1
|
Bongiorno R, Lecchi M, Botti L, Bosco O, Ratti C, Fontanella E, Mercurio N, Pratesi P, Chiodoni C, Verderio P, Colombo MP, Lecis D. Mast cell heparanase promotes breast cancer stem-like features via MUC1/estrogen receptor axis. Cell Death Dis 2024; 15:709. [PMID: 39349458 PMCID: PMC11442964 DOI: 10.1038/s41419-024-07092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
Breast cancer is the most frequent type of tumor in women and is characterized by variable outcomes due to its heterogeneity and the presence of many cancer cell-autonomous and -non-autonomous factors. A major determinant of breast cancer aggressiveness is represented by immune infiltration, which can support tumor development. In our work, we studied the role of mast cells in breast cancer and identified a novel activity in promoting the tumor-initiating properties of cancer cells. Mast cells are known to affect breast cancer prognosis, but show different effects according to the diverse subtypes. Starting from the observation that co-injection of mast cells with limiting concentrations of cancer cells increased their in vivo engraftment rate, we characterized the molecular mechanisms by which mast cells promote the tumor stem-like features. We provide evidence that mast cell heparanase plays a pivotal role since both its activity and the stimulation of mast cells with heparan sulfate, the product of heparanase activity, are crucial for this process. Moreover, the pharmacological inhibition of heparanase prevents the function of mast cells. Our data show that soluble factors released by mast cells favor the expression of estrogen receptor in a MUC1-dependent manner. The MUC1/estrogen receptor axis is eventually essential for cancer stem-like features, specifically in HER2-negative cells, and promotes the capability of cancer cells to form mammospheres and express stem-related genes, also reducing their sensitivity to tamoxifen administration. Altogether our findings describe a novel mechanism by which mast cells could increase the aggressiveness of breast cancer uncovering a molecular mechanism displaying differences based on the specific breast cancer subtype.
Collapse
Affiliation(s)
- Roberta Bongiorno
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Mara Lecchi
- Bioinformatics and Biostatistics Unit, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Laura Botti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Oriana Bosco
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Chiara Ratti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Enrico Fontanella
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Nicolò Mercurio
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Pietro Pratesi
- Bioinformatics and Biostatistics Unit, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Paolo Verderio
- Bioinformatics and Biostatistics Unit, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Mario Paolo Colombo
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Daniele Lecis
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy.
| |
Collapse
|
2
|
Ozawa H, Haratake N, Nakashoji A, Daimon T, Bhattacharya A, Wang K, Shigeta K, Fushimi A, Fukuda K, Masugi Y, Yamaguchi R, Kitago M, Kawakubo H, Kitagawa Y, Kufe D. MUC1-C Dependence for the Progression of Pancreatic Neuroendocrine Tumors Identifies a Druggable Target for the Treatment of This Rare Cancer. Biomedicines 2024; 12:1509. [PMID: 39062082 PMCID: PMC11274714 DOI: 10.3390/biomedicines12071509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Patients with pancreatic neuroendocrine tumors (pNETs) have limited access to effective targeted agents and invariably succumb to progressive disease. MUC1-C is a druggable oncogenic protein linked to driving pan-cancers. There is no known involvement of MUC1-C in pNET progression. The present work was performed to determine if MUC1-C represents a potential target for advancing pNET treatment. We demonstrate that the MUC1 gene is upregulated in primary pNETs that progress with metastatic disease. In pNET cells, MUC1-C drives E2F- and MYC-signaling pathways necessary for survival. Targeting MUC1-C genetically and pharmacologically also inhibits self-renewal capacity and tumorigenicity. Studies of primary pNET tissues further demonstrate that MUC1-C expression is associated with (i) an advanced NET grade and pathological stage, (ii) metastatic disease, and (iii) decreased disease-free survival. These findings demonstrate that MUC1-C is necessary for pNET progression and is a novel target for treating these rare cancers with anti-MUC1-C agents under clinical development.
Collapse
Affiliation(s)
- Hiroki Ozawa
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA; (H.O.); (N.H.); (A.N.); (T.D.); (A.B.); (K.W.); (K.S.); (A.F.)
| | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA; (H.O.); (N.H.); (A.N.); (T.D.); (A.B.); (K.W.); (K.S.); (A.F.)
| | - Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA; (H.O.); (N.H.); (A.N.); (T.D.); (A.B.); (K.W.); (K.S.); (A.F.)
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA; (H.O.); (N.H.); (A.N.); (T.D.); (A.B.); (K.W.); (K.S.); (A.F.)
| | - Atrayee Bhattacharya
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA; (H.O.); (N.H.); (A.N.); (T.D.); (A.B.); (K.W.); (K.S.); (A.F.)
| | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA; (H.O.); (N.H.); (A.N.); (T.D.); (A.B.); (K.W.); (K.S.); (A.F.)
| | - Keisuke Shigeta
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA; (H.O.); (N.H.); (A.N.); (T.D.); (A.B.); (K.W.); (K.S.); (A.F.)
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA; (H.O.); (N.H.); (A.N.); (T.D.); (A.B.); (K.W.); (K.S.); (A.F.)
| | - Kazumasa Fukuda
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (K.F.); (R.Y.); (M.K.); (H.K.); (Y.K.)
| | - Yohei Masugi
- Division of Diagnostic Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Ryo Yamaguchi
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (K.F.); (R.Y.); (M.K.); (H.K.); (Y.K.)
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (K.F.); (R.Y.); (M.K.); (H.K.); (Y.K.)
| | - Hirofumi Kawakubo
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (K.F.); (R.Y.); (M.K.); (H.K.); (Y.K.)
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (K.F.); (R.Y.); (M.K.); (H.K.); (Y.K.)
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA; (H.O.); (N.H.); (A.N.); (T.D.); (A.B.); (K.W.); (K.S.); (A.F.)
| |
Collapse
|
3
|
Bhattacharya A, Wang K, Penailillo J, Chan CN, Fushimi A, Yamashita N, Daimon T, Haratake N, Ozawa H, Nakashoji A, Shigeta K, Morimoto Y, Miyo M, Kufe DW. MUC1-C regulates NEAT1 lncRNA expression and paraspeckle formation in cancer progression. Oncogene 2024; 43:2199-2214. [PMID: 38802648 PMCID: PMC11226401 DOI: 10.1038/s41388-024-03068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
The MUC1 gene evolved in mammals for adaptation of barrier tissues in response to infections and damage. Paraspeckles are nuclear bodies formed on the NEAT1 lncRNA in response to loss of homeostasis. There is no known intersection of MUC1 with NEAT1 or paraspeckles. Here, we demonstrate that the MUC1-C subunit plays an essential role in regulating NEAT1 expression. MUC1-C activates the NEAT1 gene with induction of the NEAT1_1 and NEAT1_2 isoforms by NF-κB- and MYC-mediated mechanisms. MUC1-C/MYC signaling also induces expression of the SFPQ, NONO and FUS RNA binding proteins (RBPs) that associate with NEAT1_2 and are necessary for paraspeckle formation. MUC1-C integrates activation of NEAT1 and RBP-encoding genes by recruiting the PBAF chromatin remodeling complex and increasing chromatin accessibility of their respective regulatory regions. We further demonstrate that MUC1-C and NEAT1 form an auto-inductive pathway that drives common sets of genes conferring responses to inflammation and loss of homeostasis. Of functional significance, we find that the MUC1-C/NEAT1 pathway is of importance for the cancer stem cell (CSC) state and anti-cancer drug resistance. These findings identify a previously unrecognized role for MUC1-C in the regulation of NEAT1, RBPs, and paraspeckles that has been co-opted in promoting cancer progression.
Collapse
Affiliation(s)
| | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Johany Penailillo
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Chi Ngai Chan
- Tissue Technologies Unit, Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nami Yamashita
- Breast Surgical Oncology, Breast Oncology Center, The Cancer Institute Hospital of the JFCR, Tokyo, Japan
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hiroki Ozawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Keisuke Shigeta
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yoshihiro Morimoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masaaki Miyo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Sol S, Boncimino F, Todorova K, Waszyn SE, Mandinova A. Therapeutic Approaches for Non-Melanoma Skin Cancer: Standard of Care and Emerging Modalities. Int J Mol Sci 2024; 25:7056. [PMID: 39000164 PMCID: PMC11241167 DOI: 10.3390/ijms25137056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Skin cancer encompasses a range of cutaneous malignancies, with non-melanoma skin cancers (NMSCs) being the most common neoplasm worldwide. Skin exposure is the leading risk factor for initiating NMSC. Ultraviolet (UV) light induces various genomic aberrations in both tumor-promoting and tumor-suppressing genes in epidermal cells. In conjunction with interactions with a changed stromal microenvironment and local immune suppression, these aberrations contribute to the occurrence and expansion of cancerous lesions. Surgical excision is still the most common treatment for these lesions; however, locally advanced or metastatic disease significantly increases the chances of morbidity or death. In recent years, numerous pharmacological targets were found through extensive research on the pathogenic mechanisms of NMSCs, leading to the development of novel treatments including Hedgehog pathway inhibitors for advanced and metastatic basal cell carcinoma (BCC) and PD-1/PD-L1 inhibitors for locally advanced cutaneous squamous cell carcinoma (cSCC) and Merkel cell carcinoma (MCC). Despite the efficacy of these new drugs, drug resistance and tolerability issues often arise with long-term treatment. Ongoing studies aim to identify alternative strategies with reduced adverse effects and increased tolerability. This review summarizes the current and emerging therapies used to treat NMSC.
Collapse
Affiliation(s)
- Stefano Sol
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Fabiana Boncimino
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kristina Todorova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | - Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
5
|
Nakashoji A, Haratake N, Bhattacharya A, Mao W, Xu K, Wang K, Daimon T, Ozawa H, Shigeta K, Fushimi A, Yamashita N, Morimoto Y, Shimokawa M, Saito S, Egloff AM, Uppaluri R, Long MD, Kufe D. Identification of MUC1-C as a Target for Suppressing Progression of Head and Neck Squamous Cell Carcinomas. CANCER RESEARCH COMMUNICATIONS 2024; 4:1268-1281. [PMID: 38619287 PMCID: PMC11092937 DOI: 10.1158/2767-9764.crc-24-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
The MUC1-C protein is aberrantly expressed in adenocarcinomas of epithelial barrier tissues and contributes to their progression. Less is known about involvement of MUC1-C in the pathogenesis of squamous cell carcinomas (SCC). Here, we report that the MUC1 gene is upregulated in advanced head and neck SCCs (HNSCC). Studies of HNSCC cell lines demonstrate that the MUC1-C subunit regulates expression of (i) RIG-I and MDA5 pattern recognition receptors, (ii) STAT1 and IFN regulatory factors, and (iii) downstream IFN-stimulated genes. MUC1-C integrates chronic activation of the STAT1 inflammatory pathway with induction of the ∆Np63 and SOX2 genes that are aberrantly expressed in HNSCCs. In extending those dependencies, we demonstrate that MUC1-C is necessary for NOTCH3 expression, self-renewal capacity, and tumorigenicity. The findings that MUC1 associates with ∆Np63, SOX2 and NOTCH3 expression by single-cell RNA sequencing analysis further indicate that MUC1-C drives the HNSCC stem cell state and is a target for suppressing HNSCC progression. SIGNIFICANCE This work reports a previously unrecognized role for MUC1-C in driving STAT1-mediated chronic inflammation with the progression of HNSCC and identifies MUC1-C as a druggable target for advanced HNSCC treatment.
Collapse
Affiliation(s)
- Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Weipu Mao
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kangjie Xu
- Central Laboratory Department, Binhai County People's Hospital, Yancheng, P.R. China
| | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Hiroki Ozawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Keisuke Shigeta
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yoshihiro Morimoto
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mototsugu Shimokawa
- Department of Biostatistics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shin Saito
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ann Marie Egloff
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ravindra Uppaluri
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mark D. Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Wang K, Bhattacharya A, Haratake N, Daimon T, Nakashoji A, Ozawa H, Peng B, Li W, Kufe D. XIST and MUC1-C form an auto-regulatory pathway in driving cancer progression. Cell Death Dis 2024; 15:330. [PMID: 38740827 PMCID: PMC11091074 DOI: 10.1038/s41419-024-06684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
The long non-coding RNA X-inactive specific transcript (lncRNA XIST) and MUC1 gene are dysregulated in chronic inflammation and cancer; however, there is no known interaction of their functions. The present studies demonstrate that MUC1-C regulates XIST lncRNA levels by suppressing the RBM15/B, WTAP and METTL3/14 components of the m6A methylation complex that associate with XIST A repeats. MUC1-C also suppresses the YTHDF2-CNOT1 deadenylase complex that recognizes m6A sites and contributes to XIST decay with increases in XIST stability and expression. In support of an auto-regulatory pathway, we show that XIST regulates MUC1-C expression by promoting NF-κB-mediated activation of the MUC1 gene. Of significance, MUC1-C and XIST regulate common genes associated with inflammation and stemness, including (i) miR-21 which is upregulated across pan-cancers, and (ii) TDP-43 which associates with the XIST E repeats. Our results further demonstrate that the MUC1-C/XIST pathway (i) is regulated by TDP-43, (ii) drives stemness-associated genes, and (iii) is necessary for self-renewal capacity. These findings indicate that the MUC1-C/XIST auto-regulatory axis is of importance in cancer progression.
