1
|
Lara-Reyna J, Karabacak M, Wedderburn R, Legome E, Margetis K. Midbrain volume in brain herniation: A volumetric analysis in operative traumatic brain injury. Surg Neurol Int 2024; 15:437. [PMID: 39640336 PMCID: PMC11618762 DOI: 10.25259/sni_389_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Background This study primarily aimed to assess the volumetric attributes of the midbrain and perimesencephalic structures preoperatively and following surgical interventions in patients diagnosed with brain herniation secondary to traumatic brain injury (TBI). Methods We evaluated patients based on radiological findings and clinical symptoms indicative of brain herniation. We performed semi-automated segmentation of the intracranial structures most relevant to trauma and of interest for the current study, such as hematoma, ventricles, midbrain, and perimesencephalic cisterns. Using preoperative and postoperative computed tomography scans, we measured and analyzed the volume of these structures. Patients were grouped based on their discharge Glasgow Coma Scale (GCS) scores: GCS 15 and non-GCS 15. Results From May 2018 to February 2020, we included 20 patients in the study. Our volumetric analysis revealed that preoperative midbrain volume (5.84 cc vs. 4.37 cc, P = 0.034) was a significant differentiator between GCS 15 and non-GCS 15 groups. Preoperative midbrain volume remained significant in univariate (odds ratio [OR] = 2.280, 95% confidence interval (CI) = 1.126-5.929, P = 0.04) and multivariate logistic regression analysis (adjusted OR = 3.204, 95% CI = 1.228-12.438, P = 0.038) even after adjusting for age, sex, and admission GCS score. We identified a cut-off point of 4.86 ccs in preoperative midbrain volume, which demonstrated a discriminatory performance of 0.788 area under the receiver operating characteristic curve, 80.0% accuracy, 77.8% sensitivity, and 81.8% specificity between the two groups. Conclusion Our findings suggest that patients presenting with lesser midbrain compression preoperatively tended to have improved clinical outcomes postsurgery. Thus, we propose that this preoperative midbrain volume cut-off point holds predictive value for clinical outcomes within our cohort.
Collapse
Affiliation(s)
- Jacques Lara-Reyna
- Department of Neurosurgery, University of Illinois College of Medicine, Peoria, United States
| | - Mert Karabacak
- Department of Neurosurgery, Mount Sinai Health System, New York, United States
| | - Raymond Wedderburn
- Department of Surgery, Division of Trauma and Acute Care, New York, United States
| | - Eric Legome
- Departments of Emergency Medicine, Mount Sinai Health System, New York, United States
| | | |
Collapse
|
2
|
Li FJ, Zhang ZX, Li YDY, Li JY, Liu YN, Liu XJ, Zhang RY, Liu X, Zhang W, Xu CY, Cui GY. High bioavailable testosterone levels increase the incidence of isolated REM sleep behavior disorder: Results from multivariable and network Mendelian randomization analysis. Sleep Med 2024; 121:102-110. [PMID: 38959716 DOI: 10.1016/j.sleep.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVES To explore the causal relationships between sex hormone levels and incidence of isolated REM sleep behavior disorder (iRBD). METHODS In our study, we utilized Genome-Wide Association Studies (GWAS) data for iRBD, including 9447 samples with 1061 cases of iRBD provided by the International RBD Study Group. Initially, we conducted a two-sample univariate MR analysis to explore the impact of sex hormone-related indicators on iRBD. This was followed by the application of multivariable MR methods to adjust for other hormone levels and potential confounders. Finally, we undertook a network MR analysis, employing brain structure Magnetic Resonance Imaging (MRI) characteristics as potential mediators, to examine whether sex hormones could indirectly influence the incidence of iRBD by affecting brain structure. RESULTS Bioavailable testosterone (BioT) is an independent risk factor for iRBD (Odds Ratio [95 % Confidence Interval] = 2.437 [1.308, 4.539], P = 0.005, corrected-P = 0.020), a finding that remained consistent even after adjusting for other sex hormone levels and potential confounders. Additionally, BioT appears to indirectly increase the risk of iRBD by reducing axial diffusivity and increasing the orientation dispersion index in the left cingulum and cingulate gyrus. CONCLUSIONS Our research reveals that elevated levels of BioT contribute to the development of iRBD. However, the specific impact of BioT on different sexes remains unclear. Furthermore, high BioT may indirectly lead to iRBD by impairing normal pathways in the left cingulum and cingulate gyrus and fostering abnormal pathway formation.
