1
|
Koshkina DO, Maluchenko NV, Korovina AN, Lobanova AA, Feofanov AV, Studitsky VM. Resveratrol Inhibits Nucleosome Binding and Catalytic Activity of PARP1. Biomolecules 2024; 14:1398. [PMID: 39595575 PMCID: PMC11591765 DOI: 10.3390/biom14111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
The natural polyphenol resveratrol is a biologically active compound that interacts with DNA and affects the activity of some nuclear enzymes. Its effect on the interaction between nucleosomes and poly(ADP-ribose) polymerase-1 (PARP1) and on the catalytic activity of PARP1 was studied using Western blotting, spectrophotometry, electrophoretic mobility shift assay, and single particle Förster resonance energy transfer microscopy. Resveratrol inhibited PARP1 activity at micro- and sub-micromolar concentrations, but the inhibitory effect decreased at higher concentrations due to the aggregation of the polyphenol. The inhibition of PARP1 by resveratrol was accompanied by its binding to the enzyme catalytic center and a subsequent decrease in PARP1 affinity to nucleosomal DNA. Concurrent binding of talazoparib to the substrate binding pocket of PARP1, which occurs in the presence of resveratrol, restores the interaction of PARP1 with nucleosomes, suggesting that the binding sites of resveratrol and talazoparib overlap. The data suggest that resveratrol can be classified as a natural inhibitor of PARP1.
Collapse
Affiliation(s)
- Darya O. Koshkina
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 12, Leninskie Gory, Moscow 119234, Russia; (D.O.K.); (A.A.L.)
| | - Natalya V. Maluchenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 12, Leninskie Gory, Moscow 119234, Russia; (D.O.K.); (A.A.L.)
| | - Anna N. Korovina
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 12, Leninskie Gory, Moscow 119234, Russia; (D.O.K.); (A.A.L.)
| | - Angelina A. Lobanova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 12, Leninskie Gory, Moscow 119234, Russia; (D.O.K.); (A.A.L.)
| | - Alexey V. Feofanov
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 12, Leninskie Gory, Moscow 119234, Russia; (D.O.K.); (A.A.L.)
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117437, Russia
| | - Vasily M. Studitsky
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 12, Leninskie Gory, Moscow 119234, Russia; (D.O.K.); (A.A.L.)
- Cancer Epigenetics Team, Fox Chase Cancer Center, Cottman Avenue 333, Philadelphia, PA 19111, USA
| |
Collapse
|
2
|
Mandil R, Prakash A, Rahal A, Koli S, Kumar R, Garg SK. Evaluation of oxidative stress-mediated cytotoxicity and genotoxicity of copper and flubendiamide: amelioration by antioxidants in vivo and in vitro. Toxicol Res (Camb) 2023; 12:232-252. [PMID: 37125329 PMCID: PMC10141782 DOI: 10.1093/toxres/tfad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/03/2022] [Accepted: 01/30/2023] [Indexed: 03/09/2023] Open
Abstract
Present study was designed to evaluate toxic effects of copper (Cu) (@ 33 mg/kg b.wt.) and flubendimide (Flb) (@ 200 mg/kg b.wt.) alone and/or in combination on blood-biochemical indices, oxidative stress, and drug metabolizing enzymes (DMEs) in vivo in male Wistar rats following oral exposure continuously for 90 days and their immunotoxic (cyto-genotoxic and apoptotic) potential in vitro on thymocytes. In in vivo study, ameliorative potential of α-tocopherol was assessed, whereas α-tocopherol, curcumin, resveratrol, and catechin were evaluated for protective effect in vitro. Significantly (P < 0.05) increased AST activity and increment in total bilirubin, uric acid, creatinine, and BUN levels; however, reduction in total protein, GSH content, reduced activities of SOD and GST, and increased lipid peroxidation and GPx activity with severe degenerative changes in histopathological examination of liver and kidney in group of Cu and Flb were observed. Treatment with α-tocopherol improved biochemical variables, redox status, and histoarchitecture of liver and kidney tissues. Reduced hepatic CYP450, CYPb5, APH, UGT, and GST activities observed in both Cu and α-tocopherol alone and their combination groups, whereas significant increment in Flb alone, while α-tocopherol in combination with xenobiotics improved the activities of hepatic DMEs. Primary cell culture of thymocytes (106 cells/ml) exposed to Cu and Flb each @ 40 μM increased TUNEL+ve cells, micronuclei induction, DNA shearing, and comet formation establishes their apoptotic and genotoxic potential, whereas treatment with antioxidants showed concentration-dependent significant reduction and their order of potency on equimolar concentration (10 μM) basis is: curcumin > resveratrol > catechin = α-tocopherol.
Collapse
Affiliation(s)
- Rajesh Mandil
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India
| | - Atul Prakash
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India
| | - Anu Rahal
- Central Institute for Research on Goat (CIRG), Makhdoom, Farah, Mathura 281122, India
| | - Swati Koli
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India
| | - Rahul Kumar
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishvidyalay Evam Go- Anushandhan Sansthan (DUVASU), Near Civil Line, Mathura 281001, India
| | - Satish K Garg
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India
| |
Collapse
|
3
|
Sinha S, Chatterjee S, Paul S, Das B, Dash SR, Das C, Kundu CN. Olaparib enhances the Resveratrol-mediated apoptosis in breast cancer cells by inhibiting the homologous recombination repair pathway. Exp Cell Res 2022; 420:113338. [PMID: 36075449 DOI: 10.1016/j.yexcr.2022.113338] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/15/2022]
Abstract
Although sensitization of BRCA-mutated, homologous recombination (HR)-deficient breast cancer cells through PARP inhibitor is widely studied, not much is known about the treatment of BRCA-wild-type, HR-proficient breast cancer. Here, we aim to investigate whether a bioactive compound, Resveratrol (RES), can induce DNA double-strand breaks in HR-proficient breast cancer cells and Olaparib (OLA), a PARP inhibitor, can enhance the RES-mediated apoptosis by deregulating the HR repair pathway. The detailed mechanism of anti-cancer action of RES + OLA combination in breast cancer has been evaluated using in vitro, ex vivo, and in vivo preclinical model systems. OLA increased RES-mediated DNA damage, downregulated the HR pathway proteins, caused a late S/G2 cell cycle arrest, enhanced apoptosis and cell death in RES pre-treated breast cancer cells at much lower concentrations than their individual treatments. Direct measurement of HR pathway activity using a GFP plasmid-based assay demonstrated reduced HR efficiency in I-SceI endonuclease-transfected cells treated with OLA. Moreover, RES + OLA treatment also caused significant reduction in PARP1-mediated PARylation and efficiently trapped PARP1 at the DNA damage site. Upon RES treatment, PARylated PARP1 was found to interact with BRCA1, which then activated other HR pathway proteins. But after addition of OLA in RES pre-treated cells, PARP1 could not interact with BRCA1 due to inhibition of PARylation. This resulted in deregulation of HR pathway. To further confirm the role of BRCA1 in PARP1-mediated HR pathway activation, BRCA1 was knocked down that caused complete inhibition of HR pathway activity, and further enhanced apoptosis after RES + OLA treatment in BRCA1-silenced cells. In agreement with in vitro data, similar experimental results were obtained in ex vivo patient-derived breast cancer cells and in vivo xenograft mice. Thus, RES + OLA combination treatment enhanced breast cancer cell death by causing excessive DNA damage and also simultaneously inhibiting the HR pathway.
Collapse
Affiliation(s)
- Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Subhajit Chatterjee
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Subarno Paul
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Somya Ranjan Dash
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Chinmay Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
4
|
Dobrzyńska MM, Gajowik A. Protection and Mitigation by Resveratrol of DNA Damage Induced in Irradiated Human Lymphocytes In Vitro. Radiat Res 2022; 197:149-156. [PMID: 34724059 DOI: 10.1667/rade-20-00037.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/30/2021] [Indexed: 11/03/2022]
Abstract
The aim of this study was to examine the protective and/or mitigative properties of resveratrol (RSV) administered before or after irradiation of human lymphocytes in vitro. The isolated lymphocytes were incubated for 1 h with resveratrol, at doses of 0.1 (lowest), 0.5 (medium) or 1 (highest) mM/ml: 1 h before; immediately before; immediately after irradiation; and 1 h after irradiation with 0.5, 1 and 2 Gy. The degree of DNA damage was evaluated by Comet Assay. Treatment of human lymphocytes with resveratrol 1 h before or immediately after radiation exposure showed protection from radiation-induced DNA damage. However, 1 Gy irradiation + 1 mM/ml RSV, and 2 Gy irradiation + 0.5 and 1 mM/ml RSV 1 h before irradiation did not provide the same protection. Significant dose-dependent reduction of the level of DNA damage was observed after application of RSV immediately postirradiation or 1 h postirradiation. The reduction in DNA damage was the highest at the 0.1 dose of resveratrol. Our results lead to the conclusion that resveratrol may act both as a radioprotector as well as a radiomitigator. Resveratrol at the lowest (0.5 mM/ml) dose was more effective when combined with 0.5 and 1 Gy doses of radiation.
Collapse
Affiliation(s)
- Małgorzata M Dobrzyńska
- National Institute of Public Health NIH - National Research Institute, Department of Radiation Hygiene and Radiobiology, 00-791 Warsaw, Poland
| | - Aneta Gajowik
- National Institute of Public Health NIH - National Research Institute, Department of Radiation Hygiene and Radiobiology, 00-791 Warsaw, Poland
| |
Collapse
|
5
|
López de Felipe F, de las Rivas B, Muñoz R. Molecular Responses of Lactobacilli to Plant Phenolic Compounds: A Comparative Review of the Mechanisms Involved. Antioxidants (Basel) 2021; 11:antiox11010018. [PMID: 35052520 PMCID: PMC8772861 DOI: 10.3390/antiox11010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 01/23/2023] Open
Abstract
Lactobacilli are well-studied bacteria that can undergo oxidative selective pressures by plant phenolic compounds (PPCs) in plants, during some food fermentations or in the gastrointestinal tract of animals via dietary inputs. Lactobacilli are known to be more tolerant to PPCs than other bacterial groups and, therefore, must have mechanisms to cope with the effects of these metabolites. In this review, we intend to present what is currently known about the basics beyond the responses of Lactobacillus spp. to individual PPCs. We review the molecular mechanisms that are engaged in the PPC-modulated responses studied to date in these bacteria that have been mainly characterized by system-based strategies, and we discuss their differences and similarities. A wide variety of mechanisms are induced to increase the oxidative stress response highlighting the antimicrobial nature of PPCs. However other uncovered mechanisms that are involved in the response to these compounds are reviewed, including the capacity of PPCs to modulate the expression of molecular functions used by lactobacilli to adapt to host environments. This shows that these phytochemicals can act as more than just antimicrobial agents in the dual interaction with lactobacilli.
Collapse
|
6
|
Oğuz O, Adan A. Involvement of Sphingolipid Metabolism Enzymes in Resveratrol-Mediated Cytotoxicity in Philadelphia-Positive Acute Lymphoblastic Leukemia. Nutr Cancer 2021; 74:2508-2521. [PMID: 34806508 DOI: 10.1080/01635581.2021.2005806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Targeting the key enzymes of sphingolipid metabolism including serine palmitoyltransferase (SPT), sphingosine kinase (SK) and glucosylceramide synthase (GCS) has a therapeutic importance. However, sphingolipid metabolism-mediated anti-leukemic actions of resveratrol in Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL) remain unknown. Therefore, we explored potential mechanisms behind resveratrol-mediated cytotoxicity in SD1 and SUP-B15 Ph + ALL cells in the context of sphingolipid metabolism and apoptosis induction. The anti-proliferative and apoptotic effects of resveratrol alone and in combination with SPT inhibitor (myriocin), SK inhibitor (SKI II), GCS inhibitor (PDMP) were determined by MTT cell proliferation assay and flow cytometry, respectively. The effects of resveratrol on PARP cleavage, SPT, SK and GCS protein levels were investigated by Western blot. Resveratrol inhibited proliferation and triggered apoptosis via PARP activation and externalization of phosphatidylserine (PS). Resveratrol increased the expression of SPT whereas it downregulated SK and GCS. Resveratrol's combinations with SKI II and PDMP intensified its anti-leukemic activity by increasing the relocalization of PS while its combination with myriocin suppressed apoptosis. Therefore, resveratrol inhibited cell proliferation and induced apoptosis through modulating SK, GCS and SPT expression, which may be considered as novel biomarkers of resveratrol-induced cytotoxicity in Ph + ALL.