Collapse
Affiliation(s)
- Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hiroki Ozawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Wei Li
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Radziejewska I. Tumor-associated carbohydrate antigens of MUC1 - Implication in cancer development. Biomed Pharmacother 2024; 174:116619. [PMID: 38643541 DOI: 10.1016/j.biopha.2024.116619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
Glycosylation of cancerous epithelial MUC1 protein is specifically altered in comparison to that which is presented by healthy cells. One of such changes is appearing tumor-associated carbohydrate antigens (TACAs) which are rare in normal tissues and are highly correlated with poor clinical outcomes and cancer progression. This review summarizes and describes the role of Tn, T antigens, their sialylated forms as well as fucosylated Lewis epitopes in different aspects of tumor development, progression, and metastasis. Finally, applications of MUC1 glycan epitopes as potential targets for therapeutic strategy of cancers are notified. One of the novelties of this review is presentation of TACAs as inherently connected with MUC1 mucin.
Collapse
Affiliation(s)
- Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2, Białystok 15-222, Poland.
| |
Collapse
|
8
|
Haratake N, Ozawa H, Morimoto Y, Yamashita N, Daimon T, Bhattacharya A, Wang K, Nakashoji A, Isozaki H, Shimokawa M, Kikutake C, Suyama M, Hashinokuchi A, Takada K, Takenaka T, Yoshizumi T, Mitsudomi T, Hata AN, Kufe D. MUC1-C Is a Common Driver of Acquired Osimertinib Resistance in NSCLC. J Thorac Oncol 2024; 19:434-450. [PMID: 37924972 PMCID: PMC10939926 DOI: 10.1016/j.jtho.2023.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/02/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
INTRODUCTION Osimertinib is an irreversible EGFR tyrosine kinase inhibitor approved for the first-line treatment of patients with metastatic NSCLC harboring EGFR exon 19 deletions or L858R mutations. Patients treated with osimertinib invariably develop acquired resistance by mechanisms involving additional EGFR mutations, MET amplification, and other pathways. There is no known involvement of the oncogenic MUC1-C protein in acquired osimertinib resistance. METHODS H1975/EGFR (L858R/T790M) and patient-derived NSCLC cells with acquired osimertinib resistance were investigated for MUC1-C dependence in studies of EGFR pathway activation, clonogenicity, and self-renewal capacity. RESULTS We reveal that MUC1-C is up-regulated in H1975 osimertinib drug-tolerant persister cells and is necessary for activation of the EGFR pathway. H1975 cells selected for stable osimertinib resistance (H1975-OR) and MGH700-2D cells isolated from a patient with acquired osimertinib resistance are found to be dependent on MUC1-C for induction of (1) phospho (p)-EGFR, p-ERK, and p-AKT, (2) EMT, and (3) the resistant phenotype. We report that MUC1-C is also required for p-EGFR, p-ERK, and p-AKT activation and self-renewal capacity in acquired osimertinib-resistant (1) MET-amplified MGH170-1D #2 cells and (2) MGH121 Res#2/EGFR (T790M/C797S) cells. Importantly, targeting MUC1-C in these diverse models reverses osimertinib resistance. In support of these results, high MUC1 mRNA and MUC1-C protein expression is associated with a poor prognosis for patients with EGFR-mutant NSCLCs. CONCLUSIONS Our findings reveal that MUC1-C is a common effector of osimertinib resistance and is a potential target for the treatment of osimertinib-resistant NSCLCs.
Collapse
Affiliation(s)
- Naoki Haratake
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Hiroki Ozawa
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Yoshihiro Morimoto
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Nami Yamashita
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Tatsuaki Daimon
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Atrayee Bhattacharya
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Keyi Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Ayako Nakashoji
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Hideko Isozaki
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mototsugu Shimokawa
- Department of Biostatistics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Asato Hashinokuchi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Tomoyoshi Takenaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Mitsudomi
- Department of Surgery, Kindai University Hospital, Osaka-Sayama, Japan
| | - Aaron N Hata
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Donald Kufe
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
9
|
Chen X, Sandrine IK, Yang M, Tu J, Yuan X. MUC1 and MUC16: critical for immune modulation in cancer therapeutics. Front Immunol 2024; 15:1356913. [PMID: 38361923 PMCID: PMC10867145 DOI: 10.3389/fimmu.2024.1356913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
The Mucin (MUC) family, a range of highly glycosylated macromolecules, is ubiquitously expressed in mammalian epithelial cells. Such molecules are pivotal in establishing protective mucosal barriers, serving as defenses against pathogenic assaults. Intriguingly, the aberrant expression of specific MUC proteins, notably Mucin 1 (MUC1) and Mucin 16 (MUC16), within tumor cells, is intimately associated with oncogenesis, proliferation, and metastasis. This association involves various mechanisms, including cellular proliferation, viability, apoptosis resistance, chemotherapeutic resilience, metabolic shifts, and immune surveillance evasion. Due to their distinctive biological roles and structural features in oncology, MUC proteins have attracted considerable attention as prospective targets and biomarkers in cancer therapy. The current review offers an exhaustive exploration of the roles of MUC1 and MUC16 in the context of cancer biomarkers, elucidating their critical contributions to the mechanisms of cellular signal transduction, regulation of immune responses, and the modulation of the tumor microenvironment. Additionally, the article evaluates the latest advances in therapeutic strategies targeting these mucins, focusing on innovations in immunotherapies and targeted drugs, aiming to enhance customization and accuracy in cancer treatments.
Collapse
Affiliation(s)
| | | | | | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
Daimon T, Bhattacharya A, Wang K, Haratake N, Nakashoji A, Ozawa H, Morimoto Y, Yamashita N, Kosaka T, Oya M, Kufe DW. MUC1-C is a target of salinomycin in inducing ferroptosis of cancer stem cells. Cell Death Discov 2024; 10:9. [PMID: 38182558 PMCID: PMC10770371 DOI: 10.1038/s41420-023-01772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
The oncogenic MUC1-C transmembrane protein is a critical effector of the cancer stem cell (CSC) state. Addiction to MUC1-C for self-renewal in the progression of human cancers has emphasized the need for development of anti-MUC1-C agents. However, there are presently no approved small molecules for targeting MUC1-C-dependent CSCs. In screening for small molecules, we identified salinomycin (SAL), an inducer of ferroptosis, as a potent inhibitor of MUC1-C signaling. We demonstrate that SAL suppresses MUC1-C expression by disrupting a NF-κB/MUC1-C auto-inductive circuit that is necessary for ferroptosis resistance. Our results show that SAL-induced MUC1-C suppression downregulates a MUC1-C→MYC pathway that activates genes encoding (i) glutathione-disulfide reductase (GSR), and (ii) the LDL receptor related protein 8 (LRP8), which inhibit ferroptosis by generating GSH and regulating selenium levels, respectively. GSR and LRP8 contribute to the function of glutathione peroxidase 4 (GPX4), an essential negative regulator of ferroptotic cell death. We demonstrate that targeting MUC1-C genetically or with the GO-203 peptide inhibitor suppresses GPX4 expression and GPX activity in association with the induction of ferroptosis. Studies of CSCs enriched by serial passage as tumorspheres further demonstrate that the effects of SAL are mediated by downregulation of MUC1-C and thereby overcoming resistance to ferroptosis. As confirmation of these results, rescue of MUC1-C downregulation with the MUC1-C cytoplasmic domain (i) reversed the suppression of GSR, LRP8 and GPX4 expression, and (ii) attenuated the induction of ferroptosis. These findings identify SAL as a unique small molecule inhibitor of MUC1-C signaling and demonstrate that MUC1-C is an important effector of resistance to ferroptosis.
Collapse
Affiliation(s)
- Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hiroki Ozawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yoshihiro Morimoto
- Department of Gastroenterological Surgery, Kinan Hospital, Wakayama, Japan
| | - Nami Yamashita
- Breast Surgical Oncology, Breast Oncology Center, The Cancer Institute Hospital of the JFCR, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Ma G, Liu X, Shi M. MUC1 promotes lymph node metastasis in esophageal squamous cell carcinoma by downregulating DNAJB6 expression. ENVIRONMENTAL TOXICOLOGY 2024; 39:9-22. [PMID: 37584547 DOI: 10.1002/tox.23938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Aberrant expression of MUC1 correlates with the progression of esophageal squamous cell carcinoma (ESCC), this study aimed to explore the effect of targeting MUC1 by Go-203 on malignant behavior of ESCC and the underlying mechanism. METHODS AND RESULTS IHC was used to examine the expression of MUC1 and DNAJB6 in ESCC samples. qRT-PCR and western blotting were used to examine the expression of MUC1 and DNAJB6 in ESCC cell lines. CCK8, wound healing, and transwell assays were used to determine the effect of regulating MUC1/DNAJB6 on the proliferation, migration, and invasion of ESCC cells. The effect of overexpressing/targeting MUC1 on the activation of the AKT/HSF-1 pathway was determined by western blotting. A negative correlation was confirmed between the expression of DNAJB6 and MUC1 in ESCC tissue samples by IHC, and high expression of MUC1 and low expression of DNAJB6 correlated with lymph node metastasis in ESCC patients. Overexpressing MUC1 downregulated the expression of DNAJB6, promoted ESCC proliferation, invasion, migration and activated the AKT pathway, while targeting MUC1 suppressed proliferation, invasion, migration, and the AKT pathway and up-regulated DNAJB6 expression in vitro. Moreover, MUC1 increased the phosphorylation of HSF-1 via the AKT pathway, and inhibiting AKT-HSF-1 increased the expression of DNAJB6 in vitro. CONCLUSIONS This study indicated that MUC1 could promote tumorigenesis and metastasis in ESCC by downregulating DNAJB6 expression through AKT-HSF-1 pathway.
Collapse
Affiliation(s)
- Guanqiang Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangyan Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
12
|
Swierczynski M, Kasprzak Z, Makaro A, Salaga M. Regulators of G-Protein Signaling (RGS) in Sporadic and Colitis-Associated Colorectal Cancer. Int J Mol Sci 2024; 25:577. [PMID: 38203748 PMCID: PMC10778579 DOI: 10.3390/ijms25010577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common neoplasms worldwide. Among the risk factors of CRC, inflammatory bowel disease (IBD) is one of the most important ones leading to the development of colitis-associated CRC (CAC). G-protein coupled receptors (GPCR) are transmembrane receptors that orchestrate a multitude of signaling cascades in response to external stimuli. Because of their functionality, they are promising targets in research on new strategies for CRC diagnostics and treatment. Recently, regulators of G-proteins (RGS) have been attracting attention in the field of oncology. Typically, they serve as negative regulators of GPCR responses to both physiological stimuli and medications. RGS activity can lead to both beneficial and harmful effects depending on the nature of the stimulus. However, the atypical RGS-AXIN uses its RGS domain to antagonize key signaling pathways in CRC development through the stabilization of the β-catenin destruction complex. Since AXIN does not limit the efficiency of medications, it seems to be an even more promising pharmacological target in CRC treatment. In this review, we discuss the current state of knowledge on RGS significance in sporadic CRC and CAC with particular emphasis on the regulation of GPCR involved in IBD-related inflammation comprising opioid, cannabinoid and serotonin receptors.
Collapse
Affiliation(s)
| | | | | | - Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (M.S.); (Z.K.); (A.M.)
| |
Collapse
|
13
|
Fujimoto M, Kobayashi Y, Kuraoka K, Yoshiyama T, Shigematu H. A case of ductal carcinoma in situ (DCIS) with markedly elevated CA15-3 levels requiring 2 years of diagnosis. Surg Case Rep 2023; 9:209. [PMID: 38036933 PMCID: PMC10689309 DOI: 10.1186/s40792-023-01792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND CA15-3 is often elevated in breast cancer recurrence and rarely in ductal carcinoma in situ (DCIS). We report a case of DCIS with elevated CA15-3 levels, which was diagnosed after over 2 years of follow-up. CASE PRESENTATION A 74-year-old woman presented with a left-sided breast mass and pain. Redness, swelling, and induration were observed in the left breast. Ultrasonography revealed a non-mass lesion in the left 3 o'clock position, skin thickening, and axillary lymphadenopathy. Serum CA15-3 levels were markedly high at 640 U/mL, suggesting inflammatory breast cancer. However, biopsies showed no malignancy. We diagnosed chronic mastitis with elevated CA15-3 levels and followed up with magnetic resonance imaging and a biopsy, as needed. Finally, DCIS was diagnosed 27 months after the first visit. She underwent a left mastectomy and a sentinel lymph node biopsy; DCIS had spread 6.5 cm and was immunohistochemically positive for CA15-3. No metastasis was found in the lymph nodes, but incidental Hodgkin lymphoma was observed. Postoperative normalization of CA15-3 levels indicated that she had DCIS with elevated CA15-3 levels. The patient underwent chemotherapy for Hodgkin lymphoma postoperatively, and there was no evidence of recurrence 1 year after surgery. CONCLUSION High CA15-3 levels can also be observed in DCIS, indicating that CA15-3 should not be used solely in breast cancer staging.
