1
|
Mothersill C, Desai R, Seymour CB, Mendonca MS. "Lethal Mutations" a Misnomer or the Start of a Scientific Revolution? Radiat Res 2024; 202:205-214. [PMID: 38918004 DOI: 10.1667/rade-24-00018.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/09/2024] [Indexed: 06/27/2024]
Abstract
The aim of this paper is to review the history surrounding the discovery of lethal mutations, later described as delayed reproductive death. Lethal mutations were suggested very early on, to be due to a generalised instability in a cell population and are considered now to be one of the first demonstrations of "radiation-induced genomic instability" which led later to the establishment of the field of "non-targeted effects." The phenomenon was first described by Seymour et al. in 1986 and was confirmed by Trott's group in Europe and by Little and colleagues in the United States before being extended by Mendonca et al. in 1989, who showed conclusively that the distinguishing feature of lethal mutation occurrence was that it happened suddenly after about 9-10 population doublings in progeny which had survived the original dose of ionizing radiation. However, many authors then suggested that in fact, lethal mutations were implicit in the original experiments by Puck and Marcus in 1956 and were described in the extensive work by Sinclair in 1964, who followed clonal progeny for up to a year after irradiation and described "small colony formation" as a persistent consequence of ionizing radiation exposure. In this paper, we examine the history from 1956 to the present using the period from 1986-1989 as an anchor point to reach into the past and to go forward through the evolution of the field of low dose radiobiology where non-targeted effects predominate.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Rhea Desai
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Colin B Seymour
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Marc S Mendonca
- Indiana University School of Medicine, Departments of Radiation Oncology and Medical and Molecular Genetics, Indianapolis, Indiana 46202
| |
Collapse
|
2
|
Edwards S, Adams J, Tchernikov A, Edwards JG. Low-dose X-ray radiation induces an adaptive response: A potential countermeasure to galactic cosmic radiation exposure. Exp Physiol 2024. [PMID: 38180298 DOI: 10.1113/ep091350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Space exploration involves many dangers including galactic cosmic radiation (GCR). This class of radiation includes high-energy protons and heavy ionizing ions. NASA has defined GCR as a carcinogenic risk for long-duration space missions. To date, no clear strategy has been developed to counter chronic GCR exposure. We hypothesize that preconditioning cells with low levels of radiation will be protective from subsequent higher radiation exposures. H9C2 cells were pretreated with 0.1 to 1.0 Gy X-rays. The challenge radiation exposure consisted of either 8 Gy X-rays or 75 cGy of GCR, using a five-ion GCRsim protocol. A cell doubling time assay was used to determine cell viability. An 8 Gy X-ray challenge alone significantly (P < 0.05) increased cell doubling time compared to the no-radiation control group. Low-dose radiation pre-treatment ameliorated the 8 Gy X-ray-induced increases in cell doubling time. A 75 cGy GCR challenge alone significantly increased cell doubling time compared to the no-radiation group. Following the 75 cGy challenge, only the 0.5 and 1.0 Gy pre-treatment ameliorated the 75 cGy-induced increases in cell doubling time. DNA damage or pathological oxidant stress will delay replicative functions and increase cell doubling time. Our results suggested that pretreatment with low-dose X-rays induced an adaptive response which offered a small but significant protection against a following higher radiation challenge. Although perhaps not a practical countermeasure, these findings may serve to offer insight into cell signalling pathways activated in response to low-dose irradiation and targeted for countermeasure development.
Collapse
|
3
|
Matarèse BFE, Rusin A, Seymour C, Mothersill C. Quantum Biology and the Potential Role of Entanglement and Tunneling in Non-Targeted Effects of Ionizing Radiation: A Review and Proposed Model. Int J Mol Sci 2023; 24:16464. [PMID: 38003655 PMCID: PMC10671017 DOI: 10.3390/ijms242216464] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
It is well established that cells, tissues, and organisms exposed to low doses of ionizing radiation can induce effects in non-irradiated neighbors (non-targeted effects or NTE), but the mechanisms remain unclear. This is especially true of the initial steps leading to the release of signaling molecules contained in exosomes. Voltage-gated ion channels, photon emissions, and calcium fluxes are all involved but the precise sequence of events is not yet known. We identified what may be a quantum entanglement type of effect and this prompted us to consider whether aspects of quantum biology such as tunneling and entanglement may underlie the initial events leading to NTE. We review the field where it may be relevant to ionizing radiation processes. These include NTE, low-dose hyper-radiosensitivity, hormesis, and the adaptive response. Finally, we present a possible quantum biological-based model for NTE.
Collapse
Affiliation(s)
- Bruno F. E. Matarèse
- Department of Haematology, University of Cambridge, Cambridge CB2 1TN, UK;
- Department of Physics, University of Cambridge, Cambridge CB2 1TN, UK
| | - Andrej Rusin
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| | - Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| |
Collapse
|
4
|
Cocchetto A, Seymour C, Mothersill C. A Proposed New Model to Explain the Role of Low Dose Non-DNA Targeted Radiation Exposure in Chronic Fatigue and Immune Dysfunction Syndrome. Int J Mol Sci 2023; 24:ijms24076022. [PMID: 37046994 PMCID: PMC10094351 DOI: 10.3390/ijms24076022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic Fatigue and Immune Dysfunction Syndrome (CFIDS) is considered to be a multidimensional illness whose etiology is unknown. However, reports from Chernobyl, as well as those from the United States, have revealed an association between radiation exposure and the development of CFIDS. As such, we present an expanded model using a systems biology approach to explain the etiology of CFIDS as it relates to this cohort of patients. This paper proposes an integrated model with ionizing radiation as a suggested trigger for CFIDS mediated through UVA induction and biophoton generation inside the body resulting from radiation-induced bystander effects (RIBE). Evidence in support of this approach has been organized into a systems view linking CFIDS illness markers with the initiating events, in this case, low-dose radiation exposure. This results in the formation of reactive oxygen species (ROS) as well as important immunologic and other downstream effects. Furthermore, the model implicates melanoma and subsequent hematopoietic dysregulation in this underlying process. Through the identification of this association with melanoma, clinical medicine, including dermatology, hematology, and oncology, can now begin to apply its expansive knowledge base to provide new treatment options for an illness that has had few effective treatments.
Collapse
Affiliation(s)
- Alan Cocchetto
- National CFIDS Foundation Inc., Hull, MA 02045-1602, USA
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
5
|
Gulli F, Geddes TJ, Pruetz BL, Wilson GD. Investigation of the physiological response of radiation-induced cystitis patients using hyperbaric oxygen. Clin Transl Radiat Oncol 2022; 38:104-110. [DOI: 10.1016/j.ctro.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
|
6
|
Unraveling Mitochondrial Determinants of Tumor Response to Radiation Therapy. Int J Mol Sci 2022; 23:ijms231911343. [PMID: 36232638 PMCID: PMC9569617 DOI: 10.3390/ijms231911343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Radiotherapy represents a highly targeted and efficient treatment choice in many cancer types, both with curative and palliative intents. Nevertheless, radioresistance, consisting in the adaptive response of the tumor to radiation-induced damage, represents a major clinical problem. A growing body of the literature suggests that mechanisms related to mitochondrial changes and metabolic remodeling might play a major role in radioresistance development. In this work, the main contributors to the acquired cellular radioresistance and their relation with mitochondrial changes in terms of reactive oxygen species, hypoxia, and epigenetic alterations have been discussed. We focused on recent findings pointing to a major role of mitochondria in response to radiotherapy, along with their implication in the mechanisms underlying radioresistance and radiosensitivity, and briefly summarized some of the recently proposed mitochondria-targeting strategies to overcome the radioresistant phenotype in cancer.
Collapse
|
7
|
Yang P, Qu X, Qi S, Li G, Wang S. Oral administration of inorganic nitrate alleviated biological damage induced by cone-beam computed tomography examination in Wistar rats. Nitric Oxide 2022; 122-123:19-25. [PMID: 35219774 DOI: 10.1016/j.niox.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 01/18/2023]
Abstract
OBJECTIVES To explore whether the inorganic nitrate has a protective effect on biological damage induced by cone-beam computed tomography (CBCT) and compare it with Vitamin C. MATERIALS AND METHODS Sixty Wistar rats were randomly separated into 6 groups: control group, irradiation (IR) group, NaNO3 group, IR + NaNO3 group, Vitamin C group, and IR + Vitamin C group. Rats were whole-body irradiated with CBCT four times. The absorbed dose of the skin surface was measured using thermoluminescent dosemeter chips and the mean whole-body absorbed dose was calculated. Peripheral blood was collected at 0.5h and 24h after irradiation. Bodyweight and organ index of rats before and after irradiation were analyzed. The bone marrow was taken for micronucleus test. Lymphocytes were isolated from peripheral blood for γ-H2AX immunofluorescence assay, apoptosis and reactive oxygen species (ROS) analysis. Total antioxidant capacity (TAC), malondialdehyde (MDA) and superoxide dismutase (SOD) in serum were detected. RESULTS The mean absorbed dose of four whole-body CBCT scans for rats was 73.04 mGy. Bodyweight and organ index before and after irradiation with X-ray had no significant differences. The micronuclei frequency of IR + NaNO3 and IR + Vitamin C groups showed a significant decrease than that in the IR group, which was not significantly different from that of the control group. The γ-H2AX foci rates in the IR + NaNO3 group and the IR + Vitamin C group were significantly lower than that in the IR group. In addition, the foci rate of the IR + NaNO3 group returned to the baseline level of the control group 24h after CBCT scanning. The apoptosis of lymphocytes in rats did not increase. The IR + NaNO3 group (P < 0.001) or IR + Vitamin C group (P < 0.001) showed a significant increase in ROS positive cells rate with the control group, while were significantly lower than those in the IR group (P < 0.01). In addition, the ROS-positive cell rate in the IR + NaNO3 group was significantly lower than that in the IR + Vitamin C group. The MDA in the serum of rats increased significantly, while SOD and TAC decreased significantly at 0.5h after irradiation. CONCLUSIONS Compared with Vitamin C, inorganic nitrate had better preventive effects on biological damage induced by CBCT scans in rats.
