1
|
Wilson YA, Garrity N, Smithers-Sheedy H, Goldsmith S, Karim T, Henry G, Paget S, Kyriagis M, Badawi N, Baynam G, Gecz J, McIntyre S. Clinically Relevant Genes Identified in Cerebral Palsy Cohorts Following Evaluation of the Clinical Description and Phenotype: A Systematic Review. J Child Neurol 2024; 39:500-509. [PMID: 39246294 DOI: 10.1177/08830738241277231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
A growing number of genes have been identified in individuals with cerebral palsy (CP); however, many of these studies have poor compliance with the cerebral palsy clinical description. This systematic review aimed to assess the quality of the cerebral palsy clinical description/phenotype in cerebral palsy genetic studies published between 2010 and 2024 and report clinically relevant genes based on the quality of the cerebral palsy phenotype. An expert panel developed 6 criteria to review the reported cerebral palsy phenotype/description for each included study. Clinically relevant genes were extracted from each study and stratified into 2 tiers based on the quality. Eighteen studies were included. There was high confidence in the reported cerebral palsy description/phenotype from 8 studies. Of the initial 373 clinically relevant genes, 85 were tier II genes. Individual cerebral palsy motor disorder and phenotype data were absent for 349 of these individuals, limiting further analysis. The tier I gene list was composed of 6 genes: ATL1, COL4A1, GNAO1, KIF1A, SPAST, and TUBA1A. Bilateral spasticity was the most common motor disorder reported in individuals with variants in all 6 genes, and most individuals had accompanying conditions. Prioritizing the accurate reporting of motor and nonmotor phenotypes is crucial for future cerebral palsy genetic studies to further understand the underlying neurobiology.
Collapse
Affiliation(s)
- Yana A Wilson
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Children's Hospital Westmead Clinical School, Discipline of Child & Adolescent Health, University of Sydney, Sydney, New South Wales, Australia
| | - Natasha Garrity
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Hayley Smithers-Sheedy
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Shona Goldsmith
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Tasneem Karim
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Georgina Henry
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Simon Paget
- Child Population and Translational Health Research, Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Maria Kyriagis
- Rehab2Kids, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Nadia Badawi
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Grace Centre for Newborn Intensive Care, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Perth, Western Australia, Australia
- Rare Care Centre, Perth Children's Hospital, Perth, Western Australia, Australia
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Jozef Gecz
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Sarah McIntyre
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Xu YH, Yuan BY, Ji JL, Wu D, Zhou H, Guo YJ. Novel de novo SPAST mutation in a Han Chinese SPG4 patient: a case report. Front Genet 2024; 15:1410381. [PMID: 39139823 PMCID: PMC11319187 DOI: 10.3389/fgene.2024.1410381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Spastic paraplegia type 4 (SPG4), the predominant form of Autosomal Dominant Hereditary spastic paraplegia (AD-HSP), is characterized by variants in the SPAST gene. This study reports a unique case of a late-onset SPG4 in a Han Chinese male, manifesting primarily as gait disturbances from lower extremity spasticity. Uncovered through whole-genome sequencing, a previously undocumented frameshift variant, c.1545dupA in exon 14 of the SPAST gene, was identified. Notably, this variant was absent in asymptomatic parents with confirmed paternity and maternity status, suggesting a de novo variant occurrence. This discovery emphasizes the potential of de novo variants to exhibit a late-onset pure pattern, extending the SPG4 variant spectrum, and consideration of such variants should be given in HSP patients with a negative family history.
Collapse
Affiliation(s)
- Yu-Han Xu
- School of Medicine, Southeast University, Nanjing, China
| | - Bao-Yu Yuan
- School of Medicine, Southeast University, Nanjing, China
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Jia-Le Ji
- School of Medicine, Southeast University, Nanjing, China
| | - Di Wu
- School of Medicine, Southeast University, Nanjing, China
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Hong Zhou
- School of Medicine, Southeast University, Nanjing, China
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Yi-Jing Guo
- School of Medicine, Southeast University, Nanjing, China
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| |
Collapse
|
3
|
Yao L, Cao Y, Zhang C, Huang X, Tian W, Cao L. Clinical and genetic characteristics in a Chinese cohort of complex spastic paraplegia type 4. Clin Genet 2024; 106:56-65. [PMID: 38403837 DOI: 10.1111/cge.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/27/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Spastic paraplegia type 4 (SPG4), caused by SPAST mutations, is the most predominant subtype of hereditary spastic paraplegia. Most documented SPG4 patients present as pure form, with the complex form rarely reported. We described the clinical and genetic features of 20 patients with complex phenotypes of SPG4 and further explored the genotype-phenotype correlations. We collected detailed clinical data of all SPG4 patients and assessed their phenotypes. SPAST gene mutations were identified by Multiplex ligation-dependent probe amplification in combination with whole exome sequencing. We further performed statistical analysis in genotype and phenotype among patients with various manifestations and different variants. Out of 90 SPG4 patients, 20 patients (male:female = 16:4) with additional neurologic deficits, namely complex form, were included in our study. The bimodal distribution of age of onset at 0-10 and 21-40 years old is concluded. On cranial MRI, obvious white matter lesions can be observed in five patients. We identified 9 novel and 8 reported SPAST mutations, of which 11 mutations were located in AAA (ATPase associated with various cellular activities) domain. The AAA cassette of spastin is the hottest mutated region among complex SPG4. All patients with cognitive impairment (CI) are males (n = 9/9). Additionally, 80% patients with ataxia are due to frameshift mutations (n = 4/5). Overall, our study summarized and analyzed the genetic and phenotypic characteristics of complex SPG4, making up over 1/5 of in-house SPG4 cohort, among which CI and ataxia are the most common features. Further studies are expected to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Li Yao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Yuwen Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Chao Zhang
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Xiaojun Huang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Wotu Tian
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Li Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| |
Collapse
|
4
|
Aaltio J, Etula A, Ojanen S, Brilhante V, Lönnqvist T, Isohanni P, Suomalainen A. Genetic etiology of progressive pediatric neurological disorders. Pediatr Res 2024; 95:102-111. [PMID: 37563452 PMCID: PMC10798881 DOI: 10.1038/s41390-023-02767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/15/2023] [Accepted: 07/16/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND The aim of the study was to characterize molecular diagnoses in patients with childhood-onset progressive neurological disorders of suspected genetic etiology. METHODS We studied 48 probands (age range from newborn to 17 years old) with progressive neurological disorders of unknown etiology from the largest pediatric neurology clinic in Finland. Phenotypes included encephalopathy (54%), neuromuscular disorders (33%), movement disorders (11%), and one patient (2%) with hemiplegic migraine. All patients underwent whole-exome sequencing and disease-causing genes were analyzed. RESULTS We found 20 (42%) of the patients to have variants in genes previously associated with disease. Of these, 12 were previously reported disease-causing variants, whereas eight patients had a novel variant on a disease-causing gene: ATP7A, CHD2, PURA, PYCR2, SLC1A4, SPAST, TRIT1, and UPF3B. Genetics also enabled us to define atypical clinical presentations of Rett syndrome (MECP2) and Menkes disease (ATP7A). Except for one deletion, all findings were single-nucleotide variants (missense 72%, truncating 22%, splice-site 6%). Nearly half of the variants were de novo. CONCLUSIONS The most common cause of childhood encephalopathies are de novo variants. Whole-exome sequencing, even singleton, proved to be an efficient tool to gain specific diagnoses and in finding de novo variants in a clinically heterogeneous group of childhood encephalopathies. IMPACT Whole-exome sequencing is useful in heterogeneous pediatric neurology cohorts. Our article provides further evidence for and novel variants in several genes. De novo variants are an important cause of childhood encephalopathies.