Collapse
Affiliation(s)
- Mutsumi Fujimoto
- Department of Breast Surgery, Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama-Cho, Kure, Hiroshima, 737-0023, Japan.
| | - Yoshie Kobayashi
- Department of Breast Surgery, Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama-Cho, Kure, Hiroshima, 737-0023, Japan
| | - Kazuya Kuraoka
- Department of Diagnostic Pathology, Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama-Cho, Kure, Hiroshima, 737-0023, Japan
| | - Tomoyuki Yoshiyama
- Department of Breast Surgery, Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama-Cho, Kure, Hiroshima, 737-0023, Japan
| | - Hideo Shigematu
- Department of Breast Surgery, Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama-Cho, Kure, Hiroshima, 737-0023, Japan
| |
Collapse
|
14
|
Yamashita N, Withers H, Morimoto Y, Bhattacharya A, Haratake N, Daimon T, Fushimi A, Nakashoji A, Thorner AR, Isenhart E, Rosario S, Long MD, Kufe D. MUC1-C integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells. iScience 2023; 26:108168. [PMID: 37915591 PMCID: PMC10616323 DOI: 10.1016/j.isci.2023.108168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Activation of the MUC1-C protein promotes lineage plasticity, epigenetic reprogramming, and the cancer stem cell (CSC) state. The present studies performed on enriched populations of triple-negative breast cancer (TNBC) CSCs demonstrate that MUC1-C is essential for integrating activation of glycolytic pathway genes with self-renewal and tumorigenicity. MUC1-C further integrates the glycolytic pathway with suppression of mitochondrial DNA (mtDNA) genes encoding components of mitochondrial Complexes I-V. The repression of mtDNA genes is explained by MUC1-C-mediated (i) downregulation of the mitochondrial transcription factor A (TFAM) required for mtDNA transcription and (ii) induction of the mitochondrial transcription termination factor 3 (mTERF3). In support of pathogenesis that suppresses mitochondrial ROS production, targeting MUC1-C increases (i) mtDNA gene transcription, (ii) superoxide levels, and (iii) loss of self-renewal capacity. These findings and scRNA-seq analysis of CSC subpopulations indicate that MUC1-C regulates self-renewal and redox balance by integrating activation of glycolysis with suppression of oxidative phosphorylation.
Collapse
Affiliation(s)
- Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Henry Withers
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | | | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aaron R. Thorner
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Emily Isenhart
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Spencer Rosario
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mark D. Long
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Lee DH, Ahn H, Sim HI, Choi E, Choi S, Jo Y, Yun B, Song HK, Oh SJ, Denda-Nagai K, Park CS, Irimura T, Park Y, Jin HS. A CRISPR activation screen identifies MUC-21 as critical for resistance to NK and T cell-mediated cytotoxicity. J Exp Clin Cancer Res 2023; 42:272. [PMID: 37858248 PMCID: PMC10588101 DOI: 10.1186/s13046-023-02840-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Immunotherapy has significantly advanced cancer treatments, but many patients do not respond to it, partly due to immunosuppressive mechanisms used by tumor cells. These cells employ immunosuppressive ligands to evade detection and elimination by the immune system. Therefore, the discovery and characterization of novel immunosuppressive ligands that facilitate immune evasion are crucial for developing more potent anti-cancer therapies. METHODS We conducted gain-of-function screens using a CRISPRa (CRISPR activation) library that covered the entire human transmembrane sub-genome to identify surface molecules capable of hindering NK-mediated cytotoxicity. The immunosuppressive role and mechanism of MUC21 were validated using NK and T cell mediated cytotoxicity assays. Bioinformatics tools were employed to assess the clinical implications of mucin-21 (MUC21) in cancer cell immunity. RESULTS Our genetic screens revealed that MUC21 expression on cancer cell surfaces inhibits both the cytotoxic activity of NK cells and antibody-dependent cellular cytotoxicity, but not affecting complement-dependent cytotoxicity. Additionally, MUC21 expression hinders T cell activation by impeding antigen recognition, thereby diminishing the effectiveness of the immune checkpoint inhibitor, anti-PD-L1. Moreover, MUC21 expression suppress the antitumor function of both CAR-T cells and CAR-NK cells. Mechanistically, MUC21 facilitates immune evasion by creating steric hindrance, preventing interactions between cancer and immune cells. Bioinformatics analysis revealed elevated MUC21 expression in lung cancer, which correlated with reduced infiltration and activation of cytotoxic immune cells. Intriguingly, MUC21 expression was higher in non-small cell lung cancer (NSCLC) tumors that were non-responsive to anti-PD-(L)1 treatment compared to responsive tumors. CONCLUSIONS These findings indicate that surface MUC21 serves as a potent immunosuppressive ligand, shielding cancer cells from NK and CD8+T cell attacks. This suggests that inhibiting MUC21 could be a promising strategy to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Dong-Hee Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Hyejin Ahn
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Hye-In Sim
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- Department of Life Sciences, Korea University, Seoul, 02481, South Korea
| | - Eunji Choi
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Seunghyun Choi
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- Department of Life Sciences, Korea University, Seoul, 02481, South Korea
| | - Yunju Jo
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- Department of Life Sciences, Korea University, Seoul, 02481, South Korea
| | - Bohwan Yun
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, 02481, South Korea
| | - Soo Jin Oh
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Kaori Denda-Nagai
- Division of Glycobiologics, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Tatsuro Irimura
- Division of Glycobiologics, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yoon Park
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| |
Collapse
|
16
|
Bhattacharya A, Fushimi A, Wang K, Yamashita N, Morimoto Y, Ishikawa S, Daimon T, Liu T, Liu S, Long MD, Kufe D. MUC1-C intersects chronic inflammation with epigenetic reprogramming by regulating the set1a compass complex in cancer progression. Commun Biol 2023; 6:1030. [PMID: 37821650 PMCID: PMC10567710 DOI: 10.1038/s42003-023-05395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Chronic inflammation promotes epigenetic reprogramming in cancer progression by pathways that remain unclear. The oncogenic MUC1-C protein is activated by the inflammatory NF-κB pathway in cancer cells. There is no known involvement of MUC1-C in regulation of the COMPASS family of H3K4 methyltransferases. We find that MUC1-C regulates (i) bulk H3K4 methylation levels, and (ii) the COMPASS SET1A/SETD1A and WDR5 genes by an NF-κB-mediated mechanism. The importance of MUC1-C in regulating the SET1A COMPASS complex is supported by the demonstration that MUC1-C and WDR5 drive expression of FOS, ATF3 and other AP-1 family members. In a feedforward loop, MUC1-C, WDR5 and AP-1 contribute to activation of genes encoding TRAF1, RELB and other effectors in the chronic NF-κB inflammatory response. We also show that MUC1-C, NF-κB, WDR5 and AP-1 are necessary for expression of the (i) KLF4 master regulator of the pluripotency network and (ii) NOTCH1 effector of stemness. In this way, MUC1-C/NF-κB complexes recruit SET1A/WDR5 and AP-1 to enhancer-like signatures in the KLF4 and NOTCH1 genes with increases in H3K4me3 levels, chromatin accessibility and transcription. These findings indicate that MUC1-C regulates the SET1A COMPASS complex and the induction of genes that integrate NF-κB-mediated chronic inflammation with cancer progression.
Collapse
Affiliation(s)
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Satoshi Ishikawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Li Z, Guo T, Zhao S, Lin M. The Therapeutic Effects of MUC1-C shRNA@Fe 3O 4 Magnetic Nanoparticles in Alternating Magnetic Fields on Triple-Negative Breast Cancer. Int J Nanomedicine 2023; 18:5651-5670. [PMID: 37822991 PMCID: PMC10563812 DOI: 10.2147/ijn.s426849] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Purpose Improving the treatment of triple-negative breast cancer (TNBC) is a serious challenge today. The primary objective of this study was to construct MUC1-C shRNA@ Fe3O4 magnetic nanoparticles (MNPs) and investigate their potential therapeutic benefits in alternating magnetic fields (AMF) on TNBC. Methods Firstly, we verified the high expression of MUC1 in TNBC and synthesized specific MUC1-C shRNA plasmids (MUC1-C shRNA). Then, we prepared and characterized MUC1-C shRNA@Fe3O4 MNPs and confirmed their MUC1-C gene silencing effect and magneto-thermal conversion ability in AMF. Moreover, the inhibitory effects on TNBC in vitro and in vivo were observed as well as biosafety. Finally, the protein levels of BCL-2-associated X protein (Bax), cleaved-caspase3, glutathione peroxidase inhibitor 4 (GPX4), nuclear factor erythroid 2-related factor 2 (NRF2), and ferritin heavy chain 1 (FTH1) in TNBC cells and tissues were examined, and it was speculated that apoptosis and ferroptosis were involved in the synergistic treatment. Results MUC1-C shRNA@ Fe3O4 MNPs have a size of ~75 nm, with an encapsulation rate of (29.78±0.63) %, showing excellent gene therapy and magnetic hyperthermia functions. Under a constant AMF (3Kw) and a set concentration (200µg mL-1), the nanoparticles could be rapidly warmed up within 20 minutes and stabilized at about 43 °C. It could be uptaken by TNBC cells through endocytosis and significantly inhibit their proliferation and migration, with a growth inhibition rate of 79.22% for TNBC tumors. After treatment, GPX4, NRF2, and FTH1 expression levels in TNBC cells and tumor tissues were suppressed, while Bax and cleaved-caspase3 were increased. As key therapeutic measures, gene therapy, and magnetic hyperthermia have shown a synergistic effect in this treatment strategy, with a combined index (q index) of 1.23. Conclusion In conclusion, we developed MUC1-C shRNA@Fe3O4 MNPs with magnetic hyperthermia and gene therapy functions, which have shown satisfactory therapeutic effects on TNBC without significant side effects. This study provides a potential option for the precision treatment of TNBC.
Collapse
Affiliation(s)
- Zhifeng Li
- Medical School of Nantong University, Nantong, Jiangsu, People’s Republic of China
- Clinical Laboratory, Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou, Jiangsu, People’s Republic of China
| | - Ting Guo
- Research Center of Clinical Medicine, Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou, Jiangsu, People’s Republic of China
| | - Susu Zhao
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Mei Lin
- Clinical Laboratory, Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou, Jiangsu, People’s Republic of China
| |
Collapse
|
18
|
Jin W, Zhang M, Dong C, Huang L, Luo Q. The multifaceted role of MUC1 in tumor therapy resistance. Clin Exp Med 2023; 23:1441-1474. [PMID: 36564679 DOI: 10.1007/s10238-022-00978-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Tumor therapeutic resistances are frequently linked to the recurrence and poor prognosis of cancers and have been a key bottleneck in clinical tumor treatment. Mucin1 (MUC1), a heterodimeric transmembrane glycoprotein, exhibits abnormally overexpression in a variety of human tumors and has been confirmed to be related to the formation of therapeutic resistance. In this review, the multifaceted roles of MUC1 in tumor therapy resistance are summarized from aspects of pan-cancer principles shared among therapies and individual mechanisms dependent on different therapies. Concretely, the common mechanisms of therapy resistance across cancers include interfering with gene expression, promoting genome instability, modifying tumor microenvironment, enhancing cancer heterogeneity and stemness, and activating evasion and metastasis. Moreover, the individual mechanisms of therapy resistance in chemotherapy, radiotherapy, and biotherapy are introduced. Last but not least, MUC1-involved therapy resistance in different types of cancers and MUC1-related clinical trials are summarized.