Collapse
Affiliation(s)
- Fu-Jia Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Zi-Xuan Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Yang-Dan-Yu Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Jin-Yu Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Yu-Ning Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Xuan-Jing Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Ru-Yu Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Xu Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Chuan-Ying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Gui-Yun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China.
| |
Collapse
|
3
|
Stein A, Vinh To X, Nasrallah FA, Barlow KM. Evidence of Ongoing Cerebral Microstructural Reorganization in Children With Persisting Symptoms Following Mild Traumatic Brain Injury: A NODDI DTI Analysis. J Neurotrauma 2024; 41:41-58. [PMID: 37885245 DOI: 10.1089/neu.2023.0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Approximately 300-550 children per 100,000 sustain a mild traumatic brain injury (mTBI) each year, of whom ∼25-30% have long-term cognitive problems. Following mTBI, free water (FW) accumulation occurs in white matter (WM) tracts. Diffusion tensor imaging (DTI) can be used to investigate structural integrity following mTBI. Compared with conventional DTI, neurite orientation dispersion and density imaging (NODDI) orientation dispersion index (ODI) and fraction of isolated free water (FISO) metrics may allow a more advanced insight into microstructural damage following pediatric mTBI. In this longitudinal study, we used NODDI to explore whole-brain and tract-specific differences in ODI and FISO in children with persistent symptoms after mTBI (n = 80) and in children displaying clinical recovery (n = 32) at 1 and 2-3 months post-mTBI compared with healthy controls (HCs) (n = 21). Two-way repeated measures analysis of variance (ANOVA) and voxelwise two-sample t tests were conducted to compare whole-brain and tract-specific diffusion across groups. All results were corrected at positive false discovery rate (pFDR) <0.05. We also examined the association between NODDI metrics and clinical outcomes, using logistical regression to investigate the value of NODDI metrics in predicting future recovery from mTBI. Whole-brain ODI was significantly increased in symptomatic participants compared with HCs at both 1 and 2 months post-injury, where the uncinate fasciculus (UF) and inferior fronto-occipital fasciculus (IFOF) were particularly implicated. Using region of interest (ROI) analysis in significant WM, bilateral IFOF and UF voxels, symptomatic participants had the highest ODI in all ROIs. ODI was lower in asymptomatic participants, and HCs had the lowest ODI in all ROIs. No changes in FISO were found across groups or over time. WM ODI was moderately correlated with a higher youth-reported post-concussion symptom inventory (PCSI) score. With 87% predictive power, ODI (1 month post-injury) and clinical predictors (age, sex, PCSI score, attention scores) were a more sensitive predictor of recovery at 2-3 months post-injury than fractional anisotropy (FA) and clinical predictors, or clinical predictors alone. FISO could not predict recovery at 2-3 months post-injury. Therefore, we found that ODI was significantly increased in symptomatic children following mTBI compared with HCs at 1 month post-injury, and progressively decreased over time alongside clinical recovery. We found no significant differences in FISO between groups or over time. WM ODI at 1 month was a more sensitive predictor of clinical recovery at 2-3 months post-injury than FA, FISO, or clinical measures alone. Our results show evidence of ongoing microstructural reorganization or neuroinflammation between 1 and 2-3 months post-injury, further supporting delayed return to play in children who remain symptomatic. We recommend future research examining the clinical utility of NODDI following mTBI to predict recovery or persistence of post-concussion symptoms and thereby inform management of mTBI.