Collapse
Affiliation(s)
- Juho Aaltio
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland.
| | - Anna Etula
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland
| | - Simo Ojanen
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Virginia Brilhante
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland
| | - Tuula Lönnqvist
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pirjo Isohanni
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anu Suomalainen
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland.
- HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland.
- HiLife, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Damásio J, Barbot C, Felgueiras R, Brandão AF, Barros J, Oliveira J, Sequeiros J. Early-Onset and Severe Complex Hereditary Spastic Paraplegia Caused by De Novo Variants in SPAST. Mov Disord 2023; 38:910-911. [PMID: 37303095 DOI: 10.1002/mds.29380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 06/13/2023] Open
Affiliation(s)
- Joana Damásio
- Neurology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
- Unidade de Investigação Genética e Epidemiológica em Doenças Neurológicas, Institute for Molecular and Cell Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Centre for Predictive and Preventive Genetics, Institute for Molecular and Cell Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Clara Barbot
- Unidade de Investigação Genética e Epidemiológica em Doenças Neurológicas, Institute for Molecular and Cell Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Rui Felgueiras
- Neurology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ana Filipa Brandão
- Centre for Predictive and Preventive Genetics, Institute for Molecular and Cell Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - José Barros
- Neurology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
| | - Jorge Oliveira
- Unidade de Investigação Genética e Epidemiológica em Doenças Neurológicas, Institute for Molecular and Cell Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Centre for Predictive and Preventive Genetics, Institute for Molecular and Cell Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Jorge Sequeiros
- Unidade de Investigação Genética e Epidemiológica em Doenças Neurológicas, Institute for Molecular and Cell Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Centre for Predictive and Preventive Genetics, Institute for Molecular and Cell Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Baalmann N, Spielmann M, Gillessen-Kaesbach G, Hanker B, Schmidt J, Lill CM, Hellenbroich Y, Greiten B, Lohmann K, Trinh J, Hüning I. Phenotypic specificity in patients with neurodevelopmental delay does not correlate with diagnostic yield of trio-exome sequencing. Eur J Med Genet 2023; 66:104774. [PMID: 37120078 DOI: 10.1016/j.ejmg.2023.104774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/12/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
In this study, we aimed to examine the diagnostic yield achieved by applying a trio approach in exome sequencing (ES) and the interdependency between the clinical specificity in families with neurodevelopmental delay. Thirty-seven families were recruited and trio-ES as well as three criteria for estimating the clinical phenotypic specificity were suggested and applied to the underaged children. All our patients showed neurodevelopmental delay and most of them a large spectrum of congenital anomalies. Applying the pathogenicity guidelines of the American College of Medical Genetics (ACMG), likely pathogenic (29.7%) and pathogenic variants (8.1%) were found in 40,5% of our index patients. Additionally, we found four variants of uncertain significance (VUS; according to ACMG) and two genes of interest (GOI; going beyond ACMG classification) (GLRA4, NRXN2). Spastic Paraplegia 4 (SPG4) caused by a formerly known SPAST variant was diagnosed in a patient with a complex phenotype, in whom a second genetic disorder may be present. A potential pathogenic variant linked to severe intellectual disability in GLRA4 requires further investigation. No interdependency between the diagnostic yield and the clinical specificity of the phenotypes could be observed. In consequence, trio-ES should be used early in the diagnostic process, independently from the specificity of the patient.
Collapse
Affiliation(s)
- Nadja Baalmann
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany.
| | - Malte Spielmann
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany.
| | | | - Britta Hanker
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany.
| | - Julia Schmidt
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany; Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.
| | - Christina M Lill
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany; Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Germany; Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK.
| | | | - Bianca Greiten
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany.
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| | - Irina Hüning
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
7
|
Synofzik M, Rugarli E, Reid E, Schüle R. Ataxia and spastic paraplegia in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:79-98. [PMID: 36813322 DOI: 10.1016/b978-0-12-821751-1.00009-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Degenerative ataxias and hereditary spastic paraplegias (HSPs) form a continuous, often overlapping disease spectrum sharing not only phenotypic features and underlying genes, but also cellular pathways and disease mechanisms. Mitochondrial metabolism presents a major molecular theme underlying both multiple ataxias and HSPs, thus indicating a heightened vulnerability of Purkinje cells, spinocerebellar tracts, and motor neurons to mitochondrial dysfunction, which is of particular interest for translational approaches. Mitochondrial dysfunction might be the primary (upstream) or secondary (downstream) result of a genetic defect, with underlying genetic defects in nuclear-encoded genes being much more frequent than in mtDNA genes in both, ataxias and HSPs. Here, we outline the substantial number of ataxias, spastic ataxias and HSPs caused by mutated genes implicated in (primary or secondary) mitochondrial dysfunction, highlighting several key "mitochondrial" ataxias and HSPs which are of particular interest for their frequency, pathogenesis and translational opportunities. We then showcase prototypic mitochondrial mechanisms by which disruption of these ataxia and HSP genes contributes to Purkinje cells or corticospinal neuron dysfunction, thus elucidating hypotheses on Purkinje cells and corticospinal neuron vulnerability to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Matthis Synofzik
- Department of Neurodegenerative Diseases, Center for Neurology & Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| | - Elena Rugarli
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Evan Reid
- Cambridge Institute for Medical Research and Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Center for Neurology & Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
8
|
Alecu JE, Saffari A, Jordan C, Srivastava S, Blackstone C, Ebrahimi-Fakhari D. De novo variants cause complex symptoms in HSP-ATL1 (SPG3A) and uncover genotype-phenotype correlations. Hum Mol Genet 2023; 32:93-103. [PMID: 35925862 PMCID: PMC9838092 DOI: 10.1093/hmg/ddac182] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/16/2022] [Accepted: 07/31/2022] [Indexed: 01/25/2023] Open
Abstract
Pathogenic variants in ATL1 are a known cause of autosomal-dominantly inherited hereditary spastic paraplegia (HSP-ATL1, SPG3A) with a predominantly 'pure' HSP phenotype. Although a relatively large number of patients have been reported, no genotype-phenotype correlations have been established for specific ATL1 variants. Confronted with five children carrying de novo ATL1 variants showing early, complex and severe symptoms, we systematically investigated the molecular and phenotypic spectrum of HSP-ATL1. Through a cross-sectional analysis of 537 published and novel cases, we delineate a distinct phenotype observed in patients with de novo variants. Guided by this systematic phenotyping approach and structural modelling of disease-associated variants in atlastin-1, we demonstrate that this distinct phenotypic signature is also prevalent in a subgroup of patients with inherited ATL1 variants and is largely explained by variant localization within a three-dimensional mutational cluster. Establishing genotype-phenotype correlations, we find that symptoms that extend well beyond the typical pure HSP phenotype (i.e. neurodevelopmental abnormalities, upper limb spasticity, bulbar symptoms, peripheral neuropathy and brain imaging abnormalities) are prevalent in patients with variants located within this mutational cluster.