Collapse
Affiliation(s)
- Weiqiu Jin
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mengwei Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Changzi Dong
- Department of Bioengineering, School of Engineering and Science, University of Pennsylvania, Philadelphia, 19104, USA
| | - Lei Huang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Innovative Research Team of High-Level Local Universities in Shanghai, Shanghai, China.
| | - Qingquan Luo
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
19
|
Radziejewska I, Supruniuk K, Jakimiuk K, Tomczyk M, Bielawska A, Galicka A. Tiliroside Combined with Anti-MUC1 Monoclonal Antibody as Promising Anti-Cancer Strategy in AGS Cancer Cells. Int J Mol Sci 2023; 24:13036. [PMID: 37685842 PMCID: PMC10487805 DOI: 10.3390/ijms241713036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Specific changes in mucin-type O-glycosylation are common for many cancers, including gastric ones. The most typical alterations include incomplete synthesis of glycan structures, enhanced expression of truncated O-glycans (Tn, T antigens and their sialylated forms), and overexpression of fucosylation. Such altered glycans influence many cellular activities promoting cancer development. Tiliroside is a glycosidic dietary flavonoid with pharmacological properties, including anti-cancer. In this study, we aim to assess the effect of the combined action of anti-MUC1 and tiliroside on some cancer-related factors in AGS gastric cancer cells. Cancer cells were treated with 40, 80, and 160 µM tiliroside, 5 µg/mL anti-MUC1, and flavonoid together with mAb. Real-Time PCR, ELISA, and Western blotting were applied to examine MUC1 expression, specific, tumor-associated antigens, enzymes taking part in their formation, Gal-3, Akt, and NF-κB. MUC1 expression was significantly reduced by mAb action. The combined action of anti-MUC1 and tiliroside was more effective in comparison with monotherapy in the case of C1GalT1, ST3GalT1, FUT4, Gal-3, NF-κB, Akt mRNAs, and Tn antigen, as well as sialyl T antigen expression. The results of our study indicate that applied combined therapy may be a promising anti-gastric cancer strategy.
Collapse
Affiliation(s)
- Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland;
| | - Katarzyna Supruniuk
- Department of Medical Biology and Genetics, Medical University of Gdańsk, ul. Dębinki 1, 80-211 Gdańsk, Poland;
| | - Katarzyna Jakimiuk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (K.J.); (M.T.)
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (K.J.); (M.T.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland;
| | - Anna Galicka
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland;
| |
Collapse
|
20
|
Celikdemir B, Houben R, Kervarrec T, Samimi M, Schrama D. Current and preclinical treatment options for Merkel cell carcinoma. Expert Opin Biol Ther 2023; 23:1015-1034. [PMID: 37691397 DOI: 10.1080/14712598.2023.2257603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Merkel cell carcinoma (MCC) is a rare, highly aggressive form of skin cancer with neuroendocrine features. The origin of this cancer is still unclear, but research in the last 15 years has demonstrated that MCC arises via two distinct etiologic pathways, i.e. virus and UV-induced. Considering the high mortality rate and the limited therapeutic options available, this review aims to highlight the significance of MCC research and the need for advancement in MCC treatment. AREAS COVERED With the advent of the immune checkpoint inhibitor therapies, we now have treatment options providing a survival benefit for patients with advanced MCC. However, the issue of primary and acquired resistance to these therapies remains a significant concern. Therefore, ongoing efforts seeking additional therapeutic targets and approaches for MCC therapy are a necessity. Through a comprehensive literature search, we provide an overview on recent preclinical and clinical studies with respect to MCC therapy. EXPERT OPINION Currently, the only evidence-based therapy for MCC is immune checkpoint blockade with anti-PD-1/PD-L1 for advanced patients. Neoadjuvant, adjuvant and combined immune checkpoint blockade are promising treatment options.
Collapse
Affiliation(s)
- Büke Celikdemir
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Thibault Kervarrec
- Department of Pathology, Centre Hospitalier Universitaire De Tours, Tours, France
| | - Mahtab Samimi
- Department of Dermatology, University Hospital of Tours, Tours, France
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Zhang W, Zheng Z, Wang K, Mao W, Li X, Wang G, Zhang Y, Huang J, Zhang N, Wu P, Liu J, Zhang H, Che J, Peng B, Zheng J, Li W, Yao X. piRNA-1742 promotes renal cell carcinoma malignancy by regulating USP8 stability through binding to hnRNPU and thereby inhibiting MUC12 ubiquitination. Exp Mol Med 2023; 55:1258-1271. [PMID: 37332045 PMCID: PMC10318070 DOI: 10.1038/s12276-023-01010-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/13/2023] [Accepted: 03/15/2023] [Indexed: 06/20/2023] Open
Abstract
Accumulating studies have confirmed that PIWI-interacting RNAs (piRNAs) are considered epigenetic effectors in cancer. We performed piRNA microarray expression analysis on renal cell carcinoma (RCC) tumor tissues and paired normal tissues and performed a series of in vivo and in vitro experiments to explore piRNAs associated with RCC progression and investigate their functional mechanisms. We found that piR-1742 was highly expressed in RCC tumors and that patients with high piR-1742 expression had a poor prognosis. Inhibition of piR-1742 significantly reduced tumor growth in RCC xenograft and organoid models. Mechanistically, piRNA-1742 regulates the stability of USP8 mRNA by binding directly to hnRNPU, which acts as a deubiquitinating enzyme that inhibits the ubiquitination of MUC12 and promotes the development of malignant RCC. Subsequently, nanotherapeutic systems loaded with piRNA-1742 inhibitors were found to effectively inhibit the metastasis and growth of RCC in vivo. Therefore, this study highlights the functional importance of piRNA-related ubiquitination in RCC and demonstrates the development of a related nanotherapeutic system, possibly contributing to the development of therapeutic approaches for RCC.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, P. R. China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Zongtai Zheng
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, P. R. China
| | - Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, P. R. China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Weipu Mao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, P. R. China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, P. R. China
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, P. R. China
| | - Xue Li
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P. R. China
| | - Guangchun Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, P. R. China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Jianhua Huang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, P. R. China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Ning Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Pengfei Wu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, P. R. China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Ji Liu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, P. R. China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Haimin Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, P. R. China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Jianping Che
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, P. R. China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, P. R. China.
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, P. R. China.
| | - Junhua Zheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, P. R. China.
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China.
| | - Wei Li
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, P. R. China.
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, P. R. China.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, P. R. China.
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, P. R. China.
| |
Collapse
|
22
|
Radziejewska I. Galectin-3 and Epithelial MUC1 Mucin-Interactions Supporting Cancer Development. Cancers (Basel) 2023; 15:2680. [PMID: 37345016 DOI: 10.3390/cancers15102680] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Aberrant glycosylation of cell surface proteins is a very common feature of many cancers. One of the glycoproteins, which undergoes specific alterations in the glycosylation of tumor cells is epithelial MUC1 mucin, which is highly overexpressed in the malignant state. Such changes lead to the appearance of tumor associated carbohydrate antigens (TACAs) on MUC1, which are rarely seen in healthy cells. One of these structures is the Thomsen-Friedenreich disaccharide Galβ1-3GalNAc (T or TF antigen), which is typical for about 90% of cancers. It was revealed that increased expression of the T antigen has a big impact on promoting cancer progression and metastasis, among others, due to the interaction of this antigen with the β-galactose binding protein galectin-3 (Gal-3). In this review, we summarize current information about the interactions between the T antigen on MUC1 mucin and Gal-3, and their impact on cancer progression and metastasis.
Collapse
Affiliation(s)
- Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland
| |
Collapse
|
23
|
Aftab F, Rodriguez-Fuguet A, Silva L, Kobayashi IS, Sun J, Politi K, Levantini E, Zhang W, Kobayashi SS, Zhang WC. An intrinsic purine metabolite AICAR blocks lung tumour growth by targeting oncoprotein mucin 1. Br J Cancer 2023; 128:1647-1664. [PMID: 36810913 PMCID: PMC10133251 DOI: 10.1038/s41416-023-02196-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Lung cancer cells overexpress mucin 1 (MUC1) and active subunit MUC1-CT. Although a peptide blocks MUC1 signalling, metabolites targeting MUC1 are not well studied. AICAR is a purine biosynthesis intermediate. METHODS Cell viability and apoptosis were measured in AICAR-treated EGFR-mutant and wild-type lung cells. AICAR-binding proteins were evaluated by in silico and thermal stability assays. Protein-protein interactions were visualised by dual-immunofluorescence staining and proximity ligation assay. AICAR-induced whole transcriptomic profile was determined by RNA sequencing. EGFR-TL transgenic mice-derived lung tissues were analysed for MUC1 expression. Organoids and tumours from patients and transgenic mice were treated with AICAR alone or in combination with JAK and EGFR inhibitors to evaluate treatment effects. RESULTS AICAR reduced EGFR-mutant tumour cell growth by inducing DNA damage and apoptosis. MUC1 was one of the leading AICAR-binding and degrading proteins. AICAR negatively regulated JAK signalling and JAK1-MUC1-CT interaction. Activated EGFR upregulated MUC1-CT expression in EGFR-TL-induced lung tumour tissues. AICAR reduced EGFR-mutant cell line-derived tumour formation in vivo. Co-treating patient and transgenic mouse lung-tissue-derived tumour organoids with AICAR and JAK1 and EGFR inhibitors reduced their growth. CONCLUSIONS AICAR represses the MUC1 activity in EGFR-mutant lung cancer, disrupting protein-protein interactions between MUC1-CT and JAK1 and EGFR.
Collapse
Affiliation(s)
- Fareesa Aftab
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL, 32827, USA
| | - Alice Rodriguez-Fuguet
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL, 32827, USA
| | - Luis Silva
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL, 32827, USA
| | - Ikei S Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, E/CLS-409, Boston, MA, 02215, USA
| | - Jiao Sun
- Department of Computer Science, College of Engineering and Computer Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816, USA
| | - Katerina Politi
- Departments of Pathology and Internal Medicine (Section of Medical Oncology) and the Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Elena Levantini
- Harvard Stem Cell Institute, 330 Brookline Avenue, Harvard Medical School, Boston, MA, 02215, USA
- Institute of Biomedical Technologies, National Research Council (CNR), Area della Ricerca di Pisa, 56124, Pisa, Italy
| | - Wei Zhang
- Department of Computer Science, College of Engineering and Computer Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816, USA
| | - Susumu S Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, E/CLS-409, Boston, MA, 02215, USA
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, 277-8575, Japan
| | - Wen Cai Zhang
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL, 32827, USA.
| |
Collapse
|
24
|
Wei D, Wang L, Liu Y, Hafley MA, Tan L, Lorenzi PL, Yang P, Zuo X, Bresalier RS. Activation of Vitamin D/VDR Signaling Reverses Gemcitabine Resistance of Pancreatic Cancer Cells Through Inhibition of MUC1 Expression. Dig Dis Sci 2023:10.1007/s10620-023-07931-3. [PMID: 37071246 DOI: 10.1007/s10620-023-07931-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/14/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) has a poor prognosis due to its therapeutic resistance. Inactivation of vitamin D/vitamin D receptor (VDR) signaling may contribute to the malignant phenotype of PDA and altered expression of oncoprotein mucin 1 (MUC1) may be involved in drug resistance of cancer cells. AIM To determine whether vitamin D/VDR signaling regulates the expression and function of MUC1 and its effect on acquired gemcitabine resistance of pancreatic cancer cells. METHODS Molecular analyses and animal models were used to determine the impact of vitamin D/VDR signaling on MUC1 expression and response to gemcitabine treatment. RESULTS RPPA analysis indicated that MUC1 protein expression was significantly reduced in human PDA cells after treatment with vitamin D3 or its analog calcipotriol. VDR regulated MUC1 expression in both gain- and loss-of-function assays. Vitamin D3 or calcipotriol significantly induced VDR and inhibited MUC1 expression in acquired gemcitabine-resistant PDA cells and sensitized the resistant cells to gemcitabine treatment, while siRNA inhibition of MUC1 was associated with paricalcitol-associated sensitization of PDA cells to gemcitabine treatment in vitro. Administration of paricalcitol significantly enhanced the therapeutic efficacy of gemcitabine in xenograft and orthotopic mouse models and increased the intratumoral concentration of dFdCTP, the active metabolite of gemcitabine. CONCLUSION These findings demonstrate a previously unidentified vitamin D/VDR-MUC1 signaling axis involved in the regulation of gemcitabine resistance in PDA and suggests that combinational therapies that include targeted activation of vitamin D/VDR signaling may improve the outcomes of patients with PDA.
Collapse
Affiliation(s)
- Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Liang Wang
- Department of Gastroenterology, Hepatology, and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Yi Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Margarete A Hafley
- Department of Gastroenterology, Hepatology, and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peiying Yang
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert S Bresalier
- Department of Gastroenterology, Hepatology, and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Morimoto Y, Yamashita N, Hirose H, Fushimi A, Haratake N, Daimon T, Bhattacharya A, Ahmad R, Suzuki Y, Takahashi H, Kufe DW. MUC1-C is necessary for SHP2 activation and BRAF inhibitor resistance in BRAF(V600E) mutant colorectal cancer. Cancer Lett 2023; 559:216116. [PMID: 36878307 PMCID: PMC10408991 DOI: 10.1016/j.canlet.2023.216116] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/19/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Colorectal cancers (CRCs) harboring the BRAF(V600E) mutation are associated with aggressive disease and resistance to BRAF inhibitors by feedback activation of the receptor tyrosine kinase (RTK)→RAS→MAPK pathway. The oncogenic MUC1-C protein promotes progression of colitis to CRC; whereas there is no known involvement of MUC1-C in BRAF(V600E) CRCs. The present work demonstrates that MUC1 expression is significantly upregulated in BRAF(V600E) vs wild-type CRCs. We show that BRAF(V600E) CRC cells are dependent on MUC1-C for proliferation and BRAF inhibitor (BRAFi) resistance. Mechanistically, MUC1-C integrates induction of MYC in driving cell cycle progression with activation of the SHP2 phosphotyrosine phosphatase, which enhances RTK-mediated RAS→ERK signaling. We demonstrate that targeting MUC1-C genetically and pharmacologically suppresses (i) activation of MYC, (ii) induction of the NOTCH1 stemness factor, and (iii) the capacity for self-renewal. We also show that MUC1-C associates with SHP2 and is required for SHP2 activation in driving BRAFi-induced feedback of ERK signaling. In this way, targeting MUC1-C in BRAFi-resistant BRAF(V600E) CRC tumors inhibits growth and sensitizes to BRAF inhibition. These findings demonstrate that MUC1-C is a target for the treatment of BRAF(V600E) CRCs and for reversing their resistance to BRAF inhibitors by suppressing the feedback MAPK pathway.
