1
|
Song Y, Lee JH, Kim HK, Lee JH, Ryu YH, Yoo HS, Lyoo CH. Longitudinal Trajectory of Dopamine and Serotonin Transporters in Parkinson Disease. J Nucl Med 2025:jnumed.124.268365. [PMID: 39746754 DOI: 10.2967/jnumed.124.268365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Parkinson disease (PD) is a multisystem disorder marked by progressive dopaminergic neuronal degeneration in the substantia nigra, as well as nondopaminergic systems. Our aim was to investigate longitudinal changes in N-(3-[18F]fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (18F-FP-CIT) binding at the putamen, substantia nigra, and raphe nuclei in PD. Methods: This retrospective cohort study enrolled 127 patients with PD, who underwent 18F-FP-CIT PET scans twice or more, and 71 age- and sex-matched healthy controls. A temporal trajectory model was created to estimate the longitudinal trajectories of 18F-FP-CIT PET specific binding ratios (SBRs) of the putamen, substantia nigra, and raphe nuclei from the prodromal to advanced stages. Associations between SBRs and age and motor severity were evaluated. Results: At baseline, the PD group showed significantly lower 18F-FP-CIT SBR of the putamen and substantia nigra and higher 18F-FP-CIT SBR of the median raphe than did the control group. Longitudinally, 18F-FP-CIT decline of the putamen and substantia nigra began 11.3 and 3.4 y, respectively, before clinical onset on the more affected side. 18F-FP-CIT decline of the raphe nuclei remained constant for up to 20 y of disease duration. Topographically, 18F-FP-CIT SBR of the substantia nigra progressed from the caudal and anterolateral to the rostral and posteromedial regions. Conclusion: These results provide in vivo evidence of decreased striatal synaptic dopamine transporter availability approximately 8 y before decreased nigral neuronal dopamine transporter availability, which is strongly correlated with motor deficit. Serotonin transporter availability in the raphe nuclei was elevated in and remained largely unchanged during the disease span.
Collapse
Affiliation(s)
- Yujin Song
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Hyeok Lee
- Department of Neurology, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Han-Kyeol Kim
- Department of Neurology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, South Korea; and
| | - Jae Hoon Lee
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, South Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, South Korea
| | - Han Soo Yoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea;
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Serra M, Faustini G, Brembati V, Casu MA, Pizzi M, Morelli M, Pinna A, Bellucci A. Early α-synuclein/synapsin III co-accumulation, nigrostriatal dopaminergic synaptopathy and denervation in the MPTPp mouse model of Parkinson's Disease. Exp Neurol 2024; 383:115040. [PMID: 39500391 DOI: 10.1016/j.expneurol.2024.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/10/2024]
Abstract
Parkinson's disease (PD) is characterized by the loss of nigrostriatal dopaminergic neurons and the presence of Lewy bodies (LB), intraneuronal inclusions mainly composed of α-synuclein (α-Syn) fibrils. Compelling evidence supports that, in PD brains, synapses are the sites where neurodegeneration initiates several years before the manifestation of motor symptoms. Furthermore, the amount of α-Syn deposited at synaptic terminals is several orders greater than that constituting LB. This hints that pathological synaptic α-Syn aggregates may be the main trigger for the retrograde synapse-to-cell body degeneration pattern characterizing early prodromal phases of PD. Identifying reliable biomarkers of synaptopathy is therefore crucial for early diagnosis. Here, we studied the alterations of key dopaminergic and non-dopaminergic striatal synaptic markers during the initial phases of axonal and cell body degeneration in mice subjected to 3 or 10 administrations of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine + probenecid (MPTPp), a model for early prodromal PD. We found that MPTPp administration resulted in progressive deposition of α-Syn, advancing from synaptic terminals to axons and dopaminergic neuron cell bodies. This was accompanied by marked co-accumulation of Synapsin III (Syn III), a synaptic protein previously identified as a component of α-Syn fibrils in post-mortem PD brains and as a main stabilizer of α-Syn aggregates, as well as very early and severe reduction of vesicular monoamine transporter 2 (VMAT2), dopamine transporter (DAT) and tyrosine hydroxylase (TH) immunoreactivity in nigrostriatal neurons. Results also showed that striatal α-Syn accumulation and VMAT2 decrease, unlike other markers, did not recover following washout from 10 MPTPp administrations, supporting that these changes were precocious and severe. Finally, we found that early changes in striatal α-Syn, Syn III, VMAT2 and DAT observed following 3 MPTPp administrations, correlated with nigrostriatal neuron loss after 10 MPTPp administrations. These findings indicate that α-Syn/Syn III co-deposition characterizes very early stages of striatal dopaminergic dysfunction in the MPTPp model and highlight that VMAT2 and Syn III could be two reliable molecular imaging biomarkers to predict dopamine neuron denervation and estimate α-Syn-related synaptopathy in prodromal and early symptomatic phases of PD.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Gaia Faustini
- Department of Molecular and Translational Medicine University of Brescia, Brescia, Italy
| | - Viviana Brembati
- Department of Molecular and Translational Medicine University of Brescia, Brescia, Italy
| | - Maria Antonietta Casu
- National Research Council of Italy, Institute of Translational Pharmacology, UOS of Cagliari, Scientific and Technological Park of Sardinia POLARIS, Pula, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine University of Brescia, Brescia, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, Italy
| | - Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, Italy.
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine University of Brescia, Brescia, Italy.
| |
Collapse
|
3
|
Sokratian A, Zhou Y, Tatli M, Burbidge KJ, Xu E, Viverette E, Donzelli S, Duda AM, Yuan Y, Li H, Strader S, Patel N, Shiell L, Malankhanova T, Chen O, Mazzulli JR, Perera L, Stahlberg H, Borgnia M, Bartesaghi A, Lashuel HA, West AB. Mouse α-synuclein fibrils are structurally and functionally distinct from human fibrils associated with Lewy body diseases. SCIENCE ADVANCES 2024; 10:eadq3539. [PMID: 39485845 DOI: 10.1126/sciadv.adq3539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
The intricate process of α-synuclein aggregation and fibrillization holds pivotal roles in Parkinson's disease (PD) and multiple system atrophy (MSA). While mouse α-synuclein can fibrillize in vitro, whether these fibrils commonly used in research to induce this process or form can reproduce structures in the human brain remains unknown. Here, we report the first atomic structure of mouse α-synuclein fibrils, which was solved in parallel by two independent teams. The structure shows striking similarity to MSA-amplified and PD-associated E46K fibrils. However, mouse α-synuclein fibrils display altered packing arrangements, reduced hydrophobicity, and heightened fragmentation sensitivity and evoke only weak immunological responses. Furthermore, mouse α-synuclein fibrils exhibit exacerbated pathological spread in neurons and humanized α-synuclein mice. These findings provide critical insights into the structural underpinnings of α-synuclein pathogenicity and emphasize a need to reassess the role of mouse α-synuclein fibrils in the development of related diagnostic probes and therapeutic interventions.
Collapse
Affiliation(s)
- Arpine Sokratian
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Meltem Tatli
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Kevin J Burbidge
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Enquan Xu
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Elizabeth Viverette
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Sonia Donzelli
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Addison M Duda
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Yuan Yuan
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Huizhong Li
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Samuel Strader
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Nirali Patel
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Lauren Shiell
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Tuyana Malankhanova
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Olivia Chen
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Joseph R Mazzulli
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lalith Perera
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Mario Borgnia
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Alberto Bartesaghi
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27705, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Qatar Foundation ND BioSciences, Qatar Foundation Headquarters, PO Box 3400, Al Rayyan, Qatar
| | - Andrew B West
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
4
|
Liu S, Yang N, Yan Y, Wang S, Chen J, Wang Y, Gan X, Zhou J, Xie G, Wang H, Huang T, Ji W, Wang Z, Si W. An accelerated Parkinson's disease monkey model using AAV-α-synuclein plus poly(ADP-ribose). CELL REPORTS METHODS 2024; 4:100876. [PMID: 39413778 PMCID: PMC11573744 DOI: 10.1016/j.crmeth.2024.100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
The etiology of Parkinson's disease (PD) remains elusive, and the limited availability of suitable animal models hampers research on pathogenesis and drug development. We report the development of a cynomolgus monkey model of PD that combines adeno-associated virus (AAV)-mediated overexpression of α-synuclein into the substantia nigra with an injection of poly(ADP-ribose) (PAR) into the striatum. Our results show that pathological processes were accelerated, including dopaminergic neuron degeneration, Lewy body aggregation, and hallmarks of inflammation in microglia and astrocytes. Behavioral phenotypes, dopamine transporter imaging, and transcriptomic profiling further demonstrate consistencies between the model and patients with PD. This model can help to determine the mechanisms underlying PD impacted by α-synuclein and PAR and aid in the accelerated development of therapeutic strategies for PD.
Collapse
Affiliation(s)
- Shuyi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Naixue Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yaping Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Shaobo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Department of Nuclear Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| | - Jialing Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yichao Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xue Gan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jiawen Zhou
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Guoqing Xie
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Hong Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tianzhuang Huang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
5
|
Li H, Mei L, Nie X, Wu L, Lv L, Ren X, Yang J, Cao H, Wu J, Zhang Y, Hu Y, Wang W, Turck CW, Shi B, Li J, Xu L, Hu X. The Tree Shrew Model of Parkinson Disease: A Cost-Effective Alternative to Nonhuman Primate Models. J Transl Med 2024; 104:102145. [PMID: 39343009 DOI: 10.1016/j.labinv.2024.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
The surge in demand for experimental monkeys has led to a rapid increase in their costs. Consequently, there is a growing need for a cost-effective model of Parkinson disease (PD) that exhibits all core clinical and pathologic phenotypes. Evolutionarily, tree shrews (Tupaia belangeri) are closer to primates in comparison with rodents and could be an ideal species for modeling PD. To develop a tree shrew PD model, we used the 1-methyl-4-phenylpyridinium (MPP+), a metabolite derived from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, to induce lesions in dopaminergic neurons of the unilateral substantia nigra. The induced tree shrew model consistently exhibited and maintained all classic clinical manifestations of PD for a 5-month period. The symptoms included bradykinesia, rest tremor, and postural instability, and ∼50% individuals showed apomorphine-induced rotations, a classic phenotype of unilateral PD models. All these are closely resembled the ones observed in PD monkeys. Meanwhile, this model was also sensitive to L-dopa treatment in a dose-dependent manner, which suggested that the motor deficits are dopamine dependent. Immunostaining showed a significant loss of dopaminergic neurons (∼95%) in the lesioned substantia nigra, which is a crucial PD pathological marker. Moreover, a control group of nigral saline injection did not show any motor deficits and pathological changes. Cytomorphologic analysis revealed that the size of nigral dopaminergic neurons in tree shrews is much bigger than that of rodents and is close to that of macaques. The morphologic similarity may be an important structural basis for the manifestation of the highly similar phenotypes between monkey and tree shrew PD models. Collectively, in this study, we have successfully developed a PD model in a small animal species that faithfully recapitulated the classic clinical symptoms and key pathological indicators of PD monkeys, providing a novel and low-cost avenue for evaluation of PD treatments and underlying mechanisms.
Collapse
Affiliation(s)
- Hao Li
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Leyi Mei
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Xiupeng Nie
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Liping Wu
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Longbao Lv
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Xiaofeng Ren
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Jitong Yang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Haonan Cao
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jing Wu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yuhua Zhang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yingzhou Hu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenchao Wang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Christoph W Turck
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Max Planck Institute of Psychiatry, Munich, Germany.
| | - Bingyin Shi
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Jiali Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Department of Neurology, Hackensack Meridian School of Medicine, Nutley, New Jersey.
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Xintian Hu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
6
|
Sagredo GT, Tanglay O, Shahdadpuri S, Fu Y, Halliday GM. ⍺-Synuclein levels in Parkinson's disease - Cell types and forms that contribute to pathogenesis. Exp Neurol 2024; 379:114887. [PMID: 39009177 DOI: 10.1016/j.expneurol.2024.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Parkinson's disease (PD) has two main pathological hallmarks, the loss of nigral dopamine neurons and the proteinaceous aggregations of ⍺-synuclein (⍺Syn) in neuronal Lewy pathology. These two co-existing features suggest a causative association between ⍺Syn aggregation and the underpinning mechanism of neuronal degeneration in PD. Both increased levels and post-translational modifications of ⍺Syn can contribute to the formation of pathological aggregations of ⍺Syn in neurons. Recent studies have shown that the protein is also expressed by multiple types of non-neuronal cells in the brain and peripheral tissues, suggesting additional roles of the protein and potential diversity in non-neuronal pathogenic triggers. It is important to determine (1) the threshold levels triggering ⍺Syn to convert from a biological to a pathologic form in different brain cells in PD; (2) the dominant form of pathologic ⍺Syn and the associated post-translational modification of the protein in each cell type involved in PD; and (3) the cell type associated biological processes impacted by pathologic ⍺Syn in PD. This review integrates these aspects and speculates on potential pathological mechanisms and their impact on neuronal and non-neuronal ⍺Syn in the brains of patients with PD.
