1
|
Xu K, Wang L, Lin M, He G. Update on protease-activated receptor 2 in inflammatory and autoimmune dermatological diseases. Front Immunol 2024; 15:1449126. [PMID: 39364397 PMCID: PMC11446762 DOI: 10.3389/fimmu.2024.1449126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
Protease-activated receptor 2 (PAR2) is a cell-surface receptor expressed in various cell types, including keratinocytes, neurons, immune and inflammatory cells. Activation of PAR2, whether via its canonical or biased pathways, triggers a series of signaling cascades that mediate numerous functions. This review aims to highlight the emerging roles and interactions of PAR2 in different skin cells. It specifically summarizes the latest insights into the roles of PAR2 in skin conditions such as atopic dermatitis (AD), psoriasis, vitiligo and melasma. It also considers these roles from the perspective of the cutaneous microenvironment in relation to other inflammatory and autoimmune dermatological disorders. Additionally, the review explores PAR2's involvement in associated comorbidities from both cutaneous and extracutaneous diseases. Therefore, PAR2 may serve as a key target for interactions among various cells within the local skin environment.
Collapse
Affiliation(s)
- Kejia Xu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Lin
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Mavridis T, Choratta T, Papadopoulou A, Sawafta A, Archontakis-Barakakis P, Laou E, Sakellakis M, Chalkias A. Protease-Activated Receptors (PARs): Biology and Therapeutic Potential in Perioperative Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01233-0. [PMID: 38326662 DOI: 10.1007/s12975-024-01233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Perioperative stroke is a devastating complication that occurs during surgery or within 30 days following the surgical procedure. Its prevalence ranges from 0.08 to 10% although it is most likely an underestimation, as sedatives and narcotics can substantially mask symptomatology and clinical presentation. Understanding the underlying pathophysiology and identifying potential therapeutic targets are of paramount importance. Protease-activated receptors (PARs), a unique family of G-protein-coupled receptors, are widely expressed throughout the human body and play essential roles in various physiological and pathological processes. This review elucidates the biology and significance of PARs, outlining their diverse functions in health and disease, and their intricate involvement in cerebrovascular (patho)physiology and neuroprotection. PARs exhibit a dual role in cerebral ischemia, which underscores their potential as therapeutic targets to mitigate the devastating effects of stroke in surgical patients.
Collapse
Affiliation(s)
- Theodoros Mavridis
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital, Dublin, incorporating the National Children's Hospital (AMNCH), Dublin, D24 NR0A, Ireland
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528, Athens, Greece
| | - Theodora Choratta
- Department of General Surgery, Metaxa Hospital, 18537, Piraeus, Greece
| | - Androniki Papadopoulou
- Department of Anesthesiology, G. Gennimatas General Hospital, 54635, Thessaloniki, Greece
| | - Assaf Sawafta
- Department of Cardiology, University Hospital of Larisa, 41110, Larisa, Greece
| | | | - Eleni Laou
- Department of Anesthesiology, Agia Sophia Children's Hospital, 15773, Athens, Greece
| | - Minas Sakellakis
- Department of Medicine, Jacobi Medical Center-North Central Bronx Hospital, Bronx, NY, 10467, USA
| | - Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-5158, USA.
- Outcomes Research Consortium, Cleveland, OH, 44195, USA.
| |
Collapse
|
3
|
Baby J, Devan AR, Kumar AR, Gorantla JN, Nair B, Aishwarya TS, Nath LR. Cogent role of flavonoids as key orchestrators of chemoprevention of hepatocellular carcinoma: A review. J Food Biochem 2021; 45:e13761. [PMID: 34028054 DOI: 10.1111/jfbc.13761] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 02/05/2023]
Abstract
Chemopreventive approaches with food-derived phytochemicals are progressively rising as a significant aspect of tumor management and control. Herein, we have showcased the major phytoconstituents belonging to the group of flavanoid, as anti-cancer agents used for the treatment and prevention of hepatocellular carcinoma (HCC). Sorafenib is the sole drug used for the treatment of advanced HCC, but its clinical application is limited because of its severe adverse effects and drug resistance. Diet-based chemoprevention seems to be the way forward for this disease of malignant nature. As HCC is derived from a chronic inflammatory milieu, the regular incorporation of bioactive phytochemicals in the diet will confer protection and prevent progression to hepatocarcinogenesis. Many preclinical studies proved that the health benefits of flavonoids confer cytotoxic potential against various types of cancers including hepatocellular carcinoma. As flavonoids with excellent safety profile are abundantly present in common vegetables and fruits, they can be better utilized for chemoprevention and chemosensitization in such chronic condition. This review highlights the plausible role of the eight most promising flavonoids (Curcumin, Kaempferol, Resveratrol, Quercetin, Silibinin, Baicalein, Galangin and Luteolin) as key orchestrators of chemoprevention in hepatocellular carcinoma with preclinical and clinical evidence. An attempt to address the challenges in its clinical translation is also included. This review also provides an insight into the close association of HCC and metabolic disorders which may further decipher the chemopreventive effect of dietary bioactive from a proof of concept to extensive clinical translation. PRACTICAL APPLICATIONS: According to GLOBOCAN 2020 database, it is estimated that 905,677 new cases of liver cancer and approximately 830,180 deaths related to that. The cancer incidence and mortality are almost similar as it is diagnosed at an advanced stage in patients where systemic drug therapy is the sole approach. Due to the emergence of multidrug resistance and drug-related toxicities, most of the patient can not adhere to the therapy regimen. Flavonoids are known to be a potential anticancer agent with an excellent safety profile. These are found to be effective preclinically against hepatocellular carcinoma through modulation of numerous pathways in hepatocarcinogenesis. But, the bioavailability issue, lack of well designed-validated clinical evidence, the possibility of food-drug interaction etc limit its clinical utility. The research inputs mainly to overcome pharmacokinetic issues along with suitable validation of efficacy and toxicity will be a critical point for establishing flavonoids as an effective, safe, affordable therapeutics.
Collapse
Affiliation(s)
- Jasmine Baby
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | | | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Thanatharayil Sathian Aishwarya
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| |
Collapse
|
4
|
Tsai MC, Lin CC, Chen DW, Liu YW, Wu YJ, Yen YH, Huang PY, Yao CC, Chuang CH, Hsiao CC. The Role of Protease-Activated Receptor 2 in Hepatocellular Carcinoma after Hepatectomy. ACTA ACUST UNITED AC 2021; 57:medicina57060574. [PMID: 34199695 PMCID: PMC8229727 DOI: 10.3390/medicina57060574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 01/27/2023]
Abstract
Background and Objectives: Protease activated receptor-2 (PAR2) is elevated in a variety of cancers and has been promoted as a potential therapeutic target. However, the clinical and prognostic values of PAR2 in hepatocellular carcinoma (HCC) are poorly characterized. This study aimed to evaluate the expression of PAR2 in HCC tissues and examine the prognostic value of PAR2 after resection in HCC. Materials and Methods: Two hundred and eight resected specimens were collected from HCC patients at Kaohsiung Chang Gung Memorial Hospital. PAR2 protein expression was assessed by western blotting in HCC tissues and matched normal tissues. The correlation between PAR2 expression and clinicopathological parameters was analyzed. Disease-free survival (DFS) and overall survival (OS) were compared using the log-rank test. A Cox regression model was used to identify independent prognostic factors. Results: PAR2 was expressed at higher levels in HCC tissues than the paired adjacent nontumor tissues. High expression of PAR2 was associated with advanced tumor, node, metastasis (TNM )stage and histological grade. Kaplan-Meier analysis indicated high PAR2 expression was associated with poorer DFS and OS compared to low PAR2 expression. Multivariate analyses indicated high PAR2 expression [hazard ratio (HR), 1.779, p = 0.006), α-fetoprotein (AFP) (HR, 1.696, p = 0.003), liver cirrhosis (HR, 1.735, p = 0.002), and advanced TNM stage (HR, 2.061, p < 0.001) were prognostic factors for DFS, and advanced TNM stage (HR, 2.741, p < 0.001) and histological grade (HR, 2.675, p = 0.002) and high PAR2 expression (HR, 1.832, p = 0.012) were significant risk factors for OS. In subgroup analyses, the combination of PAR2 expression and serum AFP provided improved prognostic ability for OS and DFS. Conclusion: Combination PAR2 and AFP predict HCC outcomes after resection. PAR2 represents a potentially clinically relevant biomarker for HCC.