Collapse
Affiliation(s)
- Osman Oğuz
- Program of Bioengineering, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
7
|
Experimental evidence and mechanism of action of some popular neuro-nutraceutical herbs. Neurochem Int 2021; 149:105124. [PMID: 34245808 DOI: 10.1016/j.neuint.2021.105124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
Brain and neuronal circuits constitute the most complex organ networks in human body. They not only control and coordinate functions of all other organs, but also represent one of the most-affected systems with stress, lifestyle and age. With global increase in aging populations, these neuropathologies have emerged as major concern for maintaining quality of life. Recent era has witnessed a surge in nutritional remediation of brain dysfunctions primarily by "nutraceuticals" that refer to functional foods and supplements with pharmacological potential. Specific dietary patterns with a balanced intake of carbohydrates, fatty acids, vitamins and micronutrients have also been ascertained to promote brain health. Dietary herbs and their phytochemicals with wide range of biological and pharmacological activities and minimal adverse effects have gained remarkable attention as neuro-nutraceuticals. Neuro-nutraceutical potentials of herbs are often expressed as effects on cognitive response, circadian rhythm, neuromodulatory, antioxidant and anti-inflammatory activities that are mediated by effects on gene expression, epigenetics, protein synthesis along with their turnover and metabolic pathways. Epidemiological and experimental evidence have implicated enormous applications of herbal supplementation in neurodegenerative and psychiatric disorders. The present review highlights the identification, experimental evidence and applications of some herbs including Bacopa monniera, Withania somnifera, Curcuma longa, Helicteres angustifolia, Undaria pinnatifida, Haematococcus pluvialis, and Vitis vinifera, as neuro-nutraceuticals.
Collapse
|
8
|
Resveratrol Modulation of Apoptosis and Cell Cycle Response to Cisplatin in Head and Neck Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms22126322. [PMID: 34204834 PMCID: PMC8231609 DOI: 10.3390/ijms22126322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
In head and neck cancers, the effectiveness of cisplatin (CisPt) treatment is limited by its toxicity, especially when higher doses are necessary, and the possible occurrence of cisplatin resistance. This study evaluated the effects of resveratrol (RSV) on the expression of different genes involved in the response of human tumor cells (FaDu, PE/CA-PJ49) to cisplatin therapy. Our results revealed that RSV induced apoptosis amplification in both FaDu and PE/CA-PJ49 cells and modulated the expression of specific genes differently than in normal HaCaT cells. In FaDu cells, combined CisPt + RSV treatment induced an increase in apoptosis, which was associated with an increase in c-MYC and TP53 and a decrease in BCL-2 expression. While CisPt + RSV treatment induced apoptosis in PE/CA-PJ49 cells by inhibition of BCL-2 associated with high levels of MDM-2 and subsequently led to inhibition of TP53 gene expression. Decreased c-MYC expression in PE/CA-PJ49 treated with CisPt + RSV was accompanied by cell cycle blockage in G0/G1 phase. In conclusion, RSV influences tumor cell response to CisPt by inducing apoptosis and modulating gene expression. In addition, in normal HaCaT cells, RSV was able to reduce the harmful effects of CisPt.
Collapse
|
9
|
Mandil R, Prakash A, Rahal A, Singh SP, Sharma D, Kumar R, Garg SK. In vitro and in vivo effects of flubendiamide and copper on cyto-genotoxicity, oxidative stress and spleen histology of rats and its modulation by resveratrol, catechin, curcumin and α-tocopherol. BMC Pharmacol Toxicol 2020; 21:29. [PMID: 32326976 PMCID: PMC7179012 DOI: 10.1186/s40360-020-00405-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/20/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Living organisms are frequently exposed to more than one xenobiotic at a time either by ingestion of contaminated food/fodder or due to house-hold practices, occupational hazards or through environment. These xenobiotics interact individually or in combination with biological systems and act as carcinogen or produce other toxic effects including reproductive and degenerative diseases. Present study was aimed to investigate the cyto-genotoxic effects of flubendiamide and copper and ameliorative potential of certain natural phyotconstituent antioxidants. METHOD In vitro cytogenotoxic effects were evaluated by employing battery of assays including Propidium iodide staining, Tunel assay, Micronuclei, DNA fragmentation and Comet assay on isolated splenocytes and their prevention by resveratrol (5 and 10 μM), catechin (10 and 20 μM), curcumin (5 and 10 μM) and α-tocopherol (5, 10 and 20 μM). In vivo study was also undertaken daily oral administration of flubendiamide (200 mg/kg) or copper (33 mg/kg) and both these in combination, and also all these concurrently with of α-tocopherol to Wistar rats for 90 days. RESULTS Flubendiamide and copper produced concentration-dependent cytotoxic effects on splenocytes and at median lethal concentrations, flubendiamide (40 μM) and copper (40 μM) respectively produced 71 and 81% nonviable cells, higher number of Tunel+ve apoptotic cells, 7.86 and 9.16% micronucleus and 22.90 and 29.59 comets/100 cells and DNA fragmentation. In vivo study revealed significant (P < 0.05) increase in level of lipid peroxidation (LPO) and decrease in glutathione peroxidase (GPx), glutathione-S-transferase (GST) and superoxide dismutase (SOD) activities in groups exposed to flubendiamide or copper alone or both these in combination. Histopathological examination of rat spleens revealed depletion of lymphoid tissue, separation of splenocytes and rarification in splenic parenchyma of xenobiotic(s) treated groups. CONCLUSION Flubendiamide and copper induce oxidative stress and produce cytogenotoxic effects along with histoarchitectural changes in spleen. All four tested natural antioxidants (resveratrol, catechin, curcumin and α-tocopherol) reduced flubendiamide and copper-induced cytotoxic effects in rat splenocytes. Rat splenocytes are very sensitive to flubendiamide and copper-induced cytogenotoxicity, therefore, these can be effectively employed for screening of compounds for their cytogenotoxic potential. α-tocopherol was effective in restoring alterations in oxidative stress biomarkers and preventing histoarchitectural lesions in spleen.
Collapse
Affiliation(s)
- Rajesh Mandil
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Tecahnology, 250110, Meerut, India
| | - Atul Prakash
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go- Anusandhan Sansthan (DUVASU), -281001, Mathura, India
| | - Anu Rahal
- Division of Goat Health, Central Institute for Research on Goat (CIRG), Makhdoom, Farah, Mathura, Uttar Pradesh 281122 India
| | - S. P. Singh
- Department of Animal Genetics & Breeding, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), 281001, Mathura, India
| | - Deepak Sharma
- Department of Animal Genetics & Breeding, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), 281001, Mathura, India
| | - Rahul Kumar
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), 281001, Mathura, India
| | - Satish Kumar Garg
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go- Anusandhan Sansthan (DUVASU), -281001, Mathura, India
| |
Collapse
|
10
|
Pineda-Ramírez N, Calzada F, Alquisiras-Burgos I, Medina-Campos ON, Pedraza-Chaverri J, Ortiz-Plata A, Pinzón Estrada E, Torres I, Aguilera P. Antioxidant Properties and Protective Effects of Some Species of the Annonaceae, Lamiaceae, and Geraniaceae Families against Neuronal Damage Induced by Excitotoxicity and Cerebral Ischemia. Antioxidants (Basel) 2020; 9:E253. [PMID: 32244955 PMCID: PMC7139819 DOI: 10.3390/antiox9030253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
This study aimed to compare the antioxidant activities of extracts obtained from three plant families and evaluate their therapeutic effect on strokes. Ethanol extracts were obtained from either the leaf or the aerial parts of plants of the families Annonaceae (Annona cherimola, A. diversifolia, A. muricata, A. purpurea, and A. reticulata), Lamiaceae (Salvia amaríssima and S. polystachya), and Geraniaceae (Geranium niveum and G. mexicanum). Extracts were analyzed in terms of hydroxyl radical (OH•), peroxyl radical (ROO•), and superoxide anion (O2•-). The efficiency of the extracts to prevent neuronal death induced by excitotoxicity was tested with the tetrazolium assay, the O2•- scavenging capacity was evaluated with the dihydroethidium dye, and the protective effect of the extracts with the highest antioxidant activity was tested on a stroke experimental model. The extracts' IC50 values (μg/mL) of scavenging varied from 98.9 to 155.04, 4.5 to 102.4, and 20.2 to 118.97 for OH•, ROO•, and O2•-, respectively. In the excitotoxicity model, Annonaceae extracts were highly cytotoxic while Lamiaceae and Geraniaceae reduced intracellular O2•- production and protect neurons against oxidative stress. Salvia polystachya reduced cerebral damage, as well as improved survival and behavior after ischemia. Our results encouraged the use of plant extracts as natural antioxidants to minimize neuronal injury following stroke.
Collapse
Affiliation(s)
- Narayana Pineda-Ramírez
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, México CDMX 14269, Mexico; (N.P.-R.); (I.A.-B.)
| | - Fernando Calzada
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, 2 piso CORSE, Centro Médico Nacional Siglo XXI, IMSS, México CDMX 06725, Mexico;
| | - Iván Alquisiras-Burgos
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, México CDMX 14269, Mexico; (N.P.-R.); (I.A.-B.)
| | - Omar Noel Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México CDMX 04510, Mexico; (O.N.M.-C.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México CDMX 04510, Mexico; (O.N.M.-C.); (J.P.-C.)
| | - Alma Ortiz-Plata
- Laboratorio de Neuropatología Experimental. Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, México CDMX 14269, Mexico;
| | - Enrique Pinzón Estrada
- Unidad del Bioterio, Facultad de Medicina, Universidad Nacional Autónoma de México, México CDMX 04510, Mexico; (E.P.E.); (I.T.)
| | - Ismael Torres
- Unidad del Bioterio, Facultad de Medicina, Universidad Nacional Autónoma de México, México CDMX 04510, Mexico; (E.P.E.); (I.T.)
| | - Penélope Aguilera
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, México CDMX 14269, Mexico; (N.P.-R.); (I.A.-B.)
| |
Collapse
|
11
|
Hsieh TC, Chao HH, Wu JM. Control of DNA structure and function by phytochemicals/DNA interaction: Resveratrol/piceatannol induces Cu 2+-independent, cleavage of supercoiled plasmid DNA. Free Radic Biol Med 2020; 147:212-219. [PMID: 31891751 DOI: 10.1016/j.freeradbiomed.2019.12.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022]
Abstract
Topoisomerases are enzymes that catalyze DNA unwinding and scissions to resolve topological entanglements possibly arising during DNA replication/transcription. Chemicals which disrupt or inhibit topoisomerase-mediated DNA unwinding can induce breaks that subsequently lead to programmed cell death. Herein we perform experiments guided by the following considerations. First, topoisomerase 1 initiates DNA cleavage utilizing the hydroxyl group of tyrosine 723 on its catalytic site as a nucleophile to attack the electrophilic phosphate on the DNA sugar-phosphate backbone. Secondly, the grape polyphenol resveratrol displays both topoisomerase inhibitory and Cu2+-dependent DNA-cutting activities, which contribute to its DNA replication/transcription inhibitory/anti-tumorigenic effects. Lastly, resveratrol contains a tyrosine-like phenolic ring; thus, upon binding to DNA whether resveratrol could act as a tyrosine mimetic to unwind and cut DNA via its hydroxyl groups warrants investigation. Polyphenol-DNA interactions (PDIs) were investigated using UV-visible spectral analysis; additionally, PDI mediated DNA changes were further analyzed by agarose gel electrophoresis using 3 supercoiled plasmid DNAs (pBR322, pSJ3, pHOT-1) as substrates. Resveratrol mediates time- and temperature-dependent, Cu2+-independent, non-enzymatic cleavage of supercoiled plasmid DNA into open, circular DNA products. Varying degree of unwinding of supercoiled DNA nucleolytic activity was also observed with other polyphenols including, piceatannol, quercetin, myricetin and EGCG. Interestingly, we found that piceatannol mediated Cu2+-independent DNA-cleavage activity was abolished by EDTA. The PDI-mediated nucleolytic cleavage of supercoiled DNA reported herein shows that polyphenolic phytochemicals display genome-active, nuclear effects by directly targeting the DNA topology which in turn could impact macromolecular processes associated with faithful replication and transmission of genetic information.