Collapse
Affiliation(s)
- Giselle Tatiana Sagredo
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Onur Tanglay
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia
| | - Shrey Shahdadpuri
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia
| | - YuHong Fu
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Glenda M Halliday
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
| |
Collapse
|
7
|
Gatica-Garcia B, Bannon MJ, Martínez-Dávila IA, Soto-Rojas LO, Reyes-Corona D, Escobedo L, Maldonado-Berny M, Gutierrez-Castillo ME, Espadas-Alvarez AJ, Fernandez-Parrilla MA, Mascotte-Cruz JU, Rodríguez-Oviedo CP, Valenzuela-Arzeta IE, Luna-Herrera C, Lopez-Salas FE, Santoyo-Salazar J, Martinez-Fong D. Unilateral rNurr1-V5 transgene expression in nigral dopaminergic neurons mitigates bilateral neuropathology and behavioral deficits in parkinsonian rats with α-synucleinopathy. Neural Regen Res 2024; 19:2057-2067. [PMID: 38227536 DOI: 10.4103/1673-5374.391190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202409000-00039/figure1/v/2024-01-16T170235Z/r/image-tiff Parkinsonism by unilateral, intranigral β-sitosterol β-D-glucoside administration in rats is distinguished in that the α-synuclein insult begins unilaterally but spreads bilaterally and increases in severity over time, thus replicating several clinical features of Parkinson's disease, a typical α-synucleinopathy. As Nurr1 represses α-synuclein, we evaluated whether unilateral transfected of rNurr1-V5 transgene via neurotensin-polyplex to the substantia nigra on day 30 after unilateral β-sitosterol β-D-glucoside lesion could affect bilateral neuropathology and sensorimotor deficits on day 30 post-transfection. This study found that rNurr1-V5 expression but not that of the green fluorescent protein (the negative control) reduced β-sitosterol β-D-glucoside-induced neuropathology. Accordingly, a bilateral increase in tyrosine hydroxylase-positive cells and arborization occurred in the substantia nigra and increased tyrosine hydroxylase-positive ramifications in the striatum. In addition, tyrosine hydroxylase-positive cells displayed less senescence marker β-galactosidase and more neuron-cytoskeleton marker βIII-tubulin and brain-derived neurotrophic factor. A significant decrease in activated microglia (positive to ionized calcium-binding adaptor molecule 1) and neurotoxic astrocytes (positive to glial fibrillary acidic protein and complement component 3) and increased neurotrophic astrocytes (positive to glial fibrillary acidic protein and S100 calcium-binding protein A10) also occurred in the substantia nigra. These effects followed the bilateral reduction in α-synuclein aggregates in the nigrostriatal system, improving sensorimotor behavior. Our results show that unilateral rNurr1-V5 transgene expression in nigral dopaminergic neurons mitigates bilateral neurodegeneration (senescence and loss of neuron-cytoskeleton and tyrosine hydroxylase-positive cells), neuroinflammation (activated microglia, neurotoxic astrocytes), α-synuclein aggregation, and sensorimotor deficits. Increased neurotrophic astrocytes and brain-derived neurotrophic factor can mediate the rNurr1-V5 effect, supporting its potential clinical use in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Bismark Gatica-Garcia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Michael J Bannon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Irma Alicia Martínez-Dávila
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Luis O Soto-Rojas
- Laboratorio de Patogénesis Molecular, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, México
- Red de Medicina para la Educación y Desarrollo y la Investigación Científica de Iztacala (Red MEDICI), Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, México
| | | | - Lourdes Escobedo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Minerva Maldonado-Berny
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - M E Gutierrez-Castillo
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, Ciudad de México, México
| | - Armando J Espadas-Alvarez
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Juan U Mascotte-Cruz
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | | | - Irais E Valenzuela-Arzeta
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Claudia Luna-Herrera
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Francisco E Lopez-Salas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jaime Santoyo-Salazar
- Departamento de Física, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
- Nanoparticle Therapy Institute, Aguascalientes, México
- Programa de Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| |
Collapse
|
8
|
Leak RK, Clark RN, Abbas M, Xu F, Brodsky JL, Chen J, Hu X, Luk KC. Current insights and assumptions on α-synuclein in Lewy body disease. Acta Neuropathol 2024; 148:18. [PMID: 39141121 PMCID: PMC11324801 DOI: 10.1007/s00401-024-02781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Lewy body disorders are heterogeneous neurological conditions defined by intracellular inclusions composed of misshapen α-synuclein protein aggregates. Although α-synuclein aggregates are only one component of inclusions and not strictly coupled to neurodegeneration, evidence suggests they seed the propagation of Lewy pathology within and across cells. Genetic mutations, genomic multiplications, and sequence polymorphisms of the gene encoding α-synuclein are also causally linked to Lewy body disease. In nonfamilial cases of Lewy body disease, the disease trigger remains unidentified but may range from industrial/agricultural toxicants and natural sources of poisons to microbial pathogens. Perhaps due to these peripheral exposures, Lewy inclusions appear at early disease stages in brain regions connected with cranial nerves I and X, which interface with inhaled and ingested environmental elements in the nasal or gastrointestinal cavities. Irrespective of its identity, a stealthy disease trigger most likely shifts soluble α-synuclein (directly or indirectly) into insoluble, cross-β-sheet aggregates. Indeed, β-sheet-rich self-replicating α-synuclein multimers reside in patient plasma, cerebrospinal fluid, and other tissues, and can be subjected to α-synuclein seed amplification assays. Thus, clinicians should be able to capitalize on α-synuclein seed amplification assays to stratify patients into potential responders versus non-responders in future clinical trials of α-synuclein targeted therapies. Here, we briefly review the current understanding of α-synuclein in Lewy body disease and speculate on pathophysiological processes underlying the potential transmission of α-synucleinopathy across the neuraxis.
Collapse
Affiliation(s)
- Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA.
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Muslim Abbas
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Fei Xu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| |
Collapse
|
9
|
Matarazzo M, Pérez-Soriano A, Vafai N, Shahinfard E, Cheng KJC, McKenzie J, Neilson N, Miao Q, Schaffer P, Shinotoh H, Kordower JH, Sossi V, Stoessl AJ. Misfolded protein deposits in Parkinson's disease and Parkinson's disease-related cognitive impairment, a [ 11C]PBB3 study. NPJ Parkinsons Dis 2024; 10:96. [PMID: 38702305 PMCID: PMC11068893 DOI: 10.1038/s41531-024-00708-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/11/2024] [Indexed: 05/06/2024] Open
Abstract
Parkinson's disease (PD) is associated with aggregation of misfolded α-synuclein and other proteins, including tau. We designed a cross-sectional study to quantify the brain binding of [11C]PBB3 (a ligand known to bind to misfolded tau and possibly α-synuclein) as a proxy of misfolded protein aggregation in Parkinson's disease (PD) subjects with and without cognitive impairment and healthy controls (HC). In this cross-sectional study, nineteen cognitively normal PD subjects (CN-PD), thirteen cognitively impaired PD subjects (CI-PD) and ten HC underwent [11C]PBB3 PET. A subset of the PD subjects also underwent PET imaging with [11C](+)DTBZ to assess dopaminergic denervation and [11C]PBR28 to assess neuroinflammation. Compared to HC, PD subjects showed higher [11C]PBB3 binding in the posterior putamen but not the substantia nigra. There was no relationship across subjects between [11C]PBB3 and [11C]PBR28 binding in nigrostriatal regions. [11C]PBB3 binding was increased in the anterior cingulate in CI-PD compared to CN-PD and HC, and there was an inverse correlation between cognitive scores and [11C]PBB3 binding in this region across all PD subjects. Our results support a primary role of abnormal protein deposition localized to the posterior putamen in PD. This suggests that striatal axonal terminals are preferentially involved in the pathophysiology of PD. Furthermore, our findings suggest that anterior cingulate pathology might represent a significant in vivo marker of cognitive impairment in PD, in agreement with previous neuropathological studies.
Collapse
Affiliation(s)
- Michele Matarazzo
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Alexandra Pérez-Soriano
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Nasim Vafai
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Elham Shahinfard
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Kevin Ju-Chieh Cheng
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Jessamyn McKenzie
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Nicole Neilson
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | | | | | - Hitoshi Shinotoh
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, Chiba, Japan
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - A Jon Stoessl
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada.
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Morris HR, Spillantini MG, Sue CM, Williams-Gray CH. The pathogenesis of Parkinson's disease. Lancet 2024; 403:293-304. [PMID: 38245249 DOI: 10.1016/s0140-6736(23)01478-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/31/2022] [Accepted: 07/13/2023] [Indexed: 01/22/2024]
Abstract
Parkinson's disease is a progressive neurodegenerative condition associated with the deposition of aggregated α-synuclein. Insights into the pathogenesis of Parkinson's disease have been derived from genetics and molecular pathology. Biochemical studies, investigation of transplanted neurons in patients with Parkinson's disease, and cell and animal model studies suggest that abnormal aggregation of α-synuclein and spreading of pathology between the gut, brainstem, and higher brain regions probably underlie the development and progression of Parkinson's disease. At a cellular level, abnormal mitochondrial, lysosomal, and endosomal function can be identified in both monogenic and sporadic Parkinson's disease, suggesting multiple potential treatment approaches. Recent work has also highlighted maladaptive immune and inflammatory responses, possibly triggered in the gut, that accelerate the pathogenesis of Parkinson's disease. Although there are currently no disease-modifying treatments for Parkinson's disease, we now have a solid basis for the development of rational neuroprotective therapies that we hope will halt the progression of this disabling neurological condition.
Collapse
Affiliation(s)
- Huw R Morris
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK; University College London Movement Disorders Centre, University College London, London, UK; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA.
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
| | - Carolyn M Sue
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Department of Neurology, South Eastern Sydney Local Health District, Sydney, NSW, Australia; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA; Neuroscience Research Australia, Randwick, NSW, Australia.
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Kon T, Forrest SL, Lee S, Martinez-Valbuena I, Li J, Nassir N, Uddin MJ, Lang AE, Kovacs GG. Neuronal SNCA transcription during Lewy body formation. Acta Neuropathol Commun 2023; 11:185. [PMID: 37996943 PMCID: PMC10666428 DOI: 10.1186/s40478-023-01687-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Misfolded α-synuclein (α-syn) is believed to contribute to neurodegeneration in Lewy body disease (LBD) based on considerable evidence including a gene-dosage effect observed in relation to point mutations and multiplication of SNCA in familial Parkinson's disease. A contradictory concept proposes early loss of the physiological α-syn as the major driver of neurodegeneration. There is a paucity of data on SNCA transcripts in various α-syn immunoreactive cytopathologies. Here, the total cell body, nuclear, and cytoplasmic area density of SNCA transcripts in neurons without and with various α-syn immunoreactive cytopathologies in the substantia nigra and amygdala in autopsy cases of LBD (n = 5) were evaluated using RNAscope combined with immunofluorescence for disease-associated α-syn. Single-nucleus RNA sequencing was performed to elucidate cell-type specific SNCA expression in non-diseased frontal cortex (n = 3). SNCA transcripts were observed in the neuronal nucleus and cytoplasm in neurons without α-syn, those containing punctate α-syn immunoreactivity, irregular-shaped compact inclusion, and brainstem-type and cortical-type LBs. However, SNCA transcripts were only rarely found in the α-syn immunoreactive LB areas. The total cell body SNCA transcript area densities in neurons with punctate α-syn immunoreactivity were preserved but were significantly reduced in neurons with compact α-syn inclusions both in the substantia nigra and amygdala. This reduction was also observed in the cytoplasm but not in the nucleus. Only single SNCA transcripts were detected in astrocytes with or without disease-associated α-syn immunoreactivity in the amygdala. Single-nucleus RNA sequencing revealed that excitatory and inhibitory neurons, oligodendrocyte progenitor cells, oligodendrocytes, and homeostatic microglia expressed SNCA transcripts, while expression was largely absent in astrocytes and microglia. The preserved cellular SNCA expression in the more abundant non-Lewy body type α-syn cytopathologies might provide a pool for local protein production that can aggregate and serve as a seed for misfolded α-syn. Successful segregation of disease-associated α-syn is associated with the exhaustion of SNCA production in the terminal cytopathology, the Lewy body. Our observations inform therapy development focusing on targeting SNCA transcription in LBD.
Collapse
Affiliation(s)
- Tomoya Kon
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Rm 6KD414, Tanz CRND, Krembil Discovery Tower, Toronto, ON, M5T 0S8, Canada
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Rm 6KD414, Tanz CRND, Krembil Discovery Tower, Toronto, ON, M5T 0S8, Canada
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Rm 6KD414, Tanz CRND, Krembil Discovery Tower, Toronto, ON, M5T 0S8, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Rm 6KD414, Tanz CRND, Krembil Discovery Tower, Toronto, ON, M5T 0S8, Canada
| | - Jun Li
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Rm 6KD414, Tanz CRND, Krembil Discovery Tower, Toronto, ON, M5T 0S8, Canada
| | | | - Mohammed J Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
- GenomeArc Inc, Toronto, ON, Canada
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Rm 6KD414, Tanz CRND, Krembil Discovery Tower, Toronto, ON, M5T 0S8, Canada
- Edmund J Safra Program in Parkinson's Disease and Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Rm 6KD414, Tanz CRND, Krembil Discovery Tower, Toronto, ON, M5T 0S8, Canada.