Collapse
Affiliation(s)
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Haruka Hirose
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Rehan Ahmad
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yozo Suzuki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Pierzynowska K, Gaffke L, Zaucha JM, Węgrzyn G. Transcriptomic Approaches in Studies on and Applications of Chimeric Antigen Receptor T Cells. Biomedicines 2023; 11:biomedicines11041107. [PMID: 37189725 DOI: 10.3390/biomedicines11041107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells are specifically modified T cells which bear recombinant receptors, present at the cell surface and devoted to detect selected antigens of cancer cells, and due to the presence of transmembrane and activation domains, able to eliminate the latter ones. The use of CAR-T cells in anti-cancer therapies is a relatively novel approach, providing a powerful tool in the fight against cancer and bringing new hope for patients. However, despite huge possibilities and promising results of preclinical studies and clinical efficacy, there are various drawbacks to this therapy, including toxicity, possible relapses, restrictions to specific kinds of cancers, and others. Studies desiring to overcome these problems include various modern and advanced methods. One of them is transcriptomics, a set of techniques that analyze the abundance of all RNA transcripts present in the cell at certain moment and under certain conditions. The use of this method gives a global picture of the efficiency of expression of all genes, thus revealing the physiological state and regulatory processes occurring in the investigated cells. In this review, we summarize and discuss the use of transcriptomics in studies on and applications of CAR-T cells, especially in approaches focused on improved efficacy, reduced toxicity, new target cancers (like solid tumors), monitoring the treatment efficacy, developing novel analytical methods, and others.
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Jan M. Zaucha
- Department of Hematology and Transplantology, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
27
|
Yamashita N, Morimoto Y, Fushimi A, Ahmad R, Bhattacharya A, Daimon T, Haratake N, Inoue Y, Ishikawa S, Yamamoto M, Hata T, Akiyoshi S, Hu Q, Liu T, Withers H, Liu S, Shapiro GI, Yoshizumi T, Long MD, Kufe D. MUC1-C Dictates PBRM1-Mediated Chronic Induction of Interferon Signaling, DNA Damage Resistance, and Immunosuppression in Triple-Negative Breast Cancer. Mol Cancer Res 2023; 21:274-289. [PMID: 36445328 PMCID: PMC9975675 DOI: 10.1158/1541-7786.mcr-22-0772] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
The polybromo-1 (PBRM1) chromatin-targeting subunit of the SWI/SNF PBAF chromatin remodeling complex drives DNA damage resistance and immune evasion in certain cancer cells through mechanisms that remain unclear. STAT1 and IRF1 are essential effectors of type I and II IFN pathways. Here, we report that MUC1-C is necessary for PBRM1 expression and that it forms a nuclear complex with PBRM1 in triple-negative breast cancer (TNBC) cells. Analysis of global transcriptional (RNA-seq) and chromatin accessibility (ATAC-seq) profiles further demonstrated that MUC1-C and PBRM1 drive STAT1 and IRF1 expression by increasing chromatin accessibility of promoter-like signatures (PLS) on their respective genes. We also found that MUC1-C, PBRM1, and IRF1 increase the expression and chromatin accessibility on PLSs of the (i) type II IFN pathway IDO1 and WARS genes and (ii) type I IFN pathway RIG-I, MDA5, and ISG15 genes that collectively contribute to DNA damage resistance and immune evasion. In support of these results, targeting MUC1-C in wild-type BRCA TNBC cells enhanced carboplatin-induced DNA damage and the loss of self-renewal capacity. In addition, MUC1-C was necessary for DNA damage resistance, self-renewal, and tumorigenicity in olaparib-resistant BRCA1-mutant TNBC cells. Analysis of TNBC tumors corroborated that (i) MUC1 and PBRM1 are associated with decreased responsiveness to chemotherapy and (ii) MUC1-C expression is associated with the depletion of tumor-infiltrating lymphocytes (TIL). These findings demonstrate that MUC1-C activates PBRM1, and thereby chromatin remodeling of IFN-stimulated genes that promote chronic inflammation, DNA damage resistance, and immune evasion. IMPLICATIONS MUC1-C is necessary for PBRM1-driven chromatin remodeling in chronic activation of IFN pathway genes that promote DNA damage resistance and immunosuppression.
Collapse
Affiliation(s)
- Nami Yamashita
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Yoshihiro Morimoto
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Atsushi Fushimi
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Rehan Ahmad
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Atrayee Bhattacharya
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Tatsuaki Daimon
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Naoki Haratake
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Yuka Inoue
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Ishikawa
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Masaaki Yamamoto
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Tsuyoshi Hata
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Sayuri Akiyoshi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Qiang Hu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Tao Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Henry Withers
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Song Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mark D. Long
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Corresponding Authors: Donald Kufe, Dana-Farber Cancer Institute, 450 Brookline Avenue, D830, Boston, MA 02215. E-mail: ; and Mark D. Long,
| | - Donald Kufe
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
- Corresponding Authors: Donald Kufe, Dana-Farber Cancer Institute, 450 Brookline Avenue, D830, Boston, MA 02215. E-mail: ; and Mark D. Long,
| |
Collapse
|
28
|
Kufe D. Dependence on MUC1-C in Progression of Neuroendocrine Prostate Cancer. Int J Mol Sci 2023; 24:3719. [PMID: 36835130 PMCID: PMC9967814 DOI: 10.3390/ijms24043719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/11/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Castration resistant prostate cancer (CRPC) is responsive to androgen receptor (AR) axis targeted agents; however, patients invariably relapse with resistant disease that often progresses to neuroendocrine prostate cancer (NEPC). Treatment-related NEPC (t-NEPC) is highly aggressive with limited therapeutic options and poor survival outcomes. The molecular basis for NEPC progression remains incompletely understood. The MUC1 gene evolved in mammals to protect barrier tissues from loss of homeostasis. MUC1 encodes the transmembrane MUC1-C subunit, which is activated by inflammation and contributes to wound repair. However, chronic activation of MUC1-C contributes to lineage plasticity and carcinogenesis. Studies in human NEPC cell models have demonstrated that MUC1-C suppresses the AR axis and induces the Yamanaka OSKM pluripotency factors. MUC1-C interacts directly with MYC and activates the expression of the BRN2 neural transcription factor (TF) and other effectors, such as ASCL1, of the NE phenotype. MUC1-C also induces the NOTCH1 stemness TF in promoting the NEPC cancer stem cell (CSC) state. These MUC1-C-driven pathways are coupled with activation of the SWI/SNF embryonic stem BAF (esBAF) and polybromo-BAF (PBAF) chromatin remodeling complexes and global changes in chromatin architecture. The effects of MUC1-C on chromatin accessibility integrate the CSC state with the control of redox balance and induction of self-renewal capacity. Importantly, targeting MUC1-C inhibits NEPC self-renewal, tumorigenicity and therapeutic resistance. This dependence on MUC1-C extends to other NE carcinomas, such as SCLC and MCC, and identify MUC1-C as a target for the treatment of these aggressive malignancies with the anti-MUC1 agents now under clinical and preclinical development.
Collapse
Affiliation(s)
- Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
29
|
Morimoto Y, Yamashita N, Daimon T, Hirose H, Yamano S, Haratake N, Ishikawa S, Bhattacharya A, Fushimi A, Ahmad R, Takahashi H, Dashevsky O, Mitsiades C, Kufe D. MUC1-C is a master regulator of MICA/B NKG2D ligand and exosome secretion in human cancer cells. J Immunother Cancer 2023; 11:e006238. [PMID: 36754452 PMCID: PMC9923360 DOI: 10.1136/jitc-2022-006238] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND The MUC1-C protein evolved in mammals to protect barrier tissues from loss of homeostasis; however, MUC1-C promotes oncogenesis in association with chronic inflammation. Aberrant expression of MUC1-C in cancers has been linked to depletion and dysfunction of T cells in the tumor microenvironment. In contrast, there is no known involvement of MUC1-C in the regulation of natural killer (NK) cell function. METHODS Targeting MUC1-C genetically and pharmacologically in cancer cells was performed to assess effects on intracellular and cell surface expression of the MHC class I chain-related polypeptide A (MICA) and MICB ligands. The MICA/B promoters were analyzed for H3K27 and DNA methylation. Shedding of MICA/B was determined by ELISA. MUC1-C interactions with ERp5 and RAB27A were assessed by coimmunoprecipitation and direct binding studies. Exosomes were isolated for analysis of secretion. Purified NK cells were assayed for killing of cancer cell targets. RESULTS Our studies demonstrate that MUC1-C represses expression of the MICA and MICB ligands that activate the NK group 2D receptor. We show that the inflammatory MUC1-C→NF-κB pathway drives enhancer of zeste homolog 2-mediated and DNMT-mediated methylation of the MICA and MICB promoter regions. Targeting MUC1-C genetically and pharmacologically with the GO-203 inhibitor induced intracellular and cell surface MICA/B expression but not MICA/B cleavage. Mechanistically, MUC1-C regulates the ERp5 thiol oxidoreductase that is necessary for MICA/B protease digestion and shedding. In addition, MUC1-C interacts with the RAB27A protein, which is required for exosome formation and secretion. As a result, targeting MUC1-C markedly inhibited secretion of exosomes expressing MICA/B. In concert with these results, we show that targeting MUC1-C promotes NK cell-mediated killing. CONCLUSIONS These findings uncover pleotropic mechanisms by which MUC1-C confers evasion of cancer cells to NK cell recognition and destruction.