Collapse
Affiliation(s)
- Tze-Chen Hsieh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Hsiao Hsiang Chao
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Joseph M Wu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
12
|
Ullrich CI, Aloni R, Saeed MEM, Ullrich W, Efferth T. Comparison between tumors in plants and human beings: Mechanisms of tumor development and therapy with secondary plant metabolites. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153081. [PMID: 31568956 DOI: 10.1016/j.phymed.2019.153081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Human tumors are still a major threat to human health and plant tumors negatively affect agricultural yields. Both areas of research are developing largely independent of each other. Treatment of both plant and human tumors remains unsatisfactory and novel therapy options are urgently needed. HYPOTHESIS The concept of this paper is to compare cellular and molecular mechanisms of tumor development in plants and human beings and to explore possibilities to develop novel treatment strategies based on bioactive secondary plant metabolites. The interdisciplinary discourse may unravel commonalities and differences in the biology of plant and human tumors as basis for rational drug development. RESULTS Plant tumors and galls develop upon infection by bacteria (e.g. Agrobacterium tumefaciens and A. vitis, which harbor oncogenic T-DNA) and by insects (e.g. gall wasps, aphids). Plant tumors are benign, i.e. they usually do not ultimately kill their host, but they can lead to considerable economic damage due to reduced crop yields of cultivated plants. Human tumors develop by biological carcinogenesis (i.e. viruses and other infectious agents), chemical carcinogenesis (anthropogenic and non-anthropogenic environmental toxic xenobiotics) and physical carcinogenesis (radioactivity, UV-radiation). The majority of human tumors are malignant with lethal outcome. Although treatments for both plant and human tumors are available (antibiotics and apathogenic bacterial strains for plant tumors, cytostatic drugs for human tumors), treatment successes are non-satisfactory, because of drug resistance and the severe adverse side effects. In human beings, attacks by microbes are repelled by cellular immunity (i.e. innate and acquired immune systems). Plants instead display chemical defense mechanisms, whereby constitutively expressed phytoanticipin compounds compare to the innate human immune system, the acquired human immune system compares to phytoalexins, which are induced by appropriate biotic or abiotic stressors. Some chemical weapons of this armory of secondary metabolites are also active against plant galls. There is a mutual co-evolution between plant defense and animals/human beings, which was sometimes referred to as animal plant warfare. As a consequence, hepatic phase I-III metabolization and excretion developed in animals and human beings to detoxify harmful phytochemicals. On the other hand, plants invented "pro-drugs" during evolution, which are activated and toxified in animals by this hepatic biotransformation system. Recent efforts focus on phytochemicals that specifically target tumor-related mechanisms and proteins, e.g. angiogenic or metastatic inhibitors, stimulators of the immune system to improve anti-tumor immunity, specific cell death or cancer stem cell inhibitors, inhibitors of DNA damage and epigenomic deregulation, specific inhibitors of driver genes of carcinogenesis (e.g. oncogenes), inhibitors of multidrug resistance (i.e. ABC transporter efflux inhibitors), secondary metabolites against plant tumors. CONCLUSION The exploitation of bioactive secondary metabolites to treat plant or human tumors bears a tremendous therapeutic potential. Although there are fundamental differences between human and plant tumors, either isolated phytochemicals and their (semi)synthetic derivatives or chemically defined and standardized plant extracts may offer new therapy options to decrease human tumor incidence and mortality as well as to increase agricultural yields by fighting crown galls.
Collapse
Affiliation(s)
- Cornelia I Ullrich
- Department of Biology, Darmstadt University of Technology, Schnittspahnstr. 3-5, Darmstadt 64287, Germany
| | - Roni Aloni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz 55128, Germany
| | - Wolfram Ullrich
- Department of Biology, Darmstadt University of Technology, Schnittspahnstr. 3-5, Darmstadt 64287, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz 55128, Germany.
| |
Collapse
|
13
|
Lachance JC, Radhakrishnan S, Madiwale G, Guerrier S, Vanamala JKP. Targeting hallmarks of cancer with a food-system-based approach. Nutrition 2019; 69:110563. [PMID: 31622909 DOI: 10.1016/j.nut.2019.110563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/27/2019] [Accepted: 07/24/2019] [Indexed: 11/29/2022]
Abstract
Although extensive resources are dedicated to the development and study of cancer drugs, the cancer burden is expected to rise by about 70% over the next 2 decade. This highlights a critical need to develop effective, evidence-based strategies for countering the global rise in cancer incidence. Except in high-risk populations, cancer drugs are not generally suitable for use in cancer prevention owing to potential side effects and substantial monetary costs (Sporn, 2011). There is overwhelming epidemiological and experimental evidence that the dietary bioactive compounds found in whole plant-based foods have significant anticancer and chemopreventative properties. These bioactive compounds often exert pleiotropic effects and act synergistically to simultaneously target multiple pathways of cancer. Common bioactive compounds in fruits and vegetables include carotenoids, glucosinolates, and polyphenols. These compounds have been shown to target multiple hallmarks of cancer in vitro and in vivo and potentially to address the diversity and heterogeneity of certain cancers. Although many studies have been conducted over the past 30 y, the scientific community has still not reached a consensus on exactly how the benefit of bioactive compounds in fruits and vegetables can be best harnessed to help reduce the risk for cancer. Different stages of the food processing system, from "farm-to-fork," can affect the retention of bioactive compounds and thus the chemopreventative properties of whole foods, and there are opportunities to improve handling of foods throughout the stages in order to best retain their chemopreventative properties. Potential target stages include, but are not limited to, pre- and postharvest management, storage, processing, and consumer practices. Therefore, there is a need for a comprehensive food-system-based approach that not only taking into account the effects of the food system on anticancer activity of whole foods, but also exploring solutions for consumers, policymakers, processors, and producers. Improved knowledge about this area of the food system can help us adjust farm-to-fork operations in order to consistently and predictably deliver desired bioactive compounds, thus better utilizing them as invaluable chemopreventative tools in the fight to reduce the growing burden of cancer worldwide.
Collapse
Affiliation(s)
- James C Lachance
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
| | - Sridhar Radhakrishnan
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA; Research Diets, Inc., New Brunswick, New Jersey, USA
| | | | - Stéphane Guerrier
- Geneva School of Economics and Management & Faculty of Science, University of Geneva, Switzerland
| | - Jairam K P Vanamala
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA; The Pennsylvania State Hershey Cancer Institute, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA.
| |
Collapse
|
14
|
Nair MS, Shukla A. Molecular modeling, simulation and principal component analysis of binding of resveratrol and its analogues with DNA. J Biomol Struct Dyn 2019; 38:3087-3097. [PMID: 31476951 DOI: 10.1080/07391102.2019.1662849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Structure-based drug designing has become a significant subject of research, and several clinically promising DNA binding compounds were evolved using this technique. The interaction of an octamer DNA sequence d(CCAATTGG)2 with a natural stilbene, resveratrol and its analogues have been studied using molecular docking method. Out of the ten compounds studied, seven compounds were found to bind to the minor groove of AATT segment of the sequence. Pterostilbene, a natural analogue of resveratrol, showed the lowest binding energy. Rhaponticin, a natural analogue of resveratrol and digalloylresveratrol, a synthetic ester of resveratrol bind to the major groove of the AATT segment while dihydroresveratrol binds to the minor groove of GC terminal base pair. ADMET (Absorption, distribution, metabolism, excretion and toxicity) study showed that all compounds obey Lipinski rule and are accepted as orally active drugs based on different physicochemical descriptors. Molecular dynamics simulations were performed for the complex with lowest binding energy and trajectory analysis were performed. Principal component analysis has been performed to underline the prominent motions in alone DNA and when it is bound to pterostilbene. AbbreviationsADMETAbsorption, distribution, metabolism, excretion and toxicityDIGDigalloyl resveratrolDNADeoxyribonucleic acidELElectrostatic energyENPOLARNonpolar solvation energyESURFSurface areaGBGeneralized BornHBAHydrogen bond acceptorsHBDHydrogen bond donorsLGALamarckian genetic algorithmMDMolecular dynamicsPBPoisson-BoltzmannPCAPrincipal component analysisPTPterostilbeneRMSDRoot mean square deviationSASimulated annealingTLX3T-cell leukemia homeobox 3VDWvan der WaalsCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maya S Nair
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Aishwarya Shukla
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
15
|
Bracesco N, Sosa V, Blanc L, Contreras V, Candreva EC, Salvo VA, Hocart S, Mechoso B, Nunes E. Analysis of radioprotection and antimutagenic effects of Ilex paraguariensis infusion and its component rutin. ACTA ACUST UNITED AC 2018; 51:e7404. [PMID: 30020319 PMCID: PMC6050948 DOI: 10.1590/1414-431x20187404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/23/2018] [Indexed: 02/08/2023]
Abstract
DNA repair pathways, cell cycle checkpoints, and redox protection systems are essential factors for securing genomic stability. The aim of the present study was to analyze the effect of Ilex paraguariensis (Ip) infusion and one of its polyphenolic components rutin on cellular and molecular damage induced by ionizing radiation. Ip is a beverage drank by most inhabitants of Argentina, Paraguay, Southern Brazil, and Uruguay. The yeast Saccharomyces cerevisiae (SC7Klys 2-3) was used as the eukaryotic model. Exponentially growing cells were exposed to gamma rays (γ) in the presence or absence of Ip or rutin. The concentrations used simulated those found in the habitual infusion. Surviving fractions, mutation frequency, and DNA double-strand breaks (DSB) were determined after treatments. A significant increase in surviving fractions after gamma irradiation was observed following combined exposure to γ+R, or γ+Ip. Upon these concomitant treatments, mutation and DSB frequency decreased significantly. In the mutant strain deficient in MEC1, a significant increase in γ sensitivity and a low effect of rutin on γ-induced chromosomal fragmentation was observed. Results were interpreted in the framework of a model of interaction between radiation-induced free radicals, DNA repair pathways, and checkpoint controls, where the DNA damage that induced activation of MEC1 nodal point of the network could be modulated by Ip components including rutin. Furthermore, ionizing radiation-induced redox cascades can be interrupted by rutin potential and other protectors contained in Ip.