Collapse
Affiliation(s)
- Ming-Chao Tsai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (M.-C.T.); (Y.-H.Y.); (P.-Y.H.); (C.-C.Y.)
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chih-Che Lin
- Liver Transplantation Center and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.-C.L.); (Y.-W.L.); (Y.-J.W.)
| | - Ding-Wei Chen
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Yueh-Wei Liu
- Liver Transplantation Center and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.-C.L.); (Y.-W.L.); (Y.-J.W.)
| | - Yi-Ju Wu
- Liver Transplantation Center and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.-C.L.); (Y.-W.L.); (Y.-J.W.)
| | - Yi-Hao Yen
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (M.-C.T.); (Y.-H.Y.); (P.-Y.H.); (C.-C.Y.)
| | - Pao-Yuan Huang
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (M.-C.T.); (Y.-H.Y.); (P.-Y.H.); (C.-C.Y.)
| | - Chih-Chien Yao
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (M.-C.T.); (Y.-H.Y.); (P.-Y.H.); (C.-C.Y.)
| | - Ching-Hui Chuang
- Department of Nursing, Meiho University, Pingtung 91202, Taiwan;
| | - Chang-Chun Hsiao
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung 833, Taiwan
- Correspondence: ; Tel.: +886-7-7317123 (ext. 8979) or +886-955906053; Fax: +886-7-7311696
| |
Collapse
|
5
|
Ólafsson EB, Ten Hoeve AL, Li-Wang X, Westermark L, Varas-Godoy M, Barragan A. Convergent Met and voltage-gated Ca 2+ channel signaling drives hypermigration of Toxoplasma-infected dendritic cells. J Cell Sci 2020; 134:jcs241752. [PMID: 32161101 DOI: 10.1242/jcs.241752] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/26/2020] [Indexed: 01/11/2023] Open
Abstract
Ras-Erk MAPK signaling controls many of the principal pathways involved in metazoan cell motility, drives metastasis of multiple cancer types and is targeted in chemotherapy. However, its putative roles in immune cell functions or in infections have remained elusive. Here, using primary dendritic cells (DCs) in an infection model with the protozoan Toxoplasma gondii, we show that two pathways activated by infection converge on Ras-Erk MAPK signaling to promote migration of parasitized DCs. We report that signaling through the receptor tyrosine kinase Met (also known as HGF receptor) contributes to T. gondii-induced DC hypermotility. Furthermore, voltage-gated Ca2+ channel (VGCC, subtype CaV1.3) signaling impacted the migratory activation of DCs via calmodulin-calmodulin kinase II. We show that convergent VGCC signaling and Met signaling activate the GTPase Ras to drive Erk1 and Erk2 (also known as MAPK3 and MAPK1, respectively) phosphorylation and hypermotility of T. gondii-infected DCs. The data provide a molecular basis for the hypermigratory mesenchymal-to-amoeboid transition (MAT) of parasitized DCs. This emerging concept suggests that parasitized DCs acquire metastasis-like migratory properties that promote infection-related dissemination.
Collapse
Affiliation(s)
- Einar B Ólafsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Arne L Ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Xiaoze Li-Wang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Linda Westermark
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Manuel Varas-Godoy
- Cancer Cell Biology Laboratory, Center for Cell Biology and Biomedicine (CEBICEM), Faculty of Medicine and Science, Universidad San Sebastian, 7620001 Santiago, Chile
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
6
|
Pawar NR, Buzza MS, Antalis TM. Membrane-Anchored Serine Proteases and Protease-Activated Receptor-2-Mediated Signaling: Co-Conspirators in Cancer Progression. Cancer Res 2019; 79:301-310. [PMID: 30610085 DOI: 10.1158/0008-5472.can-18-1745] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/12/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
Pericellular proteolysis provides a significant advantage to developing tumors through the ability to remodel the extracellular matrix, promote cell invasion and migration, and facilitate angiogenesis. Recent advances demonstrate that pericellular proteases can also communicate directly to cells by activation of a unique group of transmembrane G-protein-coupled receptors (GPCR) known as protease-activated receptors (PAR). In this review, we discuss the specific roles of one of four mammalian PARs, namely PAR-2, which is overexpressed in advanced stage tumors and is activated by trypsin-like serine proteases that are highly expressed or otherwise dysregulated in many cancers. We highlight recent insights into the ability of different protease agonists to bias PAR-2 signaling and the newly emerging evidence for an interplay between PAR-2 and membrane-anchored serine proteases, which may co-conspire to promote tumor progression and metastasis. Interfering with these pathways might provide unique opportunities for the development of new mechanism-based strategies for the treatment of advanced and metastatic cancers.
Collapse
Affiliation(s)
- Nisha R Pawar
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marguerite S Buzza
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Toni M Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland. .,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Signaling Crosstalk of TGF-β/ALK5 and PAR2/PAR1: A Complex Regulatory Network Controlling Fibrosis and Cancer. Int J Mol Sci 2018; 19:ijms19061568. [PMID: 29795022 PMCID: PMC6032192 DOI: 10.3390/ijms19061568] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Both signaling by transforming growth factor-β (TGF-β) and agonists of the G Protein-coupled receptors proteinase-activated receptor-1 (PAR1) and -2 (PAR2) have been linked to tissue fibrosis and cancer. Intriguingly, TGF-β and PAR signaling either converge on the regulation of certain matrix genes overexpressed in these pathologies or display mutual regulation of their signaling components, which is mediated in part through sphingosine kinases and sphingosine-1-phosphate and indicative of an intimate signaling crosstalk between the two pathways. In the first part of this review, we summarize the various regulatory interactions that have been discovered so far according to the organ/tissue in which they were described. In the second part, we highlight the types of signaling crosstalk between TGF-β on the one hand and PAR2/PAR1 on the other hand. Both ligand–receptor systems interact at various levels and by several mechanisms including mutual regulation of ligand–ligand, ligand–receptor, and receptor–receptor at the transcriptional, post-transcriptional, and receptor transactivation levels. These mutual interactions between PAR2/PAR1 and TGF-β signaling components eventually result in feed-forward loops/vicious cycles of matrix deposition and malignant traits that exacerbate fibrosis and oncogenesis, respectively. Given the crucial role of PAR2 and PAR1 in controlling TGF-β receptor activation, signaling, TGF-β synthesis and bioactivation, combining PAR inhibitors with TGF-β blocking agents may turn out to be more efficient than targeting TGF-β alone in alleviating unwanted TGF-β-dependent responses but retaining the beneficial ones.
Collapse
|
8
|
Sun L, Li PB, Yao YF, Xiu AY, Peng Z, Bai YH, Gao YJ. Proteinase-activated receptor 2 promotes tumor cell proliferation and metastasis by inducing epithelial-mesenchymal transition and predicts poor prognosis in hepatocellular carcinoma. World J Gastroenterol 2018; 24:1120-1133. [PMID: 29563756 PMCID: PMC5850131 DOI: 10.3748/wjg.v24.i10.1120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/29/2017] [Accepted: 01/23/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To clarify the role of proteinase-activated receptor 2 (PAR2) in hepatocellular carcinoma, especially in the process of metastasis.
METHODS PAR2 expression levels were assessed by qRT-PCR and immunohistochemistry (IHC) in patient tissues and in hepatocellular carcinoma cell lines SMMC-7721 and HepG2. Cell proliferation and metastasis were assessed both in vitro and in vitro. Immunoblotting was carried out to monitor the levels of mitogen-activated protein kinase (MAPK) and epithelial-mesenchymal transition markers.
