is a Class IV retrospective case series showing that structure-function mapping may help determine the outcome from surgical resection for treatment-resistant focal epilepsy.
Collapse
Affiliation(s)
- Nishant Sinha
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada.
| | - John S Duncan
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Beate Diehl
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Fahmida A Chowdhury
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Jane de Tisi
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Anna Miserocchi
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Andrew William McEvoy
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Kathryn A Davis
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Sjoerd B Vos
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Gavin P Winston
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Yujiang Wang
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Peter Neal Taylor
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| |
Collapse
|
6
|
Johnson GW, Doss DJ, Morgan VL, Paulo DL, Cai LY, Shless JS, Negi AS, Gummadavelli A, Kang H, Reddy SB, Naftel RP, Bick SK, Williams Roberson S, Dawant BM, Wallace MT, Englot DJ. The Interictal Suppression Hypothesis in focal epilepsy: network-level supporting evidence. Brain 2023; 146:2828-2845. [PMID: 36722219 PMCID: PMC10316780 DOI: 10.1093/brain/awad016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/24/2022] [Accepted: 01/08/2023] [Indexed: 02/02/2023] Open
Abstract
Why are people with focal epilepsy not continuously having seizures? Previous neuronal signalling work has implicated gamma-aminobutyric acid balance as integral to seizure generation and termination, but is a high-level distributed brain network involved in suppressing seizures? Recent intracranial electrographic evidence has suggested that seizure-onset zones have increased inward connectivity that could be associated with interictal suppression of seizure activity. Accordingly, we hypothesize that seizure-onset zones are actively suppressed by the rest of the brain network during interictal states. Full testing of this hypothesis would require collaboration across multiple domains of neuroscience. We focused on partially testing this hypothesis at the electrographic network level within 81 individuals with drug-resistant focal epilepsy undergoing presurgical evaluation. We used intracranial electrographic resting-state and neurostimulation recordings to evaluate the network connectivity of seizure onset, early propagation and non-involved zones. We then used diffusion imaging to acquire estimates of white-matter connectivity to evaluate structure-function coupling effects on connectivity findings. Finally, we generated a resting-state classification model to assist clinicians in detecting seizure-onset and propagation zones without the need for multiple ictal recordings. Our findings indicate that seizure onset and early propagation zones demonstrate markedly increased inwards connectivity and decreased outwards connectivity using both resting-state (one-way ANOVA, P-value = 3.13 × 10-13) and neurostimulation analyses to evaluate evoked responses (one-way ANOVA, P-value = 2.5 × 10-3). When controlling for the distance between regions, the difference between inwards and outwards connectivity remained stable up to 80 mm between brain connections (two-way repeated measures ANOVA, group effect P-value of 2.6 × 10-12). Structure-function coupling analyses revealed that seizure-onset zones exhibit abnormally enhanced coupling (hypercoupling) of surrounding regions compared to presumably healthy tissue (two-way repeated measures ANOVA, interaction effect P-value of 9.76 × 10-21). Using these observations, our support vector classification models achieved a maximum held-out testing set accuracy of 92.0 ± 2.2% to classify early propagation and seizure-onset zones. These results suggest that seizure-onset zones are actively segregated and suppressed by a widespread brain network. Furthermore, this electrographically observed functional suppression is disproportionate to any observed structural connectivity alterations of the seizure-onset zones. These findings have implications for the identification of seizure-onset zones using only brief electrographic recordings to reduce patient morbidity and augment the presurgical evaluation of drug-resistant epilepsy. Further testing of the interictal suppression hypothesis can provide insight into potential new resective, ablative and neuromodulation approaches to improve surgical success rates in those suffering from drug-resistant focal epilepsy.
Collapse
Affiliation(s)
- Graham W Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
| | - Derek J Doss
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
| | - Victoria L Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Danika L Paulo
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
| | - Jared S Shless
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Aarushi S Negi
- Department of Neuroscience, Vanderbilt University, Nashville, TN 37232, USA
| | - Abhijeet Gummadavelli
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37232, USA
| | - Shilpa B Reddy
- Department of Pediatrics, Vanderbilt Children’s Hospital, Nashville, TN 37232, USA
| | - Robert P Naftel
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah K Bick
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Benoit M Dawant
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Psychology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
7
|
Jirsa V, Wang H, Triebkorn P, Hashemi M, Jha J, Gonzalez-Martinez J, Guye M, Makhalova J, Bartolomei F. Personalised virtual brain models in epilepsy. Lancet Neurol 2023; 22:443-454. [PMID: 36972720 DOI: 10.1016/s1474-4422(23)00008-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 03/29/2023]
Abstract
Individuals with drug-resistant focal epilepsy are candidates for surgical treatment as a curative option. Before surgery can take place, the patient must have a presurgical evaluation to establish whether and how surgical treatment might stop their seizures without causing neurological deficits. Virtual brains are a new digital modelling technology that map the brain network of a person with epilepsy, using data derived from MRI. This technique produces a computer simulation of seizures and brain imaging signals, such as those that would be recorded with intracranial EEG. When combined with machine learning, virtual brains can be used to estimate the extent and organisation of the epileptogenic zone (ie, the brain regions related to seizure generation and the spatiotemporal dynamics during seizure onset). Virtual brains could, in the future, be used for clinical decision making, to improve precision in localisation of seizure activity, and for surgical planning, but at the moment these models have some limitations, such as low spatial resolution. As evidence accumulates in support of the predictive power of personalised virtual brain models, and as methods are tested in clinical trials, virtual brains might inform clinical practice in the near future.
Collapse
Affiliation(s)
- Viktor Jirsa
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France.
| | - Huifang Wang
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France
| | - Paul Triebkorn
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France
| | - Meysam Hashemi
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France
| | - Jayant Jha
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France
| | | | - Maxime Guye
- Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, Aix Marseille Université, Marseille, France; Centre d'Exploration Métabolique par Résonance Magnétique, Assistance Publique - Hôpitaux de Marseille, La Timone University Hospital, Marseille, France
| | - Julia Makhalova
- Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, Aix Marseille Université, Marseille, France; Centre d'Exploration Métabolique par Résonance Magnétique, Assistance Publique - Hôpitaux de Marseille, La Timone University Hospital, Marseille, France; Epileptology and Clinical Neurophysiology Department, Assistance Publique - Hôpitaux de Marseille, La Timone University Hospital, Marseille, France
| | - Fabrice Bartolomei
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France; Epileptology and Clinical Neurophysiology Department, Assistance Publique - Hôpitaux de Marseille, La Timone University Hospital, Marseille, France
| |
Collapse
|
8
|
Au Yong HM, Clough M, Perucca P, Malpas CB, Kwan P, O'Brien TJ, Fielding J. Ocular motility as a measure of cerebral dysfunction in adults with focal epilepsy. Epilepsy Behav 2023; 141:109140. [PMID: 36812874 DOI: 10.1016/j.yebeh.2023.109140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/11/2023] [Accepted: 02/05/2023] [Indexed: 02/22/2023]
Abstract
OBJECTIVE Using objective oculomotor measures, we aimed to: (1) compare oculomotor performance in patients with drug-resistant focal epilepsy to healthy controls, and (2) investigate the differential impact of epileptogenic focus laterality and location on oculomotor performance. METHODS We recruited 51 adults with drug-resistant focal epilepsy from the Comprehensive Epilepsy Programs of two tertiary hospitals and 31 healthy controls to perform prosaccade and antisaccade tasks. Oculomotor variables of interest were latency, visuospatial accuracy, and antisaccade error rate. Linear mixed models were performed to compare interactions between groups (epilepsy, control) and oculomotor tasks, and between epilepsy subgroups and oculomotor tasks for each oculomotor variable. RESULTS Compared to healthy controls, patients with drug-resistant focal epilepsy exhibited longer antisaccade latencies (mean difference = 42.8 ms, P = 0.001), poorer spatial accuracy for both prosaccade (mean difference = 0.4°, P = 0.002), and antisaccade tasks (mean difference = 2.1°, P < 0.001), and more antisaccade errors (mean difference = 12.6%, P < 0.001). In the epilepsy subgroup analysis, left-hemispheric epilepsy patients exhibited longer antisaccade latencies compared to controls (mean difference = 52.2 ms, P = 0.003), while right-hemispheric epilepsy was the most spatially inaccurate compared to controls (mean difference = 2.5°, P = 0.003). The temporal lobe epilepsy subgroup displayed longer antisaccade latencies compared to controls (mean difference = 47.6 ms, P = 0.005). SIGNIFICANCE Patients with drug-resistant focal epilepsy exhibit poor inhibitory control as evidenced by a high percentage of antisaccade errors, slower cognitive processing speed, and impaired visuospatial accuracy on oculomotor tasks. Patients with left-hemispheric epilepsy and temporal lobe epilepsy have markedly impaired processing speed. Overall, oculomotor tasks can be a useful tool to objectively quantify cerebral dysfunction in drug-resistant focal epilepsy.
Collapse
Affiliation(s)
- Hue Mun Au Yong
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia.
| | - Meaghan Clough
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Piero Perucca
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia; Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg, Victoria, Australia.
| | - Charles B Malpas
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.
| | - Patrick Kwan
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.
| | - Terence J O'Brien
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.
| | - Joanne Fielding
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Lagarde S, Bénar CG, Wendling F, Bartolomei F. Interictal Functional Connectivity in Focal Refractory Epilepsies Investigated by Intracranial EEG. Brain Connect 2022; 12:850-869. [PMID: 35972755 PMCID: PMC9807250 DOI: 10.1089/brain.2021.0190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction: Focal epilepsies are diseases of neuronal excitability affecting macroscopic networks of cortical and subcortical neural structures. These networks ("epileptogenic networks") can generate pathological electrophysiological activities during seizures, and also between seizures (interictal period). Many works attempt to describe these networks by using quantification methods, particularly based on the estimation of statistical relationships between signals produced by brain regions, namely functional connectivity (FC). Results: FC has been shown to be greatly altered during seizures and in the immediate peri-ictal period. An increasing number of studies have shown that FC is also altered during the interictal period depending on the degree of epileptogenicity of the structures. Furthermore, connectivity values could be correlated with other clinical variables including surgical outcome. Significance: This leads to a conceptual change and to consider epileptic areas as both hyperexcitable and abnormally connected. These data open the door to the use of interictal FC as a marker of epileptogenicity and as a complementary tool for predicting the effect of surgery. Aim: In this article, we review the available data concerning interictal FC estimated from intracranial electroencephalograhy (EEG) in focal epilepsies and discuss it in the light of data obtained from other modalities (EEG imaging) and modeling studies.
Collapse
Affiliation(s)
- Stanislas Lagarde
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,Department of Epileptology and Cerebral Rythmology, APHM, Timone Hospital, Marseille, France.,Address correspondence to: Stanislas Lagarde, Department of Epileptology and Cerebral Rythmology, APHM, Timone Hospital, 264 Rue Saint-Pierre, 13005 Marseille, France
| | | | | | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,Department of Epileptology and Cerebral Rythmology, APHM, Timone Hospital, Marseille, France
| |
Collapse
|
10
|
Laiou P, Biondi A, Bruno E, Viana PF, Winston JS, Rashid Z, Ranjan Y, Conde P, Stewart C, Sun S, Zhang Y, Folarin A, Dobson RJB, Schulze-Bonhage A, Dümpelmann M, Richardson MP. Temporal Evolution of Multiday, Epileptic Functional Networks Prior to Seizure Occurrence. Biomedicines 2022; 10:2662. [PMID: 36289925 PMCID: PMC9599905 DOI: 10.3390/biomedicines10102662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders, characterized by the occurrence of repeated seizures. Given that epilepsy is considered a network disorder, tools derived from network neuroscience may confer the valuable ability to quantify the properties of epileptic brain networks. In this study, we use well-established brain network metrics (i.e., mean strength, variance of strength, eigenvector centrality, betweenness centrality) to characterize the temporal evolution of epileptic functional networks over several days prior to seizure occurrence. We infer the networks using long-term electroencephalographic recordings from 12 people with epilepsy. We found that brain network metrics are variable across days and show a circadian periodicity. In addition, we found that in 9 out of 12 patients the distribution of the variance of strength in the day (or even two last days) prior to seizure occurrence is significantly different compared to the corresponding distributions on all previous days. Our results suggest that brain network metrics computed fromelectroencephalographic recordings could potentially be used to characterize brain network changes that occur prior to seizures, and ultimately contribute to seizure warning systems.