Collapse
Affiliation(s)
- Julian E Alecu
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, 91054, Germany
| | - Afshin Saffari
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine Jordan
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Siddharth Srivastava
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Craig Blackstone
- Movement Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
9
|
Mo A, Saffari A, Kellner M, Döbler-Neumann M, Jordan C, Srivastava S, Zhang B, Sahin M, Fink JK, Smith L, Posey JE, Alter KE, Toro C, Blackstone C, Soldatos AG, Christie M, Schüle R, Ebrahimi-Fakhari D. Early-Onset and Severe Complex Hereditary Spastic Paraplegia Caused by De Novo Variants in SPAST. Mov Disord 2022; 37:2440-2446. [PMID: 36103453 PMCID: PMC10062395 DOI: 10.1002/mds.29225] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/13/2022] [Accepted: 08/26/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Familial hereditary spastic paraplegia (HSP)-SPAST (SPG4) typically presents with a pure HSP phenotype. OBJECTIVE The aim of this study was to delineate the genotypic and phenotypic spectrum of children with de novo HSP-SPAST. METHODS This study used a systematic cross-sectional analysis of clinical and molecular features. RESULTS We report the clinical and molecular spectrum of 40 patients with heterozygous pathogenic de novo variants in SPAST (age range: 2.2-27.7 years). We identified 19 unique variants (16/40 carried the same recurrent variant, p.Arg499His). Symptom onset was in early childhood (median: 11.0 months, interquartile range: 6.0 months) with significant motor and speech delay, followed by progressive ascending spasticity, dystonia, neurogenic bladder dysfunction, gastrointestinal dysmotility, and epilepsy. The mean Spastic Paraplegia Rating Scale score was 32.8 ± 9.7 (standard deviation). CONCLUSIONS These results confirm that de novo variants in SPAST lead to a severe and complex form of HSP that differs from classic familial pure HSP-SPAST. Clinicians should be aware of this syndrome in the differential diagnosis for cerebral palsy. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alisa Mo
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Afshin Saffari
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Melanie Kellner
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Marion Döbler-Neumann
- Department of Pediatric Neurology, University Children’s Hospital, Tübingen, Germany
| | - Catherine Jordan
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Siddharth Srivastava
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Bo Zhang
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- ICCTR Biostatistics and Research Design Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Mustafa Sahin
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - John K. Fink
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Linsley Smith
- Department of Neurology and Rehabilitation Medicine, Texas Scottish Rite Hospital, University of Texas Southwestern Medical Center, Dallas, TX, 75219, USA
| | - Jennifer E. Posey
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Katharine E. Alter
- Functional and Applied Biomechanics Section, Department of Rehabilitation Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Camilo Toro
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, MD, USA
| | - Craig Blackstone
- Movement Disorders Division, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ariane G. Soldatos
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Michelle Christie
- Department of Neurology and Rehabilitation Medicine, Texas Scottish Rite Hospital, University of Texas Southwestern Medical Center, Dallas, TX, 75219, USA
| | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA, USA
- Intellectual and Developmental Disabilities Research Center, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
10
|
Parodi L, Barbier M, Jacoupy M, Pujol C, Lejeune FX, Lallemant-Dudek P, Esteves T, Pennings M, Kamsteeg EJ, Guillaud-Bataille M, Banneau G, Coarelli G, Oumoussa BM, Fraidakis MJ, Stevanin G, Depienne C, van de Warrenburg B, Brice A, Durr A. The mitochondrial seryl-tRNA synthetase SARS2 modifies onset in spastic paraplegia type 4. Genet Med 2022; 24:2308-2317. [PMID: 36056923 DOI: 10.1016/j.gim.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Hereditary spastic paraplegia type 4 is extremely variable in age at onset; the same variant can cause onset at birth or in the eighth decade. We recently discovered that missense variants in SPAST, which influences microtubule dynamics, are associated with earlier onset and more severe disease than truncating variants, but even within the early and late-onset groups there remained significant differences in onset. Given the rarity of the condition, we adapted an extreme phenotype approach to identify genetic modifiers of onset. METHODS We performed a genome-wide association study on 134 patients bearing truncating pathogenic variants in SPAST, divided into early- and late-onset groups (aged ≤15 and ≥45 years, respectively). A replication cohort of 419 included patients carrying either truncating or missense variants. Finally, age at onset was analyzed in the merged cohort (N = 553). RESULTS We found 1 signal associated with earlier age at onset (rs10775533, P = 8.73E-6) in 2 independent cohorts and in the merged cohort (N = 553, Mantel-Cox test, P < .0001). Western blotting in lymphocytes of 20 patients showed that this locus tends to upregulate SARS2 expression in earlier-onset patients. CONCLUSION SARS2 overexpression lowers the age of onset in hereditary spastic paraplegia type 4. Lowering SARS2 or improving mitochondrial function could thus present viable approaches to therapy.