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
- Edmund J Safra Program in Parkinson's Disease and Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, Toronto, ON, Canada.
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Teil M, Dovero S, Bourdenx M, Arotcarena ML, Darricau M, Porras G, Thiolat ML, Trigo-Damas I, Perier C, Estrada C, Garcia-Carrillo N, Herrero MT, Vila M, Obeso JA, Bezard E, Dehay B. Cortical Lewy body injections induce long-distance pathogenic alterations in the non-human primate brain. NPJ Parkinsons Dis 2023; 9:135. [PMID: 37726343 PMCID: PMC10509171 DOI: 10.1038/s41531-023-00579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Aggregation of α-synuclein (α-syn) is the cornerstone of neurodegenerative diseases termed synucleinopathies, which include Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB), and Multiple System Atrophy (MSA). These synucleinopathies are characterized by the deposit of aggregated α-syn in intracellular inclusions observable in neurons and glial cells. In PD and DLB, these aggregates, predominantly located in neurons, are called Lewy Bodies (LBs). These LBs are one of the pathological hallmarks of PD and DLB, alongside dopaminergic neuron loss in the substantia nigra. Previous studies have demonstrated the ability of PD patient-derived LB fractions to induce nigrostriatal neurodegeneration and α-syn pathology when injected into the striatum or the enteric nervous system of non-human primates. Here, we report the pathological consequences of injecting these LB fractions into the cortex of non-human primates. To this end, we inoculated mesencephalic PD patient-derived LB fractions into the prefrontal cortex of baboon monkeys terminated one year later. Extensive analyses were performed to evaluate pathological markers known to be affected in LB pathologies. We first assessed the hypothesized presence of phosphorylated α-syn at S129 (pSyn) in the prefrontal cortices. Second, we quantified the neuronal, microglial, and astrocytic cell survival in the same cortices. Third, we characterized these cortical LB injections' putative impact on the integrity of the nigrostriatal system. Overall, we observed pSyn accumulation around the injection site in the dorsal prefrontal cortex, in connected cortical regions, and further towards the striatum, suggesting α-syn pathological propagation. The pathology was also accompanied by neuronal loss in these prefrontal cortical regions and the caudate nucleus, without, however, loss of nigral dopamine neurons. In conclusion, this pilot study provides novel data demonstrating the toxicity of patient-derived extracts, their potential to propagate from the cortex to the striatum in non-human primates, and a possible primate model of DLB.
Collapse
Affiliation(s)
- Margaux Teil
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | - Sandra Dovero
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | - Mathieu Bourdenx
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | | | | | - Gregory Porras
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | | | - Inés Trigo-Damas
- HM CINAC, HM Puerta del Sur, Fundación HM Hospitales and CIBERNED and CEU-San Pablo University Madrid, E-28938, Mostoles, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Celine Perier
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Cristina Estrada
- Clinical and Experimental Neuroscience Unit, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
- Institute of Research on Aging (IUIE), School of Medicine, University of Murcia, 30100, Murcia, Spain
| | - Nuria Garcia-Carrillo
- Centro Experimental en Investigaciones Biomédica (CEIB), Universidad de Murcia, Murcia, Spain
| | - María Trinidad Herrero
- Clinical and Experimental Neuroscience Unit, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
- Institute of Research on Aging (IUIE), School of Medicine, University of Murcia, 30100, Murcia, Spain
| | - Miquel Vila
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - José A Obeso
- HM CINAC, HM Puerta del Sur, Fundación HM Hospitales and CIBERNED and CEU-San Pablo University Madrid, E-28938, Mostoles, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- CEU, San Pablo University Madrid, E-28938 Mostoles, Spain 2 HM CINAC, HM Puerta del Sur and CIBERNED and CEU-San Pablo University Madrid, E-, 28938, Mostoles, Spain
| | - Erwan Bezard
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | - Benjamin Dehay
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France.
| |
Collapse
|
13
|
Chu Y, Kordower JH. Post-Mortem Studies of Neurturin Gene Therapy for Parkinson's Disease: Two Subjects with 10 Years CERE120 Delivery. Mov Disord 2023; 38:1728-1736. [PMID: 37544016 DOI: 10.1002/mds.29518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Neurturin is a member of the glial cell line-derived neurotrophic factor family of neurotrophic factors and has the potential to protectdegenerating dopaminergic neurons. OBJECTIVE Here, we performed post-mortem studies on two patients with advanced Parkinson's disease that survived 10 years following AAV-neurturin gene (Cere120) delivery to verify long-term effects of trophic factor neurturin. METHODS Cere120 was delivered to the putamen bilaterally in one case and to the putamen plus substantia nigra bilaterally in the second. Immunohistochemistry was used to examine neurturin, Rearranged during transfection(RET), phosphor-S6, and tyrosine hydroxylase expressions, inflammatory reactions, and α-synuclein accumulation. RESULTS In both patients there was persistent, albeit limited, neurturin expression in the putamen covering 1.31% to 5.92% of the putamen. Dense staining of tyrosine hydroxylase-positive fibers was observed in areas that contained detectable neurturin expression. In substantia nigra, neurturin expression was detected in 11% of remaining melanin-containing neurons in the patient with combined putamenal and nigral gene delivery, but not in the patient with putamenal gene delivery alone. Tyrosine hydroxylase positive neurons were 66% to 84% of remaining neuromelanin neurons in substantia nigra with Cere120 delivery and 23% to 24% in substantia nigra without gene delivery. More RET and phosphor-S6 positive neurons were observed in substantia nigra following nigral Cere120. Inflammatory and Lewy pathologies were similar in substantia nigra with or without Cere120 delivery. CONCLUSIONS This study provides evidence of long-term persistent transgene expression and bioactivity following gene delivery to the nigrostriatal system. Therefore, future efforts using gene therapy for neurodegenerative diseases should consider means to enhance remaining dopamine neuron function and stop pathological propagation. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yaping Chu
- ASU-Banner Neurodegenerative Disease Research Center, Tempe, Arizona, USA
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
14
|
Zhang D, Zhou L, Yao J, Shi Y, He H, Wei H, Tong Q, Liu J, Wu T. Increased Free Water in the Putamen in Idiopathic REM Sleep Behavior Disorder. Mov Disord 2023; 38:1645-1654. [PMID: 37342973 DOI: 10.1002/mds.29499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND It has been suggested that the loss of nigrostriatal dopaminergic axon terminals occurs before the loss of dopaminergic neurons in the substantia nigra (SN) in Parkinson's disease (PD). This study aimed to use free-water imaging to evaluate microstructural changes in the dorsoposterior putamen (DPP) of idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) patients, which is considered a prodromal stage of synucleinopathies. METHODS Free water values in the DPP, dorsoanterior putamen (DAP), and posterior SN were compared between the healthy controls (n = 48), iRBD (n = 43) and PD (n = 47) patients. In iRBD patients, the relationships between baseline and longitudinal free water values and clinical manifestations or dopamine transporter (DAT) striatal binding ratio (SBR) were analyzed. RESULTS Free water values were significantly higher in the DPP and posterior substantia nigra (pSN), but not in the DAP, in the iRBD and PD groups than in controls. In iRBD patients, free water values in the DPP were progressively increased and correlated with the progression of clinical manifestations and the striatal DAT SBR. Baseline free water in the DPP was negatively correlated with striatal DAT SBR and hyposmia and positively correlated with motor deficits. CONCLUSIONS This study demonstrates that free water values in the DPP are increased cross-sectionally and longitudinally and associated with clinical manifestations and the function of the dopaminergic system in the prodromal stage of synucleinopathies. Our findings indicate that free-water imaging of the DPP has the potential to be a valid marker of early diagnosis and progression of synucleinopathies. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dongling Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junye Yao
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Zhejiang, China
| | - Yuting Shi
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Zhejiang, China
- School of Physics, Zhejiang University, Zhejiang, China
| | - Hongjiang Wei
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiqi Tong
- Research Center for Healthcare Data Science, Zhejiang Lab, Zhejiang, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Harraz MM. Selective dopaminergic vulnerability in Parkinson's disease: new insights into the role of DAT. Front Neurosci 2023; 17:1219441. [PMID: 37694119 PMCID: PMC10483232 DOI: 10.3389/fnins.2023.1219441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
One of the hallmarks of Parkinson's disease (PD) is the progressive loss of dopaminergic neurons and associated dopamine depletion. Several mechanisms, previously considered in isolation, have been proposed to contribute to the pathophysiology of dopaminergic degeneration: dopamine oxidation-mediated neurotoxicity, high dopamine transporter (DAT) expression density per neuron, and autophagy-lysosome pathway (ALP) dysfunction. However, the interrelationships among these mechanisms remained unclear. Our recent research bridges this gap, recognizing autophagy as a novel dopamine homeostasis regulator, unifying these concepts. I propose that autophagy modulates dopamine reuptake by selectively degrading DAT. In PD, ALP dysfunction could increase DAT density per neuron, and enhance dopamine reuptake, oxidation, and neurotoxicity, potentially contributing to the progressive loss of dopaminergic neurons. This integrated understanding may provide a more comprehensive view of aspects of PD pathophysiology and opens new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Maged M. Harraz
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
Audrey F, Alexis F, Sonia L, Sandra D, Luc B, Bellande T, Sophie L, Christophe J, Martine G, Caroline J, Pauline G, Benjamin D, Erwan B, Ronald M, Philippe H, Romina AB. Functional and neuropathological changes induced by injection of distinct alpha-synuclein strains: A pilot study in non-human primates. Neurobiol Dis 2023; 180:106086. [PMID: 36933673 DOI: 10.1016/j.nbd.2023.106086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
The role of alpha-synuclein in Parkinson's disease has been heavily investigated since its discovery as a component of Lewy bodies. Recent rodent data demonstrate that alpha-synuclein strain structure is critical for differential propagation and toxicity. Based on these findings, we have compared, for the first time, in this pilot study, the capacity of two alpha-synuclein strains and patient-derived Lewy body extracts to model synucleinopathies after intra-putaminal injection in the non-human primate brain. Functional alterations triggered by these injections were evaluated in vivo using glucose positron emission tomography imaging. Post-mortem immunohistochemical and biochemical analyses were used to detect neuropathological alterations in the dopaminergic system and alpha-synuclein pathology propagation. In vivo results revealed a decrease in glucose metabolism more pronounced in alpha-synuclein strain-injected animals. Histology showed a decreased number of dopaminergic tyrosine hydroxylase-positive cells in the substantia nigra to different extents according to the inoculum used. Biochemistry revealed that alpha-synuclein-induced aggregation, phosphorylation, and propagation in different brain regions are strain-specific. Our findings show that distinct alpha-synuclein strains can induce specific patterns of synucleinopathy in the non-human primate, changes in the nigrostriatal pathway, and functional alterations that resemble early-stage Parkinson's disease.
Collapse
Affiliation(s)
- Fayard Audrey
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France.
| | - Fenyi Alexis
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Lavisse Sonia
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Dovero Sandra
- Univ. de Bordeaux, CNRS, IMN, UMR 5293, Bordeaux F-33000, France
| | - Bousset Luc
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Tracy Bellande
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Lecourtois Sophie
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Jouy Christophe
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Guillermier Martine
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Jan Caroline
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Gipchtein Pauline
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Dehay Benjamin
- Univ. de Bordeaux, CNRS, IMN, UMR 5293, Bordeaux F-33000, France
| | - Bezard Erwan
- Univ. de Bordeaux, CNRS, IMN, UMR 5293, Bordeaux F-33000, France
| | - Melki Ronald
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Hantraye Philippe
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Aron Badin Romina
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| |
Collapse
|
17
|
Jensen PH, Schlossmacher MG, Stefanis L. Who Ever Said It Would Be Easy? Reflecting on Two Clinical Trials Targeting α-Synuclein. Mov Disord 2023; 38:378-384. [PMID: 36645106 DOI: 10.1002/mds.29318] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023] Open
Abstract
Two recent, high-profile manuscripts reported negative results with two parallel approaches of passive immunization targeting α-synuclein in a population of patients with early Parkinson's disease (PD). These phase II studies failed to show a bona fide disease-modifying neuroprotective effect on PD progression, despite the evidence that these antibodies effectively bind native α-synuclein in human serum. Here, we discuss the possible reasons that could help explain the lack of clinical efficacy. In particular, we highlight (1) the wealth of evidence supporting the notion of α-synuclein as a valid therapeutic target; (2) the lack of evidence of target engagement in the aforementioned studies, especially of the elusive oligomeric species, the likely culprits in disease pathogenesis and/or its propagation; (3) the limitations, especially in terms of timing passive immunization, of preclinical models, where the same α-synuclein antibodies succeeded in mitigating disease manifestations; (4) the consideration of possibly intervening at an even earlier stage of disease in future trials; and (5) the multitude of strategies beyond passive immunization that could be used to combat α-synuclein-mediated neurodegeneration, if in the end the current approach is not fruitful. Overall, our perception is that converging developments in the field, among them novel bioassays and biomarkers, improved cellular and animal models and objective measurements of motor activities integrated into clinical trials, if further optimized, will gradually move the momentum of the field forward. This, to better test the concept of whether α-synuclein-targeting therapies can indeed deliver the "holy grail" of neuroprotection to the benefit of the PD community. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Poul Henning Jensen
- Department of Biomedicine and DANDRITE, Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | - Michael G Schlossmacher
- Program in Neuroscience and Division of Neurology, The Ottawa Hospital, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Leonidas Stefanis
- First Department of Neurology, National and Kapodistrian University of Athens Medical School and Laboratory of Neurodegenerative Diseases, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
18
|
Chu Y, Hirst WD, Kordower JH. Mixed pathology as a rule, not exception: Time to reconsider disease nosology. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:57-71. [PMID: 36796948 DOI: 10.1016/b978-0-323-85538-9.00012-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder that is associated with motor and nonmotor symptoms. Accumulation of misfolded α-synuclein is considered a key pathological feature during disease initiation and progression. While clearly deemed a synucleinopathy, the development of amyloid-β plaques, tau-containing neurofibrillary tangles, and even TDP-43 protein inclusions occur within the nigrostriatal system and in other brain regions. In addition, inflammatory responses, manifested by glial reactivity, T-cell infiltration, and increased expression of inflammatory cytokines, plus other toxic mediators derived from activated glial cells, are currently recognized as prominent drivers of Parkinson's disease pathology. However, copathologies have increasingly been recognized as the rule (>90%) and not the exception, with Parkinson's disease cases on average exhibiting three different copathologies. While microinfarcts, atherosclerosis, arteriolosclerosis, and cerebral amyloid angiopathy may have an impact on disease progression, α-synuclein, amyloid-β, and TDP-43 pathology do not seem to contribute to progression.