RESULTS The prognosis was significantly poorer in patients with high PAR2 levels than in those with low PAR2 levels. Patients with high PAR2 levels had advanced tumor stage (P = 0.001, chi-square test), larger tumor size (P = 0.032, chi-square test), and high microvascular invasion rate (P = 0.037, chi-square test). The proliferation and metastasis ability of SMMC-7721 and HepG2 cells was increased after PAR2 overexpression, while knockdown of PAR2 decreased the proliferation and metastasis ability of SMMC-7721 and HepG2 cells. Knockdown of PAR2 also inhibited hepatocellular carcinoma tumor cell growth and liver metastasis in nude mice. Mechanistically, PAR2 increased the proliferation ability of SMMC-7721 and HepG2 cells via ERK activation. Activated ERK further promoted the epithelial-mesenchymal transition of these cells, which endowed them with enhanced migration and invasion ability.
CONCLUSION These data suggest that PAR2 plays an important role in the proliferation and metastasis of hepatocellular carcinoma. Therefore, targeting PAR2 may present a favorable target for treatment of this malignancy.
Collapse
Affiliation(s)
- Liang Sun
- Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Department of Critical Care Medicine, Shandong Traffic Hospital, Jinan 250000, Shandong Province, China
| | - Pi-Bao Li
- Department of Critical Care Medicine, Shandong Traffic Hospital, Jinan 250000, Shandong Province, China
| | - Yan-Fen Yao
- Department of Critical Care Medicine, Shandong Traffic Hospital, Jinan 250000, Shandong Province, China
| | - Ai-Yuan Xiu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Zhi Peng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yu-Huan Bai
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yan-Jing Gao
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
9
|
Proteinase-activated receptor 2 promotes TGF-β-dependent cell motility in pancreatic cancer cells by sustaining expression of the TGF-β type I receptor ALK5. Oncotarget 2018; 7:41095-41109. [PMID: 27248167 PMCID: PMC5173045 DOI: 10.18632/oncotarget.9600] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/14/2016] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by high expression of transforming growth factor (TGF)-β and the G protein-coupled receptor proteinase-activated receptor 2 (PAR2), the latter of which functions as a cell-surface sensor for serine proteinases asscociated with the tumour microenvironment. Since TGF-β and PAR2 affect tumourigenesis by regulating migration, invasion and metastasis, we hypothesized that there is signalling crosstalk between them. Depleting PDAC and non-PDAC cells of PAR2 by RNA interference strongly decreased TGF-β1-induced activation of Smad2/3 and p38 mitogen-activated protein kinase, Smad dependent transcriptional activity, expression of invasion associated genes, and cell migration/invasion in vitro. Likewise, the plasminogen activator-inhibitor 1 gene in primary cultures of aortic smooth muscle cells from PAR2-/- mice displayed a greatly attenuated sensitivity to TGF-β1 stimulation. PAR2 depletion in PDAC cells resulted in reduced protein and mRNA levels of the TGF-β type I receptor activin receptor-like kinase 5 (ALK5). Forced expression of wild-type ALK5 or a kinase-active ALK5 mutant, but not a kinase-active but Smad-binding defective ALK5 mutant, was able to rescue TGF-β1-induced Smad3 activation, Smad dependent transcription, and cell migration in PAR2-depleted cells. Together, our data show that PAR2 is crucial for TGF-β1-induced cell motility by its ability to sustain expression of ALK5. Therapeutically targeting PAR2 may thus be a promising approach in preventing TGF-β-dependent driven metastatic dissemination in PDAC and possibly other stroma-rich tumour types.
Collapse
|
10
|
Ungefroren H, Witte D, Rauch BH, Settmacher U, Lehnert H, Gieseler F, Kaufmann R. Proteinase-Activated Receptor 2 May Drive Cancer Progression by Facilitating TGF-β Signaling. Int J Mol Sci 2017; 18:E2494. [PMID: 29165389 PMCID: PMC5713460 DOI: 10.3390/ijms18112494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/23/2022] Open
Abstract
The G protein-coupled receptor proteinase-activated receptor 2 (PAR2) has been implicated in various aspects of cellular physiology including inflammation, obesity and cancer. In cancer, it usually acts as a driver of cancer progression in various tumor types by promoting invasion and metastasis in response to activation by serine proteinases. Recently, we discovered another mode through which PAR2 may enhance tumorigenesis: crosstalk with transforming growth factor-β (TGF-β) signaling to promote TGF-β1-induced cell migration/invasion and invasion-associated gene expression in ductal pancreatic adenocarcinoma (PDAC) cells. In this chapter, we review what is known about the cellular TGF-β responses and signaling pathways affected by PAR2 expression, the signaling activities of PAR2 required for promoting TGF-β signaling, and the potential molecular mechanism(s) that underlie(s) the TGF-β signaling-promoting effect. Since PAR2 is activated through various serine proteinases and biased agonists, it may couple TGF-β signaling to a diverse range of other physiological processes that may or may not predispose cells to cancer development such as local inflammation, systemic coagulation and pathogen infection.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany.
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, D-24105 Kiel, Germany.
| | - David Witte
- First Department of Medicine, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany.
| | - Bernhard H Rauch
- Department of General Pharmacology, Institute of Pharmacology, University Medicine Greifswald, D-17487 Greifswald, Germany.
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, D-07747 Jena, Germany.
| | - Hendrik Lehnert
- First Department of Medicine, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany.
| | - Frank Gieseler
- First Department of Medicine, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany.
| | - Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, D-07747 Jena, Germany.
| |
Collapse
|
11
|
Huang KT, Kuo IY, Tsai MC, Wu CH, Hsu LW, Chen LY, Kung CP, Cheng YF, Goto S, Chou YW, Chen CL, Lin CC, Chen KD. Factor VII-Induced MicroRNA-135a Inhibits Autophagy and Is Associated with Poor Prognosis in Hepatocellular Carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:274-283. [PMID: 29246306 PMCID: PMC5675721 DOI: 10.1016/j.omtn.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and aggressive malignancies worldwide. Treatment outcomes remain poor mainly due to lack of good diagnostic/prognostic markers and limited therapeutic strategies. We previously characterized aberrant activation of the TF/FVII/PAR2 pathway, which subsequently results in decreased autophagy, as a crucial event in malignant progression of HCC. Here, we identified miR-135a as a highly upregulated miRNA in HCC in response to TF/FVII/PAR2 activation. Analyzing 103 HCC patient specimens, we confirmed that miR-135a was frequently elevated in HCC tissues with higher FVII expression compared to adjacent non-cancerous counterparts. Increased miR-135a levels in HCC were also associated with tumor staging, recurrence, microvascular invasion, and decreased disease-free survival. We subsequently identified Atg14, a key component that regulates the formation of autophagosome as a direct target of miR-135a. Ectopic expression of miR-135a suppressed Atg14 levels and inhibited the autophagic processes. Our results indicate strong positive correlations between miR-135a levels and malignant behaviors in HCC patients and also suggest novel functions of miR-135a in regulation of autophagy, which could be useful as a potential target for prognostic and therapeutic uses.