Collapse
Affiliation(s)
- Pan Yang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China
| | - Xingmin Qu
- Department of Pediatric Dentistry, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Senrong Qi
- Department of Oral and Maxillofacial Radiology, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Gang Li
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
8
|
Commonalities in the Features of Cancer and Chronic Fatigue Syndrome (CFS): Evidence for Stress-Induced Phenotype Instability? Int J Mol Sci 2022; 23:ijms23020691. [PMID: 35054876 PMCID: PMC8775947 DOI: 10.3390/ijms23020691] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 12/19/2022] Open
Abstract
Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) and Cancer-Related Fatigue (CRF) are syndromes with considerable overlap with respect to symptoms. There have been many studies that have compared the two conditions, and some of this research suggests that the etiologies of the conditions are linked in some cases. In this narrative review, CFS/ME and cancer are introduced, along with their known and putative mechanistic connections to multiple stressors including ionizing radiation. Next, we summarize findings from the literature that suggest the involvement of HPA-axis dysfunction, the serotonergic system, cytokines and inflammation, metabolic insufficiency and mitochondrial dysfunction, and genetic changes in CRF and CFS/ME. We further suspect that the manifestation of fatigue in both diseases and its causes could indicate that CRF and CFS/ME lie on a continuum of potential biological effects which occur in response to stress. The response to this stress likely varies depending on predisposing factors such as genetic background. Finally, future research ideas are suggested with a focus on determining if common biomarkers exist in CFS/ME patients and those afflicted with CRF. Both CFS/ME and CRF are relatively heterogenous syndromes, however, it is our hope that this review assists in future research attempting to elucidate the commonalities between CRF and CFS/ME.
Collapse
|
9
|
60Coγ induction improves the protective effect of Acetobacter pasteurianus against ionizing radiation in mice. Appl Microbiol Biotechnol 2021; 105:9285-9295. [PMID: 34778911 DOI: 10.1007/s00253-021-11664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
Exposure to ionizing radiation (IR) tends to cause serious health concerns. Thus, radioprotective agents are vital for the population exposed to radiation. As microorganisms have the advantages of fast reproduction and no geographical restrictions, direct microbe-based and environmental induction compounds are thriving radioprotectants resources. Oxidative system and oxidase in Acetobacter pasteurianus are unique and intriguing, the radioprotective effect of the cell-free extract from A. pasteurianus (APE) and 60Coγ-treated extract (IRE) were comparatively investigated in the present study. The survival rate of A. pasteurianus with IRE addition was 149.1% in H2O2 damage test, while that with APE was only 10.4%. The viability of 60Coγ-treated AML-12 cells was increased by 18.8% with IRE addition, yet APE showed no significant radioprotective effect. Moreover, in 60Coγ-treated mice, IRE could significantly protect the white blood cell, improve the liver index, and attenuate the injuries of immune organs in mice. Administration of IRE significantly raised the activities of superoxide dismutase (SOD) and reduced the products of lipid peroxidation. These results clarified that gavage with APE and IRE presented notable antioxidant and radioprotective efficacy. A. pasteurianus showed appealing potential to be novel radioprotective bioagents and 60Coγ treatment on microbe could be a new method for the development of better radioprotectant. KEY POINTS: • 60Coγ induction could improve the radioprotective effect of APE. • IRE protected white blood cell in mice under IR. • IRE products have broad application prospects in radioprotection based on microbes.
Collapse
|
10
|
Kadhim M, Tuncay Cagatay S, Elbakrawy EM. Non-targeted effects of radiation: a personal perspective on the role of exosomes in an evolving paradigm. Int J Radiat Biol 2021; 98:410-420. [PMID: 34662248 DOI: 10.1080/09553002.2021.1980630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Radiation-induced non-targeted effects (NTE) have implications in a variety of areas relevant to radiation biology. Here we evaluate the various cargo associated with exosomal signalling and how they work synergistically to initiate and propagate the non-targeted effects including Genomic Instability and Bystander Effects. CONCLUSIONS Extra cellular vesicles, in particular exosomes, have been shown to carry bystander signals. Exosome cargo may contain nucleic acids, both DNA and RNA, as well as proteins, lipids and metabolites. These cargo molecules have all been considered as potential mediators of NTE. A review of current literature shows mounting evidence of a role for ionizing radiation in modulating both the numbers of exosomes released from affected cells as well as the content of their cargo, and that these exosomes can instigate functional changes in recipient cells. However, there are significant gaps in our understanding, particularly regarding modified exosome cargo after radiation exposure and the functional changes induced in recipient cells.
Collapse
Affiliation(s)
- Munira Kadhim
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Seda Tuncay Cagatay
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Eman Mohammed Elbakrawy
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom.,Department of Radiation Physics, National Center for Radiation Research and Technology, Atomic Energy Authority, 3 Ahmed El-Zomor Al Manteqah Ath Thamenah, Nasr City, Cairo 11787, Egypt
| |
Collapse
|
11
|
Ainsbury EA, Barnard SGR. Sensitivity and latency of ionising radiation-induced cataract. Exp Eye Res 2021; 212:108772. [PMID: 34562436 DOI: 10.1016/j.exer.2021.108772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 01/29/2023]
Abstract
When managed with appropriate radiation protection procedures, ionising radiation is of great benefit to society. Opacification of the lens, and vision impairing cataract, have recently been recognised at potential effects of relatively low dose radiation exposure, on the order of 1 Gy or below. Within the last 10 years, understanding of the effects of low dose ionising radiation on the lens has increased, particularly in terms of DNA damage and responses, and how multiple radiation or other events in the lens might contribute to the overall risk of cataract. However, gaps remain, not least in the understanding of how radiation interacts with other risk factors such as aging, as well as the relative radiosensitivity of the lens compared to tissues of the body. This paper reviews the current literature in the field of low dose radiation cataract, with a particular focus on sensitivity and latency.
Collapse
Affiliation(s)
- Elizabeth A Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot Oxford, OX11 ORQ, UK.
| | - Stephen G R Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot Oxford, OX11 ORQ, UK.
| |
Collapse
|
12
|
Dawood A, Mothersill C, Seymour C. Low dose ionizing radiation and the immune response: what is the role of non-targeted effects? Int J Radiat Biol 2021; 97:1368-1382. [PMID: 34330196 DOI: 10.1080/09553002.2021.1962572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This review aims to trace the historical narrative surrounding the low dose effects of radiation on the immune system and how our understanding has changed from the beginning of the 20th century to now. The particular focus is on the non-targeted effects (NTEs) of low dose ionizing radiation (LDIR) which are effects that occur when irradiated cells emit signals that cause effects in the nearby or distant non-irradiated cells known as radiation induced bystander effect (RIBE). Moreover, radiation induced genomic instability (RIGI) and abscopal effect (AE) also regarded as NTE. This was prompted by our recent discovery that ultraviolet A (UVA) photons are emitted by the irradiated cells and that these photons can trigger NTE such as the RIBE in unirradiated recipients of these photons. Given the well-known association between UV radiation and the immune response, where these biophotons may pose as bystander signals potentiating processes in deep tissues as a consequence of LDIR, it is timely to review the field with a fresh lens. Various pathways and immune components that contribute to the beneficial and adverse types of modulation induced by LDR will also be revisited. CONCLUSION There is limited evidence for LDIR induced immune effects by way of a non-targeted mechanism in biological tissue. The literature examining low to medium dose effects of ionizing radiation on the immune system and its components is complex and controversial. Early work was compromised by lack of good dosimetry while later work mainly looks at the involvement of immune response in radiotherapy. There is a lack of research in the LDIR/NTE field focusing on immune response although bone marrow stem cells and lineages were critical in the identification and characterization of NTE where effects like RIGI and RIBE were heavily researched. This may be in part, a result of the difficulty of isolating NTE in whole organisms which are essential for good immune response studies. Models involving inter organism transmission of NTE are a promising route to overcome these issues.