Collapse
Affiliation(s)
- Yaping Chu
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, United States
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, Boston, MA, United States
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
19
|
Brendza R, Gao X, Stark KL, Lin H, Lee SH, Hu C, Cai H, DiCara D, Hsiao YC, Ngu H, Foreman O, Baca M, Dohse M, Fortin JP, Corpuz R, Seshasayee D, Easton A, Ayalon G, Hötzel I, Chih B. Anti-α-synuclein c-terminal antibodies block PFF uptake and accumulation of phospho-synuclein in preclinical models of Parkinson's disease. Neurobiol Dis 2023; 177:105969. [PMID: 36535551 DOI: 10.1016/j.nbd.2022.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/11/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD), a neurodegenerative disease affecting dopaminergic (DA) neurons, is characterized by decline of motor function and cognition. Dopaminergic cell loss is associated with accumulation of toxic alpha synuclein aggregates. As DA neuron death occurs late in the disease, therapeutics that block the spread of alpha synuclein may offer functional benefit and delay disease progression. To test this hypothesis, we generated antibodies to the C terminal region of synuclein with high nanomolar affinity and characterized them in in vitro and in vivo models of spread. Interestingly, we found that only antibodies with high affinity to the distal most portion of the C-terminus robustly reduced uptake of alpha synuclein preformed fibrils (PFF) and accumulation of phospho (S129) alpha synuclein in cell culture. Additionally, the antibody treatment blocked the spread of phospho (S129) alpha synuclein associated-pathology in a mouse model of synucleinopathy. Blockade of neuronal PFF uptake by different antibodies was more predictive of in vivo activity than their binding potency to monomeric or oligomeric forms of alpha synuclein. These data demonstrate that antibodies directed to the C-terminus of the alpha synuclein have differential effects on target engagement and efficacy. Furthermore, our data provides additional support for the development of alpha synuclein antibodies as a therapeutic strategy for PD patients.
Collapse
Affiliation(s)
| | - Xiaoying Gao
- Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | | | - Han Lin
- Neuroscience, Genentech, South San Francisco, CA, USA
| | - Seung-Hye Lee
- Neuroscience, Genentech, South San Francisco, CA, USA
| | - Changyun Hu
- Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Hao Cai
- Preclinical and Translational Pharmacokinetics, Genentech, South San Francisco, CA, USA
| | - Danielle DiCara
- Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Yi-Chun Hsiao
- Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Hai Ngu
- Pathology, Genentech, South San Francisco, CA, USA
| | - Oded Foreman
- Pathology, Genentech, South San Francisco, CA, USA
| | - Miriam Baca
- Pathology, Genentech, South San Francisco, CA, USA
| | - Monika Dohse
- Pathology, Genentech, South San Francisco, CA, USA
| | | | - Racquel Corpuz
- Antibody Engineering, Genentech, South San Francisco, CA, USA
| | | | - Amy Easton
- Neuroscience, Genentech, South San Francisco, CA, USA.
| | - Gai Ayalon
- Neuroscience, Genentech, South San Francisco, CA, USA
| | - Isidro Hötzel
- Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Ben Chih
- Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
20
|
Wu S, Hernandez Villegas NC, Sirkis DW, Thomas-Wright I, Wade-Martins R, Schekman R. Unconventional secretion of α-synuclein mediated by palmitoylated DNAJC5 oligomers. eLife 2023; 12:e85837. [PMID: 36626307 PMCID: PMC9876576 DOI: 10.7554/elife.85837] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Alpha-synuclein (α-syn), a major component of Lewy bodies found in Parkinson's disease (PD) patients, has been found exported outside of cells and may mediate its toxicity via cell-to-cell transmission. Here, we reconstituted soluble, monomeric α-syn secretion by the expression of DnaJ homolog subfamily C member 5 (DNAJC5) in HEK293T cells. DNAJC5 undergoes palmitoylation and anchors on the membrane. Palmitoylation is essential for DNAJC5-induced α-syn secretion, and the secretion is not limited by substrate size or unfolding. Cytosolic α-syn is actively translocated and sequestered in an endosomal membrane compartment in a DNAJC5-dependent manner. Reduction of α-syn secretion caused by a palmitoylation-deficient mutation in DNAJC5 can be reversed by a membrane-targeting peptide fusion-induced oligomerization of DNAJC5. The secretion of endogenous α-syn mediated by DNAJC5 is also found in a human neuroblastoma cell line, SH-SY5Y, differentiated into neurons in the presence of retinoic acid, and in human-induced pluripotent stem cell-derived midbrain dopamine neurons. We propose that DNAJC5 forms a palmitoylated oligomer to accommodate and export α-syn.
Collapse
Affiliation(s)
- Shenjie Wu
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | | | - Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Iona Thomas-Wright
- Oxford Parkinson’s Disease Centre, Department of Physiology, Anatomy and Genetics and Kavli Institute for Nanoscience Discovery, University of OxfordOxfordUnited Kingdom
| | - Richard Wade-Martins
- Oxford Parkinson’s Disease Centre, Department of Physiology, Anatomy and Genetics and Kavli Institute for Nanoscience Discovery, University of OxfordOxfordUnited Kingdom
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
21
|
Estaun-Panzano J, Arotcarena ML, Bezard E. Monitoring α-synuclein aggregation. Neurobiol Dis 2023; 176:105966. [PMID: 36527982 PMCID: PMC9875312 DOI: 10.1016/j.nbd.2022.105966] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Synucleinopathies, including Parkinson's disease (PD), dementia with Lewy Bodies (DLB), and multiple system atrophy (MSA), are characterized by the misfolding and subsequent aggregation of alpha-synuclein (α-syn) that accumulates in cytoplasmic inclusions bodies in the cells of affected brain regions. Since the seminal report of likely-aggregated α-syn presence within the Lewy bodies by Spillantini et al. in 1997, the keyword "synuclein aggregation" has appeared in over 6000 papers (Source: PubMed October 2022). Studying, observing, describing, and quantifying α-syn aggregation is therefore of paramount importance, whether it happens in tubo, in vitro, in post-mortem samples, or in vivo. The past few years have witnessed tremendous progress in understanding aggregation mechanisms and identifying various polymorphs. In this context of growing complexity, it is of utmost importance to understand what tools we possess, what exact information they provide, and in what context they may be applied. Nonetheless, it is also crucial to rationalize the relevance of the information and the limitations of these methods for gauging the final result. In this review, we present the main techniques that have shaped the current views about α-syn structure and dynamics, with particular emphasis on the recent breakthroughs that may change our understanding of synucleinopathies.
Collapse
Affiliation(s)
| | | | - Erwan Bezard
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, United Kingdom.
| |
Collapse
|
22
|
Neupane S, De Cecco E, Aguzzi A. The Hidden Cell-to-Cell Trail of α-Synuclein Aggregates. J Mol Biol 2022:167930. [PMID: 36566800 DOI: 10.1016/j.jmb.2022.167930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The progressive accumulation of insoluble aggregates of the presynaptic protein alpha-synuclein (α-Syn) is a hallmark of neurodegenerative disorders including Parkinson's disease (PD), Multiple System Atrophy, and Dementia with Lewy Bodies, commonly referred to as synucleinopathies. Despite considerable progress on the structural biology of these aggregates, the molecular mechanisms mediating their cell-to-cell transmission, propagation, and neurotoxicity remain only partially understood. Numerous studies have highlighted the stereotypical spatiotemporal spreading of pathological α-Syn aggregates across different tissues and anatomically connected brain regions over time. Experimental evidence from various cellular and animal models indicate that α-Syn transfer occurs in two defined steps: the release of pathogenic α-Syn species from infected cells, and their uptake via passive or active endocytic pathways. Once α-Syn aggregates have been internalized, little is known about what drives their toxicity or how they interact with the endogenous protein to promote its misfolding and subsequent aggregation. Similarly, unknown genetic factors modulate different cellular responses to the aggregation and accumulation of pathogenic α-Syn species. Here we discuss the current understanding of the molecular phenomena associated with the intercellular spreading of pathogenic α-Syn seeds and summarize the evidence supporting the transmission hypothesis. Understanding the molecular mechanisms involved in α-Syn aggregates transmission is essential to develop novel targeted therapeutics against PD and related synucleinopathies.
Collapse
Affiliation(s)
- Sandesh Neupane
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland. https://twitter.com/neuron_sandesh
| | - Elena De Cecco
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland.
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland.
| |
Collapse
|
23
|
Henríquez G, Méndez L, Castañeda E, Wagler A, Jeon S, Narayan M. Preclinical Model to Evaluate Outcomes of Amyloid Cross-Toxicity in the Rodent Brain. ACS Chem Neurosci 2022; 13:2962-2973. [PMID: 36194532 DOI: 10.1021/acschemneuro.2c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The progress of neurodegenerative disorders correlates with the spread of their associated amyloidogenic proteins. Here, we investigated whether amyloid entry into nonconstitutive neurons could drive cross-toxic outcomes. Amyloid β (Aβ) was stereotaxically introduced into the rodent midbrain tegmentum, where it is not endogenously expressed. Postinfusion, rodent motor and sensorimotor capacities were assessed by standard behavioral tests at 3, 6, 9, and 12 months. The longitudinal study revealed no behavioral abnormalities. However, Aβ insult provoked intraneuronal inclusions positive for phosphorylated α-synuclein in dopaminergic neurons and were seen throughout the midbrain, a pathognomonic biomarker suggesting Parkinson's pathogenesis. These findings not only underscore the cross-toxic potential of amyloid proteins but also provide a mechanism by which they disrupt homeostasis in nonconstitutive neurons and cause neuronal corruption, injury, and demise. This study may help reconcile the large incidence of neurodegenerative comorbidity observed clinically.
Collapse
Affiliation(s)
- Gabriela Henríquez
- Department of Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Lois Méndez
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Edward Castañeda
- Department of Psychology, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Amy Wagler
- Department of Mathematical Sciences, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Soyoung Jeon
- Department of Economics, Applied Statistics and International Business, New Mexico State University, Las Cruces, New Mexico 88003, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
24
|
Proteinopathies: Deciphering Physiology and Mechanisms to Develop Effective Therapies for Neurodegenerative Diseases. Mol Neurobiol 2022; 59:7513-7540. [PMID: 36205914 DOI: 10.1007/s12035-022-03042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/13/2022] [Indexed: 10/10/2022]
Abstract
Neurodegenerative diseases (NDs) are a cluster of diseases marked by progressive neuronal loss, axonal transport blockage, mitochondrial dysfunction, oxidative stress, neuroinflammation, and aggregation of misfolded proteins. NDs are more prevalent beyond the age of 50, and their symptoms often include motor and cognitive impairment. Even though various proteins are involved in different NDs, the mechanisms of protein misfolding and aggregation are very similar. Recently, several studies have discovered that, like prions, these misfolded proteins have the inherent capability of translocation from one neuron to another, thus having far-reaching implications for understanding the processes involved in the onset and progression of NDs, as well as the development of innovative therapy and diagnostic options. These misfolded proteins can also influence the transcription of other proteins and form aggregates, tangles, plaques, and inclusion bodies, which then accumulate in the CNS, leading to neuronal dysfunction and neurodegeneration. This review demonstrates protein misfolding and aggregation in NDs, and similarities and differences between different protein aggregates have been discussed. Furthermore, we have also reviewed the disposal of protein aggregates, the various molecular machinery involved in the process, their regulation, and how these molecular mechanisms are targeted to build innovative therapeutic and diagnostic procedures. In addition, the landscape of various therapeutic interventions for targeting protein aggregation for the effective prevention or treatment of NDs has also been discussed.