Collapse
Affiliation(s)
- Yoshihiro Morimoto
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nami Yamashita
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Tatsuaki Daimon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Haruka Hirose
- Division of Systems Biology, Nagoya University Graduate School of Medicine Faculty of Medicine, Nagoya, Japan
| | - Shizuka Yamano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Naoki Haratake
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Satoshi Ishikawa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Atrayee Bhattacharya
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Atsushi Fushimi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Rehan Ahmad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Osaka University, Suita, Japan
| | - Olga Dashevsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Constantine Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Donald Kufe
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Liu Z, Zhang L, Zhong Y. Characterization of osteosarcoma subtypes mediated by macrophage-related genes and creation and validation of a risk score system to quantitatively assess the prognosis of osteosarcoma and reflect the tumor microenvironment. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1318. [PMID: 36660647 PMCID: PMC9843337 DOI: 10.21037/atm-22-5613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Background Macrophages are the main immune components in the microenvironment of osteosarcoma. The treatment strategy centered on macrophages has become a hot topic to improve cancer treatment. However, the research on the role of macrophages in the treatment of osteosarcoma is still in its infancy. Methods The data of osteosarcoma samples were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and GSE21257 datasets, and the macrophage enrichment fraction of osteosarcoma samples in TARGET was calculated by single-sample gene set enrichment analysis (ssGSEA) method to screen macrophage-related genes for consensus clustering. Differential expression analysis, univariable Cox, and least absolute shrinkage and selection operator (LASSO) regression were conducted to select reliable predictors and create a risk score system. The GSE21257 dataset was used as a verification set to verify the accuracy of risk score system. Results We identified 2 osteosarcoma clusters mediated by 22 macrophage score-related genes, namely cluster 1 (C1) and cluster 2 (C2). Compared with C2, C1 had a significant advantage in prognosis, and the degree of immune cell infiltration in tumor microenvironment (TME) was significantly higher, the expression of immune checkpoint molecules was significantly enhanced, and the Tumor Immune Dysfunction and Exclusion (TIDE) score was also significantly down-regulated. A robust risk score system was presented and validated, which demonstrated accuracy and independence in assessing the risk of death of osteosarcoma. The risk score system could also monitor TME infiltration in osteosarcoma samples and showed a close relationship with osteosarcoma biology, including metastasis and immunity. Conclusions We identified 2 types of clusters mediated by macrophage-related genes and helped to analyze the cluster suitable for immunotherapy. A new prognostic risk score system was created to quantitatively evaluate the prognosis and TME of osteosarcoma, and to provide a new entry point for the design of personalized treatment.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Orthopedics, Jiangxi Cancer Hospital, Nanchang, China
| | - Lei Zhang
- Department of Orthopedics, Jiangxi Cancer Hospital, Nanchang, China
| | - Yun Zhong
- Department of Lymphohematology and Oncology, Jiangxi Cancer Hospital, Nanchang, China
| |
Collapse
|
31
|
Shi F, Xue R, Xu H, Mei F, Bao X, Dou J, Zhao F. Mucin 1 downregulation decreases the anti-tumor effects of melanoma vaccine. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1361. [PMID: 36660692 PMCID: PMC9843407 DOI: 10.21037/atm-22-6170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022]
Abstract
Background Immunotherapy-based approaches are important breakthroughs with potential treatment benefits for melanoma patients. Mucin 1 (MUC1) is significantly upregulated in melanoma relative to normal cells. It has been reported that MUC1 influences cancer cell proliferation, apoptosis, invasion, and metastasis.The study aimed to explore the effect of MUC1 knockdown on the biological characteristics of the melanoma cell line B16F10 and evaluate whether MUC1 is an effective candidate target antigen for melanoma vaccine development. Methods First, lentiviral vector-mediated short hairpin RNA (shRNA) was used to knockdown MUC1 in B16F10 cells (shMUC1-B16F10 cells). Next, we examined epithelial-mesenchymal transition (EMT), migration, proliferative capacity, clone formation, and distribution of cell cycle in shMUC1-B16F10 cells. Finally, the vaccine was prepared by repeated freeze-thawing of the shMUC1-B16F10 cells and used to subcutaneously immunize C57BL/6 mice, which were then challenged using B16F10 cells 10 days after the final vaccination. Results It was revealed that shMUC1 suppressed B16F10 proliferative and colony formation capacity, induced the arrest of cell cycle in the G0/G1 phase, and adjusted the expression of EMT-associated factors. MUC1 downregulation markedly suppressed the effect of B16F10 vaccine against melanoma in a mouse model. As compared with B16F10-vaccinated mice, B16F10-vaccinated mice in which MUC1 was silenced had reduced natural killer (NK) cytotoxicity, lower production of interferon-γ (IFN-γ), anti-MUC1 antibodies, perforin, granzyme B, and elevated tumor growth factor-β (TGF-β) level. Conclusions MUC1 has strong melanoma vaccine immunogenicity, and induces the host's anti-tumor reaction. MUC1 knockdown inhibits the immune activity of B16F10 cell vaccine and anti-melanoma effect, suggesting the MUC1 is an important candidate target antigen of the melanoma vaccine.
Collapse
Affiliation(s)
- Fangfang Shi
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, China;,Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Rui Xue
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, China
| | - Hui Xu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, China
| | - Feng Mei
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, China
| | - Xueyang Bao
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
32
|
The oncoprotein MUC1 facilitates breast cancer progression by promoting Pink1-dependent mitophagy via ATAD3A destabilization. Cell Death Dis 2022; 13:899. [PMID: 36289190 PMCID: PMC9606306 DOI: 10.1038/s41419-022-05345-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
Mitophagy is a vital process that controls mitochondria quality, dysregulation of which can promote cancer. Oncoprotein mucin 1 (MUC1) targets mitochondria to attenuate drug-induced apoptosis. However, little is known about whether and how MUC1 contributes to mitochondrial homeostasis in cancer cells. We identified a novel role of MUC1 in promoting mitophagy. Increased mitophagy is coupled with the translocation of MUC1 to mitochondria, where MUC1 interacts with and induces degradation of ATPase family AAA domain-containing 3A (ATAD3A), resulting in protection of PTEN-induced kinase 1 (Pink1) from ATAD3A-mediated cleavage. Interestingly, MUC1-induced mitophagy is associated with increased oncogenicity of cancer cells. Similarly, inhibition of mitophagy significantly suppresses MUC1-induced cancer cell activity in vitro and in vivo. Consistently, MUC1 and ATAD3A protein levels present an inverse relationship in tumor tissues of breast cancer patients. Our data validate that MUC1/ATAD3A/Pink1 axis-mediated mitophagy constitutes a novel mechanism for maintaining the malignancy of cancer cells, providing a novel therapeutic approach for MUC1-positive cancers.
Collapse
|
33
|
Kufe DW. Emergence of MUC1 in Mammals for Adaptation of Barrier Epithelia. Cancers (Basel) 2022; 14:cancers14194805. [PMID: 36230728 PMCID: PMC9564314 DOI: 10.3390/cancers14194805] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The mucin 1 (MUC1) gene was discovered based on its overexpression in human breast cancers. Subsequent work demonstrated that MUC1 is aberrantly expressed in cancers originating from other diverse organs, including skin and immune cells. These findings supported a role for MUC1 in the adaptation of barrier tissues to infection and environmental stress. Of fundamental importance for this evolutionary adaptation was inclusion of a SEA domain, which catalyzes autoproteolysis of the MUC1 protein and formation of a non-covalent heterodimeric complex. The resulting MUC1 heterodimer is poised at the apical cell membrane to respond to loss of homeostasis. Disruption of the complex releases the MUC1 N-terminal (MUC1-N) subunit into a protective mucous gel. Conversely, the transmembrane C-terminal (MUC1-C) subunit activates a program of lineage plasticity, epigenetic reprogramming and repair. This MUC1-C-activated program apparently evolved for barrier tissues to mount self-regulating proliferative, inflammatory and remodeling responses associated with wound healing. Emerging evidence indicates that MUC1-C underpins inflammatory adaptation of tissue stem cells and immune cells in the barrier niche. This review focuses on how prolonged activation of MUC1-C by chronic inflammation in these niches promotes the cancer stem cell (CSC) state by establishing auto-inductive nodes that drive self-renewal and tumorigenicity.
Collapse
Affiliation(s)
- Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA
| |
Collapse
|
34
|
Fushimi A, Morimoto Y, Ishikawa S, Yamashita N, Bhattacharya A, Daimon T, Rajabi H, Jin C, Hagiwara M, Yasumizu Y, Luan Z, Suo W, Wong KK, Withers H, Liu S, Long MD, Kufe D. Dependence on the MUC1-C Oncoprotein in Classic, Variant, and Non-neuroendocrine Small Cell Lung Cancer. Mol Cancer Res 2022; 20:1379-1390. [PMID: 35612556 PMCID: PMC9437561 DOI: 10.1158/1541-7786.mcr-22-0165] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/27/2022] [Accepted: 05/20/2022] [Indexed: 01/07/2023]
Abstract
Small cell lung cancer (SCLC) is a recalcitrant malignancy defined by subtypes on the basis of differential expression of the ASCL1, NEUROD1, and POU2F3 transcription factors. The MUC1-C protein is activated in pulmonary epithelial cells by exposure to environmental carcinogens and promotes oncogenesis; however, there is no known association between MUC1-C and SCLC. We report that MUC1-C is expressed in classic neuroendocrine (NE) SCLC-A, variant NE SCLC-N and non-NE SCLC-P cells and activates the MYC pathway in these subtypes. In SCLC cells characterized by NE differentiation and DNA replication stress, we show that MUC1-C activates the MYC pathway in association with induction of E2F target genes and dysregulation of mitotic progression. Our studies further demonstrate that the MUC1-C→MYC pathway is necessary for induction of (i) NOTCH2, a marker of pulmonary NE stem cells that are the proposed cell of SCLC origin, and (ii) ASCL1 and NEUROD1. We also show that the MUC1-C→MYC→NOTCH2 network is necessary for self-renewal capacity and tumorigenicity of NE and non-NE SCLC cells. Analyses of datasets from SCLC tumors confirmed that MUC1 expression in single SCLC cells significantly associates with activation of the MYC pathway. These findings demonstrate that SCLC cells are addicted to MUC1-C and identify a potential new target for SCLC treatment. IMPLICATIONS This work uncovers addiction of SCLC cells to MUC1-C, which is a druggable target that could provide new opportunities for advancing SCLC treatment.
Collapse
Affiliation(s)
- Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yoshihiro Morimoto
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Satoshi Ishikawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Hasan Rajabi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Caining Jin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Masayuki Hagiwara
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yota Yasumizu
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Zhou Luan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Wenhao Suo
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York
| | - Henry Withers
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Song Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Mark D. Long
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.,Corresponding Authors: Donald Kufe, Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215. E-mail: ; and Mark D. Long, Roswell Park Comprehensive Cancer Center, Carlton & Elm Streets, Buffalo, NY 14263. E-mail:
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Corresponding Authors: Donald Kufe, Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215. E-mail: ; and Mark D. Long, Roswell Park Comprehensive Cancer Center, Carlton & Elm Streets, Buffalo, NY 14263. E-mail:
| |
Collapse
|
35
|
Yamashita N, Kufe D. Addiction of Cancer Stem Cells to MUC1-C in Triple-Negative Breast Cancer Progression. Int J Mol Sci 2022; 23:8219. [PMID: 35897789 PMCID: PMC9331006 DOI: 10.3390/ijms23158219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive malignancy with limited treatment options. TNBC progression is associated with expansion of cancer stem cells (CSCs). Few insights are available regarding druggable targets that drive the TNBC CSC state. This review summarizes the literature on TNBC CSCs and the compelling evidence that they are addicted to the MUC1-C transmembrane protein. In normal epithelia, MUC1-C is activated by loss of homeostasis and induces reversible wound-healing responses of inflammation and repair. However, in settings of chronic inflammation, MUC1-C promotes carcinogenesis. MUC1-C induces EMT, epigenetic reprogramming and chromatin remodeling in TNBC CSCs, which are dependent on MUC1-C for self-renewal and tumorigenicity. MUC1-C-induced lineage plasticity in TNBC CSCs confers DNA damage resistance and immune evasion by chronic activation of inflammatory pathways and global changes in chromatin architecture. Of therapeutic significance, an antibody generated against the MUC1-C extracellular domain has been advanced in a clinical trial of anti-MUC1-C CAR T cells and in IND-enabling studies for development as an antibody-drug conjugate (ADC). Agents targeting the MUC1-C cytoplasmic domain have also entered the clinic and are undergoing further development as candidates for advancing TNBC treatment. Eliminating TNBC CSCs will be necessary for curing this recalcitrant cancer and MUC1-C represents a promising druggable target for achieving that goal.
Collapse
Affiliation(s)
- Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
36
|
Mucin 1 Inhibits Ferroptosis and Sensitizes Vitamin E to Alleviate Sepsis-Induced Acute Lung Injury through GSK3 β/Keap1-Nrf2-GPX4 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2405943. [PMID: 35910848 PMCID: PMC9334047 DOI: 10.1155/2022/2405943] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
Background Ferroptosis is a nonapoptotic form of programmed cell death, which may be related to the occurrence and development of sepsis-induced acute respiratory distress syndrome (ARDS)/acute lung injury (ALI). Mucin 1 (MUC1) is a kind of macromolecule transmembrane glycoprotein. Previous studies have shown that MUC1 could relieve ALI in sepsis and predict whether sepsis patients would develop into ARDS. However, the role of MUC1 in the ferroptosis of sepsis-induced ALI/ARDS remains unclear. Materials and Methods Sera samples from 50 patients with sepsis/septic shock were used to detect iron metabolism-related markers. Western blot and qRT-PCR were conducted to detect the expression levels of ferroptosis-related genes. Enzyme-linked immunosorbent assay (ELISA) was performed to evaluate inflammatory factors. Transmission electron microscopy (TEM) was used to assess morphological changes of cells. Results The results showed that the iron metabolism-related indicators in sepsis-induced ARDS patients changed significantly, suggesting the iron metabolism disorder. The expression levels of ferroptosis-related genes in lung tissues of sepsis had marked changes, and the lipid peroxidation levels increased, while Ferrostatin-1 (Fer-1) could reverse the above results, which confirmed the occurrence of ferroptosis. In terms of mechanism studies, inhibition of MUC1 dimerization could increase the expression level of Keap1, reduce the phosphorylation level of GSK3β, inhibit the entry of Nrf2 into the nucleus, further inhibit the expression level of GPX4, enhance the lipid peroxidation level of lung tissues, trigger ferroptosis, and aggravate lung injury. Besides, inhibiting MUC1 reversed the alleviating effect of vitamin E on ALI caused by sepsis, increased the aggregation of inflammatory cells in lung tissues, and aggravated alveolar injury and edema. Conclusions Our study was the first to explore the changes of iron metabolism indicators in ALI/ARDS of sepsis, clarify the important role of ferroptosis in ALI/ARDS induced by sepsis, and reveal the effects and specific mechanisms of MUC1 in regulating ferroptosis, as well as the sensitization on vitamin E.