Collapse
Affiliation(s)
- N Bracesco
- Radiobiology Laboratory, Department of Biophysics, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - V Sosa
- Radiobiology Laboratory, Department of Biophysics, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - L Blanc
- Radiobiology Laboratory, Department of Biophysics, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - V Contreras
- Radiobiology Laboratory, Department of Biophysics, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - E C Candreva
- Radiobiology Laboratory, Department of Biophysics, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - V A Salvo
- Cancer Research Laboratory, Ponce School of Medicine Health Sciences, Ponce, Puerto Rico.,Cardiovascular Research Laboratory, Ponce School of Medicine Health Sciences, Ponce, Puerto Rico
| | - S Hocart
- Peptide Research, Department of Medicine, Tulane University, New Orleans, LA, USA
| | - B Mechoso
- Radiobiology Laboratory, Department of Biophysics, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - E Nunes
- Radiobiology Laboratory, Department of Biophysics, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| |
Collapse
|
16
|
Huderson AC, Rekha Devi PV, Niaz MS, Adunyah SE, Ramesh A. Alteration of benzo(a)pyrene biotransformation by resveratrol in Apc Min/+ mouse model of colon carcinogenesis. Invest New Drugs 2018; 37:238-251. [PMID: 29931584 DOI: 10.1007/s10637-018-0622-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/11/2018] [Indexed: 12/30/2022]
Abstract
Epidemiological surveys have revealed that environmental and dietary factors contribute to most of the human cancers. Our earlier studies have shown that resveratrol (RVT), a phytochemical reduced the tumor number, size and incidence of dysplasias induced by benzo(a)pyrene (BaP), an environmental toxicant in the ApcMin/+ mouse model of colon cancer. In this study we investigated to ascertain whether the preventive effects of RVT on BaP-induced colon carcinogenesis is a result of altered BaP biotransformation by RVT. For the first group of mice, 100 μg BaP/kg bw was administered in peanut oil via oral gavage over a 60 day period. For the second group, 45 μg RVT/kg bw was co-administered with BaP. For the third group, RVT was administered for 1 week prior to BaP exposure. Blood, colon and liver were collected from control and BaP/RVT-treated mice at 60 days post-BaP & RVT exposure. We have assayed activities and expression (protein & mRNA) of drug metabolizing enzymes such as cytochrome P4501A1 (CYP1A1), CYP1B1, and glutathione-S-transferase (GST) in colon and liver samples from the treatment groups mentioned above. An increased expression of CYP1A1 in liver and colon and of CYP1B1 in liver of BaP-treated mice was seen, while RVT inhibited the extent of biotransformation mediated by these enzymes in the respective tissue samples. In the case of GST, an increased expression in colon of BaP alone-treated mice was noted when RVT was administered prior to BaP or simultaneously with BaP. However, there is no change in liver GST expression between BaP and RVT treatment groups. The concentrations of BaP aqueous (phase II) metabolites were found to be greater than the organic (phase I) metabolites, suggesting that RVT slows down the phase I metabolism (metabolic activation) of BaP, while enhancing phase II metabolism (detoxification). Additionally, the BaP-DNA adduct concentrations measured in colon and liver of BaP + RVT-treated mice were low relative to their BaP counterparts. Taken together, our findings strongly suggest that RVT alleviates BaP-induced colon carcinogenesis by impairing biotransformation pathways and DNA adduct formation, and therefore holds promise as a chemopreventive agent.
Collapse
Affiliation(s)
- Ashley C Huderson
- The American Society of Mechanical Engineers, 1828 L St. N.W, Washington, DC, 20036, USA
| | - P V Rekha Devi
- Toxicology and Pharmacology Unit, Biology Division, Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Mohammad S Niaz
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN, 37208, USA
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN, 37208, USA
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN, 37208, USA.
| |
Collapse
|
17
|
Reverón I, Plaza-Vinuesa L, Franch M, de Las Rivas B, Muñoz R, López de Felipe F. Transcriptome-Based Analysis in Lactobacillus plantarum WCFS1 Reveals New Insights into Resveratrol Effects at System Level. Mol Nutr Food Res 2018; 62:e1700992. [PMID: 29573169 DOI: 10.1002/mnfr.201700992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/16/2018] [Indexed: 12/12/2022]
Abstract
SCOPE This study was undertaken to expand our insights into the mechanisms involved in the tolerance to resveratrol (RSV) that operate at system-level in gut microorganisms and advance knowledge on new RSV-responsive gene circuits. METHODS AND RESULTS Whole genome transcriptional profiling was used to characterize the molecular response of Lactobacillus plantarum WCFS1 to RSV. DNA repair mechanisms were induced by RSV and responses were triggered to decrease the load of copper, a metal required for RSV-mediated DNA cleavage, and H2 S, a genotoxic gas. To counter the effects of RSV, L. plantarum strongly up- or downregulated efflux systems and ABC transporters pointing to transport control of RSV across the membrane as a key mechanism for RSV tolerance. L. plantarum also downregulated tRNAs, induced chaperones, and reprogrammed its transcriptome to tightly control ammonia levels. RSV induced a probiotic effector gene and a likely deoxycholate transporter, two functions that improve the host health status. CONCLUSION Our data identify novel protective mechanisms involved in RSV tolerance operating at system level in a gut microbe. These insights could influence the way RSV is used for a better management of gut microbial ecosystems to obtain associated health benefits.
Collapse
Affiliation(s)
- Inés Reverón
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN-CSIC), 28040, Madrid, Spain
| | - Laura Plaza-Vinuesa
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN-CSIC), 28040, Madrid, Spain
| | - Mónica Franch
- National Center for Biotechnology (CNB-CSIC), 28049, Madrid, Spain
| | - Blanca de Las Rivas
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN-CSIC), 28040, Madrid, Spain
| | - Rosario Muñoz
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN-CSIC), 28040, Madrid, Spain
| | - Félix López de Felipe
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN-CSIC), 28040, Madrid, Spain
| |
Collapse
|
18
|
Craveiro M, Cretenet G, Mongellaz C, Matias MI, Caron O, de Lima MCP, Zimmermann VS, Solary E, Dardalhon V, Dulić V, Taylor N. Resveratrol stimulates the metabolic reprogramming of human CD4 + T cells to enhance effector function. Sci Signal 2017; 10:10/501/eaal3024. [PMID: 29042482 DOI: 10.1126/scisignal.aal3024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The polyphenol resveratrol activates the deacetylase Sirt1, resulting in various antioxidant, chemoprotectant, neuroprotective, cardioprotective, and anti-inflammatory properties. We found that at high concentrations of resveratrol, human CD4+ T cells showed defective antigen receptor signaling and arrest at the G1 stage of the cell cycle, whereas at low concentrations, cells were readily activated and exhibited enhanced Sirt1 deacetylase activity. Nevertheless, low-dose resveratrol rapidly stimulated genotoxic stress in the T cells, which resulted in engagement of a DNA damage response pathway that depended on the kinase ATR [ataxia telangiectasia-mutated (ATM) and Rad3-related], but not ATM, and subsequently in premitotic cell cycle arrest. The concomitant activation of p53 was coupled to the expression of gene products that regulate cell metabolism, leading to a metabolic reprogramming that was characterized by decreased glycolysis, increased glutamine consumption, and a shift to oxidative phosphorylation. These alterations in the bioenergetic homeostasis of CD4+ T cells resulted in enhanced effector function, with both naïve and memory CD4+ T cells secreting increased amounts of the inflammatory cytokine interferon-γ. Thus, our data highlight the wide range of metabolic adaptations that CD4+ T lymphocytes undergo in response to genomic stress.
Collapse
Affiliation(s)
- Marco Craveiro
- IGMM, CNRS, Université de Montpellier, Montpellier, France.,CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | - Maria I Matias
- IGMM, CNRS, Université de Montpellier, Montpellier, France
| | - Olivier Caron
- INSERM U1170, Gustave Roussy Cancer Center, Villejuif, France.,Faculty of Medicine, Université Paris-Sud, Le Kremlin-Bicêtre, France
| | | | | | - Eric Solary
- INSERM U1170, Gustave Roussy Cancer Center, Villejuif, France.,Faculty of Medicine, Université Paris-Sud, Le Kremlin-Bicêtre, France
| | | | | | - Naomi Taylor
- IGMM, CNRS, Université de Montpellier, Montpellier, France.
| |
Collapse
|
19
|
Nair MS, D'Mello S, Pant R, Poluri KM. Binding of resveratrol to the minor groove of DNA sequences with AATT and TTAA segments induces differential stability. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:217-224. [DOI: 10.1016/j.jphotobiol.2017.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/06/2017] [Accepted: 04/16/2017] [Indexed: 12/21/2022]
|
20
|
Alamolhodaei NS, Tsatsakis AM, Ramezani M, Hayes AW, Karimi G. Resveratrol as MDR reversion molecule in breast cancer: An overview. Food Chem Toxicol 2017; 103:223-232. [DOI: 10.1016/j.fct.2017.03.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/05/2017] [Accepted: 03/13/2017] [Indexed: 12/25/2022]
|
21
|
Liu Y, Wu X, Hu X, Chen Z, Liu H, Takeda S, Qing Y. Multiple repair pathways mediate cellular tolerance to resveratrol-induced DNA damage. Toxicol In Vitro 2017; 42:130-138. [PMID: 28431926 DOI: 10.1016/j.tiv.2017.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/01/2017] [Accepted: 04/12/2017] [Indexed: 02/05/2023]
Abstract
Resveratrol (RSV) has been reported to exert health benefits for the prevention and treatment of many diseases, including cancer. The anticancer mechanisms of RSV seem to be complex and may be associated with genotoxic potential. To better understand the genotoxic mechanisms, we used wild-type (WT) and a panel of isogenic DNA-repair deficient DT40 cell lines to identify the DNA damage effects and molecular mechanisms of cellular tolerance to RSV. Our results showed that RSV induced significant formation of γ-H2AX foci and chromosome aberrations (CAs) in WT cells, suggesting direct DNA damage effects. Comparing the survival of WT with isogenic DNA-repair deficient DT40 cell lines demonstrated that single strand break repair (SSBR) deficient cell lines of Parp1-/-, base excision repair (BER) deficient cell lines of Polβ-/-, homologous recombination (HR) mutants of Brca1-/- and Brca2-/- and translesion DNA synthesis (TLS) mutants of Rev3-/- and Rad18-/- were more sensitive to RSV. The sensitivities of cells were associated with enhanced DNA damage comparing the accumulation of γ-H2AX foci and number of CAs of isogenic DNA-repair deficient DT40 cell lines with WT cells. These results clearly demonstrated that RSV-induced DNA damage in DT40 cells, and multiple repair pathways including BER, SSBR, HR and TLS, play critical roles in response to RSV- induced genotoxicity.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems of Education Ministry, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaohua Wu
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems of Education Ministry, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xiaoqing Hu
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems of Education Ministry, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziyuan Chen
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems of Education Ministry, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Liu
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems of Education Ministry, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yong Qing
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems of Education Ministry, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
22
|
Wang Z, Gu Z, Shen Y, Wang Y, Li J, Lv H, Huo K. The Natural Product Resveratrol Inhibits Yeast Cell Separation by Extensively Modulating the Transcriptional Landscape and Reprogramming the Intracellular Metabolome. PLoS One 2016; 11:e0150156. [PMID: 26950930 PMCID: PMC4780762 DOI: 10.1371/journal.pone.0150156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/10/2016] [Indexed: 12/28/2022] Open
Abstract
An increasing number of studies have shown that the promising compound resveratrol treats multiple diseases, such as cancer and aging; however, the resveratrol mode-of-action (MoA) remains largely unknown. Here, by virtue of multiple omics approaches, we adopted fission yeast as a model system with the goal of dissecting the common MoA of the anti-proliferative activity of resveratrol. We found that the anti-proliferative activity of resveratrol is mainly due to its unique role of inhibiting the separation of sister cells, similar phenotype with the C2H2 zinc finger transcription factor Ace2 knock-out strain. Microarray analysis shown that resveratrol has extensive impact on the fission yeast transcription levels. Among the changed gene's list, 40% of up-regulated genes are Core Environmental Stress Responses genes, and 57% of the down-regulated genes are periodically expressed. Moreover, resveratrol leverages the metabolome, which unbalances the intracellular pool sizes of several classes of amino acids, nucleosides, sugars and lipids, thus reflecting the remodulated metabolic networks. The complexity of the resveratrol MoA displayed in previous reports and our work demonstrates that multiple omics approaches must be applied together to obtain a complete picture of resveratrol's anti-proliferative function.