Collapse
Affiliation(s)
- Annum Dawood
- Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | | | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| |
Collapse
|
13
|
Apilan AG, Mothersill C. Targeted and Non-Targeted Mechanisms for Killing Hypoxic Tumour Cells-Are There New Avenues for Treatment? Int J Mol Sci 2021; 22:8651. [PMID: 34445354 PMCID: PMC8395506 DOI: 10.3390/ijms22168651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE A major issue in radiotherapy is the relative resistance of hypoxic cells to radiation. Historic approaches to this problem include the use of oxygen mimetic compounds to sensitize tumour cells, which were unsuccessful. This review looks at modern approaches aimed at increasing the efficacy of targeting and radiosensitizing hypoxic tumour microenvironments relative to normal tissues and asks the question of whether non-targeted effects in radiobiology may provide a new "target". Novel techniques involve the integration of recent technological advancements such as nanotechnology, cell manipulation, and medical imaging. Particularly, the major areas of research discussed in this review include tumour hypoxia imaging through PET imaging to guide carbogen breathing, gold nanoparticles, macrophage-mediated drug delivery systems used for hypoxia-activate prodrugs, and autophagy inhibitors. Furthermore, this review outlines several features of these methods, including the mechanisms of action to induce radiosensitization, the increased accuracy in targeting hypoxic tumour microenvironments relative to normal tissue, preclinical/clinical trials, and future considerations. CONCLUSIONS This review suggests that the four novel tumour hypoxia therapeutics demonstrate compelling evidence that these techniques can serve as powerful tools to increase targeting efficacy and radiosensitizing hypoxic tumour microenvironments relative to normal tissue. Each technique uses a different way to manipulate the therapeutic ratio, which we have labelled "oxygenate, target, use, and digest". In addition, by focusing on emerging non-targeted and out-of-field effects, new umbrella targets are identified, which instead of sensitizing hypoxic cells, seek to reduce the radiosensitivity of normal tissues.
Collapse
|
14
|
Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants (Basel) 2021; 10:890. [PMID: 34205998 PMCID: PMC8228183 DOI: 10.3390/antiox10060890] [Citation(s) in RCA: 260] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
The reactive oxygen species (ROS)-producing enzyme NADPH oxidase (NOX) was first identified in the membrane of phagocytic cells. For many years, its only known role was in immune defense, where its ROS production leads to the destruction of pathogens by the immune cells. NOX from phagocytes catalyzes, via one-electron trans-membrane transfer to molecular oxygen, the production of the superoxide anion. Over the years, six human homologs of the catalytic subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the NOX2/gp91phox component present in the phagocyte NADPH oxidase assembly itself, the homologs are now referred to as the NOX family of NADPH oxidases. NOX are complex multidomain proteins with varying requirements for assembly with combinations of other proteins for activity. The recent structural insights acquired on both prokaryotic and eukaryotic NOX open new perspectives for the understanding of the molecular mechanisms inherent to NOX regulation and ROS production (superoxide or hydrogen peroxide). This new structural information will certainly inform new investigations of human disease. As specialized ROS producers, NOX enzymes participate in numerous crucial physiological processes, including host defense, the post-translational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. These diversities of physiological context will be discussed in this review. We also discuss NOX misregulation, which can contribute to a wide range of severe pathologies, such as atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, or neurodegenerative diseases, giving this family of membrane proteins a strong therapeutic interest.
Collapse
Affiliation(s)
- Annelise Vermot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Isabelle Petit-Härtlein
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Susan M. E. Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA;
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| |
Collapse
|
15
|
Oxidative Stress and Gene Expression Modifications Mediated by Extracellular Vesicles: An In Vivo Study of the Radiation-Induced Bystander Effect. Antioxidants (Basel) 2021; 10:antiox10020156. [PMID: 33494540 PMCID: PMC7911176 DOI: 10.3390/antiox10020156] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/27/2022] Open
Abstract
Radiation-induced bystander effect is a biological response in nonirradiated cells receiving signals from cells exposed to ionising radiation. The aim of this in vivo study was to analyse whether extracellular vesicles (EVs) originating from irradiated mice could induce modifications in the redox status and expression of radiation-response genes in bystander mice. C57BL/6 mice were whole-body irradiated with 0.1-Gy and 2-Gy X-rays, and EVs originating from mice irradiated with the same doses were injected into naïve, bystander mice. Lipid peroxidation in the spleen and plasma reactive oxygen metabolite (ROM) levels increased 24 h after irradiation with 2 Gy. The expression of antioxidant enzyme genes and inducible nitric oxide synthase 2 (iNOS2) decreased, while cell cycle arrest-, senescence- and apoptosis-related genes were upregulated after irradiation with 2 Gy. In bystander mice, no significant alterations were observed in lipid peroxidation or in the expression of genes connected to cell cycle arrest, senescence and apoptosis. However, there was a systemic increase in the circulating ROM level after an intravenous EV injection, and EVs originating from 2-Gy-irradiated mice caused a reduced expression of antioxidant enzyme genes and iNOS2 in bystander mice. In conclusion, we showed that ionising radiation-induced alterations in the cellular antioxidant system can be transmitted in vivo in a bystander manner through EVs originating from directly irradiated animals.
Collapse
|
16
|
Chauhan V, Vuong NQ, Bahia S, Nazemof N, Kumarathasan P. In vitro exposure of human lens epithelial cells to X-rays at varied dose-rates leads to protein-level changes relevant to cataractogenesis. Int J Radiat Biol 2020; 97:824-832. [PMID: 33164603 DOI: 10.1080/09553002.2020.1846819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Accumulated body of evidence shows that ionizing radiation increases the risk of cataracts. The mechanisms are not clear and the International Commission on Radiological Protection indicates a need for research into understanding the process, particularly at low doses and low dose rates of exposure. PURPOSE This study was designed to examine protein-level modifications in a human lens epithelial (HLE) cell-line following radiation exposures. MATERIALS AND METHODS HLE cell-line was subjected to X-irradiation at varied doses (0-5 Gy) and dose-rates (1.62 cGy/min and 38.2 cGy/min). Cells were collected 20 h post-exposure, lysed and proteins were clarified following fractionation by a molecular weight cut-off filtration method. Fractionated cellular proteins were enzymatically digested and subjected to mass spectrometry analysis. RESULTS Statistically significant radiation dose-related protein changes compared to the control group were identified. Heatmap and hierarchical clustering analysis showed dose-rate dependant responses. Pathway analysis mapped the proteins to biological functions of mitochondrial dysfunction, reactive oxygen species generation, cell death, cancer, organismal injury and amyloidosis. CONCLUSION Overall findings suggest that ionizing radiation exposure of HLE cells by mediating dose rate-dependant oxidative stress and cell death-related mechanisms, can be relevant to cataractogenesis.
Collapse
Affiliation(s)
- Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Ngoc Q Vuong
- Radiation Protection Bureau, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Simran Bahia
- Consumer and Clinical Radiation Protection Bureau, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Nazila Nazemof
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Premkumari Kumarathasan
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Canada
- Environmental Health Sciences and Research Bureau, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, Canada
| |
Collapse
|
17
|
Belli M, Indovina L. The Response of Living Organisms to Low Radiation Environment and Its Implications in Radiation Protection. Front Public Health 2020; 8:601711. [PMID: 33384980 PMCID: PMC7770185 DOI: 10.3389/fpubh.2020.601711] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Life has evolved on Earth for about 4 billion years in the presence of the natural background of ionizing radiation. It is extremely likely that it contributed, and still contributes, to shaping present form of life. Today the natural background radiation is extremely small (few mSv/y), however it may be significant enough for living organisms to respond to it, perhaps keeping memory of this exposure. A better understanding of this response is relevant not only for improving our knowledge on life evolution, but also for assessing the robustness of the present radiation protection system at low doses, such as those typically encountered in everyday life. Given the large uncertainties in epidemiological data below 100 mSv, quantitative evaluation of these health risk is currently obtained with the aid of radiobiological models. These predict a health detriment, caused by radiation-induced genetic mutations, linearly related to the dose. However a number of studies challenged this paradigm by demonstrating the occurrence of non-linear responses at low doses, and of radioinduced epigenetic effects, i.e., heritable changes in genes expression not related to changes in DNA sequence. This review is focused on the role that epigenetic mechanisms, besides the genetic ones, can have in the responses to low dose and protracted exposures, particularly to natural background radiation. Many lines of evidence show that epigenetic modifications are involved in non-linear responses relevant to low doses, such as non-targeted effects and adaptive response, and that genetic and epigenetic effects share, in part, a common origin: the reactive oxygen species generated by ionizing radiation. Cell response to low doses of ionizing radiation appears more complex than that assumed for radiation protection purposes and that it is not always detrimental. Experiments conducted in underground laboratories with very low background radiation have even suggested positive effects of this background. Studying the changes occurring in various living organisms at reduced radiation background, besides giving information on the life evolution, have opened a new avenue to answer whether low doses are detrimental or beneficial, and to understand the relevance of radiobiological results to radiation protection.