Collapse
Affiliation(s)
- Kuang-Tzu Huang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - I-Ying Kuo
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Ming-Chao Tsai
- Division of Hepato-gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chun-Hsien Wu
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Li-Wen Hsu
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Li-Yu Chen
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chao-Pin Kung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yu-Fan Cheng
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Shigeru Goto
- Fukuoka Institute of Occupational Health, Fukuoka 815-0081, Japan
| | - Yu-Wei Chou
- Tissue Bank and BioBank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chao-Long Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chih-Che Lin
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
| | - Kuang-Den Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
| |
Collapse
|
12
|
Ungefroren H, Witte D, Mihara K, Rauch BH, Henklein P, Jöhren O, Bonni S, Settmacher U, Lehnert H, Hollenberg MD, Kaufmann R, Gieseler F. Transforming Growth Factor-β1/Activin Receptor-like Kinase 5-Mediated Cell Migration is Dependent on the Protein Proteinase-Activated Receptor 2 but not on Proteinase-Activated Receptor 2-Stimulated Gq-Calcium Signaling. Mol Pharmacol 2017; 92:519-532. [DOI: 10.1124/mol.117.109017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023] Open
|
13
|
Witte D, Zeeh F, Gädeken T, Gieseler F, Rauch BH, Settmacher U, Kaufmann R, Lehnert H, Ungefroren H. Proteinase-Activated Receptor 2 Is a Novel Regulator of TGF-β Signaling in Pancreatic Cancer. J Clin Med 2016; 5:E111. [PMID: 27916875 PMCID: PMC5184784 DOI: 10.3390/jcm5120111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 02/06/2023] Open
Abstract
TGF-β has a dual role in tumorigenesis, acting as a tumor suppressor in normal cells and in the early stages of tumor development while promoting carcinogenesis and metastasis in advanced tumor stages. The final outcome of the TGF-β response is determined by cell-autonomous mechanisms and genetic alterations such as genomic instability and somatic mutations, but also by a plethora of external signals derived from the tumor microenvironment, such as cell-to-cell interactions, growth factors and extracellular matrix proteins and proteolytic enzymes. Serine proteinases mediate their cellular effects via activation of proteinase-activated receptors (PARs), a subclass of G protein-coupled receptors that are activated by proteolytic cleavage. We have recently identified PAR2 as a factor required for TGF-β1-dependent cell motility in ductal pancreatic adenocarcinoma (PDAC) cells. In this article, we review what is known on the TGF-β-PAR2 signaling crosstalk and its relevance for tumor growth and metastasis. Since PAR2 is activated through various serine proteinases, it may couple TGF-β signaling to a diverse range of other physiological processes, such as local inflammation, systemic coagulation or pathogen infection. Moreover, since PAR2 controls expression of the TGF-β type I receptor ALK5, PAR2 may also impact signaling by other TGF-β superfamily members that signal through ALK5, such as myostatin and GDF15/MIC-1. If so, PAR2 could represent a molecular linker between PDAC development and cancer-related cachexia.
Collapse
Affiliation(s)
- David Witte
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), and University of Lübeck, D-23538 Lübeck, Germany.
| | - Franziska Zeeh
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), and University of Lübeck, D-23538 Lübeck, Germany.
| | - Thomas Gädeken
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), and University of Lübeck, D-23538 Lübeck, Germany.
| | - Frank Gieseler
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), and University of Lübeck, D-23538 Lübeck, Germany.
| | - Bernhard H Rauch
- Department of General Pharmacology, Institute of Pharmacology, University Medicine Greifswald, D-17487 Greifswald, Germany.
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, D-07747 Jena, Germany.
| | - Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, D-07747 Jena, Germany.
| | - Hendrik Lehnert
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), and University of Lübeck, D-23538 Lübeck, Germany.
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), and University of Lübeck, D-23538 Lübeck, Germany.
| |
Collapse
|
14
|
Abstract
Although many studies have demonstrated that components of the hemostatic system may be involved in signaling leading to cancer progression, the potential mechanisms by which they contribute to cancer dissemination are not yet precisely understood. Among known coagulant factors, tissue factor (TF) and thrombin play a pivotal role in cancer invasion. They may be generated in the tumor microenvironment independently of blood coagulation and can induce cell signaling through activation of protease-activated receptors (PARs). PARs are transmembrane G-protein-coupled receptors (GPCRs) that are activated by a unique proteolytic mechanism. They play important roles in vascular physiology, neural tube closure, hemostasis, and inflammation. All of these agents (TF, thrombin, PARs—mainly PAR-1 and PAR-2) are thought to promote cancer invasion and metastasis at least in part by facilitating tumor cell migration, angiogenesis, and interactions with host vascular cells, including platelets, fibroblasts, and endothelial cells lining blood vessels. Here, we discuss the role of PARs and their activators in cancer progression, focusing on TF- and thrombin-mediated actions. Therapeutic options tailored specifically to inhibit PAR-induced signaling in cancer patients are presented as well.
Collapse
|
15
|
Mußbach F, Ungefroren H, Günther B, Katenkamp K, Henklein P, Westermann M, Settmacher U, Lenk L, Sebens S, Müller JP, Böhmer FD, Kaufmann R. Proteinase-activated receptor 2 (PAR2) in hepatic stellate cells - evidence for a role in hepatocellular carcinoma growth in vivo. Mol Cancer 2016; 15:54. [PMID: 27473374 PMCID: PMC4966804 DOI: 10.1186/s12943-016-0538-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Previous studies have established that proteinase-activated receptor 2 (PAR2) promotes migration and invasion of hepatocellular carcinoma (HCC) cells, suggesting a role in HCC progression. Here, we assessed the impact of PAR2 in HCC stromal cells on HCC growth using LX-2 hepatic stellate cells (HSCs) and Hep3B cells as model. METHODS PAR2 expression and function in LX-2 cells was analysed by RT-PCR, confocal immunofluorescence, electron microscopy, and [Ca(2+)]i measurements, respectively. The impact of LX-2-expressed PAR2 on tumour growth in vivo was monitored using HCC xenotransplantation experiments in SCID mice, in which HCC-like tumours were induced by coinjection of LX-2 cells and Hep3B cells. To characterise the effects of PAR2 activation in LX-2 cells, various signalling pathways were analysed by immunoblotting and proteome profiler arrays. RESULTS Following verification of functional PAR2 expression in LX-2 cells, in vivo studies showed that these cells promoted tumour growth and angiogenesis of HCC xenografts in mice. These effects were significantly reduced when F2RL1 (encoding PAR2) was downregulated by RNA interference (RNAi). In vitro studies confirmed these results demonstrating RNAi mediated inhibition of PAR2 attenuated Smad2/3 activation in response to TGF-β1 stimulation in LX-2 cells and blocked the pro-mitotic effect of LX-2 derived conditioned medium on Hep3B cells. Furthermore, PAR2 stimulation with trypsin or a PAR2-selective activating peptide (PAR2-AP) led to activation of different intracellular signalling pathways, an increased secretion of pro-angiogenic and pro-mitotic factors and proteinases, and an enhanced migration rate across a collagen-coated membrane barrier. Silencing F2RL1 by RNAi or pharmacological inhibition of Src, hepatocyte growth factor receptor (Met), platelet-derived growth factor receptor (PDGFR), p42/p44 mitogen activated protein kinase (MAPK) or matrix-metalloproteinases (MMPs) blocked PAR2-AP-induced migration. CONCLUSION PAR2 in HSCs plays a crucial role in promoting HCC growth presumably by mediating migration and secretion of pro-angiogenic and pro-mitotic factors. Therefore, PAR2 in stromal HSCs may have relevance as a therapeutic target of HCC.