Collapse
Affiliation(s)
- Zhe Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Song-Hu Road, Shanghai, 200438, China
- Division of Infectious Diseases, Weill Medical College of Cornell University, 413 E 69th St, New York, NY, 10021, United States of America
- * E-mail: (KH); (ZW); (HL)
| | - Zhongkai Gu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Song-Hu Road, Shanghai, 200438, China
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai, 200032, China
| | - Yan Shen
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai, 200032, China
| | - Yang Wang
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai, 200032, China
| | - Jing Li
- Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, 100084, China
| | - Hong Lv
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Song-Hu Road, Shanghai, 200438, China
- * E-mail: (KH); (ZW); (HL)
| | - Keke Huo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Song-Hu Road, Shanghai, 200438, China
- * E-mail: (KH); (ZW); (HL)
| |
Collapse
|
23
|
Keservani RK, Sharma AK, Kesharwani RK. Medicinal Effect of Nutraceutical Fruits for the Cognition and Brain Health. SCIENTIFICA 2016; 2016:3109254. [PMID: 26966612 PMCID: PMC4757744 DOI: 10.1155/2016/3109254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
The recent era is witnessing evaluation of medicinal and nutritional value of fruits and fruit juices for the management and prevention of brain diseases like headache stress, anxiety, hypertension, and Alzheimer's and Parkinson's diseases by the scientists and researchers worldwide. Fruits possess various chemicals such as antioxidants and polyphenols, which reduce and balance the effect of hormone in brain responsible for brain disease. Natural remedy is cheap, easily available, nontoxic, and easy to prepare and provides good mental health as compared to other remedies. The main objective of this review is to acknowledge medicinal benefits of fruits for the cognition and management of brain disease.
Collapse
Affiliation(s)
- Raj K. Keservani
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal 462036, India
| | - Anil K. Sharma
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, New Delhi 110017, India
| | - Rajesh K. Kesharwani
- Department of Biotechnology, NIET, NIMS University, Shobha Nagar, Jaipur, Rajasthan 303121, India
| |
Collapse
|
24
|
Schroeter A, Groh IAM, Del Favero G, Pignitter M, Schueller K, Somoza V, Marko D. Inhibition of topoisomerase II by phase II metabolites of resveratrol in human colon cancer cells. Mol Nutr Food Res 2015; 59:2448-59. [DOI: 10.1002/mnfr.201500352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Anika Schroeter
- Department of Food Chemistry and Toxicology; Faculty of Chemistry; University of Vienna; Vienna Austria
| | - Isabel Anna Maria Groh
- Department of Food Chemistry and Toxicology; Faculty of Chemistry; University of Vienna; Vienna Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology; Faculty of Chemistry; University of Vienna; Vienna Austria
| | - Marc Pignitter
- Department of Nutritional and Physiological Chemistry; Faculty of Chemistry; University of Vienna; Vienna Austria
| | - Katharina Schueller
- Department of Nutritional and Physiological Chemistry; Faculty of Chemistry; University of Vienna; Vienna Austria
| | - Veronika Somoza
- Department of Nutritional and Physiological Chemistry; Faculty of Chemistry; University of Vienna; Vienna Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology; Faculty of Chemistry; University of Vienna; Vienna Austria
| |
Collapse
|
25
|
Ferguson LR, Chen H, Collins AR, Connell M, Damia G, Dasgupta S, Malhotra M, Meeker AK, Amedei A, Amin A, Ashraf SS, Aquilano K, Azmi AS, Bhakta D, Bilsland A, Boosani CS, Chen S, Ciriolo MR, Fujii H, Guha G, Halicka D, Helferich WG, Keith WN, Mohammed SI, Niccolai E, Yang X, Honoki K, Parslow VR, Prakash S, Rezazadeh S, Shackelford RE, Sidransky D, Tran PT, Yang ES, Maxwell CA. Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Semin Cancer Biol 2015; 35 Suppl:S5-S24. [PMID: 25869442 PMCID: PMC4600419 DOI: 10.1016/j.semcancer.2015.03.005] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 03/08/2015] [Accepted: 03/13/2015] [Indexed: 02/06/2023]
Abstract
Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a global scale but it is accepted that personalized treatments, those that are tailored to the particular patient and type of cancer, must also be developed. In this review, we detail the mechanisms from which genomic instability arises and can lead to cancer, as well as treatments and measures that prevent genomic instability or take advantage of the cellular defects caused by genomic instability. In particular, we identify and discuss five priority targets against genomic instability: (1) prevention of DNA damage; (2) enhancement of DNA repair; (3) targeting deficient DNA repair; (4) impairing centrosome clustering; and, (5) inhibition of telomerase activity. Moreover, we highlight vitamin D and B, selenium, carotenoids, PARP inhibitors, resveratrol, and isothiocyanates as priority approaches against genomic instability. The prioritized target sites and approaches were cross validated to identify potential synergistic effects on a number of important areas of cancer biology.
Collapse
Affiliation(s)
| | - Helen Chen
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, Canada
| | - Andrew R Collins
- Department of Nutrition, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marisa Connell
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, Canada
| | - Giovanna Damia
- Department of Oncology, Instituti di Ricovero e Cura a Carattere Scientifico-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Santanu Dasgupta
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, United States
| | | | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Katia Aquilano
- Department of Biology, Università di Roma Tor Vergata, Rome, Italy
| | - Asfar S Azmi
- Department of Biology, University of Rochester, Rochester, United States
| | - Dipita Bhakta
- School of Chemical and BioTechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Chandra S Boosani
- Department of BioMedical Sciences, Creighton University, Omaha, NE, United States
| | - Sophie Chen
- Department of Research & Development, Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey, United Kingdom
| | | | - Hiromasa Fujii
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Gunjan Guha
- School of Chemical and BioTechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Kanya Honoki
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | | | - Satya Prakash
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Sarallah Rezazadeh
- Department of Biology, University of Rochester, Rochester, United States
| | - Rodney E Shackelford
- Department of Pathology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Phuoc T Tran
- Departments of Radiation Oncology & Molecular Radiation Sciences, Oncology and Urology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Christopher A Maxwell
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, Canada.
| |
Collapse
|
26
|
Schmidt HHHW, Stocker R, Vollbracht C, Paulsen G, Riley D, Daiber A, Cuadrado A. Antioxidants in Translational Medicine. Antioxid Redox Signal 2015; 23:1130-43. [PMID: 26154592 PMCID: PMC4657516 DOI: 10.1089/ars.2015.6393] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE It is generally accepted that reactive oxygen species (ROS) scavenging molecules or antioxidants exert health-promoting effects and thus their consumption as food additives and nutraceuticals has been greatly encouraged. Antioxidants may be beneficial in situations of subclinical deficiency and increased demand or acutely upon high-dose infusion. However, to date, there is little clinical evidence for the long-term benefit of most antioxidants. Alarmingly, recent evidence points even to health risks, in particular for supplements of lipophilic antioxidants. RECENT ADVANCES The biological impact of ROS depends not only on their quantities but also on their chemical nature, (sub)cellular and tissue location, and the rates of their formation and degradation. Moreover, ROS serve important physiological functions; thus, inappropriate removal of ROS may cause paradoxical reductive stress and thereby induce or promote disease. CRITICAL ISSUES Any recommendation on antioxidants must be based on solid clinical evidence and patient-relevant outcomes rather than surrogate parameters. FUTURE DIRECTIONS Such evidence-based use may include site-directed application, time-limited high dosing, (functional) pharmacological repair of oxidized biomolecules, and triggers of endogenous antioxidant response systems. Ideally, these approaches need guidance by patient stratification through predictive biomarkers and possibly imaging modalities.
Collapse
Affiliation(s)
- Harald H H W Schmidt
- 1 Department of Pharmacology, CARIM, FHML, MIAS, Maastricht University , Maastricht, The Netherlands
| | - Roland Stocker
- 2 Victor Chang Cardiac Research Institute , Sydney, Australia .,3 University of New South Wales , Sydney, Australia
| | - Claudia Vollbracht
- 4 Hochschule Fresenius, University of Applied Sciences , Idstein, Germany
| | | | - Dennis Riley
- 6 Galera Therapeutics Inc., Malvern, Pennsylvania
| | - Andreas Daiber
- 7 Labor für Molekulare Kardiologie, II. Medizinische Klinik und Poliklinik, Universitätsmedizin der Johannes Gutenberg-Universität , Mainz, Germany
| | - Antonio Cuadrado
- 8 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , ISCIII, Madrid, Spain .,9 Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC , Madrid, Spain .,10 Instituto de Investigación Sanitaria La Paz (IdiPaz) , Madrid, Spain .,11 Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid , Madrid, Spain
| |
Collapse
|
27
|
Structural modeling for DNA binding to antioxidants resveratrol, genistein and curcumin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 151:69-75. [DOI: 10.1016/j.jphotobiol.2015.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 01/07/2023]
|
28
|
Steven S, Münzel T, Daiber A. Exploiting the Pleiotropic Antioxidant Effects of Established Drugs in Cardiovascular Disease. Int J Mol Sci 2015; 16:18185-223. [PMID: 26251902 PMCID: PMC4581241 DOI: 10.3390/ijms160818185] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/20/2015] [Accepted: 07/27/2015] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease is a leading cause of death and reduced quality of life worldwide. Arterial vessels are a primary target for endothelial dysfunction and atherosclerosis, which is accompanied or even driven by increased oxidative stress. Recent research in this field identified different sources of reactive oxygen and nitrogen species contributing to the pathogenesis of endothelial dysfunction. According to lessons from the past, improvement of endothelial function and prevention of cardiovascular disease by systemic, unspecific, oral antioxidant therapy are obviously too simplistic an approach. Source- and cell organelle-specific antioxidants as well as activators of intrinsic antioxidant defense systems might be more promising. Since basic research demonstrated the contribution of different inflammatory cells to vascular oxidative stress and clinical trials identified chronic inflammatory disorders as risk factors for cardiovascular events, atherosclerosis and cardiovascular disease are closely associated with inflammation. Therefore, modulation of the inflammatory response is a new and promising approach in the therapy of cardiovascular disease. Classical anti-inflammatory therapeutic compounds, but also established drugs with pleiotropic immunomodulatory abilities, demonstrated protective effects in various models of cardiovascular disease. However, results from ongoing clinical trials are needed to further evaluate the value of immunomodulation for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Sebastian Steven
- Medical Clinic, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
| | - Thomas Münzel
- Medical Clinic, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
| | - Andreas Daiber
- Medical Clinic, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
| |
Collapse
|
29
|
Mikhed Y, Görlach A, Knaus UG, Daiber A. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair. Redox Biol 2015; 5:275-289. [PMID: 26079210 PMCID: PMC4475862 DOI: 10.1016/j.redox.2015.05.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications). By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease.
Collapse
Affiliation(s)
- Yuliya Mikhed
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Agnes Görlach
- German Heart Center Munich at the Technical University Munich, DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Andreas Daiber
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
30
|
Bathaie SZ, Faridi N, Nasimian A, Heidarzadeh H, Tamanoi F. How Phytochemicals Prevent Chemical Carcinogens and/or Suppress Tumor Growth? Enzymes 2015; 37:1-42. [PMID: 26298454 DOI: 10.1016/bs.enz.2015.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phytochemicals are a powerful group of chemicals that are derived from natural resource, especially with plants origin. They have shown to exhibit chemoprevention and chemotherapeutic effects not only in cell lines and in animal models of cancer but also some of them are in the clinical trial phase I and II. Despite numerous reports of these phytochemical effects on cancer, an overview of the mechanisms of their action and their effects on various cellular and molecular functions important in the inhibition of cancer progression has been lacking. In this review, we attempt to catalogue various studies to examine the effect of phytochemicals in cancer initiation, promotion, signaling, and epigenetic changes. Because of the numerous studies in these topics, we only pointed out to some examples in each section.