Collapse
Affiliation(s)
- Athena Stein
- Acquired Brain Injury in Children Research Group, The University of Queensland, South Brisbane, Queensland, Australia
| | - Xuan Vinh To
- Queensland Brain Institute, The University of Queensland, South Brisbane, Queensland, Australia
| | - Fatima A Nasrallah
- Queensland Brain Institute, The University of Queensland, South Brisbane, Queensland, Australia
| | - Karen M Barlow
- Acquired Brain Injury in Children Research Group, The University of Queensland, South Brisbane, Queensland, Australia
- Queensland Pediatric Rehabilitation Service, Queensland Children's Hospital, South Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Laic RAG, Verheyden J, Bruyninckx D, Lebegge P, Sloten JV, Depreitere B. Profound prospective assessment of radiological and functional outcome 6 months after TBI in elderly. Acta Neurochir (Wien) 2023; 165:849-864. [PMID: 36922467 DOI: 10.1007/s00701-023-05546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Recovery after traumatic brain injury (TBI) in older adults is usually affected by the presence of comorbidities, leading to more severe sequelae in this age group than in younger patients. However, there are only few reports that prospectively perform in-depth assessment of outcome following TBI in elderly. OBJECTIVE This study aims at documenting structural brain characteristics and functional outcome and quality of life in elderly patients 6 months after TBI and comparing these data with healthy volunteers undergoing the same assessments. METHODS Thirteen TBI patients ≥ 65 years old, admitted to the University Hospitals Leuven (Belgium), between 2019 and 2022 due to TBI, including all injury severities, and a group of 13 healthy volunteers with similar demographic characteristics were prospectively included in the study. At admission, demographic, injury, and CT scan data were collected in our database. Six months after the accident, a brain MRI scan and standardized assessments of frailty, sleep quality, cognitive function, motor function, and quality of life were conducted. RESULTS A total of 13 patients and 13 volunteers were included in the study, with a median age of 74 and 73 years, respectively. Nine out of the 13 patients presented with a mild TBI. The patient group had a significantly higher level of frailty than the control group, presenting a mean Reported Edmonton Frailty Scale score of 5.8 (SD 2.7) vs 0.7 (SD 1.1) (p < 0.01). No statistically significant differences were found between patient and control brain volumes, fluid attenuated inversion recovery white matter hyperintensity volumes, number of lesions and blackholes, and fractional anisotropy values. Patients demonstrated a significantly higher median reaction time in the One Touch Stockings of Cambridge (22.3 s vs 17.6, p = 0.03) and Reaction Time (0.5 s vs 0.4 s, p < 0.01) subtests in the Cambridge Neuropsychological Test Automated Battery. Furthermore, patients had a lower mean score on the first Box and Blocks test with the right hand (46.6 vs 61.7, p < 0.01) and a significantly higher mean score in the Timed-Up & Go test (13.1 s vs 6.2 s, p = 0.02) and Timed Up & Go with cognitive dual task (16.0 s vs 10.2 s, p < 0.01). Substantially lower QOLIBRI total score (60.4 vs 85.4, p < 0.01) and QOLIBRI-OS total score (53.8 vs 88.5, p < 0.01) were also observed in the patients' group. CONCLUSION In this prospective study, TBI patients ≥ 65 years old when compared with elder controls showed slightly worse cognitive performance and poorer motor function, higher fall risk, but a substantially reduced QoL at 6 months FU, as well as significantly higher frailty, even when the TBI is classified as mild. No statistically significant differences were found in structural brain characteristics on MRI. Future studies with larger sample sizes are needed to refine the impact of TBI versus frailty on function and QoL in elderly.