Collapse
Affiliation(s)
- Franziska Mußbach
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany
| | - Hendrik Ungefroren
- First Department of Medicine, UKSH and University of Lübeck, Lübeck, Germany
| | - Bernd Günther
- Service Unit Small Animal, Research Center Lobeda (FZL), Jena University Hospital, Jena, Germany
| | | | | | | | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany
| | - Lennart Lenk
- Group Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Susanne Sebens
- Group Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Jörg P Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Frank-Dietmar Böhmer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany.
| |
Collapse
|
16
|
Tsai MC, Chen KD, Wang CC, Huang KT, Wu CH, Kuo IY, Chen LY, Hu TH, Goto S, Nakano T, Dorling A, McVey JH, Chen CL, Lin CC. Factor VII promotes hepatocellular carcinoma progression through ERK-TSC signaling. Cell Death Discov 2015; 1:15051. [PMID: 27551480 PMCID: PMC4993037 DOI: 10.1038/cddiscovery.2015.51] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/17/2015] [Indexed: 12/18/2022] Open
Abstract
We previously demonstrated PAR2 starts upstreamed with tissue factor (TF) and factor VII (FVII), inhibited autophagy via mTOR signaling in HCC. However, the mechanism underlying for merging functions of PAR2 with the coagulation system in HCC progression remained unclear. The present study aimed to investigate the role of TF, FVII and PAR2 in tumor progression of HCC. The expressions of TF, FVII and PAR2 from HCC specimens were evaluated by immunohistochemical stains and western blotting. We found that the expression of FVII, but not TF and PAR2, directly related to the vascular invasion and the clinical staging. Importantly, a lower level of FVII expression was significantly associated with the longer disease-free survival. The addition of FVII but not TF induced the expression of PAR2 and phosphorylation of ERK1/2, whereas knockdown of FVII decreased PAR2 expression and ERK1/2 phosphorylation in HCC cell lines. Furthermore, levels of phosphor-TSC2 (Ser664) were increased after treatment with FVII and PAR2 agonist whereas these were significantly abolished in the presence of a potent and specific MEK/ERK inhibitor U0126. Moreover, mTOR knockdown highly reduced Hep3B migration, which could be reverted by FVII but not TF and PAR2. These results indicated that FVII/PAR2 signaling through MEK/ERK and TSC2 axis for mTOR activation has potent effects on the migration of HCC cells. In addition, FVII/PAR2 signaling elicits an mTOR-independent signaling, which promotes hepatoma cell migration in consistent with the clinical observations. Our study indicates that levels of FVII, but not TF, are associated with tumor migration and invasiveness in HCC, and provides clues that evaluation of FVII expression in HCC may be useful as a prognostic indicator in patients with HCC and may form an alternative target for further therapy.
Collapse
Affiliation(s)
- M-C Tsai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - K-D Chen
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - C-C Wang
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - K-T Huang
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - C-H Wu
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - I-Y Kuo
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - L-Y Chen
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - T-H Hu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - S Goto
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Fukuoka Institution of Occupational Health, Fukuoka, Japan
| | - T Nakano
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine , Kaohsiung, Taiwan
| | - A Dorling
- Division of Transplantation Immunology and Mucosal Biology, Guy's Hospital, King's College London, MRC Centre for Transplantation , London, UK
| | - J H McVey
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey , Guildford, UK
| | - C-L Chen
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - C-C Lin
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| |
Collapse
|
17
|
Proteinase-activated receptor 1- and 4-promoted migration of Hep3B hepatocellular carcinoma cells depends on ROS formation and RTK transactivation. J Cancer Res Clin Oncol 2014; 141:813-25. [PMID: 25373316 DOI: 10.1007/s00432-014-1863-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/22/2014] [Indexed: 02/08/2023]
Abstract
PURPOSE There is growing evidence for a role of proteinase-activated receptors (PARs), a subfamily of G protein-coupled receptors, in cancer. We have previously shown that PAR1 and PAR4 are able to promote the migration of hepatocellular carcinoma (HCC) cells suggesting a function in HCC progression. In this study, we assessed the underlying signalling mechanisms. METHODS Using Hep3B liver carcinoma cells, RTK activation was assessed by Western blot employing phospho-RTK specific antibodies, ROS level were estimated by H2DCF-DA using confocal laser scanning microscopy, and measurement of PTP activity was performed in cell lysates using 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) as a substrate. RESULTS Thrombin, the PAR1 selective agonist peptide TFLLRN-NH2 (PAR1-AP), and the PAR4 selective agonist peptide, AYPGKF-NH2 (PAR4-AP), induced a significant increase in Hep3B cell migration that could be blocked by inhibitors targeting formation of reactive oxygen species (ROS), or activation of hepatocyte-growth factor receptor (Met), or platelet-derived growth factor receptor (PDGFR), respectively. The involvement of these intracellular effectors in PAR1/4-initiated migratory signalling was further supported by the findings that individual stimulation of Hep3B cells with the PAR1-AP and the PAR4-AP induced an increase in ROS production and the transactivation of Met and PDGFR. In addition, PAR1- and PAR4-mediated inhibition of total PTP activity and specifically PTP1B. ROS inhibition by N-acetyl-L-cysteine prevented the inhibition of PTP1B phosphatase activity induced by PAR1-AP and the PAR4-AP, but had no effect on PAR1/4-mediated activation of Met and PDGFR in Hep3B cells. CONCLUSIONS Collectively, our data indicate that PAR1 and PAR4 activate common promigratory signalling pathways in Hep3B liver carcinoma cells including activation of the receptor tyrosine kinases Met and PDGFR, the formation of ROS and the inactivation of PTP1B. However, PAR1/4-triggered Met and PDGFR transactivation seem to be mediated independently from the ROS-PTP1B signalling module.
Collapse
|
18
|
Xie L, Duan Z, Liu C, Zheng Y, Zhou J. Protease-activated receptor 2 agonist increases cell proliferation and invasion of human pancreatic cancer cells. Exp Ther Med 2014; 9:239-244. [PMID: 25452809 PMCID: PMC4247309 DOI: 10.3892/etm.2014.2052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/20/2014] [Indexed: 01/18/2023] Open
Abstract
The aim of this study was to determine the expression of protease-activated receptor 2 (PAR-2) in the human pancreatic cancer cell line SW1990, and to evaluate its effect on cell proliferation and invasion. The expression of PAR-2 protein and mRNA in SW1990 cells was determined by immunocytochemistry and reverse transcription polymerase chain reaction (PCR), respectively. MTT and cell invasion and migration assays, as well as semi-quantitative PCR and zymography analysis, were additionally performed. PAR-2 mRNA was significantly upregulated in the cells treated with trypsin or the PAR-2 activating peptide Ser-Leu-Ile-Gly-Lys-Val (SLIGKV) (P<0.01), but not in the Val-Lys-Gly-Ile-Leu-Ser group (P>0.05). Trypsin and SLIGKV significantly promoted SW1990 cell proliferation in a dose- and time-dependent manner (P<0.05). Compared with the control group, trypsin and SLIGKV significantly increased the mRNA expression (P<0.01) and gelatinolytic activity (P<0.01) of matrix metalloproteinase (MMP)-2. In conclusion, PAR-2 is expressed in SW1990 cells. PAR-2 activation may promote the invasion and migration of human pancreatic cancer cells by increasing MMP-2 expression.
Collapse
Affiliation(s)
- Liqun Xie
- Department of Gastroenterology, Affiliated Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Zexing Duan
- Department of Gastroenterology, Affiliated Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, P.R. China ; Hunan Provincial Corps Hospital, Chinese People's Armed Police Forces, Changsha, Hunan 410006, P.R. China
| | - Caiju Liu
- Department of Gastroenterology, Affiliated Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Yanmin Zheng
- Department of Gastroenterology, Affiliated Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Jing Zhou
- Department of Gastroenterology, Affiliated Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, P.R. China
| |
Collapse
|
19
|
Kularathna PK, Pagel CN, Mackie EJ. Tumour progression and cancer-induced pain: a role for protease-activated receptor-2? Int J Biochem Cell Biol 2014; 57:149-56. [PMID: 25448411 DOI: 10.1016/j.biocel.2014.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/23/2014] [Indexed: 02/08/2023]
Abstract
The role of proteases in modifying the microenvironment of tumour cells has long been recognised. With the discovery of the protease-activated receptor family of G protein-coupled receptors a mechanism for cells to sense and respond directly to proteases in their microenvironment was revealed. Many early studies described the roles of protease-activated receptors in the cellular events that occur during blood coagulation and inflammation. More recently, studies have begun to focus on the roles of protease-activated receptors in the establishment, progression and metastasis of a variety of tumours. This review will focus on the expression of protease-activated receptor-2 and its activators by normal and neoplastic tissues, and describe current evidence that activation of protease-activated receptor-2 is an important event at multiple stages of tumour progression and in pain associated with cancer.