Collapse
Affiliation(s)
- Livia Parodi
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Mathieu Barbier
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Maxime Jacoupy
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Claire Pujol
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France; Pasteur Institute, Centre National de la Recherche Scientifique UMR 3691, Paris, France
| | - François-Xavier Lejeune
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Pauline Lallemant-Dudek
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Typhaine Esteves
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France; Université de Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | - Maartje Pennings
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Guillaume Banneau
- Département de Génétique, AP-HP, GH Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Giulia Coarelli
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Badreddine Mohand Oumoussa
- Sorbonne Université, Inserm, UMS Production et Analyse des données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, Paris, France
| | - Matthew J Fraidakis
- Rare Neurological Diseases Unit, Department of Neurology, Attikon University Hospital, Medical School of the University of Athens, Athens, Greece
| | - Giovanni Stevanin
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France; Université de Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | - Christel Depienne
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France; Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexis Brice
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Alexandra Durr
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France.
| |
Collapse
|
11
|
ElSheikh RH, Aravindhan A, Boysen S, Veerapandiyan A. Infantile-Onset Complex Hereditary Spastic Paraplegia Due to a Novel Mutation in SPAST Gene. Pediatr Neurol 2022; 134:71. [PMID: 35841713 DOI: 10.1016/j.pediatrneurol.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Reem H ElSheikh
- Division of Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, Arkansas
| | - Akilandeswari Aravindhan
- Division of Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, Arkansas
| | - Sebastian Boysen
- Division of Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, Arkansas
| | - Aravindhan Veerapandiyan
- Division of Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, Arkansas.
| |
Collapse
|
12
|
Dzinovic I, Boesch S, Škorvánek M, Necpál J, Švantnerová J, Pavelekova P, Havránková P, Tsoma E, Indelicato E, Runkel E, Held V, Weise D, Janzarik W, Eckenweiler M, Berweck S, Mall V, Haslinger B, Jech R, Winkelmann J, Zech M. Genetic overlap between dystonia and other neurologic disorders: A study of 1,100 exomes. Parkinsonism Relat Disord 2022; 102:1-6. [PMID: 35872528 DOI: 10.1016/j.parkreldis.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Although shared genetic factors have been previously reported between dystonia and other neurologic conditions, no sequencing study exploring such links is available. In a large dystonic cohort, we aimed at analyzing the proportions of causative variants in genes associated with disease categories other than dystonia. METHODS Gene findings related to whole-exome sequencing-derived diagnoses in 1100 dystonia index cases were compared with expert-curated molecular testing panels for ataxia, parkinsonism, spastic paraplegia, neuropathy, epilepsy, and intellectual disability. RESULTS Among 220 diagnosed patients, 21% had variants in ataxia-linked genes; 15% in parkinsonism-linked genes; 15% in spastic-paraplegia-linked genes; 12% in neuropathy-linked genes; 32% in epilepsy-linked genes; and 65% in intellectual-disability-linked genes. Most diagnosed presentations (80%) were related to genes listed in ≥1 studied panel; 71% of the involved loci were found in the non-dystonia panels but not in an expert-curated gene list for dystonia. CONCLUSIONS Our study indicates a convergence in the genetics of dystonia and other neurologic phenotypes, informing diagnostic evaluation strategies and pathophysiological considerations.
Collapse
Affiliation(s)
- Ivana Dzinovic
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matej Škorvánek
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic; Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Ján Necpál
- Department of Neurology, Zvolen Hospital, Slovakia
| | - Jana Švantnerová
- Second Department of Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovakia
| | - Petra Pavelekova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic; Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Petra Havránková
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Eugenia Tsoma
- Regional Clinical Center of Neurosurgery and Neurology, Department of Family Medicine and Outpatient Care, Uzhhorod National University, Uzhhorod, Ukraine
| | | | - Eva Runkel
- Klinikum Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Valentin Held
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - David Weise
- Klinik für Neurologie, Asklepios Fachklinikum Stadtroda, Stadtroda, Germany; Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Wibke Janzarik
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Matthias Eckenweiler
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Steffen Berweck
- Ludwig Maximilian University of Munich, Munich, Germany; Hospital for Neuropediatrics and Neurological Rehabilitation, Centre of Epilepsy for Children and Adolescents, Schoen Klinik Vogtareuth, Vogtareuth, Germany
| | - Volker Mall
- Lehrstuhl für Sozialpädiatrie, Technische Universität München, Munich, Germany; kbo-Kinderzentrum München, Munich, Germany
| | - Bernhard Haslinger
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Robert Jech
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany; Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
13
|
Varghaei P, Estiar MA, Ashtiani S, Veyron S, Mufti K, Leveille E, Yu E, Spiegelman D, Rioux MF, Yoon G, Tarnopolsky M, Boycott KM, Dupre N, Suchowersky O, Trempe JF, Rouleau GA, Gan-Or Z. Genetic, structural and clinical analysis of spastic paraplegia 4. Parkinsonism Relat Disord 2022; 98:62-69. [PMID: 35487127 DOI: 10.1016/j.parkreldis.2022.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Spastic paraplegia type 4 (SPG4), resulting from heterozygous mutations in the SPAST gene, is the most common form among the heterogeneous group of hereditary spastic paraplegias (HSPs). We aimed to study genetic and clinical characteristics of SPG4 across Canada. METHODS The SPAST gene was analyzed in a total of 696 HSP patients from 431 families by either HSP-gene panel sequencing or whole exome sequencing (WES). We used Multiplex ligation-dependent probe amplification to analyze copy number variations (CNVs), and performed in silico structural analysis of selected mutations. Clinical characteristics of patients were assessed, and long-term follow-up was done to study genotype-phenotype correlations. RESULTS We identified 157 SPG4 patients from 65 families who carried 41 different SPAST mutations, six of which are novel and six are CNVs. We report novel aspects of mutations occurring in Arg499, a case with homozygous mutation, a family with probable compound heterozygous mutations, three patients with de novo mutations, three cases with pathogenic synonymous mutation, co-occurrence of SPG4 and clinically isolated syndrome, and novel or rarely reported signs and symptoms seen in SPG4 patients. CONCLUSION Our study demonstrates that SPG4 is a heterogeneous type of HSP, with diverse genetic features and clinical manifestations. In rare cases, biallelic inheritance, de novo mutation, pathogenic synonymous mutations and CNVs should be considered.
Collapse
Affiliation(s)
- Parizad Varghaei
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada; The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
| | - Mehrdad A Estiar
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Setareh Ashtiani
- Alberta Children's Hospital, Medical Genetics, Calgary, Alberta, Canada
| | - Simon Veyron
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montréal, Canada
| | - Kheireddin Mufti
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | | | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
| | - Marie-France Rioux
- Department of Neurology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Grace Yoon
- Divisions of Neurology and Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicolas Dupre
- Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Quebec, Canada; Neuroscience Axis, CHU de Québec-Université Laval, Québec City, Québec, Canada
| | - Oksana Suchowersky
- Alberta Children's Hospital, Medical Genetics, Calgary, Alberta, Canada; Departments of Medicine (Neurology) and Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montréal, Canada
| | - Guy A Rouleau
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada.