Collapse
Affiliation(s)
- S Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA.
| | - Nasim Faridi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Nasimian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamid Heidarzadeh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
31
|
Abraham SK, Khandelwal N, Hintzsche H, Stopper H. Antigenotoxic effects of resveratrol: assessment of in vitro and in vivo response. Mutagenesis 2015; 31:27-33. [PMID: 26152226 DOI: 10.1093/mutage/gev048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Experiments were performed to evaluate the in vitro and in vivo dose response for antigenotoxic effects of resveratrol (RES). For the in vitro study, HL-60 cells were co-treated with the test genotoxin and three concentrations of RES. Thereafter, genotoxic effects were assessed in the cytokinesis-block micronucleus test. Results of the in vitro experiments using genotoxins nitroquinoline-1-oxide (NQO) and mitomycin C (MMC) showed maximum inhibition of genotoxicity with the lowest test concentration of RES. The mouse bone marrow micronucleus assay was used for evaluating the in vivo antigenotoxic effects of RES against genotoxins diepoxybutane (DEB), MMC, methyl methanesulfonate and procarbazine (PCB). The experimental animals received RES pre-treatment by gavage 30min, 24 and 48h before injecting the genotoxin intraperitoneally. The in vivo studies demonstrated efficacy of the lowest test dose of RES for exerting maximum protection against chromosomal damage induced by all four genotoxins. The antigenotoxic effect observed with 6.25mg/kg RES was significantly higher than that of 100mg/kg RES against PCB and DEB. In conclusion, the findings from the present study indicate that lower test concentrations/doses of RES are more effective in exerting antigenotoxic effects.
Collapse
Affiliation(s)
| | | | - Henning Hintzsche
- Institut für Pharmakologie und Toxikologie, Universität Würzburg 97078, Würzburg, Germany
| | - Helga Stopper
- Institut für Pharmakologie und Toxikologie, Universität Würzburg 97078, Würzburg, Germany
| |
Collapse
|
32
|
N'soukpoé-Kossi CN, Bourassa P, Mandeville JS, Bekale L, Bariyanga J, Tajmir-Riahi HA. Locating the binding sites of antioxidants resveratrol, genistein and curcumin with tRNA. Int J Biol Macromol 2015; 80:41-7. [PMID: 26093317 DOI: 10.1016/j.ijbiomac.2015.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 12/26/2022]
Abstract
We located the binding sites of antioxidants resveratrol, genistein and curcumin on tRNA in aqueous solution at physiological conditions using constant tRNA concentration and various polyphenol contents. FTIR, UV-visible, CD spectroscopic methods and molecular modeling were used to determine polyphenol binding sites, the binding constant and the effects of polyphenol complexation on tRNA conformation and particle formation. Structural analysis showed that polyphenols bind tRNA via G-C and A-U base pairs through hydrophilic, hydrophobic and H-bonding contacts with overall binding constants of K(res-tRNA)=8.95(±0.80)×10(3) M(-1), K(gen-tRNA)=3.07(±0.5)×10(3) M(-1) and K(cur-tRNA)=1.55(±0.3)×10(4) M(-1). Molecular modeling showed the participation of several nucleobases in polyphenol-tRNA adduct formation with free binding energy of -4.43 for resveratrol, -4.26 kcal/mol for genistein and -4.84 kcal/mol for curcumin, indicating that the interaction process is spontaneous at room temperature. While tRNA remains in A-family structure, major biopolymer aggregation and particle formation occurred at high polyphenol contents.
Collapse
Affiliation(s)
- C N N'soukpoé-Kossi
- Department of Chemistry-Physics, Université du Québec à Trois-Riviéres, C. P. 500v, Trois-Riviéres, Québec, Canada G9A 5H7
| | - P Bourassa
- Department of Chemistry-Physics, Université du Québec à Trois-Riviéres, C. P. 500v, Trois-Riviéres, Québec, Canada G9A 5H7
| | - J S Mandeville
- Department of Chemistry-Physics, Université du Québec à Trois-Riviéres, C. P. 500v, Trois-Riviéres, Québec, Canada G9A 5H7
| | - L Bekale
- Department of Chemistry-Physics, Université du Québec à Trois-Riviéres, C. P. 500v, Trois-Riviéres, Québec, Canada G9A 5H7
| | - J Bariyanga
- Department of Chemistry, University of Hawaii-West O'ahu, 96-129 Ala Ike, Pearl City, HI 96782, USA
| | - H A Tajmir-Riahi
- Department of Chemistry-Physics, Université du Québec à Trois-Riviéres, C. P. 500v, Trois-Riviéres, Québec, Canada G9A 5H7.
| |
Collapse
|
33
|
Pandey RP, Parajuli P, Shin JY, Lee J, Lee S, Hong YS, Park YI, Kim JS, Sohng JK. Enzymatic Biosynthesis of Novel Resveratrol Glucoside and Glycoside Derivatives. Appl Environ Microbiol 2014; 80:7235-43. [PMID: 25239890 PMCID: PMC4249177 DOI: 10.1128/aem.02076-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/27/2014] [Indexed: 11/20/2022] Open
Abstract
A UDP glucosyltransferase from Bacillus licheniformis was overexpressed, purified, and incubated with nucleotide diphosphate (NDP) d- and l-sugars to produce glucose, galactose, 2-deoxyglucose, viosamine, rhamnose, and fucose sugar-conjugated resveratrol glycosides. Significantly higher (90%) bioconversion of resveratrol was achieved with α-d-glucose as the sugar donor to produce four different glucosides of resveratrol: resveratrol 3-O-β-d-glucoside, resveratrol 4'-O-β-d-glucoside, resveratrol 3,5-O-β-d-diglucoside, and resveratrol 3,5,4'-O-β-d-triglucoside. The conversion rates and numbers of products formed were found to vary with the other NDP sugar donors. Resveratrol 3-O-β-d-2-deoxyglucoside and resveratrol 3,5-O-β-d-di-2-deoxyglucoside were found to be produced using TDP-2-deoxyglucose as a donor; however, the monoglycosides resveratrol 4'-O-β-d-galactoside, resveratrol 4'-O-β-d-viosaminoside, resveratrol 3-O-β-l-rhamnoside, and resveratrol 3-O-β-l-fucoside were produced from the respective sugar donors. Altogether, 10 diverse glycoside derivatives of the medically important resveratrol were generated, demonstrating the capacity of YjiC to produce structurally diverse resveratrol glycosides.
Collapse
Affiliation(s)
- Ramesh Prasad Pandey
- Institute of Biomolecule Reconstruction, Department of Pharmaceutical Engineering, Sun Moon University, Tangjeonmyun, Asan-si, Chungnam, South Korea
| | - Prakash Parajuli
- Institute of Biomolecule Reconstruction, Department of Pharmaceutical Engineering, Sun Moon University, Tangjeonmyun, Asan-si, Chungnam, South Korea
| | - Ju Yong Shin
- Institute of Biomolecule Reconstruction, Department of Pharmaceutical Engineering, Sun Moon University, Tangjeonmyun, Asan-si, Chungnam, South Korea
| | - Jisun Lee
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Seul Lee
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Young-Soo Hong
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Chungbuk, South Korea
| | - Yong Il Park
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Joong Su Kim
- Bioindustry Process Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology, Jeonbuk, Jeong-Ub, South Korea
| | - Jae Kyung Sohng
- Institute of Biomolecule Reconstruction, Department of Pharmaceutical Engineering, Sun Moon University, Tangjeonmyun, Asan-si, Chungnam, South Korea
| |
Collapse
|
34
|
Resveratrol mediated cell death in cigarette smoke transformed breast epithelial cells is through induction of p21Waf1/Cip1 and inhibition of long patch base excision repair pathway. Toxicol Appl Pharmacol 2014; 275:221-31. [PMID: 24467951 DOI: 10.1016/j.taap.2014.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/20/2013] [Accepted: 01/14/2014] [Indexed: 12/30/2022]
Abstract
Cigarette smoking is a key factor for the development and progression of different cancers including mammary tumor in women. Resveratrol (Res) is a promising natural chemotherapeutic agent that regulates many cellular targets including p21, a cip/kip family of cyclin kinase inhibitors involved in DNA damage-induced cell cycle arrest and blocking of DNA replication and repair. We have recently shown that cigarette smoke condensate (CSC) prepared from commercially available Indian cigarette can cause neoplastic transformation of normal breast epithelial MCF-10A cell. Here we studied the mechanism of Res mediated apoptosis in CSC transformed (MCF-10A-Tr) cells in vitro and in vivo. Res mediated apoptosis in MCF-10A-Tr cells was a p21 dependent event. It increased the p21 protein expression in MCF-10A-Tr cells and MCF-10A-Tr cells-mediated tumors in xenograft mice. Res treatment reduced the tumor size(s) and expression of anti-apoptotic proteins (e.g. PI3K, AKT, NFκB) in solid tumor. The expressions of cell cycle regulatory (Cyclins, CDC-2, CDC-6, etc.), BER associated (Pol-β, Pol-δ, Pol-ε, Pol-η, RPA, Fen-1, DNA-Ligase-I, etc.) proteins and LP-BER activity decreased in MCF-10A-Tr cells but remain significantly unaltered in isogenic p21 null MCF-10A-Tr cells after Res treatment. Interestingly, no significant changes were noted in SP-BER activity in both the cell lines after Res exposure. Finally, it was observed that increased p21 blocks the LP-BER in MCF-10A-Tr cells by increasing its interaction with PCNA via competing with Fen-1 after Res treatment. Thus, Res caused apoptosis in CSC-induced cancer cells by reduction of LP-BER activity and this phenomenon largely depends on p21.
Collapse
|
35
|
Lu LY, Ou N, Lu QB. Antioxidant induces DNA damage, cell death and mutagenicity in human lung and skin normal cells. Sci Rep 2013; 3:3169. [PMID: 24201298 PMCID: PMC3821017 DOI: 10.1038/srep03169] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/23/2013] [Indexed: 12/31/2022] Open
Abstract
Clinical trials have shown that antioxidant supplementation increased the risk of lung and skin cancers, but the underlying molecular mechanism is unknown. Here, we show that epigallocatechin gallate (EGCG) as an exemplary antioxidant induced significant death and DNA damage in human lung and skin normal cells through a reductive mechanism. Our results show direct evidence of reductive DNA damage in the cells. We found that EGCG was much more toxic against normal cells than H₂O₂ and cisplatin as toxic and cancer-causing agents, while EGCG at low concentrations (≤100 μM) increased slightly the lung cancer cell viability. EGCG induced DNA double-strand breaks and apoptosis in normal cells and enhanced the mutation frequency. These results provide a compelling explanation for the clinical results and unravel a new reductive damaging mechanism in cellular processes. This study therefore provides a fresh understanding of aging and diseases, and may lead to effective prevention and therapies.
Collapse
Affiliation(s)
- Linda Y. Lu
- Department of Physics and Astronomy and Departments of Biology and Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Ning Ou
- Department of Physics and Astronomy and Departments of Biology and Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Qing-Bin Lu
- Department of Physics and Astronomy and Departments of Biology and Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
36
|
Eseberri I, Lasa A, Churruca I, Portillo MP. Resveratrol metabolites modify adipokine expression and secretion in 3T3-L1 pre-adipocytes and mature adipocytes. PLoS One 2013; 8:e63918. [PMID: 23717508 PMCID: PMC3661556 DOI: 10.1371/journal.pone.0063918] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/09/2013] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Due to the low bioavailability of resveratrol, determining whether its metabolites exert any beneficial effect is an interesting issue. METHODS 3T3-L1 maturing pre-adipocytes were treated during differentiation with 25 µM of resveratrol or with its metabolites and 3T3-L1 mature adipocytes were treated for 24 hours with 10 µM resveratrol or its metabolites. The gene expression of adiponectin, leptin, visfatin and apelin was assessed by Real Time RT-PCR and their concentration in the incubation medium was quantified by ELISA. RESULTS Resveratrol reduced mRNA levels of leptin and increased those of adiponectin. It induced the same changes in leptin secretion. Trans-resveratrol-3-O-glucuronide and trans-resveratrol-4'-O-glucuronide increased apelin and visfatin mRNA levels. Trans-resveratrol-3-O-sulfate reduced leptin mRNA levels and increased those of apelin and visfatin. CONCLUSIONS The present study shows for the first time that resveratrol metabolites have a regulatory effect on adipokine expression and secretion. Since resveratrol has been reported to reduce body-fat accumulation and to improve insulin sensitivity, and considering that these effects are mediated in part by changes in the analyzed adipokines, it may be proposed that resveratrol metabolites play a part in these beneficial effects of resveratrol.