Collapse
|
5
|
Benjamini D, Priemer DS, Perl DP, Brody DL, Basser PJ. Mapping astrogliosis in the individual human brain using multidimensional MRI. Brain 2023; 146:1212-1226. [PMID: 35953450 PMCID: PMC9976979 DOI: 10.1093/brain/awac298] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/13/2022] [Accepted: 08/06/2022] [Indexed: 11/14/2022] Open
Abstract
There are currently no non-invasive imaging methods available for astrogliosis assessment or mapping in the central nervous system despite its essential role in the response to many disease states, such as infarcts, neurodegenerative conditions, traumatic brain injury and infection. Multidimensional MRI is an increasingly employed imaging modality that maximizes the amount of encoded chemical and microstructural information by probing relaxation (T1 and T2) and diffusion mechanisms simultaneously. Here, we harness the exquisite sensitivity of this imagining modality to derive a signature of astrogliosis and disentangle it from normative brain at the individual level using machine learning. We investigated ex vivo cerebral cortical tissue specimens derived from seven subjects who sustained blast-induced injuries, which resulted in scar-border forming astrogliosis without being accompanied by other types of neuropathological abnormality, and from seven control brain donors. By performing a combined post-mortem radiology and histopathology correlation study we found that astrogliosis induces microstructural and chemical changes that are robustly detected with multidimensional MRI, and which can be attributed to astrogliosis because no axonal damage, demyelination or tauopathy were histologically observed in any of the cases in the study. Importantly, we showed that no one-dimensional T1, T2 or diffusion MRI measurement can disentangle the microscopic alterations caused by this neuropathology. Based on these findings, we developed a within-subject anomaly detection procedure that generates MRI-based astrogliosis biomarker maps ex vivo, which were significantly and strongly correlated with co-registered histological images of increased glial fibrillary acidic protein deposition (r = 0.856, P < 0.0001; r = 0.789, P < 0.0001; r = 0.793, P < 0.0001, for diffusion-T2, diffusion-T1 and T1-T2 multidimensional data sets, respectively). Our findings elucidate the underpinning of MRI signal response from astrogliosis, and the demonstrated high spatial sensitivity and specificity in detecting reactive astrocytes at the individual level, and if reproduced in vivo, will significantly impact neuroimaging studies of injury, disease, repair and aging, in which astrogliosis has so far been an invisible process radiologically.
Collapse
Affiliation(s)
- Dan Benjamini
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20891, USA
- Multiscale Imaging and Integrative Biophysics Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD 21224, USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - David S Priemer
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- The Department of Defense/Uniformed Services, University Brain Tissue Repository, Bethesda, MD 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD 20817, USA
| | - Daniel P Perl
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- The Department of Defense/Uniformed Services, University Brain Tissue Repository, Bethesda, MD 20814, USA
| | - David L Brody
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20891, USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
6
|
Chary K, Manninen E, Claessens J, Ramirez-Manzanares A, Gröhn O, Sierra A. Diffusion MRI approaches for investigating microstructural complexity in a rat model of traumatic brain injury. Sci Rep 2023; 13:2219. [PMID: 36755032 PMCID: PMC9908904 DOI: 10.1038/s41598-023-29010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Our study explores the potential of conventional and advanced diffusion MRI techniques including diffusion tensor imaging (DTI), and single-shell 3-tissue constrained spherical deconvolution (SS3T-CSD) to investigate complex microstructural changes following severe traumatic brain injury in rats at a chronic phase. Rat brains after sham-operation or lateral fluid percussion (LFP) injury were scanned ex vivo in a 9.4 T scanner. Our region-of-interest-based approach of tensor-, and SS3T-CSD derived fixel-, 3-tissue signal fraction maps were sensitive to changes in both white matter (WM) and grey matter (GM) areas. Tensor-based measures, such as fractional anisotropy (FA) and radial diffusivity (RD), detected more changes in WM and GM areas as compared to fixel-based measures including apparent fiber density (AFD), peak FOD amplitude and primary fiber bundle density, while 3-tissue signal fraction maps revealed distinct changes in WM, GM, and phosphate-buffered saline (PBS) fractions highlighting the complex tissue microstructural alterations post-trauma. Track-weighted imaging demonstrated changes in track morphology including reduced curvature and average pathlength distal from the primary lesion in severe TBI rats. In histological analysis, changes in the diffusion MRI measures could be associated to decreased myelin density, loss of myelinated axons, and increased cellularity, revealing progressive microstructural alterations in these brain areas five months after injury. Overall, this study highlights the use of combined conventional and advanced diffusion MRI measures to obtain more precise insights into the complex tissue microstructural alterations in chronic phase of severe brain injury.
Collapse
Affiliation(s)
- Karthik Chary
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Neulaniementie 2, Kuopio, Finland
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Eppu Manninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Neulaniementie 2, Kuopio, Finland
| | - Jade Claessens
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Neulaniementie 2, Kuopio, Finland
| | | | - Olli Gröhn
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Neulaniementie 2, Kuopio, Finland
| | - Alejandra Sierra
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Neulaniementie 2, Kuopio, Finland.