Collapse
Affiliation(s)
- Petroula Laiou
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK
| | - Andrea Biondi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK
| | - Elisa Bruno
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK
| | - Pedro F. Viana
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK
- Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Joel S. Winston
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK
| | - Zulqarnain Rashid
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK
| | - Yatharth Ranjan
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK
| | - Pauline Conde
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK
| | - Callum Stewart
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK
| | - Shaoxiong Sun
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK
| | - Yuezhou Zhang
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK
| | - Amos Folarin
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK
- Institute of Health Informatics, University College London, London WC1E 6BT, UK
- NIHR Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King’s College London, London SE5 8AF, UK
- Health Data Research UK London, University College London, London WC1E 6BT, UK
- NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London W1T 7DN, UK
| | - Richard J. B. Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK
- Institute of Health Informatics, University College London, London WC1E 6BT, UK
- NIHR Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King’s College London, London SE5 8AF, UK
- Health Data Research UK London, University College London, London WC1E 6BT, UK
- NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London W1T 7DN, UK
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Matthias Dümpelmann
- Epilepsy Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany
| | - Mark P. Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK
- NIHR Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King’s College London, London SE5 8AF, UK
| | | |
Collapse
|
11
|
Fleury M, Buck S, Binding LP, Caciagli L, Vos SB, Winston GP, Thompson P, Koepp MJ, Duncan JS, Sidhu MK. Episodic memory network connectivity in temporal lobe epilepsy. Epilepsia 2022; 63:2597-2622. [PMID: 35848050 PMCID: PMC9804196 DOI: 10.1111/epi.17370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) affects brain networks and is associated with impairment of episodic memory. Temporal and extratemporal reorganization of memory functions is described in functional magnetic resonance imaging (fMRI) studies. Functional reorganizations have been shown at the local activation level, but network-level alterations have been underinvestigated. We aim to investigate the functional anatomy of memory networks using memory fMRI and determine how this relates to memory function in TLE. METHODS Ninety patients with unilateral TLE (43 left) and 29 controls performed a memory-encoding fMRI paradigm of faces and words with subsequent out-of-scanner recognition test. Subsequent memory event-related contrasts of words and faces remembered were generated. Psychophysiological interaction analysis investigated task-associated changes in functional connectivity seeding from the mesial temporal lobes (MTLs). Correlations between changes in functional connectivity and clinical memory scores, epilepsy duration, age at epilepsy onset, and seizure frequency were investigated, and between connectivity supportive of better memory and disease burden. Connectivity differences between controls and TLE, and between TLE with and without hippocampal sclerosis, were explored using these confounds as regressors of no interest. RESULTS Compared to controls, TLE patients showed widespread decreased connectivity between bilateral MTLs and frontal lobes, and increased local connectivity between the anterior MTLs bilaterally. Increased intrinsic connectivity within the bilateral MTLs correlated with better out-of-scanner memory performance in both left and right TLE. Longer epilepsy duration and higher seizure frequency were associated with decreased connectivity between bilateral MTLs and left/right orbitofrontal cortex (OFC) and insula, connections supportive of memory functions. TLE due to hippocampal sclerosis was associated with greater connectivity disruption within the MTL and extratemporally. SIGNIFICANCE Connectivity analyses showed that TLE is associated with temporal and extratemporal memory network reorganization. Increased bilateral functional connectivity within the MTL and connectivity to OFC and insula are efficient, and are disrupted by greater disease burden.
Collapse
Affiliation(s)
- Marine Fleury
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - Sarah Buck
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - Lawrence P. Binding
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
- Department of Computer Science, Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Lorenzo Caciagli
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sjoerd B. Vos
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
- Neuroradiological Academic Unit, University College London Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Gavin P. Winston
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
- Division of Neurology, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | - Pamela J. Thompson
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - Matthias J. Koepp
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - John S. Duncan
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - Meneka K. Sidhu
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| |
Collapse
|
12
|
Scholly J, Gras A, Guye M, Bilger M, Valenti Hirsch MP, Hirsch E, Timofeev A, Vidailhet P, Bénar CG, Bartolomei F. Connectivity Alterations in Emotional and Cognitive Networks During a Manic State Induced by Direct Electrical Stimulation. Brain Topogr 2022; 35:627-635. [PMID: 36071370 DOI: 10.1007/s10548-022-00913-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/27/2022] [Indexed: 11/28/2022]
Abstract
Mania is characterized by affective and cognitive alterations, with heightened external and self-awareness that are opposite to the alteration of awareness during epileptic seizures. Electrical stimulations carried out routinely during stereotactic intracerebral EEG (SEEG) recordings for presurgical evaluation of epilepsy may represent a unique opportunity to study the pathophysiology of such complex emotional-behavioral phenomenon, particularly difficult to reproduce in experimental setting. We investigated SEEG signals-based functional connectivity between different brain regions involved in emotions and in consciousness processing during a manic state induced by electrical stimulation in a patient with drug-resistant focal epilepsy. The stimulation inducing manic state and an asymptomatic stimulation of the same site, as well as a seizure with alteration of awareness (AOA) were analyzed. Functional connectivity analysis was performed by measuring interdependencies (nonlinear regression analysis based on the h2 coefficient) between broadband SEEG signals and within typical sub-bands, before and after stimulation, or before and during the seizure with AOA, respectively. Stimulation of the right lateral prefrontal cortex induced a manic state lasting several hours. Its onset was associated with significant increase of broadband-signal functional coupling between the right hemispheric limbic nodes, the temporal pole and the claustrum, whereas significant decorrelation between the right lateral prefrontal and the anterior cingulate cortex was observed in theta-band. In contrast, ictal alteration of awareness was associated with increased broadband and sub-bands synchronization within and between the internal and external awareness networks, including the anterior and middle cingulate, the mesial and lateral prefrontal, the inferior parietal and the temporopolar cortex. Our data suggest the existence of network- and frequency-specific functional connectivity patterns during manic state. A transient desynchronization of theta activity between the external and internal awareness network hubs is likely to increase awareness, with potential therapeutic effect.
Collapse
Affiliation(s)
- Julia Scholly
- Service d'Epileptologie et de Rythmololgie Cérébrale, Hôpital Timone, AP-HM, Marseille, France. .,Aix Marseille Univ, CNRS, CRMBM, Marseille, France. .,Service d'Epileptologie et Rythmologie Cérébrale, Hôpital Timone, AP-HM, 264 Rue St Pierre, 13005, Marseille, France.
| | - Adrien Gras
- Consultation-Liaison Psychiatry Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Maxime Guye
- Service d'Epileptologie et de Rythmololgie Cérébrale, Hôpital Timone, AP-HM, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Mathias Bilger
- Medical and Surgical Epilepsy Unit, University Hospital of Strasbourg, Strasbourg, France
| | | | - Edouard Hirsch
- Medical and Surgical Epilepsy Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Alexander Timofeev
- Medical and Surgical Epilepsy Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Pierre Vidailhet
- Consultation-Liaison Psychiatry Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Christian G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- Service d'Epileptologie et de Rythmololgie Cérébrale, Hôpital Timone, AP-HM, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
13
|
Horsley JJ, Schroeder GM, Thomas RH, de Tisi J, Vos SB, Winston GP, Duncan JS, Wang Y, Taylor PN. Volumetric and structural connectivity abnormalities co-localise in TLE. Neuroimage Clin 2022; 35:103105. [PMID: 35863179 PMCID: PMC9421455 DOI: 10.1016/j.nicl.2022.103105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022]
Abstract
Patients with temporal lobe epilepsy (TLE) exhibit both volumetric and structural connectivity abnormalities relative to healthy controls. How these abnormalities inter-relate and their mechanisms are unclear. We computed grey matter volumetric changes and white matter structural connectivity abnormalities in 144 patients with unilateral TLE and 96 healthy controls. Regional volumes were calculated using T1-weighted MRI, while structural connectivity was derived using white matter fibre tractography from diffusion-weighted MRI. For each regional volume and each connection strength, we calculated the effect size between patient and control groups in a group-level analysis. We then applied hierarchical regression to investigate the relationship between volumetric and structural connectivity abnormalities in individuals. Additionally, we quantified whether abnormalities co-localised within individual patients by computing Dice similarity scores. In TLE, white matter connectivity abnormalities were greater when joining two grey matter regions with abnormal volumes. Similarly, grey matter volumetric abnormalities were greater when joined by abnormal white matter connections. The extent of volumetric and connectivity abnormalities related to epilepsy duration, but co-localisation did not. Co-localisation was primarily driven by neighbouring abnormalities in the ipsilateral hemisphere. Overall, volumetric and structural connectivity abnormalities were related in TLE. Our results suggest that shared mechanisms may underlie changes in both volume and connectivity alterations in patients with TLE.
Collapse
Affiliation(s)
- Jonathan J Horsley
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gabrielle M Schroeder
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rhys H Thomas
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia; Centre for Medical Image Computing, Computer Science Department, University College London, London, United Kingdom
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Division of Neurology, Department of Medicine, Queen's University, Kingston, Canada
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yujiang Wang
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom; Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Peter N Taylor
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom; Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
14
|
Drug-resistant focal epilepsy in children is associated with increased modal controllability of the whole brain and epileptogenic regions. Commun Biol 2022; 5:394. [PMID: 35484213 PMCID: PMC9050895 DOI: 10.1038/s42003-022-03342-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/06/2022] [Indexed: 02/06/2023] Open
Abstract
Network control theory provides a framework by which neurophysiological dynamics of the brain can be modelled as a function of the structural connectome constructed from diffusion MRI. Average controllability describes the ability of a region to drive the brain to easy-to-reach neurophysiological states whilst modal controllability describes the ability of a region to drive the brain to difficult-to-reach states. In this study, we identify increases in mean average and modal controllability in children with drug-resistant epilepsy compared to healthy controls. Using simulations, we purport that these changes may be a result of increased thalamocortical connectivity. At the node level, we demonstrate decreased modal controllability in the thalamus and posterior cingulate regions. In those undergoing resective surgery, we also demonstrate increased modal controllability of the resected parcels, a finding specific to patients who were rendered seizure free following surgery. Changes in controllability are a manifestation of brain network dysfunction in epilepsy and may be a useful construct to understand the pathophysiology of this archetypical network disease. Understanding the mechanisms underlying these controllability changes may also facilitate the design of network-focussed interventions that seek to normalise network structure and function.
Collapse
|
15
|
Cao M, Vogrin SJ, Peterson ADH, Woods W, Cook MJ, Plummer C. Dynamical Network Models From EEG and MEG for Epilepsy Surgery—A Quantitative Approach. Front Neurol 2022; 13:837893. [PMID: 35422755 PMCID: PMC9001937 DOI: 10.3389/fneur.2022.837893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
There is an urgent need for more informative quantitative techniques that non-invasively and objectively assess strategies for epilepsy surgery. Invasive intracranial electroencephalography (iEEG) remains the clinical gold standard to investigate the nature of the epileptogenic zone (EZ) before surgical resection. However, there are major limitations of iEEG, such as the limited spatial sampling and the degree of subjectivity inherent in the analysis and clinical interpretation of iEEG data. Recent advances in network analysis and dynamical network modeling provide a novel aspect toward a more objective assessment of the EZ. The advantage of such approaches is that they are data-driven and require less or no human input. Multiple studies have demonstrated success using these approaches when applied to iEEG data in characterizing the EZ and predicting surgical outcomes. However, the limitations of iEEG recordings equally apply to these studies—limited spatial sampling and the implicit assumption that iEEG electrodes, whether strip, grid, depth or stereo EEG (sEEG) arrays, are placed in the correct location. Therefore, it is of interest to clinicians and scientists to see whether the same analysis and modeling techniques can be applied to whole-brain, non-invasive neuroimaging data (from MRI-based techniques) and neurophysiological data (from MEG and scalp EEG recordings), thus removing the limitation of spatial sampling, while safely and objectively characterizing the EZ. This review aims to summarize current state of the art non-invasive methods that inform epilepsy surgery using network analysis and dynamical network models. We also present perspectives on future directions and clinical applications of these promising approaches.
Collapse
Affiliation(s)
- Miao Cao
- Center for MRI Research, Peking University, Beijing, China
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Simon J. Vogrin
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
- School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andre D. H. Peterson
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - William Woods
- School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Mark J. Cook
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Chris Plummer
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
- School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
- *Correspondence: Chris Plummer
| |
Collapse
|
16
|
Fan JM, Lee AT, Kudo K, Ranasinghe KG, Morise H, Findlay AM, Kirsch HE, Chang EF, Nagarajan SS, Rao VR. Network connectivity predicts effectiveness of responsive neurostimulation in focal epilepsy. Brain Commun 2022; 4:fcac104. [PMID: 35611310 PMCID: PMC9123848 DOI: 10.1093/braincomms/fcac104] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/23/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Responsive neurostimulation is a promising treatment for drug-resistant focal epilepsy; however, clinical outcomes are highly variable across individuals. The therapeutic mechanism of responsive neurostimulation likely involves modulatory effects on brain networks; however, with no known biomarkers that predict clinical response, patient selection remains empiric. This study aimed to determine whether functional brain connectivity measured non-invasively prior to device implantation predicts clinical response to responsive neurostimulation therapy. Resting-state magnetoencephalography was obtained in 31 participants with subsequent responsive neurostimulation device implantation between 15 August 2014 and 1 October 2020. Functional connectivity was computed across multiple spatial scales (global, hemispheric, and lobar) using pre-implantation magnetoencephalography and normalized to maps of healthy controls. Normalized functional connectivity was investigated as a predictor of clinical response, defined as percent change in self-reported seizure frequency in the most recent year of clinic visits relative to pre-responsive neurostimulation baseline. Area under the receiver operating characteristic curve quantified the performance of functional connectivity in predicting responders (≥50% reduction in seizure frequency) and non-responders (<50%). Leave-one-out cross-validation was furthermore performed to characterize model performance. The relationship between seizure frequency reduction and frequency-specific functional connectivity was further assessed as a continuous measure. Across participants, stimulation was enabled for a median duration of 52.2 (interquartile range, 27.0-62.3) months. Demographics, seizure characteristics, and responsive neurostimulation lead configurations were matched across 22 responders and 9 non-responders. Global functional connectivity in the alpha and beta bands were lower in non-responders as compared with responders (alpha, pfdr < 0.001; beta, pfdr < 0.001). The classification of responsive neurostimulation outcome was improved by combining feature inputs; the best model incorporated four features (i.e. mean and dispersion of alpha and beta bands) and yielded an area under the receiver operating characteristic curve of 0.970 (0.919-1.00). The leave-one-out cross-validation analysis of this four-feature model yielded a sensitivity of 86.3%, specificity of 77.8%, positive predictive value of 90.5%, and negative predictive value of 70%. Global functional connectivity in alpha band correlated with seizure frequency reduction (alpha, P = 0.010). Global functional connectivity predicted responder status more strongly, as compared with hemispheric predictors. Lobar functional connectivity was not a predictor. These findings suggest that non-invasive functional connectivity may be a candidate personalized biomarker that has the potential to predict responsive neurostimulation effectiveness and to identify patients most likely to benefit from responsive neurostimulation therapy. Follow-up large-cohort, prospective studies are required to validate this biomarker. These findings furthermore support an emerging view that the therapeutic mechanism of responsive neurostimulation involves network-level effects in the brain.