Collapse
Affiliation(s)
- Itziar Eseberri
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU), Vitoria, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Arrate Lasa
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU), Vitoria, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Itziar Churruca
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU), Vitoria, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU), Vitoria, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
37
|
Nutlin-3a, an MDM2 antagonist and p53 activator, helps to preserve the replicative potential of cancer cells treated with a genotoxic dose of resveratrol. Mol Biol Rep 2013; 40:5013-26. [PMID: 23666059 PMCID: PMC3723979 DOI: 10.1007/s11033-013-2602-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 04/29/2013] [Indexed: 10/30/2022]
Abstract
Resveratrol is a natural compound that has been intensely studied due to its role in cancer prevention and potential as an anti-cancer therapy. Its effects include induction of apoptosis and senescence-like growth inhibition. Here, we report that two cancer cell lines (U-2 OS and A549) differ significantly in their molecular responses to resveratrol. Specifically, in U-2 OS cells, the activation of the p53 pathway is attenuated when compared to the activation in A549 cells. This attenuation is accompanied by a point mutation (458: CGA→TGA) in the PPM1D gene and overexpression of the encoded protein, which is a negative regulator of p53. Experimentally induced knockdown of PPM1D in U-2 OS cells resulted in slightly increased activation of the p53 pathway, most clearly visible as stronger phosphorylation of p53 Ser37. When treated with nutlin-3a, a non-genotoxic activator of p53, U-2 OS and A549 cells both responded with substantial activation of the p53 pathway. Nutlin-3a improved the clonogenic survival of both cell lines treated with resveratrol. This improvement was associated with lower activation of DNA-damage signaling (phosphorylation of ATM, CHK2, and histone H2AX) and higher accumulation of cells in the G1 phase of the cell cycle. Thus, the hyperactivation of p53 by nutlin-3a helps to preserve the replicative potential of cells exposed to resveratrol.
Collapse
|
38
|
Abstract
Copy number variations (CNVs) encompass a variety of genetic alterations including deletions and amplifications and cluster in regions of the human genome with intrinsic instability. Small-sized CNVs can act as initial genetic changes giving rise to larger CNVs such as acquired somatic copy number aberrations (CNAs) promoting cancer formation. Previous studies provided evidence for CNVs as an underlying cause of elevated breast cancer risk when targeting breast cancer susceptibility genes and of accelerated breast cancer progression when targeting oncogenes. With the development of novel techniques for genome-wide detection of CNVs at increasingly higher resolution, it became possible to qualitatively and quantitatively analyse manifestation of DNA damage resulting from defects in any of the large variety of DNA double-strand break (DSB) repair mechanisms. Breast carcinogenesis, particularly in familial cases, has been linked with a defect in the homologous recombination (HR) pathway, which in turn switches damage removal towards alternative, more error-prone DSB repair pathways such as microhomology-mediated non-homologous end joining (mmNHEJ). Indeed, increased error-prone DSB repair activities were detected in peripheral blood lymphocytes from individuals with familial breast cancer risk independently of specific gene mutations. Intriguingly, sequence analysis of breakpoint regions revealed that the majority of genome aberrations found in breast cancer specimens are formed by mmNHEJ. Detection of pathway-specific error-prone DSB repair activities by functional testing was proposed to serve as biomarker for hereditary breast cancer risk and responsiveness to therapies targeting HR dysfunction. Identification of specific error-prone DSB repair mechanisms underlying CNAs and ultimately mammary tumour formation highlights potential targets for future breast cancer prevention regimens.
Collapse
|
39
|
Filippi-Chiela EC, Thomé MP, Bueno e Silva MM, Pelegrini AL, Ledur PF, Garicochea B, Zamin LL, Lenz G. Resveratrol abrogates the temozolomide-induced G2 arrest leading to mitotic catastrophe and reinforces the temozolomide-induced senescence in glioma cells. BMC Cancer 2013; 13:147. [PMID: 23522185 PMCID: PMC3635906 DOI: 10.1186/1471-2407-13-147] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 03/19/2013] [Indexed: 11/16/2022] Open
Abstract
Background Temozolomide (TMZ) is the most widely used drug to treat glioblastoma (GBM), which is the most common and aggressive primary tumor of the Central Nervous System and one of the hardest challenges in oncotherapy. TMZ is an alkylating agent that induces autophagy, apoptosis and senescence in GBM cells. However, therapy with TMZ increases survival after diagnosis only from 12 to 14.4 months, making the development of combined therapies to treat GBM fundamental. One candidate for GBM therapy is Resveratrol (Rsv), which has additive toxicity with TMZ in several glioma cells in vitro and in vivo. However, the mechanism of Rsv and TMZ additive toxicity, which is the aim of the present work, is not clear, especially concerning cell cycle dynamics and long term effects. Methods Glioma cell lines were treated with Rsv and TMZ, alone or in combinations, and the induction and the role of autophagy, apoptosis, cell cycle dynamics, protein expression and phosphorylation status were measured. We further evaluated the long term senescence induction and clonogenic capacity. Results As expected, temozolomide caused a G2 cell cycle arrest and extensive DNA damage response. Rsv did not reduced this response, even increasing pATM, pChk2 and gammaH2Ax levels, but abrogated the temozolomide-induced G2 arrest, increasing levels of cyclin B and pRb(S807/811) and reducing levels of pWee1(S642) and pCdk1(Y15). This suggests a cellular state of forced passage through G2 checkpoint despite large DNA damage, a scenario that may produce mitotic catastrophe. Indeed, the proportion of cells with high nuclear irregularity increased from 6 to 26% in 48 h after cotreatment. At a long term, a reduction in clonogenic capacity was observed, accompanied by a large induction of senescence. Conclusion The presence of Rsv forces cells treated with TMZ through mitosis leading to mitotic catastrophe and senescence, reducing the clonogenic capacity of glioma cells and increasing the chronic effects of temozolomide.
Collapse
|
40
|
Glehr M, Fritsch-Breisach M, Lohberger B, Walzer SM, Moazedi-Fuerst F, Rinner B, Gruber G, Graninger W, Leithner A, Windhager R. Influence of resveratrol on rheumatoid fibroblast-like synoviocytes analysed with gene chip transcription. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:310-318. [PMID: 23137833 DOI: 10.1016/j.phymed.2012.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/16/2012] [Accepted: 09/21/2012] [Indexed: 06/01/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that primarily attacks joints and is therefore a common cause of chronic disability and articular destruction. The hyperplastic growth of RA-fibroblast-like synoviocytes (FLSs) and their resistance against apoptosis are considered pathological hallmarks of RA. The natural antioxidant resveratrol is known for its antiproliferative and pro-apoptotic properties. This study investigated the effect of resveratrol on RA-FLS. RA-FLS were isolated from the synovium of 10 RA patients undergoing synovectomy or joint replacement surgery. RA-FLS were first stressed by pre-incubation with interleukin 1beta (IL-1β) and then treated with 100 μM resveratrol for 24h. In order to evaluate the influence of resveratrol on the transcription of genes, a Gene Chip Human Gene 1.0 ST Array was applied. In addition, the effect of dexamethasone on proliferation and apoptosis of RA-FLS was compared with that of resveratrol. Gene array analysis showed highly significant effects of resveratrol on the expression of genes involved in mitosis, cell cycle, chromosome segregation and apoptosis. qRT-PCR, caspase-3/7 and proliferation assays confirmed the results of gene array analysis. In comparison, dexamethasone showed little to no effect on reducing cell proliferation and apoptosis. Our in vitro findings point towards resveratrol as a promising new therapeutic approach for local intra-articular application against RA, and further clinical studies will be necessary.
Collapse
Affiliation(s)
- Mathias Glehr
- Department of Orthopaedic Surgery, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Aydin S, Bacanli M, Taner G, Şahin T, Başaran AA, Başaran N. Protective effects of resveratrol on sepsis-induced DNA damage in the lymphocytes of rats. Hum Exp Toxicol 2012; 32:1048-57. [PMID: 23155200 DOI: 10.1177/0960327112467047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sepsis, often initiated by an infection, is a state of disrupted inflammatory homeostasis. There is increasing evidence that oxidative stress has an important role in the development of sepsis-induced multiorgan failure. Resveratrol (RV) is a polyphenolic compound found in the skin of red fruits, such as mulberries and red grapes, and in peanuts. RV has been reported to have an antioxidant, antiproliferative, and anti-inflammatory properties in various models. It has also been found to inhibit the proliferation of a variety of human cancer cell lines, including breast, prostate, colon, pancreatic, and thyroid. This study has been undertaken to assess the role of RV on the sepsis-induced oxidative DNA damage in the lymphocytes of Wistar albino rats by the standard and formamidopyrimidine DNA glycosylase (Fpg)-modified comet assays. The parameters of tail length, tail intensity, and tail moment were evaluated for the determination of DNA damage. According to the study, the DNA damage was found to be significantly higher in the sepsis-induced rats when compared with the control rats (p < 0.05). The parameters were significantly decreased in the RV-treated sepsis-induced group when compared with the sepsis-induced group. The parameters in the sepsis-induced rats were found to be significantly higher in the Fpg-modified comet assay when compared with the standard comet assay (p < 0.05), and RV treatment decreases the DNA damage in the sepsis-induced rats, suggesting that the oxidative stress is likely to be responsible for DNA damage and RV might have a role in the prevention of sepsis-induced oxidative DNA damage.
Collapse
Affiliation(s)
- S Aydin
- 1Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
42
|
Lee YH, Kumar NC, Glickman RD. Modulation of photochemical damage in normal and malignant cells by naturally occurring compounds. Photochem Photobiol 2012; 88:1385-95. [PMID: 22486439 DOI: 10.1111/j.1751-1097.2012.01156.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Certain phytochemicals, such as the stilbene, resveratrol (RES, found in red grapes and berries), and the triterpenoid, ursolic acid (UA, found in waxy berries and herbs such as rosemary and oregano), have antioxidant, anti-inflammatory and antiproliferative effects. Two human-derived cell lines, hTERT-RPE with a nonmalignant phenotype derived from retinal pigment epithelium, and ATCC CRL-11147 derived from a malignant skin melanoma, were used as in vitro models of photooxidative stress produced by exposure to the broadband output of a 150 W Hg vapor arc lamp at an irradiance of 19-26 mW cm(-2). In untreated cells, UV-VIS broadband light exposure produced a loss of proliferative ability, an activation of NF-κB and an increase in protein carbonyl adducts at 24 h postexposure. Pretreatment of the cells with RES or UA at 1-2 μmsignificantly reduced the amount of phosphorylated NF-κB at 24 h postexposure. RES pretreatment reduced the burden of light-induced protein carbonyl adducts by up to 25% in exposed cells. UA treatment markedly increased the sensitivity of melanoma cells to UV radiation, while conferring some photoprotection to RPE cells. These observations indicate that phytochemicals modulate the cellular response to photochemical stress by interacting with specific cell-signaling pathways.
Collapse
Affiliation(s)
- Yuan-Hao Lee
- Department of Radiological Sciences, University of Texas Health Science Center, San Antonio, TX, USA
| | | | | |
Collapse
|
43
|
Koz ST, Etem EO, Baydas G, Yuce H, Ozercan HI, Kuloğlu T, Koz S, Etem A, Demir N. Effects of resveratrol on blood homocysteine level, on homocysteine induced oxidative stress, apoptosis and cognitive dysfunctions in rats. Brain Res 2012; 1484:29-38. [PMID: 22995369 DOI: 10.1016/j.brainres.2012.09.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/11/2012] [Accepted: 09/13/2012] [Indexed: 12/14/2022]
Abstract
We aimed to examine the protective effects of resveratrol against homocysteine induced oxidative stress, apoptosis and cognitive impairment. Rats were randomly divided into three groups. Control group received standard rat food; homocysteine group (Hcy group) received daily methionine at a dose of 1g/kg-body weight dissolved in drinking water for thirty days; third group (Hcy+Res group) received same amount of methionine plus 20mg/kg/day resveratrol intraperitoneally for thirty days. Cognitive performances of the animals were tested by Morris water maze test. Then all animals were sacrificed to study lipid peroxidation (LPO), DNA fragmentation and p53 mRNA expression in the rat brain. The aortas of the sacrificed rats were processed for histopathological examination. Apoptosis in the aortas was assessed by TUNEL staining. Resveratrol significantly decreased serum levels of homocysteine, reversed Hcy induced LPO increase, decreased DNA fragmentation and p53 mRNA expression in the rat brains, and improved homocysteine induced impairment of long term spatial memory. Resveratrol could inhibit homocysteine induced apoptosis and histopathological deterioration in the rat aortic sections. In conclusion, resveratrol is effective in preventing homocysteine induced vascular and neural defects. In hyperhomocysteinemic rat model, our findings consequently warrant in future studies to reveal the true improvement mechanism of resveratrol.