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
14
|
Nan H, Mizuno T, Arisaka A, Sei K, Takiyama Y. A p.Glu420Gln mutation in SPAST is associated with infantile onset spastic paraplegia complicated by cerebella ataxia, epilepsy, peripheral neuropathy, and hypoplasia of the corpus callosum. Neurol Sci 2022; 43:2123-2126. [DOI: 10.1007/s10072-022-05879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
|
15
|
Rapidly Progressive Behavioral Syndrome Without Spastic Paraplegia in a Patient With SPAST p.Pro26Thr Variant. Dement Neurocogn Disord 2022; 21:79-82. [PMID: 35585908 PMCID: PMC9085533 DOI: 10.12779/dnd.2022.21.2.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022] Open
|
16
|
Rudenskaya G, Shestopalova E, Kadnikova V, Shchagina O. Atypical spastic paraplegia type 4 due to p.Arg499His mutation in SPAST gene. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:117-120. [DOI: 10.17116/jnevro2022122031117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Hadjinicolaou A, Ngo KJ, Conway DY, Provias JP, Baker SK, Brady LI, Bennett CL, La Spada AR, Fogel BL, Yoon G. De novo pathogenic variant in SETX causes a rapidly progressive neurodegenerative disorder of early childhood-onset with severe axonal polyneuropathy. Acta Neuropathol Commun 2021; 9:194. [PMID: 34922620 PMCID: PMC8684165 DOI: 10.1186/s40478-021-01277-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/13/2021] [Indexed: 01/01/2023] Open
Abstract
Pathogenic variants in SETX cause two distinct neurological diseases, a loss-of-function recessive disorder, ataxia with oculomotor apraxia type 2 (AOA2), and a dominant gain-of-function motor neuron disorder, amyotrophic lateral sclerosis type 4 (ALS4). We identified two unrelated patients with the same de novo c.23C > T (p.Thr8Met) variant in SETX presenting with an early-onset, severe polyneuropathy. As rare private gene variation is often difficult to link to genetic neurological disease by DNA sequence alone, we used transcriptional network analysis to functionally validate these patients with severe de novo SETX-related neurodegenerative disorder. Weighted gene co-expression network analysis (WGCNA) was used to identify disease-associated modules from two different ALS4 mouse models and compared to confirmed ALS4 patient data to derive an ALS4-specific transcriptional signature. WGCNA of whole blood RNA-sequencing data from a patient with the p.Thr8Met SETX variant was compared to ALS4 and control patients to determine if this signature could be used to identify affected patients. WGCNA identified overlapping disease-associated modules in ALS4 mouse model data and ALS4 patient data. Mouse ALS4 disease-associated modules were not associated with AOA2 disease modules, confirming distinct disease-specific signatures. The expression profile of a patient carrying the c.23C > T (p.Thr8Met) variant was significantly associated with the human and mouse ALS4 signature, confirming the relationship between this SETX variant and disease. The similar clinical presentations of the two unrelated patients with the same de novo p.Thr8Met variant and the functional data provide strong evidence that the p.Thr8Met variant is pathogenic. The distinct phenotype expands the clinical spectrum of SETX-related disorders.
Collapse
|
18
|
Nan H, Shiraku H, Mizuno T, Takiyama Y. A p.Arg499His mutation in SPAST is associated with infantile-onset complicated spastic paraplegia: a case report and review of the literature. BMC Neurol 2021; 21:439. [PMID: 34753439 PMCID: PMC8576993 DOI: 10.1186/s12883-021-02478-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Background Spastic paraplegia type 4 (SPG4) is caused by mutations in the SPAST gene, is the most common form of autosomal-dominant pure hereditary spastic paraplegias (HSP), and is rarely associated with a complicated form that includes ataxia, epilepsy, and cognitive decline. To date, the genotype-phenotype correlation has not been substantially established for SPAST mutations. Case presentation We present a Japanese patient with infantile-onset HSP and a complex form with coexisting ataxia and epilepsy. The sequencing of SPAST revealed a de novo c.1496G > A (p.R499H) mutation. A review of the literature revealed 16 additional patients with p.R499H mutations in SPAST associated with an early-onset complicated form of HSP. We found that the complicated phenotype of patients with p.Arg499His mutations could be mainly divided into three subgroups: (1) infantile-onset ascending hereditary spastic paralysis, (2) HSP with severe dystonia, and (3) HSP with cognitive impairment. Moreover, the c.1496G > A mutation in SPAST may occur as a de novo variant at noticeably high rates. Conclusion We reviewed the clinical features of the patients reported in the literature with the p.Arg499His mutation in SPAST and described the case of a Japanese patient with this mutation presenting a new complicated form. Accumulating evidence suggests a possible association between infantile-onset complicated HSP and the p.Arg499His mutation in SPAST. The findings of this study may expand the clinical spectrum of the p.Arg499His mutation in SPAST and provide an opportunity to further study the genotype-phenotype correlation of SPG4. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02478-0.
Collapse
Affiliation(s)
- Haitian Nan
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Hiroshi Shiraku
- Department of Pediatrics, JA Toride Medical Center, Ibaraki, 302-0022, Japan
| | - Tomoko Mizuno
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, 409-3898, Japan.
| |
Collapse
|
19
|
Angelini C, Goizet C, Said SA, Camu W, Depienne C, Heron B, Kol B, Guillaud-Bataille M, Pennamen P, Rooryck C, Scherer-Gagou C, Tissier L, Stevanin G, Leguern E, Banneau G. Evidence of mosaicism in SPAST variant carriers in four French families. Eur J Hum Genet 2021; 29:1158-1163. [PMID: 33958741 PMCID: PMC8298572 DOI: 10.1038/s41431-021-00847-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 11/08/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are heterogeneous disorders, with more than 70 causative genes. Variants in SPAST are the most frequent genetic etiology and are responsible for spastic paraplegia type 4 (SPG4). Age at onset can vary, even between patients from the same family, and incomplete penetrance is described. Somatic mosaicism is extremely rare with only three patients reported in the literature. We report here SPAST mosaic variants in four unrelated patients. We confirm that mosaicism in SPAST is a very rare event with only four identified cases on more than 300 patients with a SPAST variant previously described by our clinical diagnostic laboratory.