Collapse
|
25
|
Leveraging the preformed fibril model to distinguish between alpha-synuclein inclusion- and nigrostriatal degeneration-associated immunogenicity. Neurobiol Dis 2022; 171:105804. [PMID: 35764290 PMCID: PMC9803935 DOI: 10.1016/j.nbd.2022.105804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/04/2022] [Accepted: 06/22/2022] [Indexed: 01/03/2023] Open
Abstract
Neuroinflammation has become a well-accepted pathologic hallmark of Parkinson's disease (PD). However, it remains unclear whether inflammation, triggered by α-syn aggregation and/or degeneration, contributes to the progression of the disease. Studies examining neuroinflammation in PD are unable to distinguish between Lewy body-associated inflammation and degeneration-associated inflammation, as both pathologies are present simultaneously. Intrastriatal and intranigral injections of alpha-synuclein (α-syn) preformed fibrils (PFFs) results in two distinct pathologic phases: Phase 1: The accumulation and peak formation of α-syn inclusions in nigrostriatal system and, Phase 2: Protracted dopaminergic neuron degeneration. In this review we summarize the current understanding of neuroinflammation in the α-syn PFF model, leveraging the distinct Phase 1 aggregation phase and Phase 2 degeneration phase to guide our interpretations. Studies consistently demonstrate an association between pathologic α-syn aggregation in the substantia nigra (SN) and activation of the innate immune system. Further, major histocompatibility complex-II (MHC-II) antigen presentation is proportionate to inclusion load. The α-syn aggregation phase is also associated with peripheral and adaptive immune cell infiltration to the SN. These findings suggest that α-syn like aggregates are immunogenic and thus have the potential to contribute to the degenerative process. Studies examining neuroinflammation during the neurodegenerative phase reveal elevated innate, adaptive, and peripheral immune cell markers, however limitations of single time point experimental design hinder interpretations as to whether this neuroinflammation preceded, or was triggered by, nigral degeneration. Longitudinal studies across both the aggregation and degeneration phases of the model suggest that microglial activation (MHC-II) is greater in magnitude during the aggregation phase that precedes degeneration. Overall, the consistency between neuroinflammatory markers in the parkinsonian brain and in the α-syn PFF model, combined with the distinct aggregation and degenerative phases, establishes the utility of this model platform to yield insights into pathologic events that contribute to neuroinflammation and disease progression in PD.
Collapse
|
26
|
Alpha-Synuclein: The Spark That Flames Dopaminergic Neurons, In Vitro and In Vivo Evidence. Int J Mol Sci 2022; 23:ijms23179864. [PMID: 36077253 PMCID: PMC9456396 DOI: 10.3390/ijms23179864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria, α-syn fibrils and the endo-lysosomal system are key players in the pathophysiology of Parkinson’s disease. The toxicity of α-syn is amplified by cell-to-cell transmission and aggregation of endogenous species in newly invaded neurons. Toxicity of α-syn PFF was investigated using primary cultures of dopaminergic neurons or on aged mice after infusion in the SNpc and combined with mild inhibition of GBA. In primary dopaminergic neurons, application of α-syn PFF induced a progressive cytotoxicity associated with mitochondrial dysfunction, oxidative stress, and accumulation of lysosomes suggesting that exogenous α-syn reached the lysosome (from the endosome). Counteracting the α-syn endocytosis with a clathrin inhibitor, dopaminergic neuron degeneration was prevented. In vivo, α-syn PFF induced progressive neurodegeneration of dopaminergic neurons associated with motor deficits. Histology revealed progressive aggregation of α-syn and microglial activation and accounted for the seeding role of α-syn, injection of which acted as a spark suggesting a triggering of cell-to-cell toxicity. We showed for the first time that a localized SNpc α-syn administration combined with a slight lysosomal deficiency and aging triggered a progressive lesion. The cellular and animal models described could help in the understanding of the human disease and might contribute to the development of new therapies.
Collapse
|
27
|
Zang Z, Song T, Li J, Yan S, Nie B, Mei S, Ma J, Yang Y, Shan B, Zhang Y, Lu J. Modulation effect of substantia nigra iron deposition and functional connectivity on putamen glucose metabolism in Parkinson's disease. Hum Brain Mapp 2022; 43:3735-3744. [PMID: 35471638 PMCID: PMC9294292 DOI: 10.1002/hbm.25880] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/04/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Neurodegeneration of the substantia nigra affects putamen activity in Parkinson's disease (PD), yet in vivo evidence of how the substantia nigra modulates putamen glucose metabolism in humans is missing. We aimed to investigate how substantia nigra modulates the putamen glucose metabolism using a cross-sectional design. Resting-state fMRI, susceptibility-weighted imaging, and [18 F]-fluorodeoxyglucose-PET (FDG-PET) data were acquired. Forty-two PD patients and 25 healthy controls (HCs) were recruited for simultaneous PET/MRI scanning. The main measurements of the current study were R 2 * images representing iron deposition (28 PD and 25 HCs), standardized uptake value ratio (SUVr) images representing FDG-uptake (33 PD and 25 HCs), and resting state functional connectivity maps from resting state fMRI (34 PD and 25 HCs). An interaction term based on the general linear model was used to investigate the joint modulation effect of nigral iron deposition and nigral-putamen functional connectivity on putamen FDG-uptake. Compared with HCs, we found increased iron deposition in the substantia nigra (p = .007), increased FDG-uptake in the putamen (left: PFWE < 0.001; right: PFWE < 0.001), and decreased functional connectivity between the substantia nigra and the anterior putamen (left PFWE < 0.001, right: PFWE = 0.007). We then identified significant interaction effect of nigral iron deposition and nigral-putamen connectivity on FDG-uptake in the putamen (p = .004). The current study demonstrated joint modulation effect of the substantia nigra iron deposition and nigral-putamen functional connectivity on putamen glucose metabolic distribution, thereby revealing in vivo pathological mechanism of nigrostriatal neurodegeneration of PD.
Collapse
Affiliation(s)
- Zhenxiang Zang
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Tianbin Song
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Jiping Li
- Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Shaozhen Yan
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and EquipmentInstitute of High Energy Physics, Chinese Academy of SciencesChina
| | - Shanshan Mei
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jie Ma
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Yu Yang
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Baoci Shan
- Beijing Engineering Research Center of Radiographic Techniques and EquipmentInstitute of High Energy Physics, Chinese Academy of SciencesChina
| | - Yuqing Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| |
Collapse
|
28
|
Dutta D, Paidi RK, Raha S, Roy A, Chandra S, Pahan K. Treadmill exercise reduces α-synuclein spreading via PPARα. Cell Rep 2022; 40:111058. [PMID: 35830804 PMCID: PMC9308946 DOI: 10.1016/j.celrep.2022.111058] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/29/2021] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
This study underlines the importance of treadmill exercise in reducing α-synuclein (α-syn) spreading in the A53T brain and protecting nigral dopaminergic neurons. Preformed α-syn fibril (PFF) seeding in the internal capsule of young A53T α-syn mice leads to increased spreading of α-syn to substantia nigra and motor cortex and concomitant loss of nigral dopaminergic neurons. However, regular treadmill exercise decreases α-syn spreading in the brain and protects nigral dopaminergic neurons in PFF-seeded mice. Accordingly, treadmill exercise also mitigates α-synucleinopathy in aged A53T mice. While investigating this mechanism, we have observed that treadmill exercise induces the activation of peroxisome proliferator-activated receptor α (PPARα) in the brain to stimulate lysosomal biogenesis via TFEB. Accordingly, treadmill exercise remains unable to stimulate TFEB and reduce α-synucleinopathy in A53T mice lacking PPARα, and fenofibrate, a prototype PPARα agonist, reduces α-synucleinopathy. These results delineate a beneficial function of treadmill exercise in reducing α-syn spreading in the brain via PPARα.
Collapse
Affiliation(s)
- Debashis Dutta
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ramesh Kumar Paidi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sumita Raha
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Sujyoti Chandra
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| |
Collapse
|
29
|
The role of NURR1 in metabolic abnormalities of Parkinson's disease. Mol Neurodegener 2022; 17:46. [PMID: 35761385 PMCID: PMC9235236 DOI: 10.1186/s13024-022-00544-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/21/2022] [Indexed: 11/30/2022] Open
Abstract
A constant metabolism and energy supply are crucial to all organs, particularly the brain. Age-dependent neurodegenerative diseases, such as Parkinson’s disease (PD), are associated with alterations in cellular metabolism. These changes have been recognized as a novel hot topic that may provide new insights to help identify risk in the pre-symptomatic phase of the disease, understand disease pathogenesis, track disease progression, and determine critical endpoints. Nuclear receptor-related factor 1 (NURR1), an orphan member of the nuclear receptor superfamily of transcription factors, is a major risk factor in the pathogenesis of PD, and changes in NURR1 expression can have a detrimental effect on cellular metabolism. In this review, we discuss recent evidence that suggests a vital role of NURR1 in dopaminergic (DAergic) neuron development and the pathogenesis of PD. The association between NURR1 and cellular metabolic abnormalities and its implications for PD therapy have been further highlighted.
Collapse
|
30
|
Faustini G, Longhena F, Masato A, Bassareo V, Frau R, Klingstedt T, Shirani H, Brembati V, Parrella E, Vezzoli M, Nilsson KPR, Pizzi M, Spillantini MG, Bubacco L, Bellucci A. Synapsin III gene silencing redeems alpha-synuclein transgenic mice from Parkinson's disease-like phenotype. Mol Ther 2022; 30:1465-1483. [PMID: 35038583 PMCID: PMC9077321 DOI: 10.1016/j.ymthe.2022.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/20/2021] [Accepted: 01/12/2022] [Indexed: 10/19/2022] Open
Abstract
Fibrillary aggregated α-synuclein (α-syn) deposition in Lewy bodies (LB) characterizes Parkinson's disease (PD) and is believed to trigger dopaminergic synaptic failure and a retrograde terminal-to-cell body neuronal degeneration. We described that the neuronal phosphoprotein synapsin III (Syn III) cooperates with α-syn to regulate dopamine (DA) release and can be found in the insoluble α-syn fibrils composing LB. Moreover, we showed that α-syn aggregates deposition, and the associated onset of synaptic deficits and neuronal degeneration occurring following adeno-associated viral vectors-mediated overexpression of human α-syn in the nigrostriatal system are hindered in Syn III knock out mice. This supports that Syn III facilitates α-syn aggregation. Here, in an interventional experimental design, we found that by inducing the gene silencing of Syn III in human α-syn transgenic mice at PD-like stage with advanced α-syn aggregation and overt striatal synaptic failure, we could lower α-syn aggregates and striatal fibers loss. In parallel, we observed recovery from synaptic vesicles clumping, DA release failure, and motor functions impairment. This supports that Syn III consolidates α-syn aggregates, while its downregulation enables their reduction and redeems the PD-like phenotype. Strategies targeting Syn III could thus constitute a therapeutic option for PD.
Collapse
Affiliation(s)
- Gaia Faustini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Francesca Longhena
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Anna Masato
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121 Padua, Italy
| | - Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Blocco A, Cagliari, 09124 Cagliari, Italy
| | - Roberto Frau
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Blocco A, Cagliari, 09124 Cagliari, Italy
| | - Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Hamid Shirani
- Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Viviana Brembati
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Edoardo Parrella
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Marika Vezzoli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, University of Cambridge, Clifford Albutt Building, Cambridge CB2 0AH, UK
| | - Luigi Bubacco
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121 Padua, Italy
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
31
|
Marchetti B, Giachino C, Tirolo C, Serapide MF. "Reframing" dopamine signaling at the intersection of glial networks in the aged Parkinsonian brain as innate Nrf2/Wnt driver: Therapeutical implications. Aging Cell 2022; 21:e13575. [PMID: 35262262 PMCID: PMC9009237 DOI: 10.1111/acel.13575] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/11/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022] Open
Abstract
Dopamine (DA) signaling via G protein-coupled receptors is a multifunctional neurotransmitter and neuroendocrine-immune modulator. The DA nigrostriatal pathway, which controls the motor coordination, progressively degenerates in Parkinson's disease (PD), a most common neurodegenerative disorder (ND) characterized by a selective, age-dependent loss of substantia nigra pars compacta (SNpc) neurons, where DA itself is a primary source of oxidative stress and mitochondrial impairment, intersecting astrocyte and microglial inflammatory networks. Importantly, glia acts as a preferential neuroendocrine-immune DA target, in turn, counter-modulating inflammatory processes. With a major focus on DA intersection within the astrocyte-microglial inflammatory network in PD vulnerability, we herein first summarize the characteristics of DA signaling systems, the propensity of DA neurons to oxidative stress, and glial inflammatory triggers dictating the vulnerability to PD. Reciprocally, DA modulation of astrocytes and microglial reactivity, coupled to the synergic impact of gene-environment interactions, then constitute a further level of control regulating midbrain DA neuron (mDAn) survival/death. Not surprisingly, within this circuitry, DA converges to modulate nuclear factor erythroid 2-like 2 (Nrf2), the master regulator of cellular defense against oxidative stress and inflammation, and Wingless (Wnt)/β-catenin signaling, a key pathway for mDAn neurogenesis, neuroprotection, and immunomodulation, adding to the already complex "signaling puzzle," a novel actor in mDAn-glial regulatory machinery. Here, we propose an autoregulatory feedback system allowing DA to act as an endogenous Nrf2/Wnt innate modulator and trace the importance of DA receptor agonists applied to the clinic as immune modifiers.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC)Pharmacology SectionMedical SchoolUniversity of CataniaCataniaItaly
- OASI Research Institute‐IRCCS, Troina (EN), ItalyTroinaItaly
| | | | - Cataldo Tirolo
- OASI Research Institute‐IRCCS, Troina (EN), ItalyTroinaItaly
| | - Maria F. Serapide
- Department of Biomedical and Biotechnological Sciences (BIOMETEC)Pharmacology SectionMedical SchoolUniversity of CataniaCataniaItaly
| |
Collapse
|
32
|
Choong CJ, Mochizuki H. Neuropathology of α-synuclein in Parkinson's disease. Neuropathology 2022; 42:93-103. [PMID: 35362115 DOI: 10.1111/neup.12812] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 01/21/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive movement disability accompanied by non-motor symptoms. The neuropathology hallmark of PD is the loss of dopaminergic neurons predominantly in the substantia nigra pars compacta and the presence of intracellular inclusions termed Lewy bodies (LBs), which are mainly composed of α-synuclein (αSyn). Detailed staging based on the distribution and progression pattern of αSyn pathology in the postmortem brains of PD patients revealed correlation with the clinical phenotypes but not invariably. Cumulative evidence from cell and animal studies has implied that αSyn propagation contributes to the anatomical spread of αSyn pathology in the brain. Here, we recount the studies over the past two centuries on the anatomopathological foundations of PD documented. We also review studies on the structural analysis of αSyn and LBs, Braak staging of αSyn pathology, the cell-to-cell propagation of αSyn as well as αSyn fibril polymorphisms, which underlie the phenotypic differences in synucleinopathies.