Collapse
Affiliation(s)
- Joline M Fan
- Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Anthony T Lee
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
| | - Kiwamu Kudo
- Medical Imaging Center, Ricoh Company, Ltd., Kanazawa, Japan.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Kamalini G Ranasinghe
- Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Hirofumi Morise
- Medical Imaging Center, Ricoh Company, Ltd., Kanazawa, Japan.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Anne M Findlay
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Heidi E Kirsch
- Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Edward F Chang
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Vikram R Rao
- Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
17
|
Lemaréchal JD, Jedynak M, Trebaul L, Boyer A, Tadel F, Bhattacharjee M, Deman P, Tuyisenge V, Ayoubian L, Hugues E, Chanteloup-Forêt B, Saubat C, Zouglech R, Reyes Mejia GC, Tourbier S, Hagmann P, Adam C, Barba C, Bartolomei F, Blauwblomme T, Curot J, Dubeau F, Francione S, Garcés M, Hirsch E, Landré E, Liu S, Maillard L, Metsähonkala EL, Mindruta I, Nica A, Pail M, Petrescu AM, Rheims S, Rocamora R, Schulze-Bonhage A, Szurhaj W, Taussig D, Valentin A, Wang H, Kahane P, George N, David O. A brain atlas of axonal and synaptic delays based on modelling of cortico-cortical evoked potentials. Brain 2021; 145:1653-1667. [PMID: 35416942 PMCID: PMC9166555 DOI: 10.1093/brain/awab362] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/03/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
Epilepsy presurgical investigation may include focal intracortical single-pulse electrical stimulations with depth electrodes, which induce cortico-cortical evoked potentials at distant sites because of white matter connectivity. Cortico-cortical evoked potentials provide a unique window on functional brain networks because they contain sufficient information to infer dynamical properties of large-scale brain connectivity, such as preferred directionality and propagation latencies. Here, we developed a biologically informed modelling approach to estimate the neural physiological parameters of brain functional networks from the cortico-cortical evoked potentials recorded in a large multicentric database. Specifically, we considered each cortico-cortical evoked potential as the output of a transient stimulus entering the stimulated region, which directly propagated to the recording region. Both regions were modelled as coupled neural mass models, the parameters of which were estimated from the first cortico-cortical evoked potential component, occurring before 80 ms, using dynamic causal modelling and Bayesian model inversion. This methodology was applied to the data of 780 patients with epilepsy from the F-TRACT database, providing a total of 34 354 bipolar stimulations and 774 445 cortico-cortical evoked potentials. The cortical mapping of the local excitatory and inhibitory synaptic time constants and of the axonal conduction delays between cortical regions was obtained at the population level using anatomy-based averaging procedures, based on the Lausanne2008 and the HCP-MMP1 parcellation schemes, containing 130 and 360 parcels, respectively. To rule out brain maturation effects, a separate analysis was performed for older (>15 years) and younger patients (<15 years). In the group of older subjects, we found that the cortico-cortical axonal conduction delays between parcels were globally short (median = 10.2 ms) and only 16% were larger than 20 ms. This was associated to a median velocity of 3.9 m/s. Although a general lengthening of these delays with the distance between the stimulating and recording contacts was observed across the cortex, some regions were less affected by this rule, such as the insula for which almost all efferent and afferent connections were faster than 10 ms. Synaptic time constants were found to be shorter in the sensorimotor, medial occipital and latero-temporal regions, than in other cortical areas. Finally, we found that axonal conduction delays were significantly larger in the group of subjects younger than 15 years, which corroborates that brain maturation increases the speed of brain dynamics. To our knowledge, this study is the first to provide a local estimation of axonal conduction delays and synaptic time constants across the whole human cortex in vivo, based on intracerebral electrophysiological recordings.
Collapse
Affiliation(s)
- Jean-Didier Lemaréchal
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Centre MEG-EEG and Experimental Neurosurgery Team, F-75013 Paris, France.,Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France.,Aix Marseille Université, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Maciej Jedynak
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Lena Trebaul
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Anthony Boyer
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - François Tadel
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Manik Bhattacharjee
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Pierre Deman
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Viateur Tuyisenge
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Leila Ayoubian
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Etienne Hugues
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | | | - Carole Saubat
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Raouf Zouglech
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | | | - Sébastien Tourbier
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Claude Adam
- Department of Neurology, Epilepsy Unit, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France
| | - Carmen Barba
- Neuroscience Department, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Fabrice Bartolomei
- Aix Marseille Université, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.,Service de Neurophysiologie Clinique, APHM, Hôpitaux de la Timone, Marseille, France
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, Université Paris V Descartes, Sorbonne Paris Cité, Paris, France
| | - Jonathan Curot
- Department of Neurophysiological Explorations, CerCo, CNRS, UMR5549, Centre Hospitalier Universitaire de Toulouse and University of Toulouse, Toulouse, France
| | - François Dubeau
- Montreal Neurological Institute and Hospital, Montreal, Canada
| | - Stefano Francione
- 'Claudio Munari' Centre for Epilepsy Surgery; Neuroscience Department, GOM, Niguarda, Milano, Italy
| | - Mercedes Garcés
- Multidisciplinary Epilepsy Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Edouard Hirsch
- University Hospital, Department of Neurology, Strasbourg, France
| | | | - Sinclair Liu
- Canton Sanjiu Brain Hospital Epilepsy Center, Jinan University, Guangzhou, China
| | - Louis Maillard
- Centre Hospitalier Universitaire de Nancy, Nancy, France
| | | | - Ioana Mindruta
- Neurology Department, University Emergency Hospital, Bucharest, Romania
| | - Anca Nica
- Neurology Department, CIC 1414, Rennes University Hospital; LTSI, INSERM U 1099, F-35000 Rennes, France
| | - Martin Pail
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
| | | | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Lyon's Neurosciences Research Center, INSERM U1028/CNRS UMR5292/Lyon 1 University, Lyon, France
| | - Rodrigo Rocamora
- Epilepsy Monitoring Unit, Department of Neurology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - William Szurhaj
- Epilepsy Unit, Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France
| | - Delphine Taussig
- Neurophysiology and Epilepsy Unit, Bicêtre Hospital, France.,Service de Neurochirurgie Pédiatrique, Fondation Rothschild, Paris, France
| | - Antonio Valentin
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), London, UK
| | - Haixiang Wang
- Yuquan Hospital Epilepsy Center, Tsinghua University, Beijing, China
| | - Philippe Kahane
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France.,Neurology Department, CHU Grenoble Alpes, Grenoble, France
| | - Nathalie George
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Centre MEG-EEG and Experimental Neurosurgery Team, F-75013 Paris, France
| | - Olivier David
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France.,Aix Marseille Université, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | | |
Collapse
|
18
|
Parasuram H, Gopinath S, Pillai A, Diwakar S, Kumar A. Quantification of Epileptogenic Network From Stereo EEG Recordings Using Epileptogenicity Ranking Method. Front Neurol 2021; 12:738111. [PMID: 34803883 PMCID: PMC8595106 DOI: 10.3389/fneur.2021.738111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Precise localization of the epileptogenic zone is very essential for the success of epilepsy surgery. Epileptogenicity index (EI) computationally estimates epileptogenicity of brain structures based on the temporal domain parameters and magnitude of ictal discharges. This method works well in cases of mesial temporal lobe epilepsy but it showed reduced accuracy in neocortical epilepsy. To overcome this scenario, in this study, we propose Epileptogenicity Rank (ER), a modified method of EI for quantifying epileptogenicity, that is based on spatio-temporal properties of Stereo EEG (SEEG). Methods: Energy ratio during ictal discharges, the time of involvement and Euclidean distance between brain structures were used to compute the ER. Retrospectively, we localized the EZ for 33 patients (9 for mesial-temporal lobe epilepsy and 24 for neocortical epilepsy) using post op MRI and Engel 1 surgical outcome at a mean of 40.9 months and then optimized the ER in this group. Results: Epileptic network estimation based on ER successfully differentiated brain regions involved in the seizure onset from the propagation network. ER was calculated at multiple thresholds leading to an optimum value that differentiated the seizure onset from the propagation network. We observed that ER < 7.1 could localize the EZ in neocortical epilepsy with a sensitivity of 94.6% and specificity of 98.3% and ER < 7.3 in mesial temporal lobe epilepsy with a sensitivity of 95% and specificity of 98%. In non-seizure-free patients, the EZ localization based on ER pointed to brain area beyond the cortical resections. Significance: Methods like ER can improve the accuracy of EZ localization for brain resection and increase the precision of minimally invasive surgery techniques (radio-frequency or laser ablation) by identifying the epileptic hubs where the lesion is extensive or in nonlesional cases. For inclusivity with other clinical applications, this ER method has to be studied in more patients.
Collapse
Affiliation(s)
- Harilal Parasuram
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Siby Gopinath
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Ashok Pillai
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Department of Neurosurgery, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Shyam Diwakar
- Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Anand Kumar
- Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Kollam, India
| |
Collapse
|
19
|
Armonaite K, Bertoli M, Paulon L, Gianni E, Balsi M, Conti L, Tecchio F. Neuronal Electrical Ongoing Activity as Cortical Areas Signature: An Insight from MNI Intracerebral Recording Atlas. Cereb Cortex 2021; 32:2895-2906. [PMID: 34727186 DOI: 10.1093/cercor/bhab389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/14/2022] Open
Abstract
The time course of the neuronal activity in the brain network, the neurodynamics, reflects the structure and functionality of the generating neuronal pools. Here, using the intracranial stereo-electroencephalographic (sEEG) recordings of the public Montreal Neurological Institute (MNI) atlas, we investigated the neurodynamics of primary motor (M1), somatosensory (S1) and auditory (A1) cortices measuring power spectral densities (PSD) and Higuchi fractal dimension (HFD) in the same subject (M1 vs. S1 in 16 subjects, M1 vs. A1 in 9, S1 vs. A1 in 6). We observed specific spectral features in M1, which prevailed above beta band, S1 in the alpha band, and A1 in the delta band. M1 HFD was higher than S1, both higher than A1. A clear distinction of neurodynamics properties of specific primary cortices supports the efforts in cortical parceling based on this expression of the local cytoarchitecture and connectivity. In this perspective, we selected within the MNI intracortical database a first set of primary motor, somatosensory and auditory cortices' representatives to query in recognizing ongoing patterns of neuronal communication. Potential clinical impact stands primarily in exploiting such exchange patterns to enhance the efficacy of neuromodulation intervention to cure symptoms secondary to neuronal activity unbalances.
Collapse
Affiliation(s)
| | - Massimo Bertoli
- Laboratory of Electrophysiology for Translational NeuroScience (LET'S), Institute of Cognitive Sciences and Technologies - Consiglio Nazionale delle Ricerche, Rome 00185, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University 'Gabriele D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy
| | - Luca Paulon
- Laboratory of Electrophysiology for Translational NeuroScience (LET'S), Institute of Cognitive Sciences and Technologies - Consiglio Nazionale delle Ricerche, Rome 00185, Italy
| | - Eugenia Gianni
- Laboratory of Electrophysiology for Translational NeuroScience (LET'S), Institute of Cognitive Sciences and Technologies - Consiglio Nazionale delle Ricerche, Rome 00185, Italy.,Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome 00128, Italy
| | - Marco Balsi
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University, Rome 00185, Italy
| | - Livio Conti
- Faculty of Engineering, Uninettuno University, Rome 00186, Italy.,INFN - Istituto Nazionale di Fisica Nucleare, Sezione Roma Tor Vergata, Rome 00133, Italy
| | - Franca Tecchio
- Laboratory of Electrophysiology for Translational NeuroScience (LET'S), Institute of Cognitive Sciences and Technologies - Consiglio Nazionale delle Ricerche, Rome 00185, Italy
| |
Collapse
|
20
|
Gerster M, Taher H, Škoch A, Hlinka J, Guye M, Bartolomei F, Jirsa V, Zakharova A, Olmi S. Patient-Specific Network Connectivity Combined With a Next Generation Neural Mass Model to Test Clinical Hypothesis of Seizure Propagation. Front Syst Neurosci 2021; 15:675272. [PMID: 34539355 PMCID: PMC8440880 DOI: 10.3389/fnsys.2021.675272] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
Dynamics underlying epileptic seizures span multiple scales in space and time, therefore, understanding seizure mechanisms requires identifying the relations between seizure components within and across these scales, together with the analysis of their dynamical repertoire. In this view, mathematical models have been developed, ranging from single neuron to neural population. In this study, we consider a neural mass model able to exactly reproduce the dynamics of heterogeneous spiking neural networks. We combine mathematical modeling with structural information from non invasive brain imaging, thus building large-scale brain network models to explore emergent dynamics and test the clinical hypothesis. We provide a comprehensive study on the effect of external drives on neuronal networks exhibiting multistability, in order to investigate the role played by the neuroanatomical connectivity matrices in shaping the emergent dynamics. In particular, we systematically investigate the conditions under which the network displays a transition from a low activity regime to a high activity state, which we identify with a seizure-like event. This approach allows us to study the biophysical parameters and variables leading to multiple recruitment events at the network level. We further exploit topological network measures in order to explain the differences and the analogies among the subjects and their brain regions, in showing recruitment events at different parameter values. We demonstrate, along with the example of diffusion-weighted magnetic resonance imaging (dMRI) connectomes of 20 healthy subjects and 15 epileptic patients, that individual variations in structural connectivity, when linked with mathematical dynamic models, have the capacity to explain changes in spatiotemporal organization of brain dynamics, as observed in network-based brain disorders. In particular, for epileptic patients, by means of the integration of the clinical hypotheses on the epileptogenic zone (EZ), i.e., the local network where highly synchronous seizures originate, we have identified the sequence of recruitment events and discussed their links with the topological properties of the specific connectomes. The predictions made on the basis of the implemented set of exact mean-field equations turn out to be in line with the clinical pre-surgical evaluation on recruited secondary networks.