Collapse
Affiliation(s)
| | - Luca Indovina
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
18
|
Abstract
According to the results of recent studies, parental exposure to ionizing radiation not only leads to mutation induction in the germline of irradiated animals but also affects their non-exposed offspring. These radiation-induced transgenerational effects belong to an epigenetic phenomenon that could not be defined as a transmission of altered phenotypes from the irradiated parents to their non-exposed offspring. In this review, we present the results of laboratory studies aimed to evaluate the transgenerational effects of parental irradiation on a number of traits in the offspring of exposed parents. The results of animal studies showing compromised viability, fertility and genome stability among the non-exposed offspring of irradiated parents are presented and discussed. So far, the epigenetic phenomenon of radiation-induced transgenerational effects has been established in laboratory studies. Future work should address the important issue of manifestation of radiation-induced transgenerational effects in populations inhabiting radioactive-contaminated areas, as well as the mechanisms of transgenerational effects.
Collapse
Affiliation(s)
- Yuri E Dubrova
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Elena I Sarapultseva
- Department of Biotechnology, National Research Nuclear University MEPhI, Moscow, Russian Federation.,A. Tsyb Medical Radiological Research Centre, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russian Federation
| |
Collapse
|
19
|
Laskowski L, Williams D, Seymour C, Mothersill C. Environmental and industrial developments in radiation cataractogenesis. Int J Radiat Biol 2020; 98:1074-1082. [PMID: 32396040 DOI: 10.1080/09553002.2020.1767820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: This review discusses recent developments in our understanding of biological and physiological mechanisms underlying radiation cataractogenesis. The areas discussed include effects of low-dose exposures to the lens including potential relevance of non-targeted effects, the development of new personal-protective equipment (PPE) and standards in clinical and nuclear settings motivated by the updated ICRP recommendations to mitigate exposures to the lens of the eye. The review also looks at evidence from the field linking cataracts in birds and mammals to low dose exposures.Conclusions: The review suggests that there is evidence that cataractogenesis is not a tissue reaction (deterministic effect) but rather is a low dose effect which shows a saturable dose response relationship similar to that seen for non-targeted effects in general. The review concludes that new research is needed to determine the dose response relationship in environmental studies where field data are contradictory and lab studies confined to rodent models for human exposure studies.
Collapse
Affiliation(s)
- Lukasz Laskowski
- Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - David Williams
- Department of Veterinary Medicine, University of Cambridge, Cambrige, UK
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| | | |
Collapse
|
20
|
Relevance of Non-Targeted Effects for Radiotherapy and Diagnostic Radiology; A Historical and Conceptual Analysis of Key Players. Cancers (Basel) 2019; 11:cancers11091236. [PMID: 31450803 PMCID: PMC6770832 DOI: 10.3390/cancers11091236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 11/17/2022] Open
Abstract
Non-targeted effects (NTE) such as bystander effects or genomic instability have been known for many years but their significance for radiotherapy or medical diagnostic radiology are far from clear. Central to the issue are reported differences in the response of normal and tumour tissues to signals from directly irradiated cells. This review will discuss possible mechanisms and implications of these different responses and will then discuss possible new therapeutic avenues suggested by the analysis. Finally, the importance of NTE for diagnostic radiology and nuclear medicine which stems from the dominance of NTE in the low-dose region of the dose–response curve will be presented. Areas such as second cancer induction and microenvironment plasticity will be discussed.
Collapse
|
21
|
Baulch JE. Radiation-induced genomic instability, epigenetic mechanisms and the mitochondria: a dysfunctional ménage a trois? Int J Radiat Biol 2018; 95:516-525. [DOI: 10.1080/09553002.2018.1549757] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Janet E. Baulch
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
22
|
Beach TA, Groves AM, Johnston CJ, Williams JP, Finkelstein JN. Recurrent DNA damage is associated with persistent injury in progressive radiation-induced pulmonary fibrosis. Int J Radiat Biol 2018; 94:1104-1115. [PMID: 30238842 PMCID: PMC6309234 DOI: 10.1080/09553002.2018.1516907] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/17/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Radiation-induced lung injuries (RILI), namely radiation pneumonitis and/or fibrosis, are dose-limiting outcomes following treatment for thoracic cancers. As part of a search for mitigation targets, we sought to determine if persistent DNA damage is a characteristic of this progressive injury. METHODS C57BL/6J female mice were sacrificed at 24 h, 1, 4, 12, 16, 24 and 32 weeks following a single dose of 12.5 Gy thorax only gamma radiation; their lungs were compared to age-matched unirradiated animals. Tissues were examined for DNA double-strand breaks (DSBs) (γ-H2A.X and p53bp1), cellular senescence (senescence-associated beta-galactosidase and p21) and oxidative stress (malondialdehyde). RESULTS Data revealed consistently higher numbers of DSBs compared to age-matched controls, with increases in γ-H2A.X positivity beyond 24 h post-exposure, particularly during the pathological phases, suggesting periods of recurrent DNA damage. Additional intermittent increases in both cellular senescence and oxidative stress also appeared to coincide with pneumonitis and fibrosis. CONCLUSIONS These novel, long-term data indicate (a) increased and persistent levels of DSBs, oxidative stress and cellular senescence may serve as bioindicators of RILI, and (b) prevention of genotoxicity, via mitigation of free radical production, continues to be a potential strategy for the prevention of pulmonary radiation injury.
Collapse
Affiliation(s)
- Tyler A. Beach
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
| | - Angela M. Groves
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Carl J. Johnston
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642
| | - Jacob N. Finkelstein
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
23
|
Ghosh C, Sarkar A, Anuja K, Das MC, Chakraborty A, Jawed JJ, Gupta P, Majumdar S, Banerjee B, Bhattacharjee S. Free radical stress induces DNA damage response in RAW264.7 macrophages during Mycobacterium smegmatis infection. Arch Microbiol 2018; 201:487-498. [PMID: 30386884 DOI: 10.1007/s00203-018-1587-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/24/2022]
Abstract
Genomic instability resulting from oxidative stress responses may be traced to chromosomal aberration. Oxidative stress suggests an imbalance between the systemic manifestation of reactive free radicals and biological system's ability to repair resulting DNA damage and chromosomal aberration. Bacterial infection associated insult is considered as one of the major factors leading to such stress conditions. To study free radical responses by host cells, RAW 264.7 macrophages were infected with non-pathogenic M. smegmatis mc2155 at different time points. The infection process was followed up with an assessment of free radical stress, cytokine, toll-like receptors (TLRs) and the resulting DNA damage profiles. Results of CFU count showed that maximum infection in macrophages was achieved after 9 h of infection. Host responses to the infection across different time periods were validated from nitric oxide quantification and expression of iNOS and were plotted at regular intervals. IL-10 and TNF-α expression profile at protein and mRNA level showed a heightened pro-inflammatory response by host macrophages to combat M. smegmatis infection. The expression of TLR4, a receptor for recognition of mycobacteria, in infected macrophages reached the highest level at 9 h of infection. Furthermore, comet tail length, micronuclei and γ-H2AX foci recorded the highest level at 9 h of infection, pointing to the fact that breakage in DNA double strands in macrophage reaches its peak at 9 h of infection. In contrast, treatment with ROS inhibitor N-acetyl-L-cysteine (NAC) prevented host cell death through reduction in oxidative stress and DNA damage response during M. smegmatis infection. Therefore, it can be concluded that enhanced oxidative stress response in M. smegmatis infected macrophages might be correlated with DNA damage response.
Collapse
Affiliation(s)
- Chinmoy Ghosh
- Molecular stress and Stem Cell Biology Lab, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India.,Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Avik Sarkar
- Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Kumari Anuja
- Molecular stress and Stem Cell Biology Lab, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Manash C Das
- Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Abhik Chakraborty
- Molecular stress and Stem Cell Biology Lab, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Junaid Jibran Jawed
- Division of Molecular Medicine, Centenary Campus, Bose Institute, CIT Road, Kolkata, 700054, India
| | - Priya Gupta
- Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Subrata Majumdar
- Division of Molecular Medicine, Centenary Campus, Bose Institute, CIT Road, Kolkata, 700054, India
| | - Birendranath Banerjee
- Molecular stress and Stem Cell Biology Lab, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India.
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India.
| |
Collapse
|
24
|
Lukoff J, Olmos J. Minimizing Medical Radiation Exposure by Incorporating a New Radiation "Vital Sign" into the Electronic Medical Record: Quality of Care and Patient Safety. Perm J 2018; 21:17-007. [PMID: 29035181 DOI: 10.7812/tpp/17-007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is a clearly perceived and imminent need to decrease unnecessary and detrimental exposure to medical ionizing radiation. We propose a new radiation "vital sign" that incorporates cumulative radiation exposure to create a risk score on the basis of an individualized assessment of potential harm from additional exposure to medical radiation. We propose to then tie the risk score to real-time, evidence-based, clinical decision support for procedures that use ionizing radiation. Additionally, we offer recommendations that minimize unnecessary or low-yield uses. Preference is given to approaches and modalities that use less or no ionizing radiation and that are medically appropriate, acceptable to, and safer for patients.