Collapse
|
37
|
MUC1-mediated Macrophage Activation Promotes Colitis-associated Colorectal Cancer via Activating the Interleukin-6/ Signal Transducer and Activator of Transcription 3 Axis. Cell Mol Gastroenterol Hepatol 2022; 14:789-811. [PMID: 35809803 PMCID: PMC9424590 DOI: 10.1016/j.jcmgh.2022.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS MUC1 is abnormally expressed in colorectal cancer, including colitis-associated colorectal cancer (CAC), but its role in tumorigenesis is unclear. This study investigated MUC1's effects in murine models of colitis and CAC and elucidated mechanisms of action. METHODS Colitis and CAC were induced in mice by exposure to dextran sodium sulfate or azoxymethane plus dextran sodium sulphate. Clinical parameters, immune cell infiltration, and tumor development were monitored throughout disease progression. Experiments in knockout mice and bone marrow chimeras were combined with an exploration of immune cell abundance and function. RESULTS Deficiency of Muc1 suppressed inflammation, inhibited tumor progression, increased abundance of CD8+ T lymphocytes, and reduced abundance of macrophages in colon tumors. Bone marrow chimeras showed promotion of CAC was primarily mediated by Muc1-expressing hematopoietic cells, and that MUC1 promoted a pro-tumoral immunosuppressive macrophage phenotype within tumors. Mechanistic studies revealed that Muc1 deficiency remarkably reduced interleukin-6 levels in the colonic tissues and tumors that was mainly produced by infiltrating macrophages at day 21, 42, and 85. In bone marrow-derived macrophages, MUC1 promoted responsiveness to chemoattractant and promoted activation into a phenotype with high Il6 and Ido1 expression, secreting factors which inhibited CD8+ T cell proliferation. MUC1 potently drives macrophages to produce interleukin-6, which in turn drives a pro-tumorigenic activation of signal transducer and activator of transcription 3 in colon epithelial tumor and stromal cells, ultimately increasing the occurrence and development of CAC. CONCLUSIONS Our findings provide cellular and molecular mechanisms for the pro-tumorigenic functions of MUC1 in the inflamed colon. Therapeutic strategies to inhibit MUC1 signal transduction warrant consideration for the prevention or therapy of CAC.
Collapse
|
38
|
Addiction of Merkel cell carcinoma to MUC1-C identifies a potential new target for treatment. Oncogene 2022; 41:3511-3523. [PMID: 35688945 PMCID: PMC9249628 DOI: 10.1038/s41388-022-02361-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 02/08/2023]
Abstract
Merkel cell carcinoma (MCC) is an aggressive malignancy with neuroendocrine (NE) features, limited treatment options, and a lack of druggable targets. There is no reported involvement of the MUC1-C oncogenic protein in MCC progression. We show here that MUC1-C is broadly expressed in MCCs and at higher levels in Merkel cell polyomavirus (MCPyV)-positive (MCCP) relative to MCPyV-negative (MCCN) tumors. Our results further demonstrate that MUC1-C is expressed in MCCP, as well as MCCN, cell lines and regulates common sets of signaling pathways related to RNA synthesis, processing, and transport in both subtypes. Mechanistically, MUC1-C (i) interacts with MYCL, which drives MCC progression, (ii) is necessary for expression of the OCT4, SOX2, KLF4, MYC, and NANOG pluripotency factors, and (iii) induces the NEUROD1, BRN2 and ATOH1 NE lineage dictating transcription factors. We show that MUC1-C is also necessary for MCCP and MCCN cell survival by suppressing DNA replication stress, the p53 pathway, and apoptosis. In concert with these results, targeting MUC1-C genetically and pharmacologically inhibits MCC self-renewal capacity and tumorigenicity. These findings demonstrate that MCCP and MCCN cells are addicted to MUC1-C and identify MUC1-C as a potential target for MCC treatment.
Collapse
|
39
|
Yamashita N, Fushimi A, Morimoto Y, Bhattacharya A, Hagiwara M, Yamamoto M, Hata T, Shapiro GI, Long MD, Liu S, Kufe D. Targeting MUC1-C Suppresses Chronic Activation of Cytosolic Nucleotide Receptors and STING in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14112580. [PMID: 35681561 PMCID: PMC9179855 DOI: 10.3390/cancers14112580] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Triple-negative breast cancers (TNBCs) are recalcitrant tumors with limited therapeutic options. Cytotoxic agents, including platinum-based drugs, are a standard of care for advanced TNBCs. Olaparib is also used for the treatment of germline BRCA mutant TNBC tumors in the adjuvant and recurrent disease settings. Notably, however, the effectiveness of these genotoxic agents is often limited by intrinsic and adaptive DNA damage resistance. We demonstrate in TNBC cells that the oncogenic MUC1-C protein chronically activates the type I interferon (IFN) pathway, drives the cGAS/STING axis and induces expression of the DNA damage resistance gene signature (IRDS). Targeting MUC1-C inhibits activation of this pathway in the response to carboplatin and olaparib and sensitizes TNBC cells to these agents. These findings indicate that MUC1-C is a target, which is druggable, for overcoming the obstacle of DNA damage resistance in the treatment of TNBCs. Abstract The MUC1-C apical transmembrane protein is activated in the acute response of epithelial cells to inflammation. However, chronic MUC1-C activation promotes cancer progression, emphasizing the importance of MUC1-C as a target for treatment. We report here that MUC1-C is necessary for intrinsic expression of the RIG-I, MDA5 and cGAS cytosolic nucleotide pattern recognition receptors (PRRs) and the cGAS-stimulator of IFN genes (STING) in triple-negative breast cancer (TNBC) cells. Consistent with inducing the PRR/STING axis, MUC1-C drives chronic IFN-β production and activation of the type I interferon (IFN) pathway. MUC1-C thereby induces the IFN-related DNA damage resistance gene signature (IRDS), which includes ISG15, in linking chronic inflammation with DNA damage resistance. Targeting MUC1-C in TNBC cells treated with carboplatin or the PARP inhibitor olaparib further demonstrated that MUC1-C is necessary for expression of PRRs, STING and ISG15 and for intrinsic DNA damage resistance. Of translational relevance, MUC1 significantly associates with upregulation of STING and ISG15 in TNBC tumors and is a target for treatment with CAR T cells, antibody–drug conjugates (ADCs) and direct inhibitors that are under preclinical and clinical development.
Collapse
Affiliation(s)
- Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA; (N.Y.); (A.F.); (Y.M.); (A.B.); (M.H.); (M.Y.); (T.H.); (G.I.S.)
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA; (N.Y.); (A.F.); (Y.M.); (A.B.); (M.H.); (M.Y.); (T.H.); (G.I.S.)
| | - Yoshihiro Morimoto
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA; (N.Y.); (A.F.); (Y.M.); (A.B.); (M.H.); (M.Y.); (T.H.); (G.I.S.)
| | - Atrayee Bhattacharya
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA; (N.Y.); (A.F.); (Y.M.); (A.B.); (M.H.); (M.Y.); (T.H.); (G.I.S.)
| | - Masayuki Hagiwara
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA; (N.Y.); (A.F.); (Y.M.); (A.B.); (M.H.); (M.Y.); (T.H.); (G.I.S.)
| | - Masaaki Yamamoto
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA; (N.Y.); (A.F.); (Y.M.); (A.B.); (M.H.); (M.Y.); (T.H.); (G.I.S.)
| | - Tsuyoshi Hata
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA; (N.Y.); (A.F.); (Y.M.); (A.B.); (M.H.); (M.Y.); (T.H.); (G.I.S.)
| | - Geoffrey I. Shapiro
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA; (N.Y.); (A.F.); (Y.M.); (A.B.); (M.H.); (M.Y.); (T.H.); (G.I.S.)
| | - Mark D. Long
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.D.L.); (S.L.)
| | - Song Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.D.L.); (S.L.)
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, D830, Boston, MA 02215, USA; (N.Y.); (A.F.); (Y.M.); (A.B.); (M.H.); (M.Y.); (T.H.); (G.I.S.)
- Correspondence:
| |
Collapse
|
40
|
Koltai T, Reshkin SJ, Carvalho TMA, Di Molfetta D, Greco MR, Alfarouk KO, Cardone RA. Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers (Basel) 2022; 14:2486. [PMID: 35626089 PMCID: PMC9139729 DOI: 10.3390/cancers14102486] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a poor prognosis and inadequate response to treatment. Many factors contribute to this therapeutic failure: lack of symptoms until the tumor reaches an advanced stage, leading to late diagnosis; early lymphatic and hematic spread; advanced age of patients; important development of a pro-tumoral and hyperfibrotic stroma; high genetic and metabolic heterogeneity; poor vascular supply; a highly acidic matrix; extreme hypoxia; and early development of resistance to the available therapeutic options. In most cases, the disease is silent for a long time, andwhen it does become symptomatic, it is too late for ablative surgery; this is one of the major reasons explaining the short survival associated with the disease. Even when surgery is possible, relapsesare frequent, andthe causes of this devastating picture are the low efficacy ofand early resistance to all known chemotherapeutic treatments. Thus, it is imperative to analyze the roots of this resistance in order to improve the benefits of therapy. PDAC chemoresistance is the final product of different, but to some extent, interconnected factors. Surgery, being the most adequate treatment for pancreatic cancer and the only one that in a few selected cases can achieve longer survival, is only possible in less than 20% of patients. Thus, the treatment burden relies on chemotherapy in mostcases. While the FOLFIRINOX scheme has a slightly longer overall survival, it also produces many more adverse eventsso that gemcitabine is still considered the first choice for treatment, especially in combination with other compounds/agents. This review discusses the multiple causes of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Khalid Omer Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| |
Collapse
|
41
|
Kufe DW. Chronic activation of MUC1-C in wound repair promotes progression to cancer stem cells. JOURNAL OF CANCER METASTASIS AND TREATMENT 2022; 8. [PMID: 35539431 PMCID: PMC9083497 DOI: 10.20517/2394-4722.2022.03] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mucin 1 (MUC1) gene emerged in mammals to afford protection of barrier epithelial tissues from the external environment. MUC1 encodes a transmembrane C-terminal (MUC1-C) subunit that is activated by loss of homeostasis and induces inflammatory, proliferative, and remodeling pathways associated with wound repair. As a consequence, chronic activation of MUC1-C promotes lineage plasticity, epigenetic reprogramming, and carcinogenesis. In driving cancer progression, MUC1-C is imported into the nucleus, where it induces NF-κB inflammatory signaling and the epithelial-mesenchymal transition (EMT). MUC1-C represses gene expression by activating (i) DNA methyltransferase 1 (DNMT1) and DNMT3b, (ii) Polycomb Repressive Complex 1 (PRC1) and PRC2, and (iii) the nucleosome remodeling and deacetylase (NuRD) complex. PRC1/2-mediated gene repression is counteracted by the SWI/SNF chromatin remodeling complexes. MUC1-C activates the SWI/SNF BAF and PBAF complexes in cancer stem cell (CSC) models with the induction of genome-wide differentially accessible regions and expressed genes. MUC1-C regulates chromatin accessibility of enhancer-like signatures in association with the induction of the Yamanaka pluripotency factors and recruitment of JUN and BAF, which promote increases in histone activation marks and opening of chromatin. These and other findings described in this review have uncovered a pivotal role for MUC1-C in integrating lineage plasticity and epigenetic reprogramming, which are transient in wound repair and sustained in promoting CSC progression.
Collapse
Affiliation(s)
- Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
42
|
Breugelmans T, Oosterlinck B, Arras W, Ceuleers H, De Man J, Hold GL, De Winter BY, Smet A. The role of mucins in gastrointestinal barrier function during health and disease. Lancet Gastroenterol Hepatol 2022; 7:455-471. [DOI: 10.1016/s2468-1253(21)00431-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022]
|
43
|
Pang Z, Dong X, Deng H, Wang C, Liao X, Liao C, Liao Y, Tian W, Cheng J, Chen G, Yi H, Huang L. MUC1 triggers lineage plasticity of Her2 positive mammary tumors. Oncogene 2022; 41:3064-3078. [DOI: 10.1038/s41388-022-02320-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/29/2022]
|
44
|
Bhattacharya A, Fushimi A, Yamashita N, Hagiwara M, Morimoto Y, Rajabi H, Long MD, Abdulla M, Ahmad R, Street K, Liu S, Liu T, Kufe D. MUC1-C Dictates JUN and BAF-Mediated Chromatin Remodeling at Enhancer Signatures in Cancer Stem Cells. Mol Cancer Res 2022; 20:556-567. [PMID: 35022313 PMCID: PMC8983489 DOI: 10.1158/1541-7786.mcr-21-0672] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022]
Abstract
The oncogenic MUC1-C protein promotes dedifferentiation of castrate-resistant prostate cancer (CRPC) and triple-negative breast cancer (TNBC) cells. Chromatin remodeling is critical for the cancer stem cell (CSC) state; however, there is no definitive evidence that MUC1-C regulates chromatin accessibility and thereby expression of stemness-associated genes. We demonstrate that MUC1-C drives global changes in chromatin architecture in the dedifferentiation of CRPC and TNBC cells. Our results show that MUC1-C induces differentially accessible regions (DAR) across their genomes, which are significantly associated with differentially expressed genes (DEG). Motif and cistrome analysis further demonstrated MUC1-C-induced DARs align with genes regulated by the JUN/AP-1 family of transcription factors. MUC1-C activates the BAF chromatin remodeling complex, which is recruited by JUN in enhancer selection. In studies of the NOTCH1 gene, which is required for CRPC and TNBC cell self-renewal, we demonstrate that MUC1-C is necessary for (i) occupancy of JUN and ARID1A/BAF, (ii) increases in H3K27ac and H3K4me3 signals, and (iii) opening of chromatin accessibility on a proximal enhancer-like signature. Studies of the EGR1 and LY6E stemness-associated genes further demonstrate that MUC1-C-induced JUN/ARID1A complexes regulate chromatin accessibility on proximal and distal enhancer-like signatures. These findings uncover a role for MUC1-C in chromatin remodeling that is mediated at least in part by JUN/AP-1 and ARID1A/BAF in association with driving the CSC state. IMPLICATIONS These findings show that MUC1-C, which is necessary for the CRPC and TNBC CSC state, activates a novel pathway involving JUN/AP-1 and ARID1A/BAF that regulates chromatin accessibility of stemness-associated gene enhancers.