Collapse
Affiliation(s)
- Chi-Jing Choong
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
33
|
Initiation and progression of α-synuclein pathology in Parkinson’s disease. Cell Mol Life Sci 2022; 79:210. [PMID: 35347432 PMCID: PMC8960654 DOI: 10.1007/s00018-022-04240-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022]
Abstract
α-Synuclein aggregation is a critical molecular process that underpins the pathogenesis of Parkinson’s disease. Aggregates may originate at synaptic terminals as a consequence of aberrant interactions between α-synuclein and lipids or evasion of proteostatic defences. The nature of these interactions is likely to influence the emergence of conformers or strains that in turn could explain the clinical heterogeneity of Parkinson’s disease and related α-synucleinopathies. For neurodegeneration to occur, α-synuclein assemblies need to exhibit seeding competency, i.e. ability to template further aggregation, and toxicity which is at least partly mediated by interference with synaptic vesicle or organelle homeostasis. Given the dynamic and reversible conformational plasticity of α-synuclein, it is possible that seeding competency and cellular toxicity are mediated by assemblies of different structure or size along this continuum. It is currently unknown which α-synuclein assemblies are the most relevant to the human condition but recent advances in the cryo-electron microscopic characterisation of brain-derived fibrils and their assessment in stem cell derived and animal models are likely to facilitate the development of precision therapies or biomarkers. This review summarises the main principles of α-synuclein aggregate initiation and propagation in model systems, and their relevance to clinical translation.
Collapse
|
34
|
Lopes DM, Llewellyn SK, Harrison IF. Propagation of tau and α-synuclein in the brain: therapeutic potential of the glymphatic system. Transl Neurodegener 2022; 11:19. [PMID: 35314000 PMCID: PMC8935752 DOI: 10.1186/s40035-022-00293-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Many neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease, are characterised by the accumulation of misfolded protein deposits in the brain, leading to a progressive destabilisation of the neuronal network and neuronal death. Among the proteins that can abnormally accumulate are tau and α-synuclein, which can propagate in a prion-like manner and which upon aggregation, represent the most common intracellular proteinaceous lesions associated with neurodegeneration. For years it was thought that these intracellular proteins and their accumulation had no immediate relationship with extracellular homeostasis pathways such as the glymphatic clearance system; however, mounting evidence has now suggested that this is not the case. The involvement of the glymphatic system in neurodegenerative disease is yet to be fully defined; however, it is becoming increasingly clear that this pathway contributes to parenchymal solute clearance. Importantly, recent data show that proteins prone to intracellular accumulation are subject to glymphatic clearance, suggesting that this system plays a key role in many neurological disorders. In this review, we provide a background on the biology of tau and α-synuclein and discuss the latest findings on the cell-to-cell propagation mechanisms of these proteins. Importantly, we discuss recent data demonstrating that manipulation of the glymphatic system may have the potential to alleviate and reduce pathogenic accumulation of propagation-prone intracellular cytotoxic proteins. Furthermore, we will allude to the latest potential therapeutic opportunities targeting the glymphatic system that might have an impact as disease modifiers in neurodegenerative diseases.
Collapse
|
35
|
Cousineau J, Plateau V, Baufreton J, Le Bon-Jégo M. Dopaminergic modulation of primary motor cortex: From cellular and synaptic mechanisms underlying motor learning to cognitive symptoms in Parkinson's disease. Neurobiol Dis 2022; 167:105674. [PMID: 35245676 DOI: 10.1016/j.nbd.2022.105674] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
The primary motor cortex (M1) is crucial for movement execution, especially dexterous ones, but also for cognitive functions like motor learning. The acquisition of motor skills to execute dexterous movements requires dopamine-dependent and -independent plasticity mechanisms within M1. In addition to the basal ganglia, M1 is disturbed in Parkinson's disease (PD). However, little is known about how the lack of dopamine (DA), characteristic of PD, directly or indirectly impacts M1 circuitry. Here we review data from studies of PD patients and the substantial research in non-human primate and rodent models of DA depletion. These models enable us to understand the importance of DA in M1 physiology at the behavioral, network, cellular, and synaptic levels. We first summarize M1 functions and neuronal populations in mammals. We then look at the origin of M1 DA and the cellular location of its receptors and explore the impact of DA loss on M1 physiology, motor, and executive functions. Finally, we discuss how PD treatments impact M1 functions.
Collapse
|
36
|
Choi M, Kim TK, Ahn J, Lee JS, Jung BC, An S, Kim D, Lee MJ, Mook-Jung I, Lee SH, Lee SJ. Conformation-specific Antibodies Targeting Aggregated Forms of α-synuclein Block the Propagation of Synucleinopathy. Exp Neurobiol 2022; 31:29-41. [PMID: 35256542 PMCID: PMC8907253 DOI: 10.5607/en21039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 02/03/2023] Open
Abstract
Abnormal aggregation of α-synuclein is a key element in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. α-synuclein aggregation spreads through various brain regions during the course of disease progression, a propagation that is thought to be mediated by the secretion and subsequent uptake of extracellular α-synuclein aggregates between neuronal cells. Thus, aggregated forms of this protein have emerged as promising targets for disease-modifying therapy for PD and related diseases. Here, we generated and characterized conformation-specific antibodies that preferentially recognize aggregated forms of α-synuclein. These antibodies promoted phagocytosis of extracellular α-synuclein aggregates by microglial cells and interfered with cell-to-cell propagation of α-synuclein. In an α-synuclein transgenic model, passive immunization with aggregate-specific antibodies significantly ameliorated pathological phenotypes, reducing α-synuclein aggregation, gliosis, inflammation, and neuronal loss. These results suggest that conformation-specific antibodies targeting α-synuclein aggregates are promising therapeutic agents for PD and related synucleinopathies.
Collapse
Affiliation(s)
- Minsun Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Tae-Kyung Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Exercise Physiology and Sport Science Institute, Korea National Sport University, Seoul 05541, Korea
| | | | - Jun Sung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Byung Chul Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | | | | | - Min Jae Lee
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | | | - Seung-Jae Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
37
|
Garcia P, Jürgens‐Wemheuer W, Uriarte Huarte O, Michelucci A, Masuch A, Brioschi S, Weihofen A, Koncina E, Coowar D, Heurtaux T, Glaab E, Balling R, Sousa C, Kaoma T, Nicot N, Pfander T, Schulz‐Schaeffer W, Allouche A, Fischer N, Biber K, Kleine‐Borgmann F, Mittelbronn M, Ostaszewski M, Schmit KJ, Buttini M. Neurodegeneration and neuroinflammation are linked, but independent of alpha‐synuclein inclusions, in a seeding/spreading mouse model of Parkinson's disease. Glia 2022; 70:935-960. [PMID: 35092321 PMCID: PMC9305192 DOI: 10.1002/glia.24149] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/16/2022]
Abstract
A key pathological process in Parkinson's disease (PD) is the transneuronal spreading of α‐synuclein. Alpha‐synuclein (α‐syn) is a presynaptic protein that, in PD, forms pathological inclusions. Other hallmarks of PD include neurodegeneration and microgliosis in susceptible brain regions. Whether it is primarily transneuronal spreading of α‐syn particles, inclusion formation, or other mechanisms, such as inflammation, that cause neurodegeneration in PD is unclear. We used a model of spreading of α‐syn induced by striatal injection of α‐syn preformed fibrils into the mouse striatum to address this question. We performed quantitative analysis for α‐syn inclusions, neurodegeneration, and microgliosis in different brain regions, and generated gene expression profiles of the ventral midbrain, at two different timepoints after disease induction. We observed significant neurodegeneration and microgliosis in brain regions not only with, but also without α‐syn inclusions. We also observed prominent microgliosis in injured brain regions that did not correlate with neurodegeneration nor with inclusion load. Using longitudinal gene expression profiling, we observed early gene expression changes, linked to neuroinflammation, that preceded neurodegeneration, indicating an active role of microglia in this process. Altered gene pathways overlapped with those typical of PD. Our observations indicate that α‐syn inclusion formation is not the major driver in the early phases of PD‐like neurodegeneration, but that microglia, activated by diffusible, oligomeric α‐syn, may play a key role in this process. Our findings uncover new features of α‐syn induced pathologies, in particular microgliosis, and point to the necessity for a broader view of the process of α‐syn spreading.
Collapse
Affiliation(s)
- Pierre Garcia
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
| | - Wiebke Jürgens‐Wemheuer
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Institute of Neuropathology Saarland University Clinic (UKS) Homburg Germany
| | - Oihane Uriarte Huarte
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
| | - Alessandro Michelucci
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
| | - Annette Masuch
- Department of Psychiatry University of Freiburg Medical Center Freiburg Germany
| | - Simone Brioschi
- Department of Psychiatry University of Freiburg Medical Center Freiburg Germany
| | | | - Eric Koncina
- Department of Life Science and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Djalil Coowar
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Tony Heurtaux
- Luxembourg Center of Neuropathology Dudelange Luxembourg
- Department of Life Science and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Carole Sousa
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
| | - Tony Kaoma
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
| | - Nathalie Nicot
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
| | - Tatjana Pfander
- Institute of Neuropathology Saarland University Clinic (UKS) Homburg Germany
| | | | | | | | - Knut Biber
- Department of Psychiatry University of Freiburg Medical Center Freiburg Germany
| | - Felix Kleine‐Borgmann
- Luxembourg Center of Neuropathology Dudelange Luxembourg
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
- Department of Life Science and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Kristopher J. Schmit
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
| | - Manuel Buttini
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
| |
Collapse
|
38
|
How Lazy Reading and Semantic Sloppiness May Harm Progress in Synucleinopathy Research. Biomolecules 2022; 12:biom12020228. [PMID: 35204729 PMCID: PMC8961619 DOI: 10.3390/biom12020228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 12/21/2022] Open
Abstract
While confronted with the increasing complexity of the neurobiology of Parkinson’s disease (PD), we face the ever-increasing sloppiness of the conceptual definitions associated with poor methodological characterizations and the use of unacknowledged proxies, all of which are harmful contributors to the overall slow progress of PD research. In this opinion paper, I share part of my frustration, acknowledge how I participate in this trend, and propose a simple remedy. Fighting against semantic or conceptual sloppiness is of paramount importance, notably for the benefit of newcomers to the field who otherwise would take for granted the classic assertions found ad nauseam in the literature.
Collapse
|
39
|
Bezard E, Dehay B. [Aggregation and spread of synuclein in Parkinson's disease]. Med Sci (Paris) 2022; 38:45-51. [PMID: 35060886 DOI: 10.1051/medsci/2021241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The vast majority of neurodegenerative diseases are associated with an accumulation of undegraded and aggregated proteins. Hence the word proteinopathies is now used to refer to these neurodegenerative diseases. The synucleinopathies are one component of them, in particular in Parkinson's disease. The neuropathological features of Parkinson's disease are the progressive loss of dopamine neurons in the midbrain and the formation of aggregates composed mainly of a-synuclein protein. Experimental evidence suggests that under pathological conditions, normal soluble a-synuclein protein adopts an abnormal folding and subsequently aggregates, with a propensity to spread throughout the central nervous system. This review article discusses the specifics of a-synuclein aggregation and emerging mechanisms for understanding its spread and aims at providing a molecular explanation for the progression of the disease in humans.