Collapse
Affiliation(s)
- Jonathan Lukoff
- Retired Pediatrician and Informatician from the Southern California Permanente Medical Group and The Permanente Federation in CA.
| | - Jaime Olmos
- Retired Nuclear Engineer from the San Onofre Nuclear Generating Station in Pendleton, CA.
| |
Collapse
|
25
|
Sokolov M, Neumann R. Changes in gene expression as one of the key mechanisms involved in radiation-induced bystander effect. Biomed Rep 2018; 9:99-111. [PMID: 30013775 PMCID: PMC6036822 DOI: 10.3892/br.2018.1110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/21/2018] [Indexed: 12/22/2022] Open
Abstract
The radiation-induced bystander effect (RIBE) refers to the manifestation of responses by non-targeted/non-hit cells or tissues situated in proximity to cells and tissues directly exposed to ionizing radiation (IR). The RIBE is elicited by agents and factors released by IR-hit cells. The growing body of data suggests that the underlying mechanisms of the RIBE are multifaceted depending both on the biological (characteristics of directly IR-exposed cells, bystander cells, intercellular milieu) and the physical (dose, rate and type of IR, time after exposure) factors/parameters. Although the exact identity of bystander signal(s) is yet to be identified, the published data indicate changes in gene expression for multiple types of RNA (mRNA, microRNA, mitochondrial RNA, long non-coding RNA, small nucleolar RNA) as being one of the major responses of cells and tissues in the context of the RIBE. Gene expression profiles demonstrate a high degree of variability between distinct bystander cell and tissue types. These alterations could independently, or in a signaling cascade, result in the manifestation of readily observable endpoints, including changes in viability and genomic instability. Here, the relevant publications on the gene candidates and signaling pathways involved in the RIBE are reviewed, and a framework for future studies, both in vitro and in vivo, on the genetic aspect of the RIBE is provided.
Collapse
Affiliation(s)
- Mykyta Sokolov
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald Neumann
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Bahia S, Blais E, Murugkar S, Chauhan V, Kumarathasan P. Oxidative and nitrative stress-related changes in human lens epithelial cells following exposure to X-rays. Int J Radiat Biol 2018; 94:366-373. [DOI: 10.1080/09553002.2018.1439194] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Simran Bahia
- Consumer and Clinical Radiation Protection Bureau, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Erica Blais
- Environmental Health Sciences and Research Bureau, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | | | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Premkumari Kumarathasan
- Environmental Health Sciences and Research Bureau, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, Canada
| |
Collapse
|
27
|
Mapuskar KA, Flippo KH, Schoenfeld JD, Riley DP, Strack S, Hejleh TA, Furqan M, Monga V, Domann FE, Buatti JM, Goswami PC, Spitz DR, Allen BG. Mitochondrial Superoxide Increases Age-Associated Susceptibility of Human Dermal Fibroblasts to Radiation and Chemotherapy. Cancer Res 2017; 77:5054-5067. [PMID: 28765155 DOI: 10.1158/0008-5472.can-17-0106] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/01/2017] [Accepted: 07/19/2017] [Indexed: 01/10/2023]
Abstract
Elderly cancer patients treated with ionizing radiation (IR) or chemotherapy experience more frequent and greater normal tissue toxicity relative to younger patients. The current study demonstrates that exponentially growing fibroblasts from elderly (old) male donor subjects (70, 72, and 78 years) are significantly more sensitive to clonogenic killing mediated by platinum-based chemotherapy and IR (∼70%-80% killing) relative to young fibroblasts (5 months and 1 year; ∼10%-20% killing) and adult fibroblasts (20 years old; ∼10%-30% killing). Old fibroblasts also displayed significantly increased (2-4-fold) steady-state levels of O2•-, O2 consumption, and mitochondrial membrane potential as well as significantly decreased (40%-50%) electron transport chain (ETC) complex I, II, IV, V, and aconitase (70%) activities, decreased ATP levels, and significantly altered mitochondrial structure. Following adenoviral-mediated overexpression of SOD2 activity (5-7-fold), mitochondrial ETC activity and aconitase activity were restored, demonstrating a role for mitochondrial O2•- in these effects. Old fibroblasts also demonstrated elevated levels of endogenous DNA damage that were increased following treatment with IR and chemotherapy. Most importantly, treatment with the small-molecule, superoxide dismutase mimetic (GC4419; 0.25 μmol/L) significantly mitigated the increased sensitivity of old fibroblasts to IR and chemotherapy and partially restored mitochondrial function without affecting IR or chemotherapy-induced cancer cell killing. These results support the hypothesis that age-associated increased O2•- and resulting DNA damage mediate the increased susceptibility of old fibroblasts to IR and chemotherapy that can be mitigated by GC4419. Cancer Res; 77(18); 5054-67. ©2017 AACR.
Collapse
Affiliation(s)
- Kranti A Mapuskar
- Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa
| | - Kyle H Flippo
- Department of Pharmacology, The University of Iowa, Iowa City, Iowa
| | | | | | - Stefan Strack
- Department of Pharmacology, The University of Iowa, Iowa City, Iowa
| | - Taher Abu Hejleh
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa
| | - Muhammad Furqan
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa
| | - Varun Monga
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa
| | - Frederick E Domann
- Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa
| | - John M Buatti
- Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa
| | - Prabhat C Goswami
- Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa
| | - Douglas R Spitz
- Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa
| | - Bryan G Allen
- Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa.
| |
Collapse
|
28
|
Paths from DNA damage and signaling to genome rearrangements via homologous recombination. Mutat Res 2017; 806:64-74. [PMID: 28779875 DOI: 10.1016/j.mrfmmm.2017.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
DNA damage is a constant threat to genome integrity. DNA repair and damage signaling networks play a central role maintaining genome stability, suppressing tumorigenesis, and determining tumor response to common cancer chemotherapeutic agents and radiotherapy. DNA double-strand breaks (DSBs) are critical lesions induced by ionizing radiation and when replication forks encounter damage. DSBs can result in mutations and large-scale genome rearrangements reflecting mis-repair by non-homologous end joining or homologous recombination. Ionizing radiation induces genetic change immediately, and it also triggers delayed events weeks or even years after exposure, long after the initial damage has been repaired or diluted through cell division. This review covers DNA damage signaling and repair pathways and cell fate following genotoxic insult, including immediate and delayed genome instability and cell survival/cell death pathways.
Collapse
|
29
|
Allen CP, Hirakawa H, Nakajima NI, Moore S, Nie J, Sharma N, Sugiura M, Hoki Y, Araki R, Abe M, Okayasu R, Fujimori A, Nickoloff JA. Low- and High-LET Ionizing Radiation Induces Delayed Homologous Recombination that Persists for Two Weeks before Resolving. Radiat Res 2017; 188:82-93. [PMID: 28535128 DOI: 10.1667/rr14748.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Genome instability is a hallmark of cancer cells and dysregulation or defects in DNA repair pathways cause genome instability and are linked to inherited cancer predisposition syndromes. Ionizing radiation can cause immediate effects such as mutation or cell death, observed within hours or a few days after irradiation. Ionizing radiation also induces delayed effects many cell generations after irradiation. Delayed effects include hypermutation, hyper-homologous recombination, chromosome instability and reduced clonogenic survival (delayed death). Delayed hyperrecombination (DHR) is mechanistically distinct from delayed chromosomal instability and delayed death. Using a green fluorescent protein (GFP) direct repeat homologous recombination system, time-lapse microscopy and colony-based assays, we demonstrate that DHR increases several-fold in response to low-LET X rays and high-LET carbon-ion radiation. Time-lapse analyses of DHR revealed two classes of recombinants not detected in colony-based assays, including cells that recombined and then senesced or died. With both low- and high-LET radiation, DHR was evident during the first two weeks postirradiation, but resolved to background levels during the third week. The results indicate that the risk of radiation-induced genome destabilization via DHR is time limited, and suggest that there is little or no additional risk of radiation-induced genome instability mediated by DHR with high-LET radiation compared to low-LET radiation.
Collapse
Affiliation(s)
- Christopher P Allen
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, Colorado
| | - Hirokazu Hirakawa
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Nakako Izumi Nakajima
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Sophia Moore
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, Colorado
| | - Jingyi Nie
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, Colorado
| | - Neelam Sharma
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, Colorado
| | - Mayumi Sugiura
- c Division of Natural Sciences, Research Group of Biological Sciences, Nara Women's University, Nara, Japan
| | - Yuko Hoki
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Ryoko Araki
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Masumi Abe
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Ryuichi Okayasu
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Akira Fujimori
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Jac A Nickoloff
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, Colorado
| |
Collapse
|
30
|
Affiliation(s)
- Charles L. Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| |
Collapse
|
31
|
Cooper DJ, Chen IC, Hernandez C, Wang Y, Walter CA, McCarrey JR. Pluripotent cells display enhanced resistance to mutagenesis. Stem Cell Res 2017; 19:113-117. [PMID: 28129601 DOI: 10.1016/j.scr.2016.12.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/19/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022] Open
Abstract
Pluripotent cells have been reported to exhibit lower frequencies of point mutations and higher levels of DNA repair than differentiated cells. This predicts that pluripotent cells are less susceptible to mutagenic exposures than differentiated cells. To test this prediction, we used a lacI mutation-reporter transgene system to assess the frequency of point mutations in multiple lines of mouse pluripotent embryonic stem cells and induced pluripotent cells, as well as in multiple lines of differentiated fibroblast cells, before and after exposure to a moderate dose of the mutagen, methyl methanesulfonate. We also measured levels of key enzymes in the base excision repair (BER) pathway in each cell line before and after exposure to the mutagen. Our results confirm that pluripotent cells normally maintain lower frequencies of point mutations than differentiated cells, and show that differentiated cells exhibit a large increase in mutation frequency following a moderate mutagenic exposure, whereas pluripotent cells subjected to the same exposure show no increase in mutations. This result likely reflects the higher levels of BER proteins detectable in pluripotent cells prior to exposure and supports our thesis that maintenance of enhanced genetic integrity is a fundamental characteristic of pluripotent cells.