Collapse
Affiliation(s)
- Chloé Angelini
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, Bordeaux, France
- Centre de Référence Maladies Rares Neurogénétique, Service de Génétique Médicale, Bordeaux, France
| | - Cyril Goizet
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, Bordeaux, France
- Centre de Référence Maladies Rares Neurogénétique, Service de Génétique Médicale, Bordeaux, France
- INSERM U1211, laboratoire MRGM, Univ. Bordeaux, Bordeaux, France
| | - Samia Ait Said
- Sorbonne Université, AP-HP, GH Pitié-Salpêtrière, Département de génétique, Paris, France
| | - William Camu
- Centre de référence SLA, explorations neurologiques, CHU et Univ Montpellier, Montpellier, France
| | - Christel Depienne
- Sorbonne Université, AP-HP, GH Pitié-Salpêtrière, Département de génétique, Paris, France
- Sorbonne université, Institut du Cerveau, INSERM U 1127, Paris, France
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bénédicte Heron
- Service de Neurologie Pédiatrique, Hôpital Armand Trousseau-La Roche Guyon, GHUEP, APHP, Paris, France
| | - Bophara Kol
- Sorbonne Université, AP-HP, GH Pitié-Salpêtrière, Département de génétique, Paris, France
| | | | - Perrine Pennamen
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, Bordeaux, France
- INSERM U1211, laboratoire MRGM, Univ. Bordeaux, Bordeaux, France
| | - Caroline Rooryck
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, Bordeaux, France
- INSERM U1211, laboratoire MRGM, Univ. Bordeaux, Bordeaux, France
| | - Clarisse Scherer-Gagou
- Centre National de Référence pour les Maladies Neurogénétiques de l'Adulte, Département de Neurologie, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Laurène Tissier
- Sorbonne Université, AP-HP, GH Pitié-Salpêtrière, Département de génétique, Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, AP-HP, GH Pitié-Salpêtrière, Département de génétique, Paris, France
- Sorbonne université, Institut du Cerveau, INSERM U 1127, Paris, France
- Equipe de neurogénétique, Ecole Pratique des Hautes Etudes (EPHE), PSL Research University, Paris, France
| | - Eric Leguern
- Sorbonne Université, AP-HP, GH Pitié-Salpêtrière, Département de génétique, Paris, France.
- Sorbonne université, Institut du Cerveau, INSERM U 1127, Paris, France.
| | - Guillaume Banneau
- Sorbonne Université, AP-HP, GH Pitié-Salpêtrière, Département de génétique, Paris, France
- Département de Génétique Médicale, Institut Fédératif de Biologie, Hôpital Purpan, Toulouse, France
| |
Collapse
|
20
|
Navas-Sánchez FJ, Fernández-Pena A, Martín de Blas D, Alemán-Gómez Y, Marcos-Vidal L, Guzmán-de-Villoria JA, Fernández-García P, Romero J, Catalina I, Lillo L, Muñoz-Blanco JL, Ordoñez-Ugalde A, Quintáns B, Pardo J, Sobrido MJ, Carmona S, Grandas F, Desco M. Thalamic atrophy in patients with pure hereditary spastic paraplegia type 4. J Neurol 2021; 268:2429-2440. [PMID: 33507371 DOI: 10.1007/s00415-020-10387-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/18/2023]
Abstract
SPG4 is an autosomal dominant pure form of hereditary spastic paraplegia (HSP) caused by mutations in the SPAST gene. HSP is considered an upper motor neuron disorder characterized by progressive spasticity and weakness of the lower limbs caused by degeneration of the corticospinal tract. In other neurodegenerative motor disorders, the thalamus and basal ganglia are affected, with a considerable impact on disease progression. However, only a few works have studied these brain structures in HSP, mainly in complex forms of this disease. Our research aims to detect potential alterations in the volume and shape of the thalamus and various basal ganglia structures by comparing 12 patients with pure HSP and 18 healthy controls. We used two neuroimaging procedures: automated segmentation of the subcortical structures (thalamus, hippocampus, caudate nucleus, globus pallidus, and putamen) in native space and shape analysis of the structures. We found a significant reduction in thalamic volume bilaterally, as well as an inward deformation, mainly in the sensory-motor thalamic regions in patients with pure HSP and a mutation in SPG4. We also observed a significant negative correlation between the shape of the thalamus and clinical scores (the Spastic Paraplegia Rating Scale score and disease duration). Moreover, we found a 'Group × Age' interaction that was closely related to the severity of the disease. No differences in volume or in shape were found in the remaining subcortical structures studied. Our results suggest that changes in structure of the thalamus could be an imaging biomarker of disease progression in pHSP.
Collapse
Affiliation(s)
- Francisco J Navas-Sánchez
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| | | | | | - Yasser Alemán-Gómez
- Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, Prilly, Switzerland.,Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Medical Image Analysis Laboratory (MIAL), Centre D'Imagerie BioMédicale (CIBM), Lausanne, Switzerland
| | - Luís Marcos-Vidal
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Medical Image Analysis Laboratory (MIAL), Centre D'Imagerie BioMédicale (CIBM), Lausanne, Switzerland
| | - Juan A Guzmán-de-Villoria
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Servicio de Radiodiagnóstico, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Julia Romero
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Radiodiagnóstico, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Irene Catalina
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laura Lillo
- Hospital Ruber Internacional, Servicio de Neurología, Madrid, Spain.,Hospital Universitario Fundación Alcorcón, Servicio de Neurología Alcorcón, Madrid, Spain
| | - José L Muñoz-Blanco
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Andrés Ordoñez-Ugalde
- Laboratorio Biomolecular, Cuenca, Ecuador.,Unidad de Genética y Molecular, Hospital de Especialidades José Carrasco Arteaga, Cuenca, Ecuador.,Neurogenetics Group, FPGMX-IDIS, Santiago de Compostela, Spain
| | - Beatriz Quintáns
- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-U711), Madrid, Spain.,Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Julio Pardo
- Departamento de Neurología, Hospital Clínico Universitario de Santiago de Compostela, A Coruña, Santiago de Compostela, Spain
| | - María-Jesús Sobrido
- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,Hospital Clínico Universitario de A Coruña, SERGAS, Santiago de Compostela, Spain
| | - Susanna Carmona
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Francisco Grandas
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
21
|