Collapse
Affiliation(s)
- Erwan Bezard
- Univ. Bordeaux, CNRS, IMN (Institut des maladies neurodégénératives), UMR 5293, 33000 Bordeaux, France
| | - Benjamin Dehay
- Univ. Bordeaux, CNRS, IMN (Institut des maladies neurodégénératives), UMR 5293, 33000 Bordeaux, France
| |
Collapse
|
40
|
Zhang H, Iranzo A, Högl B, Arnulf I, Ferini‐Strambi L, Manni R, Miyamoto T, Oertel WH, Dauvilliers Y, Ju Y, Puligheddu M, Sonka K, Pelletier A, Montplaisir JY, Stefani A, Ibrahim A, Frauscher B, Leu‐Semenescu S, Zucconi M, Terzaghi M, Miyamoto M, Janzen A, Figorilli M, Fantini ML, Postuma RB. Risk factors for phenoconversion in
REM
sleep behavior disorder. Ann Neurol 2022; 91:404-416. [DOI: 10.1002/ana.26298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Hui Zhang
- Department of Neurology Xuanwu Hospital Capital Medical University Beijing China
- Department of Neurology McGill University, Montreal General Hospital Montreal Canada
| | - Alex Iranzo
- Neurology Service, Hospital Clinic de Barcelona IDIBAPS, CIBERNED Barcelona Spain
| | - Birgit Högl
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | - Isabelle Arnulf
- Sorbonne University, Paris Brain Institute and sleep disorder unit Pitie‐Salpetriere Hospital, APHP Paris France
| | | | | | - Tomoyuki Miyamoto
- Department of Neurology, Dokkyo Medical University Saitama Medical Center Saitama Japan
| | | | - Yves Dauvilliers
- Department of Neurology, Hôpital Gui de Chauliac, Montpellier, INSERM U1061 Montpellier F‐34093 Cedex 5 France
| | - Yo‐EI Ju
- Washington University School of Medicine, Department of Neurology St. Louis Missouri USA
| | - Monica Puligheddu
- Sleep Center, Department of Cardiovascular and Neurological Sciences University of Cagliari Italy
| | - Karel Sonka
- Department of Neurology First Faculty of Medicine, Charles University and General University Hospital Prague Czech Republic
| | - Amélie Pelletier
- Centre d'Études Avancées en Médecine du Sommeil Hôpital du Sacré‐Cœur de Montréal Montréal Canada
| | - Jacques Y Montplaisir
- Centre d'Études Avancées en Médecine du Sommeil Hôpital du Sacré‐Cœur de Montréal Montréal Canada
- Department of Psychiatry University of Montreal Montreal Canada
| | - Ambra Stefani
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | - Abubaker Ibrahim
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | - Birgit Frauscher
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | - Smaranda Leu‐Semenescu
- Sorbonne University, Paris Brain Institute and sleep disorder unit Pitie‐Salpetriere Hospital, APHP Paris France
| | - Marco Zucconi
- Sleep Disorders Center Università Vita‐Salute San Raffaele Milan Italy
| | | | - Masayuki Miyamoto
- Department of Neurology Dokkyo Medical University School of Medicine Tochigi Japan
| | - Annette Janzen
- Department of Neurology Philipps‐Universität Marburg Germany
| | - Michela Figorilli
- Sleep Center, Department of Cardiovascular and Neurological Sciences University of Cagliari Italy
| | - Maria L Fantini
- Sleep Center, Department of Cardiovascular and Neurological Sciences University of Cagliari Italy
- Department of Neurology Université d'Auvergne Clermont‐Ferrand France
| | - Ronald B Postuma
- Department of Neurology McGill University, Montreal General Hospital Montreal Canada
- Centre d'Études Avancées en Médecine du Sommeil Hôpital du Sacré‐Cœur de Montréal Montréal Canada
| |
Collapse
|
41
|
Brain regions susceptible to alpha-synuclein spreading. Mol Psychiatry 2022; 27:758-770. [PMID: 34561613 DOI: 10.1038/s41380-021-01296-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
The spreading of misfolded alpha-synuclein (α-syn) protein has been observed in animal models of Parkinson's disease (PD) and other α-synucleinopathies that mimic human PD pathologies. In animal models, the spreading of α-syn has been associated with motor dysfunction and neuronal death. However, variability in both susceptible brain regions and cellular populations limits our understanding of the consequences of α-syn spreading and the development of associated therapies. Here, we have reviewed the physiological and pathological functions of α-syn and summarized the susceptible brain regions and cell types identified from human postmortem studies and exogenous α-syn injection-based animal models. We have reviewed the methods for inducing α-syn aggregation, the specific hosts, the inoculation sites, the routes of propagation, and other experimental settings that may affect the spreading pattern of α-syn, as reported in current studies. Understanding the spread of α-syn to produce a consistent PD animal model is vital for future drug discovery.
Collapse
|
42
|
Kwan C, Kang MS, Nuara SG, Gourdon JC, Bédard D, Tardif CL, Hopewell R, Ross K, Bdair H, Hamadjida A, Massarweh G, Soucy JP, Luo W, Del Cid Pellitero E, Shlaifer I, Durcan TM, Fon EA, Rosa-Neto P, Frey S, Huot P. Co-registration of Imaging Modalities (MRI, CT and PET) to Perform Frameless Stereotaxic Robotic Injections in the Common Marmoset. Neuroscience 2021; 480:143-154. [PMID: 34774970 DOI: 10.1016/j.neuroscience.2021.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022]
Abstract
The common marmoset has emerged as a popular model in neuroscience research, in part due to its reproductive efficiency, genetic and neuroanatomical similarities to humans and the successful generation of transgenic lines. Stereotaxic procedures in marmosets are guided by 2D stereotaxic atlases, which are constructed with a limited number of animals and fail to account for inter-individual variability in skull and brain size. Here, we developed a frameless imaging-guided stereotaxic system that improves upon traditional approaches by using subject-specific registration of computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) data to identify a surgical target, namely the putamen, in two marmosets. The skull surface was laser-scanned to create a point cloud that was registered to the 3D reconstruction of the skull from CT. Reconstruction of the skull, as well as of the brain from MR images, was crucial for surgical planning. Localisation and injection into the putamen was done using a 6-axis robotic arm controlled by a surgical navigation software (Brainsight™). Integration of subject-specific registration and frameless stereotaxic navigation allowed target localisation specific to each animal. Injection of alpha-synuclein fibrils into the putamen triggered progressive neurodegeneration of the nigro-striatal system, a key feature of Parkinson's disease. Four months post-surgery, a PET scan found evidence of nigro-striatal denervation, supporting accurate targeting of the putamen during co-registration and subsequent surgery. Our results suggest that this approach, coupled with frameless stereotaxic neuronavigation, is accurate in localising surgical targets and can be used to assess endpoints for longitudinal studies.
Collapse
Affiliation(s)
- Cynthia Kwan
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Min Su Kang
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Stephen G Nuara
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Jim C Gourdon
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Dominique Bédard
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Christine L Tardif
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, McGill University, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Robert Hopewell
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Karen Ross
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Hussein Bdair
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Adjia Hamadjida
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Gassan Massarweh
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Jean-Paul Soucy
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Wen Luo
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; The Neuro's Early Drug Discovery Unit, McGill University, Montreal, QC, Canada
| | - Esther Del Cid Pellitero
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Movement Disorder Clinic, Division of Neurology, Department of Neuroscience, McGill University Health Centre, Montreal, QC, Canada
| | - Irina Shlaifer
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; The Neuro's Early Drug Discovery Unit, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; The Neuro's Early Drug Discovery Unit, McGill University, Montreal, QC, Canada
| | - Edward A Fon
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Movement Disorder Clinic, Division of Neurology, Department of Neuroscience, McGill University Health Centre, Montreal, QC, Canada
| | - Pedro Rosa-Neto
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | | | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Movement Disorder Clinic, Division of Neurology, Department of Neuroscience, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
43
|
García-Yagüe ÁJ, Lastres-Becker I, Stefanis L, Vassilatis DK, Cuadrado A. α-Synuclein Induces the GSK-3-Mediated Phosphorylation and Degradation of NURR1 and Loss of Dopaminergic Hallmarks. Mol Neurobiol 2021; 58:6697-6711. [PMID: 34609698 PMCID: PMC8639559 DOI: 10.1007/s12035-021-02558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022]
Abstract
In Parkinson’s disease, the dysfunction of the dopaminergic nigrostriatal tract involves the loss of function of dopaminergic neurons of the substantia nigra pars compacta followed by death of these neurons. The functional recovery of these neurons requires a deep knowledge of the molecules that maintain the dopaminergic phenotype during adulthood and the mechanisms that subvert their activity. Previous studies have shown that transcription factor NURR1, involved in differentiation and maintenance of the dopaminergic phenotype, is downregulated by α-synuclein (α-SYN). In this study, we provide a mechanistic explanation to this finding by connecting α-SYN-induced activation of glycogen synthase kinase-3 (GSK-3) with NURR1 phosphorylation followed by proteasomal degradation. The use of sequential deletion mutants and single point mutants of NURR1 allowed the identification of a domain comprising amino acids 123-PSSPPTPSTPS-134 that is targeted by GSK-3 and leads to subsequent ubiquitination and proteasome degradation. This study provides a detailed analysis of the regulation of NURR1 stability by phosphorylation in synucleinopathies such as Parkinson’s disease.
Collapse
Affiliation(s)
- Ángel Juan García-Yagüe
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain.,Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.,Instituto de Investigación Sanitaria La Paz (IdiPaz), C/ Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, Madrid, Spain
| | - Isabel Lastres-Becker
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain.,Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.,Instituto de Investigación Sanitaria La Paz (IdiPaz), C/ Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, Madrid, Spain
| | - Leonidas Stefanis
- 1St Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Athens, Greece.,National and Kapodistrian University of Athens, Athens, Greece.,Center of Clinical Research, Biomedical Research Foundation, Experimental Surgery and Translational Research, Academy of Athens, Athens, Greece
| | - Demetrios K Vassilatis
- Center of Clinical Research, Biomedical Research Foundation, Experimental Surgery and Translational Research, Academy of Athens, Athens, Greece
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain. .,Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain. .,Instituto de Investigación Sanitaria La Paz (IdiPaz), C/ Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, Madrid, Spain.
| |
Collapse
|
44
|
Zhang J, Zhao M, Yan R, Liu J, Maddila S, Junn E, Mouradian MM. MicroRNA-7 Protects Against Neurodegeneration Induced by α-Synuclein Preformed Fibrils in the Mouse Brain. Neurotherapeutics 2021; 18:2529-2540. [PMID: 34697773 PMCID: PMC8804150 DOI: 10.1007/s13311-021-01130-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 01/01/2023] Open
Abstract
α-Synuclein is a key protein in the pathogenesis of Parkinson's disease as it accumulates in fibrillar form in affected brain regions. Misfolded α-synuclein seeds recruit monomeric α-synuclein to form aggregates, which can spread to anatomically connected brain regions, a phenomenon that correlates with clinical disease progression. Thus, downregulating α-synuclein levels could reduce seeding and inhibit aggregate formation and propagation. We previously reported that microRNA-7 (miR-7) protects neuronal cells by downregulating α-synuclein expression through its effect on the 3'-untranslated region of SNCA mRNA; however, whether miR-7 blocks α-synuclein seeding and propagation in vivo remains unknown. Here, we induced miR-7 overexpression in the mouse striatum unilaterally by infusing adeno-associated virus 1 (AAV-miR-7) followed by inoculation with recombinant α-synuclein preformed fibrils (PFF) a month later. Compared with control mice injected with non-targeting AAV-miR-NT followed by PFF, AAV-miR-7 pre-injected mice exhibited lower levels of monomeric and high-molecular-weight α-synuclein species in the striatum, and reduced amount of phosphorylated α-synuclein in the striatum and in nigral dopamine neurons. Accordingly, AAV-miR-7-injected mice had less pronounced degeneration of the nigrostriatal pathway and better behavioral performance. The neuroinflammatory reaction to α-synuclein PFF inoculation was also significantly attenuated. These data suggest that miR-7 inhibits the formation and propagation of pathological α-synuclein and protects against neurodegeneration induced by PFF. Collectively, these findings support the potential of miR-7 as a disease modifying biologic agent for Parkinson's disease and related α-synucleinopathies.