| |
Collapse
|
7
|
Raukola-Lindblom M, Kurki T, Ljungqvist L, Laasonen M, Hämäläinen H, Tenovuo O. Association of cognitive-linguistic deficits to diffusion tensor imaging parameters in moderate to severe traumatic diffuse axonal injury. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-8. [PMID: 36688868 DOI: 10.1080/23279095.2023.2169885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cognitive-linguistic functions are an essential part of adequate communication competence. Cognitive-linguistic deficits are common after traumatic diffuse axonal injury (DAI). We aimed to examine the integrity of perisylvian white matter tracts known to be associated with linguistic functions in individuals with DAI and their eventual association with poor cognitive-linguistic outcomes. Diffusion tensor imaging (DTI) results of 44 adults with moderate-to-severe DAI were compared with those of 67 controls. Fractional anisotropy (FA) values of the superior longitudinal fasciculus (SLF), arcuate fasciculus (AF), SLF with frontal connections to the lower parietal cortex, and AF with temporal connections to the lower parietal cortex were measured using tractography. The associations between white matter integrity FA values and cognitive-linguistic deficits were studied in the DAI group. Cognitive-linguistic deficits were determined based on our earlier study using the novel KAT test. No previous studies have examined the associations between white matter integrity and cognitive-linguistic deficits determined using the KAT test. Patients with DAI showed lower FA values in all left-side tracts than the controls. Unexpectedly, the poor cognitive-linguistic outcome in the language comprehension and production domains was associated with high FA values of several tracts. After excluding five cases with the poorest cognitive-linguistic performance, but with the highest values in the DTI variables, no significant associations with DTI metrics were found. The association between white matter integrity and cognitive-linguistic functioning is complex in patients with DAI of traumatic origin, probably reflecting the heterogeneity of TBI.
Collapse
Affiliation(s)
| | - Timo Kurki
- Department of Radiology, University of Turku, Turku, Finland.,Terveystalo Medical Center, Turku, Finland
| | - Linda Ljungqvist
- City of Turku, Welfare Division, Psychosocial Services, Turku, Finland
| | - Marja Laasonen
- Department of Logopedics, School of Humanities, University of Eastern Finland, Joensuu, Finland
| | - Heikki Hämäläinen
- Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
| | - Olli Tenovuo
- Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Turku Brain Injury Center, Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
8
|
Martínez‐Molina N, Siponkoski S, Särkämö T. Cognitive efficacy and neural mechanisms of music-based neurological rehabilitation for traumatic brain injury. Ann N Y Acad Sci 2022; 1515:20-32. [PMID: 35676218 PMCID: PMC9796942 DOI: 10.1111/nyas.14800] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Traumatic brain injury (TBI) causes lifelong cognitive deficits, most often in executive function (EF). Both musical training and music-based rehabilitation have been shown to enhance EF and neuroplasticity. Thus far, however, there is little evidence for the potential rehabilitative effects of music for TBI. Here, we review the core findings from our recent cross-over randomized controlled trial in which a 10-week music-based neurological rehabilitation (MBNR) protocol was administered to 40 patients with moderate-to-severe TBI. Neuropsychological testing and structural/functional magnetic resonance imaging were collected at three time points (baseline, 3 months, and 6 months); one group received the MBNR between time points 1 and 2, while a second group received it between time points 2 and 3. We found that both general EF and set shifting improved after the intervention, and this effect was maintained long term. Morphometric analyses revealed therapy-induced gray matter volume changes most consistently in the right inferior frontal gyrus, changes that correlated with better outcomes in set shifting. Finally, we found changes in the between- and within-network functional connectivity of large-scale resting-state networks after MBNR, which also correlated with measures of EF. Taken together, the data provide evidence for concluding that MBNR improves EF in TBI; also, the data show that morphometric and resting-state functional connectivity are sensitive markers with which to monitor the neuroplasticity induced by the MBNR intervention.