Collapse
Affiliation(s)
- Pamuditha K Kularathna
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles N Pagel
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Eleanor J Mackie
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
20
|
Sales KU, Friis S, Konkel JE, Godiksen S, Hatakeyama M, Hansen KK, Rogatto SR, Szabo R, Vogel LK, Chen W, Gutkind JS, Bugge TH. Non-hematopoietic PAR-2 is essential for matriptase-driven pre-malignant progression and potentiation of ras-mediated squamous cell carcinogenesis. Oncogene 2014; 34:346-56. [PMID: 24469043 PMCID: PMC4112178 DOI: 10.1038/onc.2013.563] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 01/27/2023]
Abstract
The membrane-anchored serine protease, matriptase, is consistently dysregulated in a range of human carcinomas, and high matriptase activity correlates with poor prognosis. Furthermore, matriptase is unique among tumor-associated proteases in that epithelial stem cell expression of the protease suffices to induce malignant transformation. Here, we use genetic epistasis analysis to identify proteinase-activated receptor (PAR)-2-dependent inflammatory signaling as an essential component of matriptase-mediated oncogenesis. In cell-based assays, matriptase was a potent activator of PAR-2, and PAR-2 activation by matriptase caused robust induction of nuclear factor (NF)κB through Gαi. Importantly, genetic elimination of PAR-2 from mice completely prevented matriptase-induced pre-malignant progression, including inflammatory cytokine production, inflammatory cell recruitment, epidermal hyperplasia and dermal fibrosis. Selective ablation of PAR-2 from bone marrow-derived cells did not prevent matriptase-driven pre-malignant progression, indicating that matriptase activates keratinocyte stem cell PAR-2 to elicit its pro-inflammatory and pro-tumorigenic effects. When combined with previous studies, our data suggest that dual induction of PAR-2-NFκB inflammatory signaling and PI3K-Akt-mTor survival/proliferative signaling underlies the transforming potential of matriptase and may contribute to pro-tumorigenic signaling in human epithelial carcinogenesis.
Collapse
Affiliation(s)
- K U Sales
- 1] Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA [2] Clinical Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - S Friis
- 1] Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA [2] Department of Cellular and Molecular Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - J E Konkel
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - S Godiksen
- 1] Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA [2] Department of Cellular and Molecular Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark [3] Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - M Hatakeyama
- 1] Department of Urology, Faculty of Medicine, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil [2] AC Camargo Cancer Center, Sao Paulo, Brazil
| | - K K Hansen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - S R Rogatto
- 1] Department of Urology, Faculty of Medicine, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil [2] AC Camargo Cancer Center, Sao Paulo, Brazil
| | - R Szabo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - L K Vogel
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - W Chen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - J S Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - T H Bugge
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Pepducin targeting the C-X-C chemokine receptor type 4 acts as a biased agonist favoring activation of the inhibitory G protein. Proc Natl Acad Sci U S A 2013; 110:E5088-97. [PMID: 24309376 DOI: 10.1073/pnas.1312515110] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Short lipidated peptide sequences derived from various intracellular loop regions of G protein-coupled receptors (GPCRs) are named pepducins and act as allosteric modulators of a number of GPCRs. Recently, a pepducin selectively targeting the C-X-C chemokine receptor type 4 (CXCR4) was found to be an allosteric agonist, active in both cell-based assays and in vivo. However, the precise mechanism of action of this class of ligands remains poorly understood. In particular, given the diversity of signaling effectors that can be engaged by a given receptor, it is not clear whether pepducins can show biased signaling leading to functional selectivity. To explore the ligand-biased potential of pepducins, we assessed the effect of the CXCR4 selective pepducin, ATI-2341, on the ability of the receptor to engage the inhibitory G proteins (Gi1, Gi2 and Gi3), G13, and β-arrestins. Using bioluminescence resonance energy transfer-based biosensors, we found that, in contrast to the natural CXCR4 ligand, stromal cell-derived factor-1α, which promotes the engagement of the three Gi subtypes, G13 and the two β-arrestins, ATI-2341 leads to the engagement of the Gi subtypes but not G13 or the β-arrestins. Calculation of the transduction ratio for each pathway revealed a strong negative bias of ATI-2341 toward G13 and β-arrestins, revealing functional selectivity for the Gi pathways. The negative bias toward β-arrestins results from the reduced ability of the pepducin to promote GPCR kinase-mediated phosphorylation of the receptor. In addition to revealing ligand-biased signaling of pepducins, these findings shed some light on the mechanism of action of a unique class of allosteric regulators.
Collapse
|
22
|
Gieseler F, Ungefroren H, Settmacher U, Hollenberg MD, Kaufmann R. Proteinase-activated receptors (PARs) - focus on receptor-receptor-interactions and their physiological and pathophysiological impact. Cell Commun Signal 2013; 11:86. [PMID: 24215724 PMCID: PMC3842752 DOI: 10.1186/1478-811x-11-86] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/25/2013] [Indexed: 02/07/2023] Open
Abstract
Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease.
Collapse
Affiliation(s)
| | | | | | | | - Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Drackendorfer Str, 1, D-07747, Jena, Germany.
| |
Collapse
|
23
|
TF/FVIIa/PAR2 promotes cell proliferation and migration via PKCα and ERK-dependent c-Jun/AP-1 pathway in colon cancer cell line SW620. Tumour Biol 2013; 34:2573-81. [DOI: 10.1007/s13277-013-0803-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/09/2013] [Indexed: 12/17/2022] Open
|
24
|
G Protein-Coupled Receptors in cancer: biochemical interactions and drug design. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:143-73. [PMID: 23415094 DOI: 10.1016/b978-0-12-394587-7.00004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G Protein-Coupled Receptors (GPCRs) share the same topology made of seven-transmembrane segments and represent the largest family of membrane receptors. Initially associated with signal transduction in differentiated cells, GPCRs and heterotrimeric G proteins were shown to behave as proto-oncogenes whose overexpression or activating mutations confer transforming properties. The first part of this review focuses on the link between biochemical interactions of a GPCR with other receptors, such as dimerization or multiprotein complexes, and their oncogenic properties. Alteration of these interactions or deregulation of transduction cascades can promote uncontrolled cell proliferation or cell transformation that leads to tumorigenicity and malignancy. The second part concerns the design of drugs specifically targeting these complex interactions and their promise in cancer therapy.
Collapse
|
25
|
Kaufmann R, Hascher A, Mussbach F, Henklein P, Katenkamp K, Westermann M, Settmacher U. Proteinase-activated receptor 2 (PAR(2)) in cholangiocarcinoma (CCA) cells: effects on signaling and cellular level. Histochem Cell Biol 2012; 138:913-24. [PMID: 22892662 DOI: 10.1007/s00418-012-1006-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2012] [Indexed: 01/26/2023]
Abstract
In this study, we demonstrate functional expression of the proteinase-activated receptor 2 (PAR(2)), a member of a G-protein receptor subfamily in primary cholangiocarcinoma (PCCA) cell cultures. Treatment of PCCA cells with the serine proteinase trypsin and the PAR(2)-selective activating peptide, furoyl-LIGRLO-NH(2), increased migration across a collagen membrane barrier. This effect was inhibited by a PAR(2)-selective pepducin antagonist peptide (P2pal-18S) and it was also blocked with the Met receptor tyrosine kinase (Met) inhibitors SU 11274 and PHA 665752, the MAPKinase inhibitors PD 98059 and SL 327, and the Stat3 inhibitor Stattic. The involvement of Met, p42/p44 MAPKinases and Stat3 in PAR(2)-mediated PCCA cell signaling was further supported by the findings that trypsin and the PAR(2)-selective agonist peptide, 2-furoyl-LIGRLO-NH(2), stimulated activating phosphorylation of these signaling molecules in cholangiocarcinoma cells. With our results, we provide a novel signal transduction module in cholangiocarcinoma cell migration involving PAR(2)-driven activation of Met, p42/p44 MAPKinases and Stat3.