Collapse
Affiliation(s)
- Daniel J Cooper
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - I-Chung Chen
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Christine Hernandez
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Yufeng Wang
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Christi A Walter
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States.
| |
Collapse
|
32
|
Hanu AR, Barberiz J, Bonneville D, Byun SH, Chen L, Ciambella C, Dao E, Deshpande V, Garnett R, Hunter SD, Jhirad A, Johnston EM, Kordic M, Kurnell M, Lopera L, McFadden M, Melnichuk A, Nguyen J, Otto A, Scott R, Wagner DL, Wiendels M. NEUDOSE: A CubeSat Mission for Dosimetry of Charged Particles and Neutrons in Low-Earth Orbit. Radiat Res 2016; 187:42-49. [PMID: 28001909 DOI: 10.1667/rr14491.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
During space missions, astronauts are exposed to a stream of energetic and highly ionizing radiation particles that can suppress immune system function, increase cancer risks and even induce acute radiation syndrome if the exposure is large enough. As human exploration goals shift from missions in low-Earth orbit (LEO) to long-duration interplanetary missions, radiation protection remains one of the key technological issues that must be resolved. In this work, we introduce the NEUtron DOSimetry & Exploration (NEUDOSE) CubeSat mission, which will provide new measurements of dose and space radiation quality factors to improve the accuracy of cancer risk projections for current and future space missions. The primary objective of the NEUDOSE CubeSat is to map the in situ lineal energy spectra produced by charged particles and neutrons in LEO where most of the preparatory activities for future interplanetary missions are currently taking place. To perform these measurements, the NEUDOSE CubeSat is equipped with the Charged & Neutral Particle Tissue Equivalent Proportional Counter (CNP-TEPC), an advanced radiation monitoring instrument that uses active coincidence techniques to separate the interactions of charged particles and neutrons in real time. The NEUDOSE CubeSat, currently under development at McMaster University, provides a modern approach to test the CNP-TEPC instrument directly in the unique environment of outer space while simultaneously collecting new georeferenced lineal energy spectra of the radiation environment in LEO.
Collapse
Affiliation(s)
- A R Hanu
- a NASA Goddard Space Flight Center, Greenbelt, Maryland 20771
| | - J Barberiz
- Department of bElectrical and Computer Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - D Bonneville
- c Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - S H Byun
- d Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - L Chen
- c Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - C Ciambella
- f Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - E Dao
- d Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - V Deshpande
- e Department of Mechanical Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - R Garnett
- d Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - S D Hunter
- a NASA Goddard Space Flight Center, Greenbelt, Maryland 20771
| | - A Jhirad
- Department of bElectrical and Computer Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - E M Johnston
- d Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - M Kordic
- Department of bElectrical and Computer Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - M Kurnell
- c Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - L Lopera
- f Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - M McFadden
- d Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - A Melnichuk
- Department of bElectrical and Computer Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - J Nguyen
- Department of bElectrical and Computer Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - A Otto
- e Department of Mechanical Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - R Scott
- e Department of Mechanical Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - D L Wagner
- c Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - M Wiendels
- Department of bElectrical and Computer Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
33
|
Ainsbury EA, Barnard S, Bright S, Dalke C, Jarrin M, Kunze S, Tanner R, Dynlacht JR, Quinlan RA, Graw J, Kadhim M, Hamada N. Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:238-261. [DOI: 10.1016/j.mrrev.2016.07.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023]
|
34
|
Affiliation(s)
- Ross Mikkelsen
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298-0058, USA.
| |
Collapse
|
35
|
Shimura T, Kunugita N. Mitochondrial reactive oxygen species-mediated genomic instability in low-dose irradiated human cells through nuclear retention of cyclin D1. Cell Cycle 2016; 15:1410-4. [PMID: 27078622 DOI: 10.1080/15384101.2016.1170271] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mitochondria are associated with various radiation responses, including adaptive responses, mitophagy, the bystander effect, genomic instability, and apoptosis. We recently identified a unique radiation response in the mitochondria of human cells exposed to low-dose long-term fractionated radiation (FR). Such repeated radiation exposure inflicts chronic oxidative stresses on irradiated cells via the continuous release of mitochondrial reactive oxygen species (ROS) and decrease in cellular levels of the antioxidant glutathione. ROS-induced oxidative mitochondrial DNA (mtDNA) damage generates mutations upon DNA replication. Therefore, mtDNA mutation and dysfunction can be used as markers to assess the effects of low-dose radiation. In this study, we present an overview of the link between mitochondrial ROS and cell cycle perturbation associated with the genomic instability of low-dose irradiated cells. Excess mitochondrial ROS perturb AKT/cyclin D1 cell cycle signaling via oxidative inactivation of protein phosphatase 2A after low-dose long-term FR. The resulting abnormal nuclear accumulation of cyclin D1 induces genomic instability in low-dose irradiated cells.
Collapse
Affiliation(s)
- Tsutomu Shimura
- a Department of Environmental Health , National Institute of Public Health , Wako , Saitama , Japan
| | - Naoki Kunugita
- a Department of Environmental Health , National Institute of Public Health , Wako , Saitama , Japan
| |
Collapse
|
36
|
Cunha M, Testa E, Komova OV, Nasonova EA, Mel'nikova LA, Shmakova NL, Beuve M. Modeling cell response to low doses of photon irradiation: Part 2--application to radiation-induced chromosomal aberrations in human carcinoma cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:31-40. [PMID: 26708100 DOI: 10.1007/s00411-015-0622-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/11/2015] [Indexed: 06/05/2023]
Abstract
The biological phenomena observed at low doses of ionizing radiation (adaptive response, bystander effects, genomic instability, etc.) are still not well understood. While at high irradiation doses, cellular death may be directly linked to DNA damage, at low doses, other cellular structures may be involved in what are known as non-(DNA)-targeted effects. Mitochondria, in particular, may play a crucial role through their participation in a signaling network involving oxygen/nitrogen radical species. According to the size of the implicated organelles, the fluctuations in the energy deposited into these target structures may impact considerably the response of cells to low doses of ionizing irradiation. Based on a recent simulation of these fluctuations, a theoretical framework was established to have further insight into cell responses to low doses of photon irradiation, namely the triggering of radioresistance mechanisms by energy deposition into specific targets. Three versions of a model are considered depending on the target size and on the number of targets that need to be activated by energy deposition to trigger radioresistance mechanisms. These model versions are applied to the fraction of radiation-induced chromosomal aberrations measured at low doses in human carcinoma cells (CAL51). For this cell line, it was found in the present study that the mechanisms of radioresistance could not be triggered by the activation of a single small target (nanometric size, 100 nm), but could instead be triggered by the activation of a large target (micrometric, 10 μm) or by the activation of a great number of small targets. The mitochondria network, viewed either as a large target or as a set of small units, might be concerned by these low-dose effects.
Collapse
Affiliation(s)
- Micaela Cunha
- Université de Lyon, 69622, Lyon, France
- Université de Lyon 1, Villeurbanne, France
- CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
| | - Etienne Testa
- Université de Lyon, 69622, Lyon, France
- Université de Lyon 1, Villeurbanne, France
- CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
| | - Olga V Komova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - Elena A Nasonova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - Larisa A Mel'nikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - Nina L Shmakova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - Michaël Beuve
- Université de Lyon, 69622, Lyon, France.
- Université de Lyon 1, Villeurbanne, France.
- CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France.
| |
Collapse
|
37
|
Burtt JJ, Thompson PA, Lafrenie RM. Non-targeted effects and radiation-induced carcinogenesis: a review. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2016; 36:R23-R35. [PMID: 26910391 DOI: 10.1088/0952-4746/36/1/r23] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Exposure to ionising radiation is clearly associated with an increased risk of developing some types of cancer. However, the contribution of non-targeted effects to cancer development after exposure to ionising radiation is far less clear. The currently used cancer risk model by the international radiation protection community states that any increase in radiation exposure proportionately increases the risk of developing cancer. However, this stochastic cancer risk model does not take into account any contribution from non-targeted effects. Nor does it consider the possibility of a bystander mechanism in the induction of genomic instability. This paper reviews the available evidence to date for a possible role for non-targeted effects to contribute to cancer development after exposure to ionising radiation. An evolution in the understanding of the mechanisms driving non-targeted effects after exposure to ionising radiation is critical to determine the true contribution of non-targeted effects on the risk of developing cancer. Such an evolution will likely only be achievable through coordinated multidisciplinary teams combining several fields of study including: genomics, proteomics, cell biology, molecular epidemiology, and traditional epidemiology.