Collapse
Affiliation(s)
- Noelia Martínez‐Molina
- Music, Ageing and Rehabilitation Team, Cognitive Brain Research Unit, Department of Psychology and LogopedicsUniversity of HelsinkiHelsinki FI‐00014Finland,Centre of Excellence in Music, Mind, Body and BrainUniversity of Jyväskylä & University of HelsinkiHelsinkiFinland
| | - Sini‐Tuuli Siponkoski
- Music, Ageing and Rehabilitation Team, Cognitive Brain Research Unit, Department of Psychology and LogopedicsUniversity of HelsinkiHelsinki FI‐00014Finland,Centre of Excellence in Music, Mind, Body and BrainUniversity of Jyväskylä & University of HelsinkiHelsinkiFinland
| | - Teppo Särkämö
- Music, Ageing and Rehabilitation Team, Cognitive Brain Research Unit, Department of Psychology and LogopedicsUniversity of HelsinkiHelsinki FI‐00014Finland,Centre of Excellence in Music, Mind, Body and BrainUniversity of Jyväskylä & University of HelsinkiHelsinkiFinland
| |
Collapse
|
9
|
Bourke NJ, Demarchi C, De Simoni S, Samra R, Patel MC, Kuczynski A, Mok Q, Wimalasundera N, Vargha-Khadem F, Sharp DJ. Brain volume abnormalities and clinical outcomes following paediatric traumatic brain injury. Brain 2022; 145:2920-2934. [PMID: 35798350 PMCID: PMC9420021 DOI: 10.1093/brain/awac130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 11/25/2022] Open
Abstract
Long-term outcomes are difficult to predict after paediatric traumatic brain injury. The presence or absence of focal brain injuries often do not explain cognitive, emotional and behavioural disabilities that are common and disabling. In adults, traumatic brain injury produces progressive brain atrophy that can be accurately measured and is associated with cognitive decline. However, the effect of paediatric traumatic brain injury on brain volumes is more challenging to measure because of its interaction with normal brain development. Here we report a robust approach to the individualized estimation of brain volume following paediatric traumatic brain injury and investigate its relationship to clinical outcomes. We first used a large healthy control dataset (n > 1200, age 8-22) to describe the healthy development of white and grey matter regions through adolescence. Individual estimates of grey and white matter regional volume were then generated for a group of moderate/severe traumatic brain injury patients injured in childhood (n = 39, mean age 13.53 ± 1.76, median time since injury = 14 months, range 4-168 months) by comparing brain volumes in patients to age-matched controls. Patients were individually classified as having low or normal brain volume. Neuropsychological and neuropsychiatric outcomes were assessed using standardized testing and parent/carer assessments. Relative to head size, grey matter regions decreased in volume during normal adolescence development whereas white matter tracts increased in volume. Traumatic brain injury disrupted healthy brain development, producing reductions in both grey and white matter brain volumes after correcting for age. Of the 39 patients investigated, 11 (28%) had at least one white matter tract with reduced volume and seven (18%) at least one area of grey matter with reduced volume. Those classified as having low brain volume had slower processing speed compared to healthy controls, emotional impairments, higher levels of apathy, increased anger and learning difficulties. In contrast, the presence of focal brain injury and microbleeds were not associated with an increased risk of these clinical impairments. In summary, we show how brain volume abnormalities after paediatric traumatic brain injury can be robustly calculated from individual T1 MRI using a large normative dataset that allows the effects of healthy brain development to be controlled for. Using this approach, we show that volumetric abnormalities are common after moderate/severe traumatic brain injury in both grey and white matter regions, and are associated with higher levels of cognitive, emotional and behavioural abnormalities that are common after paediatric traumatic brain injury.
Collapse
Affiliation(s)
- Niall J Bourke
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London, London, UK
| | - Célia Demarchi
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London, London, UK
- Clinical Neuropsychology, Department of Psychological Services, Great Ormond Street Hospital, London, UK
| | - Sara De Simoni
- King’s College London, Department of Psychology, Institute of Psychiatry Psychology and Neuroscience, De Crespigny Park, London SE5 8AF, UK
| | - Ravjeet Samra
- Department of Brain Sciences, Imperial College London, London, UK
| | - Maneesh C Patel
- Imaging Department, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London W6 8RF, UK
| | - Adam Kuczynski
- Clinical Neuropsychology, Department of Psychological Services, Great Ormond Street Hospital, London, UK
| | - Quen Mok
- Department of Paediatric Critical Care, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Neil Wimalasundera
- Paediatric Rehabilitation, Royal Children’s Hospital, Melbourne, Australia
| | - Fareneh Vargha-Khadem
- Cognitive Neuroscience and Neuropsychiatry, UCL Great Ormond Street Institute of Child Health, London, UK
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London, London, UK
| |
Collapse
|