Collapse
Affiliation(s)
- Moritz Gerster
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
| | - Halgurd Taher
- Inria Sophia Antipolis Méditerranée Research Centre, MathNeuro Team, Valbonne, France
| | - Antonín Škoch
- National Institute of Mental Health, Klecany, Czechia
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Jaroslav Hlinka
- National Institute of Mental Health, Klecany, Czechia
- Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
| | - Maxime Guye
- Faculté de Médecine de la Timone, Centre de Résonance Magnétique et Biologique et Médicale (CRMBM, UMR CNRS-AMU 7339), Medical School of Marseille, Aix-Marseille Université, Marseille, France
- Assistance Publique -Hôpitaux de Marseille, Hôpital de la Timone, Pôle d'Imagerie, Marseille, France
| | - Fabrice Bartolomei
- Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, Service de Neurophysiologie Clinique, Marseille, France
| | - Viktor Jirsa
- Aix Marseille Université, Inserm, Institut de Neurosciences des Systèmes, UMRS 1106, Marseille, France
| | - Anna Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
| | - Simona Olmi
- Inria Sophia Antipolis Méditerranée Research Centre, MathNeuro Team, Valbonne, France
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Sesto Fiorentino, Italy
| |
Collapse
|
21
|
Structural Connectivity Alterations in Operculo-Insular Epilepsy. Brain Sci 2021; 11:brainsci11081041. [PMID: 34439659 PMCID: PMC8392362 DOI: 10.3390/brainsci11081041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
Operculo-insular epilepsy (OIE) is an under-recognized condition that can mimic temporal and extratemporal epilepsies. Previous studies have revealed structural connectivity changes in the epileptic network of focal epilepsy. However, most reports use the debated streamline-count to quantify ‘connectivity strength’ and rely on standard tracking algorithms. We propose a sophisticated cutting-edge method that is robust to crossing fibers, optimizes cortical coverage, and assigns an accurate microstructure-reflecting quantitative conectivity marker, namely the COMMIT (Convex Optimization Modeling for Microstructure Informed Tractography)-weight. Using our pipeline, we report the connectivity alterations in OIE. COMMIT-weighted matrices were created in all participants (nine patients with OIE, eight patients with temporal lobe epilepsy (TLE), and 22 healthy controls (HC)). In the OIE group, widespread increases in ‘connectivity strength’ were observed bilaterally. In OIE patients, ‘hyperconnections’ were observed between the insula and the pregenual cingulate gyrus (OIE group vs. HC group) and between insular subregions (OIE vs. TLE). Graph theoretic analyses revealed higher connectivity within insular subregions of OIE patients (OIE vs. TLE). We reveal, for the first time, the structural connectivity distribution in OIE. The observed pattern of connectivity in OIE likely reflects a diffuse epileptic network incorporating insular-connected regions and may represent a structural signature and diagnostic biomarker.
Collapse
|
22
|
Tait L, Lopes MA, Stothart G, Baker J, Kazanina N, Zhang J, Goodfellow M. A large-scale brain network mechanism for increased seizure propensity in Alzheimer's disease. PLoS Comput Biol 2021; 17:e1009252. [PMID: 34379638 PMCID: PMC8382184 DOI: 10.1371/journal.pcbi.1009252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/23/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022] Open
Abstract
People with Alzheimer's disease (AD) are 6-10 times more likely to develop seizures than the healthy aging population. Leading hypotheses largely consider hyperexcitability of local cortical tissue as primarily responsible for increased seizure prevalence in AD. However, in the general population of people with epilepsy, large-scale brain network organization additionally plays a role in determining seizure likelihood and phenotype. Here, we propose that alterations to large-scale brain network organization seen in AD may contribute to increased seizure likelihood. To test this hypothesis, we combine computational modelling with electrophysiological data using an approach that has proved informative in clinical epilepsy cohorts without AD. EEG was recorded from 21 people with probable AD and 26 healthy controls. At the time of EEG acquisition, all participants were free from seizures. Whole brain functional connectivity derived from source-reconstructed EEG recordings was used to build subject-specific brain network models of seizure transitions. As cortical tissue excitability was increased in the simulations, AD simulations were more likely to transition into seizures than simulations from healthy controls, suggesting an increased group-level probability of developing seizures at a future time for AD participants. We subsequently used the model to assess seizure propensity of different regions across the cortex. We found the most important regions for seizure generation were those typically burdened by amyloid-beta at the early stages of AD, as previously reported by in-vivo and post-mortem staging of amyloid plaques. Analysis of these spatial distributions also give potential insight into mechanisms of increased susceptibility to generalized (as opposed to focal) seizures in AD vs controls. This research suggests avenues for future studies testing patients with seizures, e.g. co-morbid AD/epilepsy patients, and comparisons with PET and MRI scans to relate regional seizure propensity with AD pathologies.
Collapse
Affiliation(s)
- Luke Tait
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
| | - Marinho A. Lopes
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
| | - George Stothart
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - John Baker
- Dementia Research Centre, Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Nina Kazanina
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
| | - Marc Goodfellow
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
23
|
Ictal gamma-band interactions localize ictogenic nodes of the epileptic network in focal cortical dysplasia. Clin Neurophysiol 2021; 132:1927-1936. [PMID: 34157635 DOI: 10.1016/j.clinph.2021.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/18/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Epilepsy surgery fails in > 30% of patients with focal cortical dysplasia (FCD). The seizure persistence after surgery can be attributed to the inability to precisely localize the tissue with an endogenous potential to generate seizures. In this study, we aimed to identify the critical components of the epileptic network that were actively involved in seizure genesis. METHODS The directed transfer function was applied to intracranial EEG recordings and the effective connectivity was determined with a high temporal and frequency resolution. Pre-ictal network properties were compared with ictal epochs to identify regions actively generating ictal activity and discriminate them from the areas of propagation. RESULTS Analysis of 276 seizures from 30 patients revealed the existence of a seizure-related network reconfiguration in the gamma-band (25-170 Hz; p < 0.005) - ictogenic nodes. Unlike seizure onset zone, resecting the majority of ictogenic nodes correlated with favorable outcomes (p < 0.012). CONCLUSION The prerequisite to successful epilepsy surgery is the accurate identification of brain areas from which seizures arise. We show that in FCD-related epilepsy, gamma-band network markers can reliably identify and distinguish ictogenic areas in macroelectrode recordings, improve intracranial EEG interpretation and better delineate the epileptogenic zone. SIGNIFICANCE Ictogenic nodes localize the critical parts of the epileptogenic tissue and increase the diagnostic yield of intracranial evaluation.
Collapse
|
24
|
Chen X, Wang Y, Kopetzky SJ, Butz-Ostendorf M, Kaiser M. Connectivity within regions characterizes epilepsy duration and treatment outcome. Hum Brain Mapp 2021; 42:3777-3791. [PMID: 33973688 PMCID: PMC8288103 DOI: 10.1002/hbm.25464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 11/11/2022] Open
Abstract
Finding clear connectome biomarkers for temporal lobe epilepsy (TLE) patients, in particular at early disease stages, remains a challenge. Currently, the whole-brain structural connectomes are analyzed based on coarse parcellations (up to 1,000 nodes). However, such global parcellation-based connectomes may be unsuitable for detecting more localized changes in patients. Here, we use a high-resolution network (~50,000-nodes overall) to identify changes at the local level (within brain regions) and test its relation with duration and surgical outcome. Patients with TLE (n = 33) and age-, sex-matched healthy subjects (n = 36) underwent high-resolution (~50,000 nodes) structural network construction based on deterministic tracking of diffusion tensor imaging. Nodes were allocated to 68 cortical regions according to the Desikan-Killany atlas. The connectivity within regions was then used to predict surgical outcome. MRI processing, network reconstruction, and visualization of network changes were integrated into the NICARA (https://nicara.eu). Lower clustering coefficient and higher edge density were found for local connectivity within regions in patients, but were absent for the global network between regions (68 cortical regions). Local connectivity changes, in terms of the number of changed regions and the magnitude of changes, increased with disease duration. Local connectivity yielded a better surgical outcome prediction (Mean value: 95.39% accuracy, 92.76% sensitivity, and 100% specificity) than global connectivity. Connectivity within regions, compared to structural connectivity between brain regions, can be a more efficient biomarker for epilepsy assessment and surgery outcome prediction of medically intractable TLE.
Collapse
Affiliation(s)
- Xue Chen
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, China.,School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Yanjiang Wang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, China
| | - Sebastian J Kopetzky
- Biomax Informatics AG, Brain Science, Planegg, Germany.,TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | | | - Marcus Kaiser
- School of Computing, Newcastle University, Newcastle upon Tyne, UK.,NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Sip V, Hashemi M, Vattikonda AN, Woodman MM, Wang H, Scholly J, Medina Villalon S, Guye M, Bartolomei F, Jirsa VK. Data-driven method to infer the seizure propagation patterns in an epileptic brain from intracranial electroencephalography. PLoS Comput Biol 2021; 17:e1008689. [PMID: 33596194 PMCID: PMC7920393 DOI: 10.1371/journal.pcbi.1008689] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/01/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
Surgical interventions in epileptic patients aimed at the removal of the epileptogenic zone have success rates at only 60-70%. This failure can be partly attributed to the insufficient spatial sampling by the implanted intracranial electrodes during the clinical evaluation, leading to an incomplete picture of spatio-temporal seizure organization in the regions that are not directly observed. Utilizing the partial observations of the seizure spreading through the brain network, complemented by the assumption that the epileptic seizures spread along the structural connections, we infer if and when are the unobserved regions recruited in the seizure. To this end we introduce a data-driven model of seizure recruitment and propagation across a weighted network, which we invert using the Bayesian inference framework. Using a leave-one-out cross-validation scheme on a cohort of 45 patients we demonstrate that the method can improve the predictions of the states of the unobserved regions compared to an empirical estimate that does not use the structural information, yet it is on the same level as the estimate that takes the structure into account. Furthermore, a comparison with the performed surgical resection and the surgery outcome indicates a link between the inferred excitable regions and the actual epileptogenic zone. The results emphasize the importance of the structural connectome in the large-scale spatio-temporal organization of epileptic seizures and introduce a novel way to integrate the patient-specific connectome and intracranial seizure recordings in a whole-brain computational model of seizure spread.
Collapse
Affiliation(s)
- Viktor Sip
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Meysam Hashemi
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | | | | - Huifang Wang
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Julia Scholly
- Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, CEMEREM, Pôle d’Imagerie Médicale, CHU, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, Service de Neurophysiologie Clinique, CHU, Marseille, France
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, Service de Neurophysiologie Clinique, CHU, Marseille, France
| | - Maxime Guye
- Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, CEMEREM, Pôle d’Imagerie Médicale, CHU, Marseille, France
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, Service de Neurophysiologie Clinique, CHU, Marseille, France
| | - Viktor K. Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
26
|
Sinha N, Wang Y, Moreira da Silva N, Miserocchi A, McEvoy AW, de Tisi J, Vos SB, Winston GP, Duncan JS, Taylor PN. Structural Brain Network Abnormalities and the Probability of Seizure Recurrence After Epilepsy Surgery. Neurology 2020; 96:e758-e771. [PMID: 33361262 PMCID: PMC7884990 DOI: 10.1212/wnl.0000000000011315] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 09/24/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We assessed preoperative structural brain networks and clinical characteristics of patients with drug-resistant temporal lobe epilepsy (TLE) to identify correlates of postsurgical seizure recurrences. METHODS We examined data from 51 patients with TLE who underwent anterior temporal lobe resection (ATLR) and 29 healthy controls. For each patient, using the preoperative structural, diffusion, and postoperative structural MRI, we generated 2 networks: presurgery network and surgically spared network. Standardizing these networks with respect to controls, we determined the number of abnormal nodes before surgery and expected to be spared by surgery. We incorporated these 2 abnormality measures and 13 commonly acquired clinical data from each patient into a robust machine learning framework to estimate patient-specific chances of seizures persisting after surgery. RESULTS Patients with more abnormal nodes had a lower chance of complete seizure freedom at 1 year and, even if seizure-free at 1 year, were more likely to relapse within 5 years. The number of abnormal nodes was greater and their locations more widespread in the surgically spared networks of patients with poor outcome than in patients with good outcome. We achieved an area under the curve of 0.84 ± 0.06 and specificity of 0.89 ± 0.09 in predicting unsuccessful seizure outcomes (International League Against Epilepsy [ILAE] 3-5) as opposed to complete seizure freedom (ILAE 1) at 1 year. Moreover, the model-predicted likelihood of seizure relapse was significantly correlated with the grade of surgical outcome at year 1 and associated with relapses up to 5 years after surgery. CONCLUSION Node abnormality offers a personalized, noninvasive marker that can be combined with clinical data to better estimate the chances of seizure freedom at 1 year and subsequent relapse up to 5 years after ATLR. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that node abnormality predicts postsurgical seizure recurrence.