Zech M, Jech R, Boesch S, Škorvánek M, Weber S, Wagner M, Zhao C, Jochim A, Necpál J, Dincer Y, Vill K, Distelmaier F, Stoklosa M, Krenn M, Grunwald S, Bock-Bierbaum T, Fečíková A, Havránková P, Roth J, Příhodová I, Adamovičová M, Ulmanová O, Bechyně K, Danhofer P, Veselý B, Haň V, Pavelekova P, Gdovinová Z, Mantel T, Meindl T, Sitzberger A, Schröder S, Blaschek A, Roser T, Bonfert MV, Haberlandt E, Plecko B, Leineweber B, Berweck S, Herberhold T, Langguth B, Švantnerová J, Minár M, Ramos-Rivera GA, Wojcik MH, Pajusalu S, Õunap K, Schatz UA, Pölsler L, Milenkovic I, Laccone F, Pilshofer V, Colombo R, Patzer S, Iuso A, Vera J, Troncoso M, Fang F, Prokisch H, Wilbert F, Eckenweiler M, Graf E, Westphal DS, Riedhammer KM, Brunet T, Alhaddad B, Berutti R, Strom TM, Hecht M, Baumann M, Wolf M, Telegrafi A, Person RE, Zamora FM, Henderson LB, Weise D, Musacchio T, Volkmann J, Szuto A, Becker J, Cremer K, Sycha T, Zimprich F, Kraus V, Makowski C, Gonzalez-Alegre P, Bardakjian TM, Ozelius LJ, Vetro A, Guerrini R, Maier E, Borggraefe I, Kuster A, Wortmann SB, Hackenberg A, Steinfeld R, Assmann B, Staufner C, Opladen T, Růžička E, Cohn RD, Dyment D, Chung WK, Engels H, Ceballos-Baumann A, Ploski R, Daumke O, Haslinger B, Mall V, Oexle K, Winkelmann J. Monogenic variants in dystonia: an exome-wide sequencing study. Lancet Neurol 2020; 19:908-918. [PMID: 33098801 DOI: 10.1016/s1474-4422(20)30312-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Dystonia is a clinically and genetically heterogeneous condition that occurs in isolation (isolated dystonia), in combination with other movement disorders (combined dystonia), or in the context of multisymptomatic phenotypes (isolated or combined dystonia with other neurological involvement). However, our understanding of its aetiology is still incomplete. We aimed to elucidate the monogenic causes for the major clinical categories of dystonia. METHODS For this exome-wide sequencing study, study participants were identified at 33 movement-disorder and neuropaediatric specialty centres in Austria, Czech Republic, France, Germany, Poland, Slovakia, and Switzerland. Each individual with dystonia was diagnosed in accordance with the dystonia consensus definition. Index cases were eligible for this study if they had no previous genetic diagnosis and no indication of an acquired cause of their illness. The second criterion was not applied to a subset of participants with a working clinical diagnosis of dystonic cerebral palsy. Genomic DNA was extracted from blood of participants and whole-exome sequenced. To find causative variants in known disorder-associated genes, all variants were filtered, and unreported variants were classified according to American College of Medical Genetics and Genomics guidelines. All considered variants were reviewed in expert round-table sessions to validate their clinical significance. Variants that survived filtering and interpretation procedures were defined as diagnostic variants. In the cases that went undiagnosed, candidate dystonia-causing genes were prioritised in a stepwise workflow. FINDINGS We sequenced the exomes of 764 individuals with dystonia and 346 healthy parents who were recruited between June 1, 2015, and July 31, 2019. We identified causative or probable causative variants in 135 (19%) of 728 families, involving 78 distinct monogenic disorders. We observed a larger proportion of individuals with diagnostic variants in those with dystonia (either isolated or combined) with coexisting non-movement disorder-related neurological symptoms (100 [45%] of 222; excepting cases with evidence of perinatal brain injury) than in those with combined (19 [19%] of 98) or isolated (16 [4%] of 388) dystonia. Across all categories of dystonia, 104 (65%) of the 160 detected variants affected genes which are associated with neurodevelopmental disorders. We found diagnostic variants in 11 genes not previously linked to dystonia, and propose a predictive clinical score that could guide the implementation of exome sequencing in routine diagnostics. In cases without perinatal sentinel events, genomic alterations contributed substantively to the diagnosis of dystonic cerebral palsy. In 15 families, we delineated 12 candidate genes. These include IMPDH2, encoding a key purine biosynthetic enzyme, for which robust evidence existed for its involvement in a neurodevelopmental disorder with dystonia. We identified six variants in IMPDH2, collected from four independent cohorts, that were predicted to be deleterious de-novo variants and expected to result in deregulation of purine metabolism. INTERPRETATION In this study, we have determined the role of monogenic variants across the range of dystonic disorders, providing guidance for the introduction of personalised care strategies and fostering follow-up pathophysiological explorations. FUNDING Else Kröner-Fresenius-Stiftung, Technische Universität München, Helmholtz Zentrum München, Medizinische Universität Innsbruck, Charles University in Prague, Czech Ministry of Education, the Slovak Grant and Development Agency, the Slovak Research and Grant Agency.
Collapse
Affiliation(s)
- Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Robert Jech
- Department of Neurology, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Sylvia Boesch
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Matej Škorvánek
- Department of Neurology, Pavol Jozef Šafárik University, Košice, Slovakia; Department of Neurology, University Hospital of Louis Pasteur, Košice, Slovakia
| | - Sandrina Weber
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Matias Wagner
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Chen Zhao
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Angela Jochim
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ján Necpál
- Department of Neurology, Zvolen Hospital, Zvolen, Slovakia
| | - Yasemin Dincer
- Lehrstuhl für Sozialpädiatrie, Technical University of Munich, Munich, Germany; Zentrum für Humangenetik und Laboratoriumsdiagnostik, Martinsried, Germany
| | - Katharina Vill
- Dr von Haunersches Kinderspital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Martin Krenn
- Institute of Human Genetics, Technical University of Munich, Munich, Germany; Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Stephan Grunwald
- Crystallography, Max Delbrück Center for Molecular Medicine, Berlin, Germany; Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Tobias Bock-Bierbaum
- Crystallography, Max Delbrück Center for Molecular Medicine, Berlin, Germany; Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Anna Fečíková
- Department of Neurology, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Havránková
- Department of Neurology, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jan Roth
- Department of Neurology, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Iva Příhodová
- Department of Neurology, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Miriam Adamovičová
- Department of Paediatric Neurology, Thomayer Hospital, Prague, Czech Republic
| | - Olga Ulmanová
- Department of Neurology, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Karel Bechyně
- Department of Neurology, Hospital Písek, Pisek, Czech Republic
| | - Pavlína Danhofer
- Department of Child Neurology, Faculty of Medicine of Masaryk University Brno and University Hospital, Brno, Czech Republic
| | - Branislav Veselý
- Department of Neurology, Faculty Hospital, Constantine the Philosopher University, Nitra, Slovakia
| | - Vladimír Haň
- Department of Neurology, Pavol Jozef Šafárik University, Košice, Slovakia; Department of Neurology, University Hospital of Louis Pasteur, Košice, Slovakia
| | - Petra Pavelekova
- Department of Neurology, Pavol Jozef Šafárik University, Košice, Slovakia; Department of Neurology, University Hospital of Louis Pasteur, Košice, Slovakia
| | - Zuzana Gdovinová
- Department of Neurology, Pavol Jozef Šafárik University, Košice, Slovakia; Department of Neurology, University Hospital of Louis Pasteur, Košice, Slovakia
| | - Tobias Mantel
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tobias Meindl
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alexandra Sitzberger
- Dr von Haunersches Kinderspital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sebastian Schröder
- Dr von Haunersches Kinderspital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Astrid Blaschek
- Dr von Haunersches Kinderspital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Timo Roser
- Dr von Haunersches Kinderspital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michaela V Bonfert
- Dr von Haunersches Kinderspital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Edda Haberlandt
- Clinic for Pediatrics, Krankenhaus Stadt Dornbirn, Dornbirn, Austria
| | - Barbara Plecko
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, Medical University of Graz, Graz, Austria
| | - Birgit Leineweber