Collapse
Affiliation(s)
- Julie J Burtt
- Canadian Nuclear Safety Commission, 280 Slater Street, Ottawa, Ontario, K1P 5S9, Canada
| | | | | |
Collapse
|
38
|
[Rapamycin decreases irradiation-induced hematopoietic system damage]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 36:321-5. [PMID: 25916296 PMCID: PMC7342622 DOI: 10.3760/cma.j.issn.0253-2727.2015.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
目的 探讨雷帕霉素对60Co辐照小鼠造血系统损伤的保护作用。 方法 6~8周龄C57BL/6J小鼠分为未辐照组与辐照组,每组再分为雷帕霉素预处理组和对照组。雷帕霉素预处理组小鼠给予雷帕霉素4 mg/kg,隔日腹腔注射,共5次,辐照组小鼠于末次注射后第2天接受60Co全身照射(5 Gy)。辐照后第0.5、1、2、3、5、7、40、70天取外周血检测白细胞计数(WBC)、淋巴细胞计数(LYM)、红细胞计数(RBC)、血红蛋白含量(HGB)及血小板计数(PLT),辐照后第5天观察小鼠胸骨骨髓有核细胞数量及内源性脾集落情况。 结果 ①未辐照组:雷帕霉素预处理组WBC和LYM低于对照组(P值均<0.01),RBC和HGB高于对照组(P值均<0.05),PLT差异无统计学意义;两组小鼠骨髓有核细胞分布无差异。②辐照组:辐照后第0.5~7天雷帕霉素预处理组和对照组小鼠WBC、LYM均降低,两组比较差异无统计学意义,辐照后第40、70天均恢复,雷帕霉素预处理组均高于对照组(P<0.05);辐照后第3~7天RBC和HGB均降低,但雷帕霉素预处理组均高于单独辐照组(P<0.05),在辐照后第40、70天两组之间差异无统计学意义;PLT变化无明显规律。辐照后第5天,对照组小鼠骨髓有核细胞显著减少,但雷帕霉素预处理组有核细胞减少程度较对照组轻;雷帕霉素预处理组小鼠内源性脾集落数多于对照组(40.00±12.86对13.20±2.31,P=0.035)。 结论 雷帕霉素预处理可以减轻60Co辐照引起的小鼠外周血细胞和骨髓有核细胞的减少,促进造血系统恢复,保护脾造血单位。
Collapse
|
39
|
Shimura T, Kobayashi J, Komatsu K, Kunugita N. Severe mitochondrial damage associated with low-dose radiation sensitivity in ATM- and NBS1-deficient cells. Cell Cycle 2016; 15:1099-107. [PMID: 26940879 PMCID: PMC4889229 DOI: 10.1080/15384101.2016.1156276] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 10/22/2022] Open
Abstract
Low-dose radiation risks remain unclear owing to a lack of sufficient studies. We previously reported that low-dose, long-term fractionated radiation (FR) with 0.01 or 0.05 Gy/fraction for 31 d inflicts oxidative stress in human fibroblasts due to excess levels of mitochondrial reactive oxygen species (ROS). To identify the small effects of low-dose radiation, we investigated how mitochondria respond to low-dose radiation in radiosensitive human ataxia telangiectasia mutated (ATM)- and Nijmegen breakage syndrome (NBS)1-deficient cell lines compared with corresponding cell lines expressing ATM and NBS1. Consistent with previous results in normal fibroblasts, low-dose, long-term FR increased mitochondrial mass and caused accumulation of mitochondrial ROS in ATM- and NBS1-complemented cell lines. Excess mitochondrial ROS resulted in mitochondrial damage that was in turn recognized by Parkin, leading to mitochondrial autophagy (mitophagy). In contrast, ATM- and NBS1-deficient cells showed defective induction of mitophagy after low-dose, long-term FR, leading to accumulation of abnormal mitochondria; this was determined by mitochondrial fragmentation and decreased mitochondrial membrane potential. Consequently, apoptosis was induced in ATM- and NBS1-deficient cells after low-dose, long-term FR. Antioxidant N-acetyl-L-cysteine was effective as a radioprotective agent against mitochondrial damage induced by low-dose, long-term FR among all cell lines, including radiosensitive cell lines. In conclusion, we demonstrated that mitochondria are target organelles of low-dose radiation. Mitochondrial response influences radiation sensitivity in human cells. Our findings provide new insights into cancer risk estimation associated with low-dose radiation exposure.
Collapse
Affiliation(s)
- Tsutomu Shimura
- a Department of Environmental Health , National Institute of Public Health , Wako , Saitama , Japan
| | - Junya Kobayashi
- b Department of Genome Dynamics , Radiation Biology Center, Kyoto University , Kyoto , Japan
| | - Kenshi Komatsu
- b Department of Genome Dynamics , Radiation Biology Center, Kyoto University , Kyoto , Japan
| | - Naoki Kunugita
- a Department of Environmental Health , National Institute of Public Health , Wako , Saitama , Japan
| |
Collapse
|
40
|
Mothersill C, Seymour C. Radiation-induced non-targeted effects: some open questions. RADIATION PROTECTION DOSIMETRY 2015; 166:125-130. [PMID: 25935010 DOI: 10.1093/rpd/ncv155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The existence of non-targeted effects (NTEs) of radiation (genomic instability and bystander effects) has been generally accepted for >20 y; however, there is research, which was largely ignored going back to 1915 reporting these effects. Despite today's general acceptance of the phenomenon of NTE, there is little agreement about the mechanisms involved and the implications in radiation biology and radiation protection. The aim of this review was to consider some of the odd data, which have been published in the field with a view to obtaining insights or stimulating new ways of thinking about this field. By highlighting some key challenges and controversies, concerning the mechanisms and more importantly, the reason these effects exist, current ideas about the wider implications of NTEs in evolution and biology are also discussed.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada
| | - Colin Seymour
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
41
|
Smith RW, Saroya R, Seymour CB, Moccia RD, Mothersill CE. Exposure to acute levels of waterborne aluminium modifies the legacy of early life stage irradiation, including the communication of radiation-induced bystander signals, in adult rainbow trout. Int J Radiat Biol 2015; 91:878-90. [DOI: 10.3109/09553002.2015.1087065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Richard W. Smith
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
- Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Rohin Saroya
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Colin B. Seymour
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Richard D. Moccia
- Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Carmel E. Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
42
|
Xu B, Wang W, Guo H, Sun Z, Wei Z, Zhang X, Liu Z, Tischfield JA, Gong Y, Shao C. Oxidative stress preferentially induces a subtype of micronuclei and mediates the genomic instability caused by p53 dysfunction. Mutat Res 2015; 770:1-8. [PMID: 25302047 DOI: 10.1016/j.mrfmmm.2014.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species (ROS) are known to cause many types of DNA lesions that could be converted into cancer-promoting genetic alterations. Evidence showed that tumor suppressor p53 plays an important role in regulating the generation of cellular ROS, either by reducing oxidative stress under physiological and mildly stressed conditions, or by promoting oxidative stress under highly stressed conditions. In this report we characterized the effect of oxidative stress on the induction of micronuclei, especially the subclass marked by pan-staining of γ-H2AX or MN-γ-H2AX (+). We found that MN-γ-H2AX (+) were more responsive to hydrogen peroxide (H2O2) than the MN-γ-H2AX (−). In human and mouse cells that are deficient in p53, the frequency of MN-γ-H2AX (+) is significantly elevated, but can be attenuated by antioxidant N-acetylcysteine (NAC). Depletion of p53-regulated antioxidant gene SESN1 by RNA interference also resulted in an elevation of MN-γ-H2AX (+). Furthermore, we found that in cells that were depleted of p400 by RNAi, and therefore were experiencing increased ROS, the frequency of MN-γ-H2AX (+), but not that of MN-γ-H2AX (−), was significantly induced. We further demonstrated that the induction of MN-γ-H2AX (+) by replication stress can also be attenuated by NAC, and that H2O2 also leads to increased phosphorylation of Chk1 and Rad17 that mimics replication stress, suggesting that replication stress and oxidative stress are intertwined and may reinforce each other in driving genomic instability. Our findings illustrate the importance of p53-regulated redox level in the maintenance of genomic stability.