Collapse
Affiliation(s)
- Nishant Sinha
- From the Translational and Clinical Research Institute (N.S.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (N.S., Y.W., N.M.d.S., P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne; NIHR University College London Hospitals Biomedical Research Centre (Y.W., A.M., A.W.M., J.d.T., S.B.V., G.P.W., J.S.D., P.N.T.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (S.B.V.), University College London; Epilepsy Society MRI Unit (S.B.V., G.P.W., J.S.D), Chalfont St Peter, UK; and Department of Medicine (G.P.W.,), Division of Neurology, Queen's University, Kingston, Ontario, Canada.
| | - Yujiang Wang
- From the Translational and Clinical Research Institute (N.S.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (N.S., Y.W., N.M.d.S., P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne; NIHR University College London Hospitals Biomedical Research Centre (Y.W., A.M., A.W.M., J.d.T., S.B.V., G.P.W., J.S.D., P.N.T.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (S.B.V.), University College London; Epilepsy Society MRI Unit (S.B.V., G.P.W., J.S.D), Chalfont St Peter, UK; and Department of Medicine (G.P.W.,), Division of Neurology, Queen's University, Kingston, Ontario, Canada
| | - Nádia Moreira da Silva
- From the Translational and Clinical Research Institute (N.S.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (N.S., Y.W., N.M.d.S., P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne; NIHR University College London Hospitals Biomedical Research Centre (Y.W., A.M., A.W.M., J.d.T., S.B.V., G.P.W., J.S.D., P.N.T.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (S.B.V.), University College London; Epilepsy Society MRI Unit (S.B.V., G.P.W., J.S.D), Chalfont St Peter, UK; and Department of Medicine (G.P.W.,), Division of Neurology, Queen's University, Kingston, Ontario, Canada
| | - Anna Miserocchi
- From the Translational and Clinical Research Institute (N.S.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (N.S., Y.W., N.M.d.S., P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne; NIHR University College London Hospitals Biomedical Research Centre (Y.W., A.M., A.W.M., J.d.T., S.B.V., G.P.W., J.S.D., P.N.T.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (S.B.V.), University College London; Epilepsy Society MRI Unit (S.B.V., G.P.W., J.S.D), Chalfont St Peter, UK; and Department of Medicine (G.P.W.,), Division of Neurology, Queen's University, Kingston, Ontario, Canada
| | - Andrew W McEvoy
- From the Translational and Clinical Research Institute (N.S.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (N.S., Y.W., N.M.d.S., P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne; NIHR University College London Hospitals Biomedical Research Centre (Y.W., A.M., A.W.M., J.d.T., S.B.V., G.P.W., J.S.D., P.N.T.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (S.B.V.), University College London; Epilepsy Society MRI Unit (S.B.V., G.P.W., J.S.D), Chalfont St Peter, UK; and Department of Medicine (G.P.W.,), Division of Neurology, Queen's University, Kingston, Ontario, Canada
| | - Jane de Tisi
- From the Translational and Clinical Research Institute (N.S.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (N.S., Y.W., N.M.d.S., P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne; NIHR University College London Hospitals Biomedical Research Centre (Y.W., A.M., A.W.M., J.d.T., S.B.V., G.P.W., J.S.D., P.N.T.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (S.B.V.), University College London; Epilepsy Society MRI Unit (S.B.V., G.P.W., J.S.D), Chalfont St Peter, UK; and Department of Medicine (G.P.W.,), Division of Neurology, Queen's University, Kingston, Ontario, Canada
| | - Sjoerd B Vos
- From the Translational and Clinical Research Institute (N.S.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (N.S., Y.W., N.M.d.S., P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne; NIHR University College London Hospitals Biomedical Research Centre (Y.W., A.M., A.W.M., J.d.T., S.B.V., G.P.W., J.S.D., P.N.T.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (S.B.V.), University College London; Epilepsy Society MRI Unit (S.B.V., G.P.W., J.S.D), Chalfont St Peter, UK; and Department of Medicine (G.P.W.,), Division of Neurology, Queen's University, Kingston, Ontario, Canada
| | - Gavin P Winston
- From the Translational and Clinical Research Institute (N.S.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (N.S., Y.W., N.M.d.S., P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne; NIHR University College London Hospitals Biomedical Research Centre (Y.W., A.M., A.W.M., J.d.T., S.B.V., G.P.W., J.S.D., P.N.T.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (S.B.V.), University College London; Epilepsy Society MRI Unit (S.B.V., G.P.W., J.S.D), Chalfont St Peter, UK; and Department of Medicine (G.P.W.,), Division of Neurology, Queen's University, Kingston, Ontario, Canada
| | - John S Duncan
- From the Translational and Clinical Research Institute (N.S.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (N.S., Y.W., N.M.d.S., P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne; NIHR University College London Hospitals Biomedical Research Centre (Y.W., A.M., A.W.M., J.d.T., S.B.V., G.P.W., J.S.D., P.N.T.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (S.B.V.), University College London; Epilepsy Society MRI Unit (S.B.V., G.P.W., J.S.D), Chalfont St Peter, UK; and Department of Medicine (G.P.W.,), Division of Neurology, Queen's University, Kingston, Ontario, Canada
| | - Peter N Taylor
- From the Translational and Clinical Research Institute (N.S.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (N.S., Y.W., N.M.d.S., P.N.T.), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne; NIHR University College London Hospitals Biomedical Research Centre (Y.W., A.M., A.W.M., J.d.T., S.B.V., G.P.W., J.S.D., P.N.T.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (S.B.V.), University College London; Epilepsy Society MRI Unit (S.B.V., G.P.W., J.S.D), Chalfont St Peter, UK; and Department of Medicine (G.P.W.,), Division of Neurology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
27
|
Berlangieri SU, Mito R, Semmelroch M, Pedersen M, Jackson G. Bottom-of-sulcus dysplasia: the role of 18F-FDG PET in identifying a focal surgically remedial epileptic lesion. Eur J Hybrid Imaging 2020; 4:23. [PMID: 34191213 PMCID: PMC8218059 DOI: 10.1186/s41824-020-00092-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/01/2020] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Bottom-of-sulcus dysplasia (BOSD) is a type of focal cortical dysplasia and an important cause of intractable epilepsy. While the MRI features of BOSD have been well documented, the contribution of PET to the identification of these small lesions has not been widely explored. The aim of this study was to investigate the role of F-18 fluorodeoxyglucose (18F-FDG) PET in the identification of BOSD. METHODS Twenty patients with BOSD underwent both 18F-FDG PET and structural MRI scans as part of preoperative planning for surgery. Visual PET analysis was performed, and patients were classified as positive if they exhibited a focal or regional hypometabolic abnormality, or negative in the absence of a hypometabolic abnormality. MRI data were reviewed to determine if any structural abnormality characteristic of BOSD were observed before and after co-registration with PET findings. RESULTS PET detected hypometabolic abnormalities consistent with the seizure focus location in 95% (19/20) of cases. Focal abnormalities were detected on 18F-FDG PET in 12/20 (60%) patients, while regional hypometabolism was evident in 7/20 (35%). BOSD lesions were missed in 20% (4/20) of cases upon initial review of MRI scans. Co-registration of 18F-FDG PET with MRI enabled detection of the BOSD in all four cases where the lesion was initially missed. CONCLUSION Our findings show that 18F-FDG PET provides additional clinical value in the localisation and detection of BOSD lesions, when used in conjunction with MRI.
Collapse
Affiliation(s)
- S U Berlangieri
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia
| | - R Mito
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
| | - M Semmelroch
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - M Pedersen
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.,Department of Psychology and Neuroscience, Auckland University of Technology, Auckland, New Zealand
| | - G Jackson
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.,Department of Neurology, Austin Health, Melbourne, VIC, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Larivière S, Bernasconi A, Bernasconi N, Bernhardt BC. Connectome biomarkers of drug-resistant epilepsy. Epilepsia 2020; 62:6-24. [PMID: 33236784 DOI: 10.1111/epi.16753] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/29/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023]
Abstract
Drug-resistant epilepsy (DRE) considerably affects patient health, cognition, and well-being, and disproportionally contributes to the overall burden of epilepsy. The most common DRE syndromes are temporal lobe epilepsy related to mesiotemporal sclerosis and extratemporal epilepsy related to cortical malformations. Both syndromes have been traditionally considered as "focal," and most patients benefit from brain surgery for long-term seizure control. However, increasing evidence indicates that many DRE patients also present with widespread structural and functional network disruptions. These anomalies have been suggested to relate to cognitive impairment and prognosis, highlighting their importance for patient management. The advent of multimodal neuroimaging and formal methods to quantify complex systems has offered unprecedented ability to profile structural and functional brain networks in DRE patients. Here, we performed a systematic review on existing DRE network biomarker candidates and their contribution to three key application areas: (1) modeling of cognitive impairments, (2) localization of the surgical target, and (3) prediction of clinical and cognitive outcomes after surgery. Although network biomarkers hold promise for a range of clinical applications, translation of neuroimaging biomarkers to the patient's bedside has been challenged by a lack of clinical and prospective studies. We therefore close by highlighting conceptual and methodological strategies to improve the evaluation and accessibility of network biomarkers, and ultimately guide clinically actionable decisions.
Collapse
Affiliation(s)
- Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Sangare A, Marchi A, Pruvost-Robieux E, Soufflet C, Crepon B, Ramdani C, Chassoux F, Turak B, Landre E, Gavaret M. The Effectiveness of Vagus Nerve Stimulation in Drug-Resistant Epilepsy Correlates with Vagus Nerve Stimulation-Induced Electroencephalography Desynchronization. Brain Connect 2020; 10:566-577. [PMID: 33073582 PMCID: PMC7757623 DOI: 10.1089/brain.2020.0798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction: VNS is an adjunctive neuromodulation therapy for patients with drug-refractory epilepsy. The antiseizure effect of VNS is thought to be related to a diffuse modulation of functional connectivity but remains to be confirmed. Aim: To investigate electroencephalographic (EEG) metrics of functional connectivity in patients with drug-refractory epilepsy treated by vagus nerve stimulation (VNS), between VNS-stimulated “ON” and nonstimulated “OFF” periods and between responder (R) and nonresponder (NR) patients. Methods: Scalp-EEG was performed for 35 patients treated by VNS, using 21 channels and 2 additional electrodes on the neck to detect the VNS stimulation. Patients were defined as VNS responders if a reduction of seizure frequency of ∼50% was documented. We analyzed the synchronization in EEG time series during “ON” and “OFF” periods of stimulation, using average phase lag index (PLI) in signal space and phase-locking value (PLV) between 10 sources. Based on graph theory, we computed brain network models and analyzed minimum spanning tree (MST) for responder and nonresponder patients. Results: Among 35 patients treated by VNS for a median time of 7 years (range 4 months to 22 years), 20 were R and 15 were NR. For responder patients, PLI during ON periods was significantly lower than that during OFF periods in delta (p = 0.009), theta (p = 0.02), and beta (p = 0.04) frequency bands. For nonresponder patients, there were no significant differences between ON and OFF periods. Moreover, variations of seizure frequency with VNS correlated with the PLI OFF/ON ratio in delta (p = 0.02), theta (p = 0.04), and beta (p = 0.03) frequency bands. Our results were confirmed using PLV in theta band (p < 0.05). No significant differences in MST were observed between R and NR patients. Conclusion: The correlation between VNS-induced interictal EEG time-series desynchronization and decrease in seizure frequency suggested that VNS therapeutic impact might be related to changes in interictal functional connectivity.
Collapse
Affiliation(s)
- Aude Sangare
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Angela Marchi
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Estelle Pruvost-Robieux
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France.,Université de Paris, Paris, France
| | - Christine Soufflet
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Benoit Crepon
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Céline Ramdani
- Institut de Recherche Biomédicale des Armées (IRBA), Paris, France
| | - Francine Chassoux
- Neurosurgery and Epileptology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Baris Turak
- Neurosurgery and Epileptology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Elisabeth Landre
- Neurosurgery and Epileptology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Martine Gavaret
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France.,Université de Paris, Paris, France.,INSERM UMR 1266, IPNP, Paris, France
| |
Collapse
|
30
|
Roodakker KR, Ezra B, Gauffin H, Latini F, Zetterling M, Berntsson S, Landtblom AM. Ecstatic and gelastic seizures related to the hypothalamus. Epilepsy Behav Rep 2020; 16:100400. [PMID: 35028554 PMCID: PMC8714766 DOI: 10.1016/j.ebr.2020.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ecstatic seizures constitute a rare form of epilepsy, and the semiology is diverse. Previously, brain areas including the temporal lobe and the insula have been identified to be involved in clinical expression. The aim of this report is to review changes in ecstatic seizures in a patient before and after operation for a hypothalamic hamartoma, and to scrutinize the relation to gelastic seizures. In this case, the ecstatic seizures disappeared after surgery of the hamartoma but reappeared eleven years later. Clinical information was retrospectively obtained from medical records, interviews, and a questionnaire covering seizure semiology that pertained to ecstatic and gelastic seizures. Our findings imply a possible connection between gelastic and ecstatic seizures, originating from a hypothalamic hamartoma. To our knowledge, this location has not previously been described in ecstatic seizures. Gelastic seizures may in this case be associated with ecstatic seizures. We speculate that patients with ecstatic seizures may have an ictal activation of neuronal networks that involve the insula. Our case may add information to the knowledge concerning ecstatic seizures.
Collapse
Affiliation(s)
- Kenney Roy Roodakker
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, Uppsala, Sweden
| | - Bisrat Ezra
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, Uppsala, Sweden
| | - Helena Gauffin
- Department of Neurology and Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Francesco Latini
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Maria Zetterling
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Shala Berntsson
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, Uppsala, Sweden
| | - Anne-Marie Landtblom
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, Uppsala, Sweden
- Department of Neurology and Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Neurology Division, Clinic of Medical Specialist, Motala General Hospital, Motala, Sweden
| |
Collapse
|
31
|
Ramaraju S, Wang Y, Sinha N, McEvoy AW, Miserocchi A, de Tisi J, Duncan JS, Rugg-Gunn F, Taylor PN. Removal of Interictal MEG-Derived Network Hubs Is Associated With Postoperative Seizure Freedom. Front Neurol 2020; 11:563847. [PMID: 33071948 PMCID: PMC7543719 DOI: 10.3389/fneur.2020.563847] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/20/2020] [Indexed: 01/21/2023] Open
Abstract
Objective: To investigate whether MEG network connectivity was associated with epilepsy duration, to identify functional brain network hubs in patients with refractory focal epilepsy, and assess if their surgical removal was associated with post-operative seizure freedom. Methods: We studied 31 patients with drug refractory focal epilepsy who underwent resting state magnetoencephalography (MEG), and structural magnetic resonance imaging (MRI) as part of pre-surgical evaluation. Using the structural MRI, we generated 114 cortical regions of interest, performed surface reconstruction and MEG source localization. Representative source localized signals for each region were correlated with each other to generate a functional brain network. We repeated this procedure across three randomly chosen one-minute epochs. Network hubs were defined as those with the highest intra-hemispheric mean correlations. Post-operative MRI identified regions that were surgically removed. Results: Greater mean MEG network connectivity was associated with a longer duration of epilepsy. Patients who were seizure free after surgery had more hubs surgically removed than patients who were not seizure free (AUC = 0.76, p = 0.01) consistently across three randomly chosen time segments. Conclusion: Our results support a growing literature implicating network hub involvement in focal epilepsy, the removal of which by surgery is associated with greater chance of post-operative seizure freedom.