- Sozialpädiatrisches Zentrum, Klinikum Dritter Orden, Munich, Germany
| | - Steffen Berweck
- Ludwig-Maximilians-Universität München, Munich, Germany; Hospital for Neuropediatrics and Neurological Rehabilitation, Centre of Epilepsy for Children and Adolescents, Schoen Klinik Vogtareuth, Vogtareuth, Germany
| | - Thomas Herberhold
- Hospital for Neuropediatrics and Neurological Rehabilitation, Centre of Epilepsy for Children and Adolescents, Schoen Klinik Vogtareuth, Vogtareuth, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Jana Švantnerová
- Second Department of Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovakia
| | - Michal Minár
- Second Department of Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovakia
| | | | - Monica H Wojcik
- Divisions of Newborn Medicine and Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sander Pajusalu
- Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia; Department of Clinical Genetics, University of Tartu, Tartu, Estonia; Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Katrin Õunap
- Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia; Department of Clinical Genetics, University of Tartu, Tartu, Estonia
| | - Ulrich A Schatz
- Institute of Human Genetics, Technical University of Munich, Munich, Germany; Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Laura Pölsler
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Ivan Milenkovic
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Roberto Colombo
- Fondazione Policlinico Universitario A Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Steffi Patzer
- Klinik für Kinder-und Jugendmedizin St Elisabeth und St Barbara, Halle, Germany
| | - Arcangela Iuso
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Julia Vera
- Child Neurology Service, Hospital San Borja Arriarán, University of Chile, Santiago, Chile
| | - Monica Troncoso
- Child Neurology Service, Hospital San Borja Arriarán, University of Chile, Santiago, Chile
| | - Fang Fang
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital and Capital Medical University, Beijing, China
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Friederike Wilbert
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Matthias Eckenweiler
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Dominik S Westphal
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Technical University of Munich, Munich, Germany; Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Bader Alhaddad
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Martin Hecht
- Neurologische Klinik am Klinikum Kaufbeuren, Bezirkskliniken Schwaben, Kaufbeuren, Germany
| | - Matthias Baumann
- Department of Pediatrics, Medical University Innsbruck, Innsbruck, Austria
| | - Marc Wolf
- Neurologische Klinik, Klinikum Stuttgart, Stuttgart, Germany; Neurologische Klinik, Universitätsmedizin Mannheim, Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | - David Weise
- Klinik für Neurologie, Asklepios Fachklinikum Stadtroda, Stadtroda, Germany
| | - Thomas Musacchio
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Anna Szuto
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada; Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Jessica Becker
- Institute of Human Genetics, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Kirsten Cremer
- Institute of Human Genetics, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Thomas Sycha
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Verena Kraus
- Department of Paediatrics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christine Makowski
- Department of Paediatrics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Pedro Gonzalez-Alegre
- Department of Neurology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Tanya M Bardakjian
- Department of Neurology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Annalisa Vetro
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Esther Maier
- Dr von Haunersches Kinderspital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ingo Borggraefe
- Dr von Haunersches Kinderspital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alice Kuster
- Inborn Errors of Metabolism, Pediatric Intensive Care Unit, University Hospital of Nantes, Nantes, France
| | - Saskia B Wortmann
- Institute of Human Genetics, Technical University of Munich, Munich, Germany; University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria; Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Amalia Children's Hospital, Radboudumc, Nijmegen, Netherlands
| | - Annette Hackenberg
- Department of Pediatric Neurology, University Children's Hospital, Zürich, Switzerland
| | - Robert Steinfeld
- Department of Pediatric Neurology, University Children's Hospital, Zürich, Switzerland
| | - Birgit Assmann
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Staufner
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Opladen
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Evžen Růžička
- Department of Neurology, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ronald D Cohn
- Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada; Hospital for Sick Children Research Institute, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - David Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Wendy K Chung
- Department of Pediatrics and Department of Medicine, Columbia University, New York, NY, USA
| | - Hartmut Engels
- Institute of Human Genetics, University of Bonn and University Hospital Bonn, Bonn, Germany
| | | | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Oliver Daumke
- Crystallography, Max Delbrück Center for Molecular Medicine, Berlin, Germany; Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Bernhard Haslinger
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Volker Mall
- Lehrstuhl für Sozialpädiatrie, Technical University of Munich, Munich, Germany; kbo-Kinderzentrum München, Munich, Germany
| | - Konrad Oexle
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, Technical University of Munich, Munich, Germany; Lehrstuhl für Neurogenetik, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology, SyNergy, Munich, Germany.
| |
Collapse
|
22
|
Nan H, Okamoto K, Gao L, Morishima Y, Ichinose Y, Koh K, Hashiyada M, Adachi N, Takiyama Y. A Japanese SPG4 Patient with a Confirmed De Novo Mutation of the SPAST Gene. Intern Med 2020; 59:2311-2315. [PMID: 32522921 PMCID: PMC7578612 DOI: 10.2169/internalmedicine.4599-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spastic paraplegia type 4 (SPG4) is caused by mutations of the SPAST gene and is the most common form of autosomal-dominantly inherited pure hereditary spastic paraplegia (HSP). We herein report a Japanese patient with SPG4 with a confirmed de novo mutation of SPAST. On exome sequencing and Sanger sequencing, we identified the heterozygous missense mutation p.R460L in the SPAST gene. This mutation was absent in the parents, and the paternity and maternity of the parents were both confirmed. The patient showed a pure SPG4 phenotype with an infantile onset. This study may expand the clinical and genetic findings for SPG4.
Collapse
Affiliation(s)
- Haitian Nan
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan
| | - Kensho Okamoto
- Department of Neurology, Ehime Prefectural Central Hospital, Japan
| | - Lihua Gao
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan
| | - Yuto Morishima
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan
| | - Yuta Ichinose
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan
| | - Kishin Koh
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan
| | | | - Noboru Adachi
- Department of Legal Medicine, Graduate School of Medical Sciences, University of Yamanashi, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan
| |
Collapse
|