Collapse
Affiliation(s)
- Jie Zhang
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA
| | - Mengyuan Zhao
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA
| | - Run Yan
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA
- Current address: Sanyou Biopharmaceuticals Co., Ltd., 3rd Floor, Building 6B-C, No. 188 Xinjunhuan Road, Minhang District, Shanghai, 201114, China
| | - Jun Liu
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA
| | - Santhosh Maddila
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA
| | - Eunsung Junn
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA
| | - M Maral Mouradian
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA.
| |
Collapse
|
45
|
Jellinger KA, Wenning GK, Stefanova N. Is Multiple System Atrophy a Prion-like Disorder? Int J Mol Sci 2021; 22:10093. [PMID: 34576255 PMCID: PMC8472631 DOI: 10.3390/ijms221810093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Multiple system atrophy (MSA) is a rapidly progressive, fatal neurodegenerative disease of uncertain aetiology that belongs to the family of α-synucleinopathies. It clinically presents with parkinsonism, cerebellar, autonomic, and motor impairment in variable combinations. Pathological hallmarks are fibrillary α-synuclein (αSyn)-rich glial cytoplasmic inclusions (GCIs) mainly involving oligodendroglia and to a lesser extent neurons, inducing a multisystem neurodegeneration, glial activation, and widespread demyelinization. The neuronal αSyn pathology of MSA has molecular properties different from Lewy bodies in Parkinson's disease (PD), both of which could serve as a pool of αSyn (prion) seeds that could initiate and drive the pathogenesis of synucleinopathies. The molecular cascade leading to the "prion-like" transfer of "strains" of aggregated αSyn contributing to the progression of the disease is poorly understood, while some presented evidence that MSA is a prion disease. However, this hypothesis is difficult to reconcile with postmortem analysis of human brains and the fact that MSA-like pathology was induced by intracerebral inoculation of human MSA brain homogenates only in homozygous mutant 53T mice, without production of disease-specific GCIs, or with replication of MSA prions in primary astrocyte cultures from transgenic mice expressing human αSyn. Whereas recent intrastriatal injection of Lewy body-derived or synthetic human αSyn fibrils induced PD-like pathology including neuronal αSyn aggregates in macaques, no such transmission of αSyn pathology in non-human primates by MSA brain lysate has been reported until now. Given the similarities between αSyn and prions, there is a considerable debate whether they should be referred to as "prions", "prion-like", "prionoids", or something else. Here, the findings supporting the proposed nature of αSyn as a prion and its self-propagation through seeding as well as the transmissibility of neurodegenerative disorders are discussed. The proof of disease causation rests on the concordance of scientific evidence, none of which has provided convincing evidence for the classification of MSA as a prion disease or its human transmission until now.
Collapse
Affiliation(s)
| | - Gregor K. Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (G.K.W.); (N.S.)
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (G.K.W.); (N.S.)
| |
Collapse
|
46
|
Renner H, Schöler HR, Bruder JM. Combining Automated Organoid Workflows With Artificial Intelligence-Based Analyses: Opportunities to Build a New Generation of Interdisciplinary High-Throughput Screens for Parkinson's Disease and Beyond. Mov Disord 2021; 36:2745-2762. [PMID: 34498298 DOI: 10.1002/mds.28775] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and primarily characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta of the midbrain. Despite decades of research and the development of various disease model systems, there is no curative treatment. This could be due to current model systems, including cell culture and animal models, not adequately recapitulating human PD etiology. More complex human disease models, including human midbrain organoids, are maturing technologies that increasingly enable the strategic incorporation of the missing components needed to model PD in vitro. The resulting organoid-based biological complexity provides new opportunities and challenges in data analysis of rich multimodal data sets. Emerging artificial intelligence (AI) capabilities can take advantage of large, broad data sets and even correlate results across disciplines. Current organoid technologies no longer lack the prerequisites for large-scale high-throughput screening (HTS) and can generate complex yet reproducible data suitable for AI-based data mining. We have recently developed a fully scalable and HTS-compatible workflow for the generation, maintenance, and analysis of three-dimensional (3D) microtissues mimicking key characteristics of the human midbrain (called "automated midbrain organoids," AMOs). AMOs build a reproducible, scalable foundation for creating next-generation 3D models of human neural disease that can fuel mechanism-agnostic phenotypic drug discovery in human in vitro PD models and beyond. Here, we explore the opportunities and challenges resulting from the convergence of organoid HTS and AI-driven data analytics and outline potential future avenues toward the discovery of novel mechanisms and drugs in PD research. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Henrik Renner
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jan M Bruder
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
47
|
Li H, Wu S, Ma X, Li X, Cheng T, Chen Z, Wu J, Lv L, Li L, Xu L, Wang W, Hu Y, Jiang H, Yin Y, Qiu Z, Hu X. Co-editing PINK1 and DJ-1 Genes Via Adeno-Associated Virus-Delivered CRISPR/Cas9 System in Adult Monkey Brain Elicits Classical Parkinsonian Phenotype. Neurosci Bull 2021; 37:1271-1288. [PMID: 34165772 PMCID: PMC8423927 DOI: 10.1007/s12264-021-00732-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Whether direct manipulation of Parkinson's disease (PD) risk genes in the adult monkey brain can elicit a Parkinsonian phenotype remains an unsolved issue. Here, we used an adeno-associated virus serotype 9 (AAV9)-delivered CRISPR/Cas9 system to directly co-edit PINK1 and DJ-1 genes in the substantia nigras (SNs) of two monkey groups: an old group and a middle-aged group. After the operation, the old group exhibited all the classic PD symptoms, including bradykinesia, tremor, and postural instability, accompanied by key pathological hallmarks of PD, such as severe nigral dopaminergic neuron loss (>64%) and evident α-synuclein pathology in the gene-edited SN. In contrast, the phenotype of their middle-aged counterparts, which also showed clear PD symptoms and pathological hallmarks, were less severe. In addition to the higher final total PD scores and more severe pathological changes, the old group were also more susceptible to gene editing by showing a faster process of PD progression. These results suggested that both genetic and aging factors played important roles in the development of PD in the monkeys. Taken together, this system can effectively develop a large number of genetically-edited PD monkeys in a short time (6-10 months), and thus provides a practical transgenic monkey model for future PD studies.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
| | - Shihao Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xia Ma
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xiao Li
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tianlin Cheng
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhifang Chen
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
| | - Longbao Lv
- National Resource Center for Non-human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 650107, Kunming, China
| | - Ling Li
- Diagnostic Radiology Department, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
| | - Liqi Xu
- Ultrasound diagnosis Department, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
| | - Wenchao Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
| | - Yingzhou Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
| | - Haisong Jiang
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yong Yin
- Department of Rehabilitation Medicine, The Second People's Hospital of Yunnan Province, Kunming, 650021, China.
| | - Zilong Qiu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200433, China.
| | - Xintian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- National Resource Center for Non-human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 650107, Kunming, China.
| |
Collapse
|
48
|
Poewe W, Volc D, Seppi K, Medori R, Lührs P, Kutzelnigg A, Djamshidian A, Thun-Hohenstein C, Meissner WG, Rascol O, Schneeberger A, Staffler G, Poewe W, Seppi K, Djamshidian A, deMarzi R, Heim B, Mangesius S, Stolz R, Wachowicz K, Volc D, Thun-Hohenstein C, Riha C, Schneeberger A, Bürger V, Galabova G. Safety and Tolerability of Active Immunotherapy Targeting α-Synuclein with PD03A in Patients with Early Parkinson's Disease: A Randomized, Placebo-Controlled, Phase 1 Study. JOURNAL OF PARKINSONS DISEASE 2021; 11:1079-1089. [PMID: 34092654 PMCID: PMC8461711 DOI: 10.3233/jpd-212594] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: Immunotherapies targeting α-synuclein aim to limit its extracellular spread in the brain and prevent progression of pathology in Parkinson’s disease (PD). PD03A is a specific active immunotherapy (SAIT) involving immunization with a short peptide formulation. Objective: This phase 1 study characterized the safety and tolerability of PD03A in patients with early PD. A key secondary objective was to evaluate immunological activity following immunization. Methods: This was a phase 1 study of two different doses of PD03A versus placebo in PD patients. Patients were randomized (1:1:1) to receive four priming plus one booster vaccination of PD03A 15μg, PD03A 75μg or placebo and were followed for 52 weeks. Results: Overall, 36 patients were randomized, of which 35 received five immunizations and completed the study. All patients experienced at least one adverse event. Transient local injection site reactions affected all but two patients; otherwise most AEs were considered unrelated to study treatment. A substantial IgG antibody response against PD03 was observed with a maximum titer achieved at Week-12. Differences in titers between both active groups versus placebo were statistically significant from the second immunization at Week-8 until Week-52. Conclusion: The safety profile and positive antibody response of PD03A supports the further development of active immunotherapeutic approaches for the treatment of PD.
Collapse
Affiliation(s)
- Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Dieter Volc
- PROSENEX Study Center at Privatklinik Confraternitaet, Vienna, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | | - Atbin Djamshidian
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Wassilios G Meissner
- Service de Neurologie, CRMR Atrophie Multisystématisée, CHU Bordeaux and Université Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Olivier Rascol
- Toulouse Parkinson Expert Center, Departments of Neurosciences and Clinical Pharmacology, Centre d'Investigation Clinique de Toulouse CIC1436, NS-Park/FCRIN Network, and NeuroToul COEN Center, University Hospital of Toulouse, INSERM, University of Toulouse, Toulouse, France
| | | | | | | | | | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Atbin Djamshidian
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Roberto deMarzi
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Beatrice Heim
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Raphaela Stolz
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Dieter Volc
- PROSENEX Study Center at Privatklinik Confraternitaet, Vienna, Austria
| | | | - Constanze Riha
- PROSENEX Study Center at Privatklinik Confraternitaet, Vienna, Austria
| | | | | | | |
Collapse
|
49
|
Oliveira LMA, Gasser T, Edwards R, Zweckstetter M, Melki R, Stefanis L, Lashuel HA, Sulzer D, Vekrellis K, Halliday GM, Tomlinson JJ, Schlossmacher M, Jensen PH, Schulze-Hentrich J, Riess O, Hirst WD, El-Agnaf O, Mollenhauer B, Lansbury P, Outeiro TF. Alpha-synuclein research: defining strategic moves in the battle against Parkinson's disease. NPJ Parkinsons Dis 2021; 7:65. [PMID: 34312398 PMCID: PMC8313662 DOI: 10.1038/s41531-021-00203-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
With the advent of the genetic era in Parkinson's disease (PD) research in 1997, α-synuclein was identified as an important player in a complex neurodegenerative disease that affects >10 million people worldwide. PD has been estimated to have an economic impact of $51.9 billion in the US alone. Since the initial association with PD, hundreds of researchers have contributed to elucidating the functions of α-synuclein in normal and pathological states, and these remain critical areas for continued research. With this position paper the authors strive to achieve two goals: first, to succinctly summarize the critical features that define α-synuclein's varied roles, as they are known today; and second, to identify the most pressing knowledge gaps and delineate a multipronged strategy for future research with the goal of enabling therapies to stop or slow disease progression in PD.
Collapse
Affiliation(s)
- Luis M A Oliveira
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA.
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Robert Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, CA, USA
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ronald Melki
- Institut François Jacob, MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Leonidas Stefanis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- First Department of Neurology, Medical School of the National and Kapodistrian University of Athens, Athens, Greece
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Faculty of Life Sciences, EPFL, Lausanne, Switzerland
| | - David Sulzer
- Department of Psychiatry, Neurology, Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Kostas Vekrellis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Glenda M Halliday
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Sydney, NSW, Australia
| | - Julianna J Tomlinson
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Michael Schlossmacher
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
| | - Poul Henning Jensen
- Aarhus University, Department of Biomedicine & DANDRITE, Danish Research Institute of Translational Neuroscience, Aarhus, Denmark
| | - Julia Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, Cambridge, MA, USA
| | - Omar El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | | | - Tiago F Outeiro
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.
- Max Planck Institute for Experimental Medicine, Göttingen, Germany.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
| |
Collapse
|
50
|
Heras-Garvin A, Refolo V, Schmidt C, Malfertheiner K, Wenning GK, Bradbury M, Stamler D, Stefanova N. ATH434 Reduces α-Synuclein-Related Neurodegeneration in a Murine Model of Multiple System Atrophy. Mov Disord 2021; 36:2605-2614. [PMID: 34236731 DOI: 10.1002/mds.28714] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) is a fatal neurodegenerative disorder characterized by aggregated α-synuclein (α-syn) in oligodendrocytes and accompanied by striatonigral and olivopontocerebellar degeneration and motor symptoms. Key features of MSA are replicated in the PLP-α-syn transgenic mouse, including progressive striatonigral degeneration and motor deterioration. There are currently no approved treatments for MSA. ATH434 is a novel, orally bioavailable brain penetrant small molecule inhibitor of α-syn aggregation. OBJECTIVES To characterize ATH434 for disease modification in a mouse model of MSA. METHODS Six-month-old PLP-α-syn mice (MSA mice) were ATH434-treated (ATH434 in food) or untreated (normal food) for 6 months. Motor behavior and numbers of nigral and striatal neurons were evaluated. α-syn aggregates and oligomers were quantified by immunohistochemical and western blot analyses. Microglial activation and neuroinflammation were assessed by histological and molecular analyses. Ferric iron in the Substantia nigra was evaluated with the Perls method. RESULTS ATH434-treated mice demonstrated preservation of motor performance in MSA mice that was associated with neuroprotection of nigral and striatal neurons. The rescue of the phenotype correlated with the reduction of α-syn inclusions and oligomers in animals receiving ATH434. ATH434-treated mice exhibited significantly increased lysosomal activity of microglia without increased pro-inflammatory markers, suggesting a role in α-syn clearing. ATH434-treatment was associated with lower intracellular nigral iron levels. CONCLUSIONS Our findings demonstrate the beneficial disease-modifying effect of ATH434 in oligodendroglial α-synucleinopathy on both the motor phenotype and neurodegenerative pathology in the PLP-α-syn transgenic mouse and support the development of ATH434 for MSA. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Antonio Heras-Garvin
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Violetta Refolo
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudio Schmidt
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katja Malfertheiner
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K Wenning
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | - Nadia Stefanova
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|