Collapse
Affiliation(s)
- Sriharsha Ramaraju
- Interdisciplinary Computing and Complex BioSystems Group, CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yujiang Wang
- Interdisciplinary Computing and Complex BioSystems Group, CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom.,Faculty of Medical Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nishant Sinha
- Interdisciplinary Computing and Complex BioSystems Group, CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom.,Faculty of Medical Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew W McEvoy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Anna Miserocchi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Fergus Rugg-Gunn
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Peter N Taylor
- Interdisciplinary Computing and Complex BioSystems Group, CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom.,Faculty of Medical Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
32
|
|
33
|
Aydin Ü, Pellegrino G, Ali OBK, Abdallah C, Dubeau F, Lina JM, Kobayashi E, Grova C. Magnetoencephalography resting state connectivity patterns as indicatives of surgical outcome in epilepsy patients. J Neural Eng 2020; 17:035007. [PMID: 32191632 DOI: 10.1088/1741-2552/ab8113] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Focal epilepsy is a disorder affecting several brain networks; however, epilepsy surgery usually targets a restricted region, the so-called epileptic focus. There is a growing interest in embedding resting state (RS) connectivity analysis into pre-surgical workup. APPROACH In this retrospective study, we analyzed Magnetoencephalography (MEG) long-range RS functional connectivity patterns in patients with drug-resistant focal epilepsy. MEG recorded prior to surgery from seven seizure-free (Engel Ia) and five non seizure-free (Engel III or IV) patients were analyzed (minimum 2-years post-surgical follow-up). MEG segments without any detectable epileptic activity were source localized using wavelet-based Maximum Entropy on the Mean method. Amplitude envelope correlation in the theta (4-8 Hz), alpha (8-13 Hz), and beta (13-26 Hz) bands were used for assessing connectivity. MAIN RESULTS For seizure-free patients, we found an isolated epileptic network characterized by weaker connections between the brain region where interictal epileptic discharges (IED) are generated and the rest of the cortex, when compared to connectivity between the corresponding contralateral homologous region and the rest of the cortex. Contrarily, non seizure-free patients exhibited a widespread RS epileptic network characterized by stronger connectivity between the IED generator and the rest of the cortex, in comparison to the contralateral region and the cortex. Differences between the two seizure outcome groups concerned mainly distant long-range connections and were found in the alpha-band. SIGNIFICANCE Importantly, these connectivity patterns suggest specific mechanisms describing the underlying organization of the epileptic network and were detectable at the individual patient level, supporting the prospect use of MEG connectivity patterns in epilepsy to predict post-surgical seizure outcome.
Collapse
Affiliation(s)
- Ümit Aydin
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Québec, Canada. Authors to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Dynamical Mechanisms of Interictal Resting-State Functional Connectivity in Epilepsy. J Neurosci 2020; 40:5572-5588. [PMID: 32513827 PMCID: PMC7363471 DOI: 10.1523/jneurosci.0905-19.2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Drug-resistant focal epilepsy is a large-scale brain networks disorder characterized by altered spatiotemporal patterns of functional connectivity (FC), even during interictal resting state (RS). Although RS-FC-based metrics can detect these changes, results from RS functional magnetic resonance imaging (RS-fMRI) studies are unclear and difficult to interpret, and the underlying dynamical mechanisms are still largely unknown. To better capture the RS dynamics, we phenomenologically extended the neural mass model of partial seizures, the Epileptor, by including two neuron subpopulations of epileptogenic and nonepileptogenic type, making it capable of producing physiological oscillations in addition to the epileptiform activity. Using the neuroinformatics platform The Virtual Brain, we reconstructed 14 epileptic and 5 healthy human (of either sex) brain network models (BNMs), based on individual anatomical connectivity and clinically defined epileptogenic heatmaps. Through systematic parameter exploration and fitting to neuroimaging data, we demonstrated that epileptic brains during interictal RS are associated with lower global excitability induced by a shift in the working point of the model, indicating that epileptic brains operate closer to a stable equilibrium point than healthy brains. Moreover, we showed that functional networks are unaffected by interictal spikes, corroborating previous experimental findings; additionally, we observed higher excitability in epileptogenic regions, in agreement with the data. We shed light on new dynamical mechanisms responsible for altered RS-FC in epilepsy, involving the following two key factors: (1) a shift of excitability of the whole brain leading to increased stability; and (2) a locally increased excitability in the epileptogenic regions supporting the mixture of hyperconnectivity and hypoconnectivity in these areas. SIGNIFICANCE STATEMENT Advances in functional neuroimaging provide compelling evidence for epilepsy-related brain network alterations, even during the interictal resting state (RS). However, the dynamical mechanisms underlying these changes are still elusive. To identify local and network processes behind the RS-functional connectivity (FC) spatiotemporal patterns, we systematically manipulated the local excitability and the global coupling in the virtual human epileptic patient brain network models (BNMs), complemented by the analysis of the impact of interictal spikes and fitting to the neuroimaging data. Our results suggest that a global shift of the dynamic working point of the brain model, coupled with locally hyperexcitable node dynamics of the epileptogenic networks, provides a mechanistic explanation of the epileptic processes during the interictal RS period. These, in turn, are associated with the changes in FC.
Collapse
|
35
|
Kini LG, Bernabei JM, Mikhail F, Hadar P, Shah P, Khambhati AN, Oechsel K, Archer R, Boccanfuso J, Conrad E, Shinohara RT, Stein JM, Das S, Kheder A, Lucas TH, Davis KA, Bassett DS, Litt B. Virtual resection predicts surgical outcome for drug-resistant epilepsy. Brain 2020; 142:3892-3905. [PMID: 31599323 DOI: 10.1093/brain/awz303] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/11/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022] Open
Abstract
Patients with drug-resistant epilepsy often require surgery to become seizure-free. While laser ablation and implantable stimulation devices have lowered the morbidity of these procedures, seizure-free rates have not dramatically improved, particularly for patients without focal lesions. This is in part because it is often unclear where to intervene in these cases. To address this clinical need, several research groups have published methods to map epileptic networks but applying them to improve patient care remains a challenge. In this study we advance clinical translation of these methods by: (i) presenting and sharing a robust pipeline to rigorously quantify the boundaries of the resection zone and determining which intracranial EEG electrodes lie within it; (ii) validating a brain network model on a retrospective cohort of 28 patients with drug-resistant epilepsy implanted with intracranial electrodes prior to surgical resection; and (iii) sharing all neuroimaging, annotated electrophysiology, and clinical metadata to facilitate future collaboration. Our network methods accurately forecast whether patients are likely to benefit from surgical intervention based on synchronizability of intracranial EEG (area under the receiver operating characteristic curve of 0.89) and provide novel information that traditional electrographic features do not. We further report that removing synchronizing brain regions is associated with improved clinical outcome, and postulate that sparing desynchronizing regions may further be beneficial. Our findings suggest that data-driven network-based methods can identify patients likely to benefit from resective or ablative therapy, and perhaps prevent invasive interventions in those unlikely to do so.
Collapse
Affiliation(s)
- Lohith G Kini
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA.,Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
| | - John M Bernabei
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA.,Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Fadi Mikhail
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA.,Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia PA 19104, USA
| | - Peter Hadar
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA.,Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia PA 19104, USA
| | - Preya Shah
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA.,Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Ankit N Khambhati
- Department of Neurological Surgery, University of California San Francisco, San Francisco CA 94143, USA
| | - Kelly Oechsel
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA.,Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia PA 19104, USA
| | - Ryan Archer
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA.,Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia PA 19104, USA
| | - Jacqueline Boccanfuso
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA.,Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia PA 19104, USA
| | - Erin Conrad
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia PA 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia PA 19104, USA.,Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Joel M Stein
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia PA 19104, USA
| | - Sandhitsu Das
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia PA 19104, USA
| | - Ammar Kheder
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia PA 19104, USA
| | - Timothy H Lucas
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia PA 19104, USA
| | - Kathryn A Davis
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA.,Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia PA 19104, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia PA 19104, USA.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia PA 19104, USA.,Department of Psychiatry, Hospital of the University of Pennsylvania, Philadelphia PA 19104, USA
| | - Brian Litt
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA.,Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA.,Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia PA 19104, USA.,Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia PA 19104, USA
| |
Collapse
|
36
|
Relationship between PET metabolism and SEEG epileptogenicity in focal lesional epilepsy. Eur J Nucl Med Mol Imaging 2020; 47:3130-3142. [DOI: 10.1007/s00259-020-04791-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/26/2020] [Indexed: 12/27/2022]
|
37
|
Roodakker KR, Ezra B, Gauffin H, Latini F, Zetterling M, Berntsson S, Landtblom AM. Ecstatic and gelastic seizures relate to the hypothalamus. Epilepsy Behav Rep 2020; 14:100358. [PMID: 32368731 PMCID: PMC7186513 DOI: 10.1016/j.ebr.2020.100358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/21/2020] [Accepted: 02/28/2020] [Indexed: 11/27/2022] Open
Abstract
Ecstatic seizures constitute a rare form of epilepsy, and the semiology is diverse. Previously, brain areas including the temporal lobe and the insula have been identified to be involved in clinical expression. The aim of this report is to review changes in ecstatic seizures in a patient before and after operation of a hypothalamic hamartoma, and to scrutinize the relation to gelastic seizures. In this case, the ecstatic seizures disappeared after surgery of the hamartoma but reappeared eleven years later. Clinical information was retrospectively obtained from medical records, interviews, and a questionnaire covering seizure semiology that pertained to ecstatic and gelastic seizures. Our findings imply a possible connection between gelastic and ecstatic seizures, originating from a hypothalamic hamartoma. To our knowledge, this location has not previously been described in ecstatic seizures. Gelastic seizures may in this case were associated with ecstatic seizures. We speclate patients with ecstatic seizures may have an ictal activation of neuronal networks that involves the insula. Our case may add information to the growing knowledge concerning ecstatic seizures.
Collapse
Affiliation(s)
- Kenney Roy Roodakker
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, Uppsala, Sweden
| | - Bisrat Ezra
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, Uppsala, Sweden
| | - Helena Gauffin
- Department of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Francesco Latini
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Maria Zetterling
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Shala Berntsson
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, Uppsala, Sweden
| | - Anne-Marie Landtblom
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, Uppsala, Sweden.,Department of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Sweden.,Neurology division, Clinic of Medical Specialist, Motala General Hospital, Motala, Sweden
| |
Collapse
|
38
|
Zhang LP, Jia Y, Huang H, Li DW, Wang YP. Clinical Classifications of Children With Psychogenic Non-epileptic Seizure. Front Pediatr 2020; 8:596781. [PMID: 33569360 PMCID: PMC7868414 DOI: 10.3389/fped.2020.596781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022] Open
Abstract
Objective: To analyze the clinical features of children with psychogenic non-epileptic seizures in one tertiary center in China. Methods: Clinical data including medical records and video- electroencephalograph (video-EEG) monitoring records of 88 pediatric PNES patients hospitalized in the pediatric department of Xuanwu Hospital, Beijing, China from April, 2012 to April, 2018 were collected in this study. Demographic information of patients, semiological classification, duration, and frequency of symptoms, risk factors as well as comorbidity were summarized and analyzed. Results: For semiological classification, all PNES related symptoms were divided into different categories: motor symptoms, unresponsiveness, sensory symptoms, visceral symptoms, and abnormal behaviors, among which motor symptoms were the most prevalent form. Risk factors were reviewed and categorized into two groups: persistent factors and predisposing factors, and patients were most frequently affected by the influences of families. The duration and frequency of symptoms varied substantially within PNES patients while the average time of duration was relatively longer than epilepsy as reported previously. Epilepsy was considered as the most frequent comorbidity of PNES and PNES patients misdiagnosed as epilepsy often mistreated with antiseizure medication. Significance: Our study showed that motor PNES are the most frequent seizure type. Family issues were a risk factor for PNES. Epilepsy was the most frequent co-existing neurological comorbidity.
Collapse
Affiliation(s)
- Li-Ping Zhang
- Department of Pediatric, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hao Huang
- Medical Records and Statistics Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Da-Wei Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu-Ping Wang
- Department of Pediatric, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Abstract
Whole brain dynamics intuitively depend upon the internal wiring of the brain; but to which extent the individual structural connectome constrains the corresponding functional connectome is unknown, even though its importance is uncontested. After acquiring structural data from individual mice, we virtualized their brain networks and simulated in silico functional MRI data. Theoretical results were validated against empirical awake functional MRI data obtained from the same mice. We demonstrate that individual structural connectomes predict the functional organization of individual brains. Using a virtual mouse brain derived from the Allen Mouse Brain Connectivity Atlas, we further show that the dominant predictors of individual structure-function relations are the asymmetry and the weights of the structural links. Model predictions were validated experimentally using tracer injections, identifying which missing connections (not measurable with diffusion MRI) are important for whole brain dynamics in the mouse. Individual variations thus define a specific structural fingerprint with direct impact upon the functional organization of individual brains, a key feature for personalized medicine.