Collapse
Affiliation(s)
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Masayuki Hagiwara
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yoshihiro Morimoto
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Hasan Rajabi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Maha Abdulla
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Kelly Street
- Department of Data Science, Dana-Farber Cancer Institute, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
45
|
Harris CC. Editor-In-Chief's Editorial 2022 January Issue 43:1. Carcinogenesis 2022; 43:1. [PMID: 35037690 DOI: 10.1093/carcin/bgab127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2023] Open
|
46
|
Luan Z, Morimoto Y, Fushimi A, Yamashita N, Suo W, Bhattacharya A, Hagiwara M, Jin C, Kufe D. MUC1-C dictates neuroendocrine lineage specification in pancreatic ductal adenocarcinomas. Carcinogenesis 2022; 43:67-76. [PMID: 34657147 PMCID: PMC8832436 DOI: 10.1093/carcin/bgab097] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 01/16/2023] Open
Abstract
Pancreatic ductal adenocarcinomas (PDAC) and poorly differentiated pancreatic neuroendocrine (NE) carcinomas are KRAS mutant malignancies with a potential common cell of origin. PDAC ductal, but not NE, lineage traits have been associated with cell-intrinsic activation of interferon (IFN) pathways. The present studies demonstrate that the MUC1 C-terminal subunit (MUC1-C), which evolved to protect mammalian epithelia from loss of homeostasis, is aberrantly overexpressed in KRAS mutant PDAC tumors and cell lines. We show that MUC1-C is necessary for activation of the type I and II IFN pathways and for expression of the Yamanaka OCT4, SOX2, KLF4 and MYC (OSKM) pluripotency factors. Our results demonstrate that MUC1-C integrates IFN signaling and pluripotency with NE dedifferentiation by forming a complex with MYC and driving the (i) achaete-scute homolog 1 and BRN2/POU3F2 neural, and (ii) NOTCH1/2 stemness transcription factors. Of translational relevance, targeting MUC1-C genetically and pharmacologically in PDAC cells (i) suppresses OSKM, NE dedifferentiation and NOTCH1/2, and (ii) inhibits self-renewal capacity and tumorigenicity. In PDAC tumors, we show that MUC1 significantly associates with activation of IFN signaling, MYC and NOTCH, and that upregulation of the MUC1-C → MYC pathway confers a poor prognosis. These findings indicate that MUC1-C dictates PDAC NE lineage specification and is a potential target for the treatment of recalcitrant pancreatic carcinomas with NE dedifferentiation.
Collapse
Affiliation(s)
- Zhou Luan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Molecular Epidemiology, Jikei University School of Medicine, Tokyo, Japan
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Wenhao Suo
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | | | - Masayuki Hagiwara
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Urology, Keio University Medical School, Tokyo, Japan
| | - Caining Jin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Hagiwara M, Fushimi A, Bhattacharya A, Yamashita N, Morimoto Y, Oya M, Withers HG, Hu Q, Liu T, Liu S, Wong KK, Long MD, Kufe D. MUC1-C integrates type II interferon and chromatin remodeling pathways in immunosuppression of prostate cancer. Oncoimmunology 2022; 11:2029298. [PMID: 35127252 PMCID: PMC8812775 DOI: 10.1080/2162402x.2022.2029298] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
The oncogenic MUC1-C protein drives dedifferentiation of castrate resistant prostate cancer (CRPC) cells in association with chromatin remodeling. The present work demonstrates that MUC1-C is necessary for expression of IFNGR1 and activation of the type II interferon-gamma (IFN-γ) pathway. We show that MUC1-C→ARID1A/BAF signaling induces IFNGR1 transcription and that MUC1-C-induced activation of the NuRD complex suppresses FBXW7 in stabilizing the IFNGR1 protein. MUC1-C and NuRD were also necessary for expression of the downstream STAT1 and IRF1 transcription factors. We further demonstrate that MUC1-C and PBRM1/PBAF are necessary for IRF1-induced expression of (i) IDO1, WARS and PTGES, which metabolically suppress the immune tumor microenvironment (TME), and (ii) the ISG15 and SERPINB9 inhibitors of T cell function. Of translational relevance, we show that MUC1 associates with expression of IFNGR1, STAT1 and IRF1, as well as the downstream IDO1, WARS, PTGES, ISG15 and SERPINB9 immunosuppressive effectors in CRPC tumors. Analyses of scRNA-seq data further demonstrate that MUC1 correlates with cancer stem cell (CSC) and IFN gene signatures across CRPC cells. Consistent with these results, MUC1 associates with immune cell-depleted "cold" CRPC TMEs. These findings demonstrate that MUC1-C integrates chronic activation of the type II IFN-γ pathway and induction of chromatin remodeling complexes in linking the CSC state with immune evasion.
Collapse
Affiliation(s)
- Masayuki Hagiwara
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Atsushi Fushimi
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Nami Yamashita
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Henry G. Withers
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kwok K. Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Mark D. Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Donald Kufe
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
48
|
Lin HJ, Liu Y, Lofland D, Lin J. Breast Cancer Tumor Microenvironment and Molecular Aberrations Hijack Tumoricidal Immunity. Cancers (Basel) 2022; 14:cancers14020285. [PMID: 35053449 PMCID: PMC8774102 DOI: 10.3390/cancers14020285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immune therapy is designed to stimulate tumoricidal effects in a variety of solid tumors including breast carcinomas. However, the emergence of resistant clones leads to treatment failure. Understanding the molecular, cellular, and microenvironmental aberrations is crucial to uncovering underlying mechanisms and developing advanced strategies for preventing or combating these resistant malignancies. This review will summarize research findings revealing various mechanisms employed to hijack innate and adaptive immune surveillance mechanisms, develop hypoxic and tumor promoting metabolism, and foster an immune tolerance microenvironment. In addition, it will highlight potential targets for therapeutic approaches. Abstract Breast cancer is the most common malignancy among females in western countries, where women have an overall lifetime risk of >10% for developing invasive breast carcinomas. It is not a single disease but is composed of distinct subtypes associated with different clinical outcomes and is highly heterogeneous in both the molecular and clinical aspects. Although tumor initiation is largely driven by acquired genetic alterations, recent data suggest microenvironment-mediated immune evasion may play an important role in neoplastic progression. Beyond surgical resection, radiation, and chemotherapy, additional therapeutic options include hormonal deactivation, targeted-signaling pathway treatment, DNA repair inhibition, and aberrant epigenetic reversion. Yet, the fatality rate of metastatic breast cancer remains unacceptably high, largely due to treatment resistance and metastases to brain, lung, or bone marrow where tumor bed penetration of therapeutic agents is limited. Recent studies indicate the development of immune-oncological therapy could potentially eradicate this devastating malignancy. Evidence suggests tumors express immunogenic neoantigens but the immunity towards these antigens is frequently muted. Established tumors exhibit immunological tolerance. This tolerance reflects a process of immune suppression elicited by the tumor, and it represents a critical obstacle towards successful antitumor immunotherapy. In general, immune evasive mechanisms adapted by breast cancer encompasses down-regulation of antigen presentations or recognition, lack of immune effector cells, obstruction of anti-tumor immune cell maturation, accumulation of immunosuppressive cells, production of inhibitory cytokines, chemokines or ligands/receptors, and up-regulation of immune checkpoint modulators. Together with altered metabolism and hypoxic conditions, they constitute a permissive tumor microenvironment. This article intends to discern representative incidents and to provide potential innovative therapeutic regimens to reinstate tumoricidal immunity.
Collapse
Affiliation(s)
- Huey-Jen Lin
- Department of Medical & Molecular Sciences, University of Delaware, Willard Hall Education Building, 16 West Main Street, Newark, DE 19716, USA
- Correspondence: ; Tel.: +1-302-831-7576; Fax: +1-302-831-4180
| | - Yingguang Liu
- Department of Molecular and Cellular Sciences, College of Osteopathic Medicine, Liberty University, 306 Liberty View Lane, Lynchburg, VA 24502, USA;
| | - Denene Lofland
- Department of Microbiology and Immunology, Tower Campus, Drexel University College of Medicine, 50 Innovation Way, Wyomissing, PA 19610, USA;
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, 108 N. Greene Street, Baltimore, MD 21201, USA;
| |
Collapse
|
49
|
Liao C, Yu L, Pang Z, Deng H, Liao X, Li S, Cheng J, Qi M, Chen G, Huang L. WWP1 targeting MUC1 for ubiquitin-mediated lysosomal degradation to suppress carcinogenesis. Signal Transduct Target Ther 2021; 6:297. [PMID: 34404764 PMCID: PMC8371114 DOI: 10.1038/s41392-021-00660-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/17/2021] [Accepted: 05/23/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Chunhua Liao
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Innovative research team of high-level local universities in Shanghai, Shanghai, P. R. China
| | - Liping Yu
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Zhi Pang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Innovative research team of high-level local universities in Shanghai, Shanghai, P. R. China.,Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, P. R. China
| | - Huayun Deng
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Innovative research team of high-level local universities in Shanghai, Shanghai, P. R. China
| | - Xiaodong Liao
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Innovative research team of high-level local universities in Shanghai, Shanghai, P. R. China
| | - Shengze Li
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Innovative research team of high-level local universities in Shanghai, Shanghai, P. R. China
| | - Jinke Cheng
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Innovative research team of high-level local universities in Shanghai, Shanghai, P. R. China
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China.
| | - Guoqiang Chen
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Innovative research team of high-level local universities in Shanghai, Shanghai, P. R. China.
| | - Lei Huang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Innovative research team of high-level local universities in Shanghai, Shanghai, P. R. China.
| |
Collapse
|
50
|
Hagiwara M, Fushimi A, Yamashita N, Bhattacharya A, Rajabi H, Long MD, Yasumizu Y, Oya M, Liu S, Kufe D. MUC1-C activates the PBAF chromatin remodeling complex in integrating redox balance with progression of human prostate cancer stem cells. Oncogene 2021; 40:4930-4940. [PMID: 34163028 PMCID: PMC8321896 DOI: 10.1038/s41388-021-01899-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/20/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022]
Abstract
The polybromo-associated PBAF (SWI/SNF) chromatin remodeling complex, which includes PBRM1, ARID2, and BRD7, regulates cell differentiation and genomic integrity. MUC1-C is an oncogenic protein that drives lineage plasticity in prostate cancer (PC) progression. The present work demonstrates that MUC1-C induces PBRM1, ARID2, and BRD7 expression by the previously unrecognized E2F1-mediated activation of their respective promoters. The functional significance of the MUC1-C→PBAF pathway is supported by demonstrating involvement of MUC1-C in associating with nuclear PBAF and driving the NRF2 antioxidant gene transcriptome in PC cells. Mechanistically, MUC1-C forms a complex with NRF2 and PBRM1 on the NRF2 target SLC7A11 gene that encodes the xCT cystine-glutamate antiporter, increases chromatin accessibility and induces SLC7A11/xCT expression. We also show that MUC1-C and PBRM1 are necessary for induction of other NRF2 target genes, including G6PD and PGD that regulate the pentose phosphate pathway. Our results further demonstrate that MUC1-C integrates activation of PBRM1 with the regulation of antioxidant genes, ROS levels, pluripotency factor expression and the cancer stem cell (CSC) state. These findings reveal a role for MUC1-C in regulating PBAF, redox balance and lineage plasticity of PC CSC progression. Our findings also uncover involvement of MUC1-C in integrating the PBAF and BAF pathways in cancer.
Collapse
Affiliation(s)
- Masayuki Hagiwara
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Hasan Rajabi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yota Yasumizu
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|