Collapse
|
43
|
Szumiel I. From radioresistance to radiosensitivity: In vitro evolution of L5178Y lymphoma. Int J Radiat Biol 2015; 91:465-71. [PMID: 25651039 DOI: 10.3109/09553002.2014.996263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE To discuss the possible reasons for the loss of tumourigenicity and the acquisition of new phenotypic features (among them, sensitivity to X and UVC radiations) as a result of in vitro cultivation of L5178Y lymphoma cells. RESULTS Ten years ago the phenotypic differences between LY-R (original L5178Y maintained in vivo and examined in vitro) and LY-S lines were reviewed in detail by the author. The loss of tumourigenicity of LY-R cells upon in vitro cultivation accompanying the acquirement of the LY-S phenotype had been described earlier by Beer et al. (1983). In spite of their common origin, the sublines were shown to differ in their relative sensitivity to a number of DNA damaging agents and in numerous other features. Here, selected differences between LY-R and LY-S lines are briefly reviewed. It is proposed that Wallace's concept (2010a) that mitochondria are the interface between environmental conditions and the genome may explain the LY-R-LY-S conversion under prolonged in vitro cultivation. CONCLUSION The differences between the LY lines were probably of epigenetic rather than genetic character. The properties of LY-R cells changed as a result of exposure to an oxic in vitro milieu. The changes could be preconditioned by heteroplasmy and the selection of cells endowed with mitochondria best fitted to a high oxygen-low carbon dioxide environment.
Collapse
Affiliation(s)
- Irena Szumiel
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology , Warsaw , Poland
| |
Collapse
|
44
|
Keszenman DJ, Kolodiuk L, Baulch JE. DNA damage in cells exhibiting radiation-induced genomic instability. Mutagenesis 2015; 30:451-8. [PMID: 25711497 DOI: 10.1093/mutage/gev006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cells exhibiting radiation-induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesis that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.
Collapse
Affiliation(s)
- Deborah J Keszenman
- Biosciences Department, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973, USA, Laboratory of Medical and Environmental Radiobiology, Biophysical Chemistry Group, Department of Biological Sciences, CENUR del Noroeste, UdelaR, Rivera 1350, Salto 50000, Uruguay,
| | - Lucia Kolodiuk
- 107-112 CMM/BLL, Stony Brook University, Stony Brook, NY 11794, USA and
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Medical Sciences I, B149, Irvine, CA 92697, USA
| |
Collapse
|
45
|
Modulation of Radiation Response by the Tetrahydrobiopterin Pathway. Antioxidants (Basel) 2015; 4:68-81. [PMID: 26785338 PMCID: PMC4665563 DOI: 10.3390/antiox4010068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation (IR) is an integral component of our lives due to highly prevalent sources such as medical, environmental, and/or accidental. Thus, understanding of the mechanisms by which radiation toxicity develops is crucial to address acute and chronic health problems that occur following IR exposure. Immediate formation of IR-induced free radicals as well as their persistent effects on metabolism through subsequent alterations in redox mediated inter- and intracellular processes are globally accepted as significant contributors to early and late effects of IR exposure. This includes but is not limited to cytotoxicity, genomic instability, fibrosis and inflammation. Damage to the critical biomolecules leading to detrimental long-term alterations in metabolic redox homeostasis following IR exposure has been the focus of various independent investigations over last several decades. The growth of the "omics" technologies during the past decade has enabled integration of "data from traditional radiobiology research", with data from metabolomics studies. This review will focus on the role of tetrahydrobiopterin (BH4), an understudied redox-sensitive metabolite, plays in the pathogenesis of post-irradiation normal tissue injury as well as how the metabolomic readout of BH4 metabolism fits in the overall picture of disrupted oxidative metabolism following IR exposure.
Collapse
|
46
|
Dettmering T, Zahnreich S, Colindres-Rojas M, Durante M, Taucher-Scholz G, Fournier C. Increased effectiveness of carbon ions in the production of reactive oxygen species in normal human fibroblasts. JOURNAL OF RADIATION RESEARCH 2015; 56:67-76. [PMID: 25304329 PMCID: PMC4572590 DOI: 10.1093/jrr/rru083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/25/2014] [Accepted: 08/28/2014] [Indexed: 05/25/2023]
Abstract
The production of reactive oxygen species (ROS), especially superoxide anions (O2 (·-)), is enhanced in many normal and tumor cell types in response to ionizing radiation. The influence of ionizing radiation on the regulation of ROS production is considered as an important factor in the long-term effects of irradiation (such as genomic instability) that might contribute to the development of secondary cancers. In view of the increasing application of carbon ions in radiation therapy, we aimed to study the potential impact of ionizing density on the intracellular production of ROS, comparing photons (X-rays) with carbon ions. For this purpose, we used normal human cells as a model for irradiated tissue surrounding a tumor. By quantifying the oxidization of Dihydroethidium (DHE), a fluorescent probe sensitive to superoxide anions, we assessed the intracellular ROS status after radiation exposure in normal human fibroblasts, which do not show radiation-induced chromosomal instability. After 3-5 days post exposure to X-rays and carbon ions, the level of ROS increased to a maximum that was dose dependent. The maximum ROS level reached after irradiation was specific for the fibroblast type. However, carbon ions induced this maximum level at a lower dose compared with X-rays. Within ∼1 week, ROS decreased to control levels. The time-course of decreasing ROS coincides with an increase in cell number and decreasing p21 protein levels, indicating a release from radiation-induced growth arrest. Interestingly, radiation did not act as a trigger for chronically enhanced levels of ROS months after radiation exposure.
Collapse
Affiliation(s)
- Till Dettmering
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany
| | - Sebastian Zahnreich
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany
| | - Miriam Colindres-Rojas
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany TU Darmstadt, Institute for Condensed Matter Physics, Hochschulstraße 6-8, 64289 Darmstadt, Germany
| | - Gisela Taucher-Scholz
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany
| | - Claudia Fournier
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany
| |
Collapse
|
47
|
Morgan WF, Sowa MB. Non-targeted effects induced by ionizing radiation: Mechanisms and potential impact on radiation induced health effects. Cancer Lett 2015; 356:17-21. [DOI: 10.1016/j.canlet.2013.09.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/27/2013] [Accepted: 09/08/2013] [Indexed: 01/08/2023]
|
48
|
Szumiel I. Intraclonal recovery of 'slow clones'-a manifestation of genomic instability: are mitochondria the key to an explanation? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:479-484. [PMID: 24638149 DOI: 10.1007/s00411-014-0532-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
Intraclonal recovery following X-irradiation in an in vitro study of L5178Y-S murine leukaemic cells is reviewed. This phenomenon was first described in 1994 occurring in the slowly growing clones ('slow clones') present among the survivors in irradiated cell populations. An attempt to explain these experimental data is given in terms of the present knowledge of the role of mitochondria in nontargeted radiation effects, with the focus on genomic instability and mtDNA-related epigenetic modifications of the nuclear genome. An understanding of this intraclonal recovery may be important in preventing tumour regrowth following radiotherapy, as well as in decreasing the risk of secondary radiation-induced malignancies.
Collapse
Affiliation(s)
- Irena Szumiel
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195, Warsaw, Poland,
| |
Collapse
|
49
|
Szumiel I. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: The pivotal role of mitochondria. Int J Radiat Biol 2014; 91:1-12. [DOI: 10.3109/09553002.2014.934929] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Grygoryev D, Dan C, Gauny S, Eckelmann B, Ohlrich AP, Connolly M, Lasarev M, Grossi G, Kronenberg A, Turker MS. Autosomal mutants of proton-exposed kidney cells display frequent loss of heterozygosity on nonselected chromosomes. Radiat Res 2014; 181:452-63. [PMID: 24758577 DOI: 10.1667/rr13654.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
High-energy protons found in the space environment can induce mutations and cancer, which are inextricably linked. We hypothesized that some mutants isolated from proton-exposed kidneys arose through a genome-wide incident that causes loss of heterozygosity (LOH)-generating mutations on multiple chromosomes (termed here genomic LOH). To test this hypothesis, we examined 11 pairs of nonselected chromosomes for LOH events in mutant cells isolated from the kidneys of mice exposed to 4 or 5 Gy of 1 GeV protons. The mutant kidney cells were selected for loss of expression of the chromosome 8-encoded Aprt gene. Genomic LOH events were also assessed in Aprt mutants isolated from isogenic cultured kidney epithelial cells exposed to 5 Gy of protons in vitro. Control groups were spontaneous Aprt mutants and clones isolated without selection from the proton-exposed kidneys or cultures. The in vivo results showed significant increases in genomic LOH events in the Aprt mutants from proton-exposed kidneys when compared with spontaneous Aprt mutants and when compared with nonmutant (i.e., nonselected) clones from the proton-exposed kidneys. A bias for LOH events affecting chromosome 14 was observed in the proton-induced Aprt mutants, though LOH for this chromosome did not confer increased radiation resistance. Genomic LOH events were observed in Aprt mutants isolated from proton-exposed cultured kidney cells; however the incidence was fivefold lower than in Aprt mutants isolated from exposed intact kidneys, suggesting a more permissive environment in the intact organ and/or the evolution of kidney clones prior to their isolation from the tissue. We conclude that proton exposure creates a subset of viable cells with LOH events on multiple chromosomes, that these cells form and persist in vivo, and that they can be isolated from an intact tissue by selection for a mutation on a single chromosome.
Collapse
Affiliation(s)
- Dmytro Grygoryev
- a Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, Portland, Oregon 97239
| | | | | | | | | | | | | | | | | | | |
Collapse
|