Collapse
|
40
|
Computational modelling in source space from scalp EEG to inform presurgical evaluation of epilepsy. Clin Neurophysiol 2019; 131:225-234. [PMID: 31812920 PMCID: PMC6941468 DOI: 10.1016/j.clinph.2019.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/26/2019] [Accepted: 10/26/2019] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The effectiveness of intracranial electroencephalography (iEEG) to inform epilepsy surgery depends on where iEEG electrodes are implanted. This decision is informed by noninvasive recording modalities such as scalp EEG. Herein we propose a framework to interrogate scalp EEG and determine epilepsy lateralization to aid in electrode implantation. METHODS We use eLORETA to map source activities from seizure epochs recorded from scalp EEG and consider 15 regions of interest (ROIs). Functional networks are then constructed using the phase-locking value and studied using a mathematical model. By removing different ROIs from the network and simulating their impact on the network's ability to generate seizures in silico, the framework provides predictions of epilepsy lateralization. We consider 15 individuals from the EPILEPSIAE database and study a total of 62 seizures. Results were assessed by taking into account actual intracranial implantations and surgical outcome. RESULTS The framework provided potentially useful information regarding epilepsy lateralization in 12 out of the 15 individuals (p=0.02, binomial test). CONCLUSIONS Our results show promise for the use of this framework to better interrogate scalp EEG to determine epilepsy lateralization. SIGNIFICANCE The framework may aid clinicians in the decision process to define where to implant electrodes for intracranial monitoring.
Collapse
|
41
|
Roger E, Pichat C, Torlay L, David O, Renard F, Banjac S, Attyé A, Minotti L, Lamalle L, Kahane P, Baciu M. Hubs disruption in mesial temporal lobe epilepsy. A resting-state fMRI study on a language-and-memory network. Hum Brain Mapp 2019; 41:779-796. [PMID: 31721361 PMCID: PMC7268007 DOI: 10.1002/hbm.24839] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/23/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) affects the brain networks at several levels and patients suffering from mTLE experience cognitive impairment for language and memory. Considering the importance of language and memory reorganization in this condition, the present study explores changes of the embedded language‐and‐memory network (LMN) in terms of functional connectivity (FC) at rest, as measured with functional MRI. We also evaluate the cognitive efficiency of the reorganization, that is, whether or not the reorganizations support or allow the maintenance of optimal cognitive functioning despite the seizure‐related damage. Data from 37 patients presenting unifocal mTLE were analyzed and compared to 48 healthy volunteers in terms of LMN‐FC using two methods: pairwise correlations (region of interest [ROI]‐to‐ROI) and graph theory. The cognitive efficiency of the LMN‐FC reorganization was measured using correlations between FC parameters and language and memory scores. Our findings revealed a large perturbation of the LMN hubs in patients. We observed a hyperconnectivity of limbic areas near the dysfunctional hippocampus and mainly a hypoconnectivity for several cortical regions remote from the dysfunctional hippocampus. The loss of FC was more important in left mTLE (L‐mTLE) than in right (R‐mTLE) patients. The LMN‐FC reorganization may not be always compensatory and not always useful for patients as it may be associated with lower cognitive performance. We discuss the different connectivity patterns obtained and conclude that interpretation of FC changes in relation to neuropsychological scores is important to determine cognitive efficiency, suggesting the concept of “connectome” would gain to be associated with a “cognitome” concept.
Collapse
Affiliation(s)
- Elise Roger
- LPNC, CNRS, UMR 5105, University Grenoble Alpes, Grenoble, France
| | - Cedric Pichat
- LPNC, CNRS, UMR 5105, University Grenoble Alpes, Grenoble, France
| | - Laurent Torlay
- LPNC, CNRS, UMR 5105, University Grenoble Alpes, Grenoble, France
| | - Olivier David
- Grenoble Institute of Neuroscience, INSERM, Brain Stimulation and System Neuroscience, University Grenoble Alpes, Grenoble, France
| | | | - Sonja Banjac
- LPNC, CNRS, UMR 5105, University Grenoble Alpes, Grenoble, France
| | | | - Lorella Minotti
- Grenoble Institute of Neuroscience, Synchronisation et Modulation des Réseaux Neuronaux dans l'Epilepsie and Neurology Department, University Grenoble Alpes, Grenoble, France
| | | | - Philippe Kahane
- Grenoble Institute of Neuroscience, Synchronisation et Modulation des Réseaux Neuronaux dans l'Epilepsie and Neurology Department, University Grenoble Alpes, Grenoble, France
| | - Monica Baciu
- LPNC, CNRS, UMR 5105, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
42
|
Bandt SK, Besson P, Ridley B, Pizzo F, Carron R, Regis J, Bartolomei F, Ranjeva JP, Guye M. Connectivity strength, time lag structure and the epilepsy network in resting-state fMRI. NEUROIMAGE-CLINICAL 2019; 24:102035. [PMID: 31795065 PMCID: PMC6881607 DOI: 10.1016/j.nicl.2019.102035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/18/2019] [Accepted: 10/09/2019] [Indexed: 01/17/2023]
Abstract
Stereo-encephalography informed high-resolution functional connectome analysis on the nodal and whole brain levels identifies consistent patterns of altered correlation strength and altered time lag architecture in epilepsy patients compared to controls. Specific patterns of altered connectivity include:.broadly distributed increased strength of correlation between the seizure onset node and the remainder of the brain. decreased time lag within the seizure onset node. globally increased time lag throughout all regions of the brain not involved in seizure onset or propagation.
Comparing the topographic distribution of findings against a functional atlas, all resting state networks were involved to a variable degree. These local and whole brain findings presented here lead us to propose the network steal hypothesis as a possible mechanistic explanation for the non-seizure clinical manifestations of epilepsy.
The relationship between the epilepsy network, intrinsic brain networks and hypersynchrony in epilepsy remains incompletely understood. To converge upon a synthesized understanding of these features, we studied two elements of functional connectivity in epilepsy: correlation and time lag structure using resting state fMRI data from both SEEG-defined epileptic brain regions and whole-brain fMRI analysis. Functional connectivity (FC) was analyzed in 15 patients with epilepsy and 36 controls. Correlation strength and time lag were selected to investigate the magnitude of and temporal interdependency across brain regions. Zone-based analysis was carried out investigating directed correlation strength and time lag between both SEEG-defined nodes of the epilepsy network and between the epileptogenic zone and all other brain regions. Findings were compared between patients and controls and against a functional atlas. FC analysis on the nodal and whole brain levels identifies consistent patterns of altered correlation strength and altered time lag architecture in epilepsy patients compared to controls. These patterns include 1) broadly distributed increased strength of correlation between the seizure onset node and the remainder of the brain, 2) decreased time lag within the seizure onset node, and 3) globally increased time lag throughout all regions of the brain not involved in seizure onset or propagation. Comparing the topographic distribution of findings against a functional atlas, all resting state networks were involved to a variable degree. These local and whole brain findings presented here lead us to propose the network steal hypothesis as a possible mechanistic explanation for the non-seizure clinical manifestations of epilepsy.
Collapse
Affiliation(s)
- S Kathleen Bandt
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA; ANISE Lab, Northwestern University, Chicago, IL, USA.
| | - Pierre Besson
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA; ANISE Lab, Northwestern University, Chicago, IL, USA; Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Ben Ridley
- CNRS, CRMBM, Aix Marseille Univ., France; AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Francesca Pizzo
- Institut de Neurosciences des Systèmes, Aix Marseille Univ., Inserm UMR 1106, INS, France; Clinical Neurophysiology, APHM, Hôpital de la Timone, Marseille, France
| | - Romain Carron
- Institut de Neurosciences des Systèmes, Aix Marseille Univ., Inserm UMR 1106, INS, France; Department of Functional and Stereotactic Neurosurgery, Timone University Hospital, Marseille, France
| | - Jean Regis
- Institut de Neurosciences des Systèmes, Aix Marseille Univ., Inserm UMR 1106, INS, France; Department of Functional and Stereotactic Neurosurgery, Timone University Hospital, Marseille, France
| | - Fabrice Bartolomei
- Institut de Neurosciences des Systèmes, Aix Marseille Univ., Inserm UMR 1106, INS, France; Clinical Neurophysiology, APHM, Hôpital de la Timone, Marseille, France
| | - Jean Philippe Ranjeva
- CNRS, CRMBM, Aix Marseille Univ., France; AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Maxime Guye
- CNRS, CRMBM, Aix Marseille Univ., France; AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France; Institut de Neurosciences des Systèmes, Aix Marseille Univ., Inserm UMR 1106, INS, France; Clinical Neurophysiology, APHM, Hôpital de la Timone, Marseille, France
| |
Collapse
|
43
|
de Bézenac C, Garcia-Finana M, Baker G, Moore P, Leek N, Mohanraj R, Bonilha L, Richardson M, Marson AG, Keller S. Investigating imaging network markers of cognitive dysfunction and pharmacoresistance in newly diagnosed epilepsy: a protocol for an observational cohort study in the UK. BMJ Open 2019; 9:e034347. [PMID: 31619436 PMCID: PMC6797398 DOI: 10.1136/bmjopen-2019-034347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Epilepsy is one of the most common serious brain disorders, characterised by seizures that severely affect a person's quality of life and, frequently, their cognitive and mental health. Although most existing work has examined chronic epilepsy, newly diagnosed patients present a unique opportunity to understand the underlying biology of epilepsy and predict effective treatment pathways. The objective of this prospective cohort study is to examine whether cognitive dysfunction is associated with measurable brain architectural and connectivity impairments at diagnosis and whether the outcome of antiepileptic drug treatment can be predicted using these measures. METHODS AND ANALYSIS 107 patients with newly diagnosed focal epilepsy from two National Health Service Trusts and 48 healthy controls (aged 16-65 years) will be recruited over a period of 30 months. Baseline assessments will include neuropsychological evaluation, structural and functional Magnetic Resonance Imaging (MRI), Electroencephalography (EEG), and a blood and saliva sample. Patients will be followed up every 6 months for a 24-month period to assess treatment outcomes. Connectivity- and network-based analyses of EEG and MRI data will be carried out and examined in relation to neuropsychological evaluation and patient treatment outcomes. Patient outcomes will also be investigated with respect to analysis of molecular isoforms of high mobility group box-1 from blood and saliva samples. ETHICS AND DISSEMINATION This study was approved by the North West, Liverpool East Research Ethics Committee (19/NW/0384) through the Integrated Research Application System (Project ID 260623). Health Research Authority (HRA) approval was provided on 22 August 2019. The project is sponsored by the UoL (UoL001449) and funded by a UK Medical Research Council (MRC) research grant (MR/S00355X/1). Findings will be presented at national and international meetings and conferences and published in peer-reviewed journals. TRIAL REGISTRATION NUMBER IRAS Project ID 260623.
Collapse
Affiliation(s)
- Christophe de Bézenac
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | - Gus Baker
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Perry Moore
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Nicola Leek
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Rajiv Mohanraj
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mark Richardson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anthony Guy Marson
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Simon Keller
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
44
|
Laiou P, Avramidis E, Lopes MA, Abela E, Müller M, Akman OE, Richardson MP, Rummel C, Schindler K, Goodfellow M. Quantification and Selection of Ictogenic Zones in Epilepsy Surgery. Front Neurol 2019; 10:1045. [PMID: 31632339 PMCID: PMC6779811 DOI: 10.3389/fneur.2019.01045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/16/2019] [Indexed: 01/23/2023] Open
Abstract
Network models of brain dynamics provide valuable insight into the healthy functioning of the brain and how this breaks down in disease. A pertinent example is the use of network models to understand seizure generation (ictogenesis) in epilepsy. Recently, computational models have emerged to aid our understanding of seizures and to predict the outcome of surgical perturbations to brain networks. Such approaches provide the opportunity to quantify the effect of removing regions of tissue from brain networks and thereby search for the optimal resection strategy. Here, we use computational models to elucidate how sets of nodes contribute to the ictogenicity of networks. In small networks we fully elucidate the ictogenicity of all possible sets of nodes and demonstrate that the distribution of ictogenicity across sets depends on network topology. However, the full elucidation is a combinatorial problem that becomes intractable for large networks. Therefore, we combine computational models with a genetic algorithm to search for minimal sets of nodes that contribute significantly to ictogenesis. We demonstrate the potential applicability of these methods in practice by identifying optimal sets of nodes to resect in networks derived from 20 individuals who underwent resective surgery for epilepsy. We show that they have the potential to aid epilepsy surgery by suggesting alternative resection sites as well as facilitating the avoidance of brain regions that should not be resected.
Collapse
Affiliation(s)
- Petroula Laiou
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | | | - Marinho A. Lopes
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
- Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, United Kingdom
| | - Eugenio Abela
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Michael Müller
- Support Center for Advanced Neuroimaging, University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Neurology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Ozgur E. Akman
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Mark P. Richardson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Christian Rummel
- Support Center for Advanced Neuroimaging, University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kaspar Schindler
- Department of Neurology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Marc Goodfellow
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
- Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
45
|
Proix T, Aghagolzadeh M, Madsen JR, Cosgrove R, Eskandar E, Hochberg LR, Cash SS, Truccolo W. Intracortical neural activity distal to seizure-onset-areas predicts human focal seizures. PLoS One 2019; 14:e0211847. [PMID: 31329587 PMCID: PMC6645464 DOI: 10.1371/journal.pone.0211847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/04/2019] [Indexed: 01/19/2023] Open
Abstract
The apparent unpredictability of epileptic seizures has a major impact in the quality of life of people with pharmacologically resistant seizures. Here, we present initial results and a proof-of-concept of how focal seizures can be predicted early in advance based on intracortical signals recorded from small neocortical patches away from identified seizure onset areas. We show that machine learning algorithms can discriminate between interictal and preictal periods based on multiunit activity (i.e. thresholded action potential counts) and multi-frequency band local field potentials recorded via 4 X 4 mm2 microelectrode arrays. Microelectrode arrays were implanted in 5 patients undergoing neuromonitoring for resective surgery. Post-implant analysis revealed arrays were outside the seizure onset areas. Preictal periods were defined as the 1-hour period leading to a seizure. A 5-minute gap between the preictal period and the putative seizure onset was enforced to account for potential errors in the determination of actual seizure onset times. We used extreme gradient boosting and long short-term memory networks for prediction. Prediction accuracy based on the area under the receiver operating characteristic curves reached 90% for at least one feature type in each patient. Importantly, successful prediction could be achieved based exclusively on multiunit activity. This result indicates that preictal activity in the recorded neocortical patches involved not only subthreshold postsynaptic potentials, perhaps driven by the distal seizure onset areas, but also neuronal spiking in distal recurrent neocortical networks. Beyond the commonly identified seizure onset areas, our findings point to the engagement of large-scale neuronal networks in the neural dynamics building up toward a seizure. Our initial results obtained on currently available human intracortical microelectrode array recordings warrant new studies on larger datasets, and open new perspectives for seizure prediction and control by emphasizing the contribution of multiscale neural signals in large-scale neuronal networks.