Collapse
Affiliation(s)
- Sema Tulay Koz
- Malatya State Hospital, Laboratory Department, 44000 Malatya, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Analysis of in vitro chemoprevention of genotoxic damage by phytochemicals, as single agents or as combinations. Mutat Res 2012; 744:117-24. [PMID: 22405976 DOI: 10.1016/j.mrgentox.2012.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/15/2011] [Accepted: 01/06/2012] [Indexed: 12/26/2022]
Abstract
Cancer chemoprevention with low-dose combinations of bioactive phytochemicals instead of single agents has been suggested to induce less toxicity and improve efficacy. In this study, we selected four plant food-based phytochemicals, viz. chlorogenic acid (CLA), pelargonidin (PEL), resveratrol (RES) and epigallocatechin gallate (EGCG) to evaluate the in vitro chemoprevention of genotoxic damage in HL-60 cells. These agents were tested either individually or as a combination at two concentrations (with a 10-fold difference) against the genotoxins mitomycin C (MMC), diepoxybutane (DEB) and patulin (PAT). Our preliminary ferric reducing antioxidant power (FRAP) assay demonstrated additive effects when PEL, CLA, RES and EGCG were combined. Results of the cytokinesis-block micronucleus test showed significant protection against genotoxic damage induced by PAT, DEB and MMC when CLA, PEL, RES and EGCG were tested individually. This protective effect of the phytochemicals was not concentration-related. Both low- and high-concentration combinations of CLA, PEL, RES and EGCG showed significant reducing effects on the frequencies of micronuclei induced by PAT, DEB and MMC. However, the micronucleus test did not provide indications of additive or synergistic effects with this combination of phytochemicals. In conclusion, the chemo-preventive effects of PEL, CLA, RES and EGCG against genotoxic damage induced by MMC, DEB and PAT are indicative of a 'saturation effect' when higher concentrations and combinations of these phytochemicals are used.
Collapse
|
45
|
Hsieh TC, Yang CJ, Lin CY, Lee YS, Wu JM. Control of stability of cyclin D1 by quinone reductase 2 in CWR22Rv1 prostate cancer cells. Carcinogenesis 2012; 33:670-7. [PMID: 22266466 DOI: 10.1093/carcin/bgs016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aberrant expression of cyclin D1, frequently observed in human malignant disorders, has been linked to the control of G(1)→S cell cycle phase transition and development and progression in carcinogenesis. Cyclin D1 level changes are partially controlled by GSK-3β-dependent phosphorylation at threonine-286 (Thr286), which targets cyclin D1 for ubiquitination and proteolytic degradation. In our continuing studies on the mechanism of prostate cancer prevention by resveratrol, focusing on the role of its recently discovered target protein, quinone reductase 2 (NQO2), we generated NQO2 knockdown CWR22Rv1 using short hairpin RNA (shRNA)-mediated gene silencing approach. We found that, compared with cells expressing NQO2 (shRNA08), NQO2 knockdown cells (shRNA25) displayed slower proliferation and G(1) phase cell accumulation. Immunoblot analyses revealed a significant decrease in phosphorylation of retinoblastoma Rb and cyclin D1 in shRNA25 compared with shRNA08. Moreover, shRNA25 cells showed a 37% decrease in chymotrypsin-like proteasome activity. An increase in AKT activity was also observed in shRNA25, supported by a ∼1.5-fold elevation in phosphorylation and ∼50% reduction/deactivation of GSK-3α/β at Ser21/9, which were accompanied by a decrease in phosphorylation of cyclin D1 at T286. NQO2 knockdown cells also showed attenuation of resveratrol-induced downregulation of cyclin D1. Our results indicate a hitherto unreported role of NQO2 in the control of AKT/GSK-3β/cyclin D1 and highlight the involvement of NQO2 in degradation of cyclin D1, as part of mechanism of chemoprevention by resveratrol.
Collapse
Affiliation(s)
- Tze-chen Hsieh
- Department of Biochemistry and Molecular Biology, New York Medical College, Room 133, Valhalla, NY 10595, USA.
| | | | | | | | | |
Collapse
|
46
|
Leone S, Basso E, Polticelli F, Cozzi R. Resveratrol acts as a topoisomerase II poison in human glioma cells. Int J Cancer 2012; 131:E173-8. [PMID: 22095529 DOI: 10.1002/ijc.27358] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 11/04/2011] [Indexed: 01/26/2023]
Abstract
Recently, we demonstrated that Resveratrol (RSV), a well known natural stilbene, is able to induce a delay in S progression with a concomitant increase in γH2AX expression in U87 glioma cells. Furthermore, we showed that it inhibits the ability of recombinant human topoisomerase IIα to decatenate kDNA in vitro. Because proliferating tumor cells express topoisomerases at high levels and these enzymes are important targets of some of the most successful anticancer drugs, we tested whether RSV is able to poison topoisomerase IIα in glioma cells. Then, we monitored the increase of micronuclei in RSV treated U87 cells as a consequence of the conversion of TOPOII/DNA cleavable complexes to permanent DNA damage. Finally, we assayed the ability of RSV in modulating the expression of target proteins involved in DNA damage signalling, namely ATR, ATM, Chk1, Chk2 and γH2AX. Through a molecular modelling here we show that RSV binds at the TOPOII/DNA interface thus establishing several hydrogen bonds. Moreover, we show that RSV poisons TOPOIIα so inducing DNA damage; ATM, Chk2 and γH2AX are involved in the DNA damage signalling after RSV treatment.
Collapse
Affiliation(s)
- Stefano Leone
- Department of Biology, University Roma TRE, Rome, Italy
| | | | | | | |
Collapse
|
47
|
Denissova NG, Nasello CM, Yeung PL, Tischfield JA, Brenneman MA. Resveratrol protects mouse embryonic stem cells from ionizing radiation by accelerating recovery from DNA strand breakage. Carcinogenesis 2011; 33:149-55. [PMID: 22049530 DOI: 10.1093/carcin/bgr236] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Resveratrol has elicited many provocative anticancer effects in laboratory animals and cultured cells, including reduced levels of oxidative DNA damage, inhibition of tumor initiation and progression and induction of apoptosis in tumor cells. Use of resveratrol as a cancer-preventive agent in humans will require that its anticancer effects not be accompanied by damage to normal tissue stem or progenitor cells. In mouse embryonic stem cells (mESC) or early mouse embryos exposed to ethanol, resveratrol has been shown to suppress apoptosis and promote survival. However, in cells exposed to genotoxic stress, survival may come at the expense of genome stability. To learn whether resveratrol can protect stem cells from DNA damage and to study its effects on genomic integrity, we exposed mESC pretreated with resveratrol to ionizing radiation (IR). Forty-eight hours pretreatment with a comparatively low concentration of resveratrol (10 μM) improved survival of mESC >2-fold after exposure to 5 Gy of X-rays. Cells pretreated with resveratrol sustained the same levels of reactive oxygen species and DNA strand breakage after IR as mock-treated controls, but repaired DNA damage more rapidly and resumed cell division sooner. Frequencies of IR-induced mutation at a chromosomal reporter locus were not increased in cells pretreated with resveratrol as compared with controls, indicating that resveratrol can improve viability in mESC after DNA damage without compromising genomic integrity.
Collapse
Affiliation(s)
- Natalia G Denissova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
48
|
Chatterjee M, Das S, Janarthan M, Ramachandran HK, Chatterjee M. Role of 5-lipoxygenase in resveratrol mediated suppression of 7,12-dimethylbenz(α)anthracene-induced mammary carcinogenesis in rats. Eur J Pharmacol 2011; 668:99-106. [DOI: 10.1016/j.ejphar.2011.06.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 06/13/2011] [Accepted: 06/22/2011] [Indexed: 11/26/2022]
|
49
|
Zajkowicz A, Rusin M. The activation of the p53 pathway by the AMP mimetic AICAR is reduced by inhibitors of the ATM or mTOR kinases. Mech Ageing Dev 2011; 132:543-51. [PMID: 21945951 DOI: 10.1016/j.mad.2011.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 07/24/2011] [Accepted: 09/13/2011] [Indexed: 02/03/2023]
Abstract
A balanced diet reduces the risk of life-threatening diseases such as diabetes and cancer. A reduced supply of energy at the cellular level leads to an increased concentration of AMP, which, in turn, results in LKB1-mediated activation of the AMPK kinase. The activation of the p53 tumor suppressor protein by metabolic stress has been shown to be mediated by AMPK. Increased intracellular AMP can be mimicked by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). We showed that AICAR activated the p53 pathway in LKB1-deficient cells. This activation was strongly attenuated by two inhibitors of the ATM kinase (caffeine and Ku-55933), which is dysfunctional in ataxia-telanagiectasia patients. In cells with ATM expression silenced by shRNA, AICAR-induced p53 phosphorylation at Ser(15) and Ser(37) was attenuated. Furthermore, p53 activation by AICAR was blocked by rapamycin, a specific inhibitor of the mTOR kinase, which is a crucial regulator of cell growth. Rapamycin did not block p53 activation by resveratrol, which, in contrast to AICAR, induced the DNA damage response, senescence-like growth inhibition, a high level of post-translational modification of p53, and weak upregulation of MDM2 (the negative regulator of p53). Thus, ATM and mTOR participate in the activation of p53 in response to a compound mimicking metabolic stress.
Collapse
Affiliation(s)
- Artur Zajkowicz
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska - Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland
| | | |
Collapse
|
50
|
Kartal M, Saydam G, Sahin F, Baran Y. Resveratrol triggers apoptosis through regulating ceramide metabolizing genes in human K562 chronic myeloid leukemia cells. Nutr Cancer 2011; 63:637-44. [PMID: 21500096 DOI: 10.1080/01635581.2011.538485] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Resveratrol, an important phytoalexin in many plants, has been reported to have cytotoxic effects on various types of cancer. Ceramide is a bioactive sphingolipid that regulates many signaling pathways, including cell growth and proliferation, senescence and quiescence, apoptosis, and cell cycle. Ceramides are generated by longevity assurance genes (LASS). Glucosylceramide synthase (GCS) and sphingosine kinase-1 (SK-1) enzymes can convert ceramides to antiapoptotic molecules, glucosylceramide, and sphingosine-1-phosphate, respectively. C8:ceramide, an important cell-permeable analogue of natural ceramides, increases intracellular ceramide levels significantly, while 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) and SK-1 inhibitor increase accumulation of ceramides by inhibiting GCS and SK-1, respectively. Chronic myelogenous leukemia (CML) is a hematological disorder resulting from generation of BCR/ABL oncogene. In this study, we examined the roles of ceramide metabolizing genes in resveratrol-induced apoptosis in K562 CML cells. There were synergistic cytotoxic and apoptotic effects of resveratrol with coadministration of C8:ceramide, PDMP, and SK-1 inhibitor. Interestingly, there were also significant increases in expression levels of LASS genes and decreases in expression levels of GCS and SK-1 in K562 cells in response to resveratrol. Our data, in total, showed for the first time that resveratrol might kill CML cells through increasing intracellular generation and accumulation of apoptotic ceramides.
Collapse
Affiliation(s)
- Melis Kartal
- Faculty of Science, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | | | | | | |
Collapse
|