Collapse
Affiliation(s)
- Roland Kaufmann
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Medical Faculty at the Friedrich Schiller University Jena, University Hospital Jena, Drackendorfer Str. 1, 07747 Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Evaluation of antibodies directed against human protease-activated receptor-2. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:861-73. [PMID: 22842724 DOI: 10.1007/s00210-012-0783-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/13/2012] [Indexed: 12/29/2022]
Abstract
Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor activated by intramolecular docking of a tethered ligand that is released by the actions of proteases, mainly of the serine protease family. Here, we evaluate four commercially available anti-PAR2 antibodies, SAM11, C17, N19 and H99, demonstrating marked differences in the ability of these reagents to detect the target receptor in Western blot, immunocytochemical and flow cytometry applications. In Western blot analysis, we evaluated antibody reactivity against both ectopic and endogenous receptors. Against material from transfected cells, we show that SAM11 and N19, and to a lesser extent C17, but not H99, are able to detect ectopic PAR2. Interestingly, these Western blot analyses indicate that N19 and C17 detect conformations of ectopic PAR2 distinct to those recognised by SAM11. Significantly, our data also indicate that Western blot signal detected by SAM11 and C17, and much of the signal detected by N19, against cells endogenously expressing PAR2 is non-specific. Despite confounding non-specific signals, we were able to discern N19 reactivity against endogenous PAR2 as a broad smear that we also observed in ectopically expressing human and mouse cells and that is sensitive to loss of N-glycosylation. In immunocytochemistry analysis, each antibody is able to detect ectopic PAR2 although it appears that H99 detects only a subset of the ectopically expressed receptor. In addition, SAM11 and N19 are able to detect both ectopic and endogenous cell surface PAR2 by flow cytometry. In summary: (1) each antibody can detect ectopic PAR2 by immunocytochemical analysis with SAM11 and N19 suitable for cell surface detection of both ectopic and endogenous receptor by flow cytometry; (2) in Western blot analysis, N19, SAM11 and C17 can detect ectopically expressed PAR2, with only N19 able to detect the endogenous receptor by this technique and (3) in each of these approaches, appropriate controls are essential to ensure that non-specific reactivity is identified.
Collapse
|
27
|
Wang TH, Ng KF, Yeh TS, Wang YL, Liang KH, Yeh CT, Chen TC. Peritumoral small ephrinA5 isoform level predicts the postoperative survival in hepatocellular carcinoma. PLoS One 2012; 7:e41749. [PMID: 22860012 PMCID: PMC3408466 DOI: 10.1371/journal.pone.0041749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 06/25/2012] [Indexed: 12/22/2022] Open
Abstract
Background EphrinA5, a member of Eph/Ephrin family, possesses two alternative isoforms, large ephrinA5 isoform (ephrinA5L) and small ephrinA5 isoform (ephrinA5S). EphrinA5L is a putative tumor suppressor in several types of human cancers. However, the role of ephrinA5S in hepato-carcinogenesis remains unclear. In this study, we evaluate the role of ephrinA5 isoforms in human hepatocellular carcinomas (HCC). Methodology/Principal Findings A total of 142 paired HCCs and peritumoral liver tissue was examined for relative expression of ephrinA5L and ephrinA5S by using quantitative real-time polymerase chain reaction. We analyzed their expression in relation to clinical parameters, disease-free survival and overall survival. Functional assays were performed to dissect the possible underlying mechanisms. Both ephrinA5L and ephrinA5S were significantly downregulated in HCCs, as compared to those in peritumoral tissue (p = 0.013 and 0.001). Univariate analysis demonstrated that ephrinA5S was positively correlated with old age and histological grade. In multivariate analysis, high ephrinA5S expression in peritumoral tissue had better disease-free survival (p = 0.002) and overall survival (p = 0.045) in patients with HCC after surgical resection. Functional analysis in HCC cell lines revealed that ephrinA5S had a more potent suppressive effect than ephrinA5L on cell proliferation (p<0.05) and migration (p<0.01). Furthermore, forced expression of both ephrinA5 isoforms in HCC cell lines significantly down-regulated epidermal growth factor receptor (EGFR) expression by promoting c-Cbl-mediated EGFR degradation. Conclusions/Significance EphrinA5S might be a useful prognostic biomarker for HCCs after surgical resection. EphrinA5, especially ephrinA5S, acts as a tumor suppressor in hepatocarcinogenesis. Peritumoral small ephrinA5 isoform level could determine the postoperative survival in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Kwai-Fong Ng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Tao-Yuan, Taiwan
| | - Ta-Sen Yeh
- Department of General Surgery, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Tao-Yuan, Taiwan
| | - Yu-Ling Wang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Tao-Yuan, Taiwan
| | - Kung-Hao Liang
- Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Chau-Ting Yeh
- Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- * E-mail: (TCC); (CTY)
| | - Tse-Ching Chen
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Tao-Yuan, Taiwan
- * E-mail: (TCC); (CTY)
| |
Collapse
|
28
|
Chung H, Hamza M, Oikonomopoulou K, Gratio V, Saifeddine M, Virca GD, Diamandis EP, Hollenberg MD, Darmoul D. Kallikrein-related peptidase signaling in colon carcinoma cells: targeting proteinase-activated receptors. Biol Chem 2012; 393:413-20. [DOI: 10.1515/bc-2011-231] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/05/2011] [Indexed: 11/15/2022]
Abstract
AbstractWe hypothesized that kallikrein-related peptidase 14 (KLK14) is produced by colonic tumors and can promote tumorigenesis by activating proteinase-activated receptors (PARs). We found that KLK14 is expressed in human colon adenocarcinoma cells but not in adjacent cancer-free tissue; KLK14 mRNA, present in colon cancer, leads to KLK14 protein expression and secretion; and KLK14 signals viaPAR-2 in HT-29 cells to cause (1) receptor activation/internalization, (2) increases in intracellular calcium, (3) stimulation of ERK1/2/MAP kinase phosphorylation, and (4) cell proliferation. We suggest that KLK14, acting via PAR-2, represents an autocrine/paracrine regulator of colon tumorigenesis.
Collapse
|
29
|
Li XG, Dall'Angelo S, Schweiger LF, Zanda M, O'Hagan D. [18F]-5-Fluoro-5-deoxyribose, an efficient peptide bioconjugation ligand for positron emission tomography (PET) imaging. Chem Commun (Camb) 2012; 48:5247-9. [PMID: 22476360 DOI: 10.1039/c2cc31262j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[(18)F]-5-Fluoro-5-deoxyribose ([(18)F]-FDR) conjugates much more rapidly than [(18)F]-FDG under mild reaction conditions to peptides and offers new prospects for mild and rapid bioconjugation for fluorine-18 labelling in PET imaging.
Collapse
Affiliation(s)
- Xiang-Guo Li
- University of St Andrews, School of Chemistry and Centre for Biomolecular Science, North Haugh, St Andrews, Fife KY16 9ST, UK.
| | | | | | | | | |
Collapse
|
30
|
O'Callaghan K, Kuliopulos A, Covic L. Turning receptors on and off with intracellular pepducins: new insights into G-protein-coupled receptor drug development. J Biol Chem 2012; 287:12787-96. [PMID: 22374997 DOI: 10.1074/jbc.r112.355461] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are a large family of remarkably versatile membrane proteins that are attractive therapeutic targets because of their involvement in a vast range of normal physiological processes and pathological diseases. Upon activation, intracellular domains of GPCRs mediate signaling to G-proteins, but these domains have yet to be effectively exploited as drug targets. Cell-penetrating lipidated peptides called pepducins target specific intracellular loops of GPCRs and have recently emerged as effective allosteric modulators of GPCR activity. The lipid moiety facilitates translocation across the plasma membrane, where pepducins then specifically modulate signaling of their cognate receptor. To date, pepducins and related lipopeptides have been shown to specifically modulate the activity of diverse GPCRs and other membrane proteins, including protease-activated receptors (PAR1, PAR2, and PAR4), chemokine receptors (CXCR1, CXCR2, and CXCR4), sphingosine 1-phosphate receptor-3 (S1P3), the melanocortin-4 receptor, the Smoothened receptor, formyl peptide receptor-2 (FPR2), the relaxin receptor (LGR7), G-proteins (Gα(q/11/o/13)), muscarinic acetylcholine receptor and vanilloid (TRPV1) channels, and the GPIIb integrin. This minireview describes recent advances made using pepducin technology in targeting diverse GPCRs and the use of pepducins in identifying potential novel drug targets.