Collapse
Affiliation(s)
- Timothée Proix
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
- Center for Neurorestoration & Neurotechnology, U.S. Department of Veterans Affairs, Providence, Rhode Island, United States of America
| | - Mehdi Aghagolzadeh
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
- Center for Neurorestoration & Neurotechnology, U.S. Department of Veterans Affairs, Providence, Rhode Island, United States of America
| | - Joseph R. Madsen
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rees Cosgrove
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Emad Eskandar
- Department of Neurosurgery and Nayef Al-Rodhan Laboratories for Cellular Neurosurgery and Neurosurgical Technology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Leigh R. Hochberg
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
- Center for Neurorestoration & Neurotechnology, U.S. Department of Veterans Affairs, Providence, Rhode Island, United States of America
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wilson Truccolo
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
- Center for Neurorestoration & Neurotechnology, U.S. Department of Veterans Affairs, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
46
|
Lagarde S, Roehri N, Lambert I, Trebuchon A, McGonigal A, Carron R, Scavarda D, Milh M, Pizzo F, Colombet B, Giusiano B, Medina Villalon S, Guye M, Bénar CG, Bartolomei F. Interictal stereotactic-EEG functional connectivity in refractory focal epilepsies. Brain 2019; 141:2966-2980. [PMID: 30107499 DOI: 10.1093/brain/awy214] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 06/25/2018] [Indexed: 12/28/2022] Open
Abstract
Drug-refractory focal epilepsies are network diseases associated with functional connectivity alterations both during ictal and interictal periods. A large majority of studies on the interictal/resting state have focused on functional MRI-based functional connectivity. Few studies have used electrophysiology, despite its high temporal capacities. In particular, stereotactic-EEG is highly suitable to study functional connectivity because it permits direct intracranial electrophysiological recordings with relative large-scale sampling. Most previous studies in stereotactic-EEG have been directed towards temporal lobe epilepsy, which does not represent the whole spectrum of drug-refractory epilepsies. The present study aims at filling this gap, investigating interictal functional connectivity alterations behind cortical epileptic organization and its association with post-surgical prognosis. To this purpose, we studied a large cohort of 59 patients with malformation of cortical development explored by stereotactic-EEG with a wide spatial sampling (76 distinct brain areas were recorded, median of 13.2 per patient). We computed functional connectivity using non-linear correlation. We focused on three zones defined by stereotactic-EEG ictal activity: the epileptogenic zone, the propagation zone and the non-involved zone. First, we compared within-zone and between-zones functional connectivity. Second, we analysed the directionality of functional connectivity between these zones. Third, we measured the associations between functional connectivity measures and clinical variables, especially post-surgical prognosis. Our study confirms that functional connectivity differs according to the zone under investigation. We found: (i) a gradual decrease of the within-zone functional connectivity with higher values for epileptogenic zone and propagation zone, and lower for non-involved zones; (ii) preferential coupling between structures of the epileptogenic zone; (iii) preferential coupling between epileptogenic zone and propagation zone; and (iv) poorer post-surgical outcome in patients with higher functional connectivity of non-involved zone (within- non-involved zone, between non-involved zone and propagation zone functional connectivity). Our work suggests that, even during the interictal state, functional connectivity is reinforced within epileptic cortices (epileptogenic zone and propagation zone) with a gradual organization. Moreover, larger functional connectivity alterations, suggesting more diffuse disease, are associated with poorer post-surgical prognosis. This is consistent with computational studies suggesting that connectivity is crucial in order to model the spatiotemporal dynamics of seizures.10.1093/brain/awy214_video1awy214media15833456182001.
Collapse
Affiliation(s)
- Stanislas Lagarde
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Nicolas Roehri
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Isabelle Lambert
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Agnès Trebuchon
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Aileen McGonigal
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Romain Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Stereotactic and Functional Neurosurgery, Marseille, France
| | - Didier Scavarda
- APHM, Timone Hospital, Paediatric Neurosurgery, Marseille, France
| | - Mathieu Milh
- APHM, Timone Hospital, Paediatric Neurology, Marseille, France
| | - Francesca Pizzo
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Bruno Colombet
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Bernard Giusiano
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Samuel Medina Villalon
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Maxime Guye
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Timone Hospital, CEMEREM, Marseille, France
| | - Christian-G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
47
|
An S, Bartolomei F, Guye M, Jirsa V. Optimization of surgical intervention outside the epileptogenic zone in the Virtual Epileptic Patient (VEP). PLoS Comput Biol 2019; 15:e1007051. [PMID: 31242177 PMCID: PMC6594587 DOI: 10.1371/journal.pcbi.1007051] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/17/2019] [Indexed: 01/18/2023] Open
Abstract
Studies to improve the efficacy of epilepsy surgery have focused on better refining the localization of the epileptogenic zone (EZ) with the aim of effectively resecting it. However, in a considerable number of patients, EZs are distributed across multiple brain regions and may involve eloquent areas that cannot be removed due to the risk of neurological complications. There is a clear need for developing alternative approaches to induce seizure relief, but minimal impact on normal brain functions. Here, we develop a personalized in-silico network approach, that suggests effective and safe surgical interventions for each patient. Based on the clinically identified EZ, we employ modularity analysis to identify target brain regions and fiber tracts involved in seizure propagation. We then construct and simulate a patient-specific brain network model comprising phenomenological neural mass models at the nodes, and patient-specific structural brain connectivity using the neuroinformatics platform The Virtual Brain (TVB), in order to evaluate effectiveness and safety of the target zones (TZs). In particular, we assess safety via electrical stimulation for pre- and post-surgical condition to quantify the impact on the signal transmission properties of the network. We demonstrate the existence of a large repertoire of efficient surgical interventions resulting in reduction of degree of seizure spread, but only a small subset of them proves safe. The identification of novel surgical interventions through modularity analysis and brain network simulations may provide exciting solutions to the treatment of inoperable epilepsies. We propose a personalized in-silico surgical approach able to suggest effective and safe surgical options for each epilepsy patient. In particular, we focus on deriving effective alternative methods for those cases where EZs are inoperable because of issues related with neurological complications. Based on modularity analysis using structural brain connectivity from each patient, TZs that would be considered as surgical sites are obtained. The acquired TZs are evaluated by personalized brain network simulations in terms of effectiveness and safety. Through the feedback approach combining modularity analysis and brain network simulations, the optimized TZ options that minimize seizure propagation while not affecting normal brain functions are obtained. Our study has a great importance in that it demonstrates the possibility of computational neuroscience field being able to construct a paradigm for personalized medicine by deriving innovative surgical options suitable for each patient and predicting the surgical outcomes.
Collapse
Affiliation(s)
- Sora An
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France
| | - Viktor Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
- * E-mail:
| |
Collapse
|
48
|
Hingray C, McGonigal A, Kotwas I, Micoulaud-Franchi JA. The Relationship Between Epilepsy and Anxiety Disorders. Curr Psychiatry Rep 2019; 21:40. [PMID: 31037466 DOI: 10.1007/s11920-019-1029-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE OF REVIEW The current review aims at providing an overview of relevant aspects of anxiety symptoms and anxiety disorders (AD) in adults patients with epilepsy (PWE). RECENT FINDINGS Firstly, the appropriate diagnosis of type of anxiety symptoms and AD in PWE will be presented. Anxiety symptoms are often peri-ictal and classified in relation to their temporal occurrence to seizures. Anxiety symptoms are of three types: preictal (preceding a seizure), ictal (presenting as part of the seizure symptoms and signs), and postictal (occurring within 72 h of a seizure). AD are diagnosed in the interictal period and occur independently of seizures. Four specific AD in PWE can be objectified: anticipatory anxiety of epileptic seizures (AAS), seizure phobia, epileptic social phobia, and epileptic panic disorder. Secondly, the bidirectional pathophysiological relationship between anxiety and epilepsy will be described. Anxiety is a trigger for seizures in some patients, and the notion of stress and arousal is essential to understand the relationship between anxiety and seizure. Moreover, seizures arising from the limbic network especially involving amygdala, which may express fear-related semiology, provide insight into the pathophysiology of AD comorbidities. Thirdly, the methods of screening for AD and anxiety symptoms will be detailed. Fourthly, the pharmacological and psychobehavioral management of anxiety symptoms and AD in PWE will be presented. Arousal-based approaches for preictal and ictal symptoms and anxiety-based approaches for postictal and interictal symptoms will be presented. Despite lack of evidence-based approaches, it is recognized that management of epilepsy is not only about controlling seizures, but also depends heavily on detecting, correctly diagnosing, and appropriately managing anxiety symptoms and AD comorbidities, in order to maximize quality of life. Improving self-control and self-efficacy is of fundamental importance in the management of PWE. Further rigorously designed studies focusing on anxiety symptoms and AD are essential to improve the overall care of PWE.
Collapse
Affiliation(s)
- Coraline Hingray
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy Centre Psychothérapique de Nancy, 54521, Laxou, France.,Département de Neurologie, Centre Hospitalier Universitaire de Nancy, 54000, Nancy, France
| | - Aileen McGonigal
- Inserm, INS, Institut de Neurosciences des Systèmes, Aix Marseille Univ, Marseille, France.,APHM, Clinical Neurophysiology, Timone Hospital, Marseille, France
| | - Iliana Kotwas
- Laboratoire Parole et Langage UMR 7309, Aix-Marseille Université, Marseille, France
| | - Jean-Arthur Micoulaud-Franchi
- Service d'explorations fonctionnelles du système nerveux, Clinique du sommeil, CHU de Bordeaux, Place Amélie Raba-Léon, 33076, Bordeaux, France. .,USR CNRS 3413 SANPSY, CHU Pellegrin, Université de Bordeaux, Bordeaux, France.
| |
Collapse
|
49
|
Lopes MA, Goodfellow M, Terry JR. A Model-Based Assessment of the Seizure Onset Zone Predictive Power to Inform the Epileptogenic Zone. Front Comput Neurosci 2019; 13:25. [PMID: 31105545 PMCID: PMC6498870 DOI: 10.3389/fncom.2019.00025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/10/2019] [Indexed: 02/03/2023] Open
Abstract
Epilepsy surgery is a clinical procedure that aims to remove the brain tissue responsible for the emergence of seizures, the epileptogenic zone (EZ). It is preceded by an evaluation to determine the brain tissue that must be resected. The identification of the seizure onset zone (SOZ) from intracranial EEG recordings stands as one of the key proxies for the EZ. In this study we used computational models of epilepsy to assess to what extent the SOZ may or may not represent the EZ. We considered a set of different synthetic networks (e.g., regular, small-world, random, and scale-free networks) to represent large-scale brain networks and a phenomenological network model of seizure generation. In the model, the SOZ was inferred from the seizure likelihood (SL), a measure of the propensity of single nodes to produce epileptiform dynamics, whilst a surgery corresponded to the removal of nodes and connections from the network. We used the concept of node ictogenicity (NI) to quantify the effectiveness of each node removal on reducing the network's propensity to generate seizures. This framework enabled us to systematically compare the SOZ and the seizure control achieved by each considered surgery. Specifically, we compared the distributions of SL and NI across different networks. We found that SL and NI were concordant when all nodes were similarly ictogenic, whereas when there was a small fraction of nodes with high NI, the SL was not specific at identifying these nodes. We further considered networks with heterogeneous node excitabilities, i.e., nodes with different susceptibilities of being engaged in seizure activity, to understand how such heterogeneity may affect the relationship between SL and NI. We found that while SL and NI are concordant when there is a small fraction of hyper-excitable nodes in a network that is otherwise homogeneous, they do diverge if the network is heterogeneous, such as in scale-free networks. We observe that SL is highly dependent on node excitabilities, whilst the effect of surgical resections as revealed by NI is mostly determined by network structure. Together our results suggest that the SOZ is not always a good marker of the EZ.
Collapse
Affiliation(s)
- Marinho A Lopes
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, United Kingdom.,EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - Marc Goodfellow
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, United Kingdom.,EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - John R Terry
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, United Kingdom.,EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
50
|
Tavakol S, Royer J, Lowe AJ, Bonilha L, Tracy JI, Jackson GD, Duncan JS, Bernasconi A, Bernasconi N, Bernhardt BC. Neuroimaging and connectomics of drug-resistant epilepsy at multiple scales: From focal lesions to macroscale networks. Epilepsia 2019; 60:593-604. [PMID: 30889276 PMCID: PMC6447443 DOI: 10.1111/epi.14688] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/03/2023]
Abstract
Epilepsy is among the most common chronic neurologic disorders, with 30%-40% of patients having seizures despite antiepileptic drug treatment. The advent of brain imaging and network analyses has greatly improved the understanding of this condition. In particular, developments in magnetic resonance imaging (MRI) have provided measures for the noninvasive characterization and detection of lesions causing epilepsy. MRI techniques can probe structural and functional connectivity, and network analyses have shaped our understanding of whole-brain anomalies associated with focal epilepsies. This review considers the progress made by neuroimaging and connectomics in the study of drug-resistant epilepsies due to focal substrates, particularly temporal lobe epilepsy related to mesiotemporal sclerosis and extratemporal lobe epilepsies associated with malformations of cortical development. In these disorders, there is evidence of widespread disturbances of structural and functional connectivity that may contribute to the clinical and cognitive prognosis of individual patients. It is hoped that studying the interplay between macroscale network anomalies and lesional profiles will improve our understanding of focal epilepsies and assist treatment choices.
Collapse
Affiliation(s)
- Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Alexander J Lowe
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Joseph I Tracy
- Cognitive Neuroscience and Brain Mapping Laboratory, Thomas Jefferson University Hospitals/Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|