Collapse
Affiliation(s)
- Katie O'Callaghan
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
31
|
Proteinase-Activated Receptors (PARs) and Calcium Signaling in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:979-1000. [DOI: 10.1007/978-94-007-2888-2_45] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Gao J, Inagaki Y, Song P, Qu X, Kokudo N, Tang W. Targeting c-Met as a promising strategy for the treatment of hepatocellular carcinoma. Pharmacol Res 2011; 65:23-30. [PMID: 22138044 DOI: 10.1016/j.phrs.2011.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a severe condition that is found worldwide. Liver transplantation, surgical resection, and local-regional therapy such as transarterial chemoembolization have made great progress and play a dominant role in HCC management. However, the high frequency of tumor recurrence and/or metastasis after those treatments acquires systematic drug intervention. The approval of sorafenib, an agent that targets receptor tyrosine kinases (RTKs), as the first effective drug for systemic treatment of HCC represents a milestone in treatment of this disease. As a typical member of the RTK family, c-Met represents an intriguing target for cancer therapy. However, the role of the c-Met signal transduction pathway is less unambiguous in HCC pathology, giving rise to concerns about the feasibility of utilizing c-Met targeting approaches for HCC treatment. Recently, studies on des-γ-carboxy prothrombin, an abnormal cytokine secreted by HCC cells, by the current authors and other researchers have highlighted the critical role of c-Met signaling in HCC progression. This review takes a second look at the c-Met signal transduction pathway and discusses the possibility of targeting c-Met as a therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Ji'nan, Shandong, China
| | | | | | | | | | | |
Collapse
|
33
|
Pharmacology, biodistribution, and efficacy of GPCR-based pepducins in disease models. Methods Mol Biol 2011; 683:259-75. [PMID: 21053136 DOI: 10.1007/978-1-60761-919-2_19] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
G protein-coupled receptors (GPCR) are a superfamily of receptors that are vital in a wide array of physiological processes. Modulation of GPCR signaling has been an intensive area of therapeutic study, mainly due to the diverse pathophysiological significance of GPCRs. Pepducins are cell-penetrating lipidated peptides designed to target the intracellular loops of the GPCR of interest. Pepducins can function as agonists or antagonists of their cognate receptor, making them highly useful compounds for the study of GPCR signaling. Pepducins have been used to control platelet-dependent hemostasis and thrombosis, tumor growth, invasion, and angiogenesis, as well as to improve sepsis outcomes in mice. Pepducins have been successfully designed against a wide variety of GPCRs including the protease-activated receptors (PAR1, 2, 4), the chemokine receptors (CXCR1, 2, 4), the sphingosine-1-phosphate receptor (S1P3), the adrenergic receptor (ADRA1B), and have the potential to help reveal the functions of intractable GPCRs. Pharmacokinetic, pharmacodynamic, and biodistribution studies have showed that pepducins are widely distributed throughout the body except the brain and possess appropriate drug-like properties for use in vivo. Here, we discuss the delivery, pharmacology, and biodistribution of pepducins, as well as the effects of pepducins in models of inflammation, cardiovascular disease, cancer, and angiogenesis.
Collapse
|
34
|
Kaufmann R, Mussbach F, Henklein P, Settmacher U. Proteinase-activated receptor 2-mediated calcium signaling in hepatocellular carcinoma cells. J Cancer Res Clin Oncol 2010; 137:965-73. [PMID: 21125404 DOI: 10.1007/s00432-010-0961-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 11/15/2010] [Indexed: 02/08/2023]
Abstract
PURPOSE The proteinase-activated receptor-2 (PAR(2)), a member of a newly discovered G protein-coupled receptor subfamily has recently been shown to promote hepatocellular carcinoma (HCC) cell invasion, suggesting a function in HCC progression. In this study, the effect of PAR(2) on intracellular calcium and its involvement in p42/p44 MAPKinase activation in HEP-3B cells and in two primary HCC cultures established from surgically resected HCC specimens has been investigated. METHODS [Ca(2+)](i) was measured in single HCC cells with fluo-4 using confocal laser scanning microscopy. For PAR(2) gene silencing, a specific PAR(2) siRNA was used. P42/p44 MAPK activation was assessed by Western blot employing a phospho-p42/p44 MAPKinase-specific antibody. RESULTS Both PAR(2)-selective-activating peptide (PAR(2)-AP), 2-furoyl-LIGRLO-NH(2), and the PAR(2) activator trypsin increased Ca(2+) in HCC cells. These effects were reduced by pretreatment of the cells with thapsigargin and by EGTA buffering. In addition, the effect of trypsin and PAR(2)-AP on [Ca(2+)](i) in HCC cells could be blocked by a PAR(2)-selective antagonist (Pal-PAR(2)) and by PAR(2) silencing with specific siRNA. Furthermore, PAR(2)-AP-induced p42/p44 MAPKinase activation could be inhibited by depletion of intracellular calcium stores by thapsigargin and removing extracellular calcium. CONCLUSIONS Our results imply that PAR(2) evokes calcium signals in liver carcinoma cells both by calcium entry and calcium liberation from internal pools. In addition, PAR(2)-dependent calcium signaling was shown to be critical for p42/p44 MAPKinase activation in HCC cells. Since MAPKinases are key elements in HCC cell invasion, calcium mobilization appears to critically contribute to this crucial intracellular pathway for hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Medical Faculty at the Friedrich Schiller University Jena, Erlanger Allee 101, 07747 Jena, Germany.
| | | | | | | |
Collapse
|
35
|
Mannowetz N, Würdinger R, Zippel A, Aumüller G, Wennemuth G. Expression of proteinase-activated receptor-2 (PAR2) is androgen-dependent in stromal cell line (hPCPs) from benign prostatic hyperplasia. Prostate 2010; 70:1350-8. [PMID: 20623639 DOI: 10.1002/pros.21170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Growth properties of the prostate are regulated by a variety of hormones and growth factors. Benign prostatic hyperplasia (BPH) is characterized by abnormal epithelial and stromal proliferation. Varying androgen hormone levels in elderly men are correlated with abnormal proliferations of the prostate. Proteinase-activated receptor-2 (PAR2), a subtype of G-protein-coupled receptors, is known to induce multiple biological processes. It could also play a key role in the proliferation and metastasis of prostate cancer, but its effect on BPH pathogenesis is to a great extent unknown. METHODS Localization of PAR2 was determined both in pathologically altered and in normal prostate tissues by using immunohistochemical techniques. PAR2 activity was assessed by measuring changes in intracellular calcium [Ca(2+)](i) following stimulation of cultured stromal cells with a PAR2 agonist (trypsin) and a synthetic PAR2-activating peptide (AP). DHT-dependence of PAR2 expression in prostate cancer and prostatic stromal cell lines was examined with semi-quantitative and quantitative PCR. Cultured stromal cells (hPCPs) were stimulated with PAR2 AP and cell proliferation was determined through [(3)H]-thymidine incorporation. RESULTS In comparison to normal prostate, PAR2 expression was increased in BPH stroma. DHT induced a higher expression of PAR2 when sub-physiological DHT-levels were used. Higher levels of DHT produced reduced PAR2 expression. A mitogenic effect was induced by applying PAR2 AP to hPCPs-cells. CONCLUSIONS In conclusion, we found that PAR2 expression is hormone-dependent in prostatic stromal cells with a negative correlation and we consider it to be an important factor in mitogenesis in BPH.
Collapse
Affiliation(s)
- Nadja Mannowetz
- Department of Anatomy and Cell Biology, University of Homburg/Saar, Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|