1
|
Abdelhady R, Mohammed OA, Doghish AS, Hamad RS, Abdel-Reheim MA, Alamri MMS, Alharthi MH, Alfaifi J, Adam MIE, Alhalafi AH, Mohammed NA, Isa AI, Abdel-Ghany S, Attia MA, Elmorsy EA, Al-Noshokaty TM, Nomier Y, El-Dakroury WA, Saber S. Linagliptin, a DPP-4 inhibitor, activates AMPK/FOXO3a and suppresses NFκB to mitigate the debilitating effects of diethylnitrosamine exposure in rat liver: Novel mechanistic insights. FASEB J 2024; 38:e23480. [PMID: 38354025 DOI: 10.1096/fj.202302461rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
Accumulating evidence suggests that dysregulation of FOXO3a plays a significant role in the progression of various malignancies, including hepatocellular carcinoma (HCC). FOXO3a inactivation, driven by oncogenic stimuli, can lead to abnormal cell growth, suppression of apoptosis, and resistance to anticancer drugs. Therefore, FOXO3a emerges as a potential molecular target for the development of innovative treatments in the era of oncology. Linagliptin (LNGTN), a DPP-4 inhibitor known for its safe profile, has exhibited noteworthy anti-inflammatory and anti-oxidative properties in previous in vivo studies. Several potential molecular mechanisms have been proposed to explain these effects. However, the capacity of LNGTN to activate FOXO3a through AMPK activation has not been investigated. In our investigation, we examined the potential repurposing of LNGTN as a hepatoprotective agent against diethylnitrosamine (DENA) intoxication. Additionally, we assessed LNGTN's impact on apoptosis and autophagy. Following a 10-week administration of DENA, the liver underwent damage marked by inflammation and early neoplastic alterations. Our study presents the first experimental evidence demonstrating that LNGTN can reinstate the aberrantly regulated FOXO3a activity by elevating the nuclear fraction of FOXO3a in comparison to the cytosolic fraction, subsequent to AMPK activation. Moreover, noteworthy inactivation of NFκB induced by LNGTN was observed. These effects culminated in the initiation of apoptosis, the activation of autophagy, and the manifestation of anti-inflammatory, antiproliferative, and antiangiogenic outcomes. These effects were concomitant with improved liver function and microstructure. In conclusion, our findings open new avenues for the development of novel therapeutic strategies targeting the AMPK/FOXO3a signaling pathway in the management of chronic liver damage.
Collapse
Affiliation(s)
- Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Aldawadmi, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Nahid A Mohammed
- Department of Physiology Unit, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Adamu Imam Isa
- Department of Physiology Unit, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Sameh Abdel-Ghany
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammed A Attia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Elsayed A Elmorsy
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | | | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al-khod, Sultanate of Oman
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
2
|
Mio C, Baldan F, Damante G. NK2 homeobox gene cluster: Functions and roles in human diseases. Genes Dis 2023; 10:2038-2048. [PMID: 37492711 PMCID: PMC10363584 DOI: 10.1016/j.gendis.2022.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 07/27/2023] Open
Abstract
NK2 genes (NKX2 gene cluster in humans) encode for homeodomain-containing transcription factors that are conserved along the phylogeny. According to the most detailed classifications, vertebrate NKX2 genes are classified into two distinct families, NK2.1 and NK2.2. The former is constituted by NKX2-1 and NKX2-4 genes, which are homologous to the Drosophila scro gene; the latter includes NKX2-2 and NKX2-8 genes, which are homologous to the Drosophila vnd gene. Conservation of these genes is not only related to molecular structure and expression, but also to biological functions. In Drosophila and vertebrates, NK2 genes share roles in the development of ventral regions of the central nervous system. In vertebrates, NKX2 genes have a relevant role in the development of several other organs such as the thyroid, lung, and pancreas. Loss-of-function mutations in NKX2-1 and NKX2-2 are the monogenic cause of the brain-lung-thyroid syndrome and neonatal diabetes, respectively. Alterations in NKX2-4 and NKX2-8 genes may play a role in multifactorial diseases, autism spectrum disorder, and neural tube defects, respectively. NKX2-1, NKX2-2, and NKX2-8 are expressed in various cancer types as either oncogenes or tumor suppressor genes. Several data indicate that evaluation of their expression in tumors has diagnostic and/or prognostic value.
Collapse
Affiliation(s)
- Catia Mio
- Dipartimento di Area Medica, Università degli Studi di Udine, Udine 33100, Italy
| | - Federica Baldan
- Istituto di Genetica Medica, Azienda Sanitaria Universitaria Friuli Centrale, Udine 33100, Italy
| | - Giuseppe Damante
- Dipartimento di Area Medica, Università degli Studi di Udine, Udine 33100, Italy
- Istituto di Genetica Medica, Azienda Sanitaria Universitaria Friuli Centrale, Udine 33100, Italy
| |
Collapse
|
3
|
Chin FW, Chan SC, Veerakumarasivam A. Homeobox Gene Expression Dysregulation as Potential Diagnostic and Prognostic Biomarkers in Bladder Cancer. Diagnostics (Basel) 2023; 13:2641. [PMID: 37627900 PMCID: PMC10453580 DOI: 10.3390/diagnostics13162641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/27/2023] Open
Abstract
Homeobox genes serve as master regulatory transcription factors that regulate gene expression during embryogenesis. A homeobox gene may have either tumor-promoting or tumor-suppressive properties depending on the specific organ or cell lineage where it is expressed. The dysregulation of homeobox genes has been reported in various human cancers, including bladder cancer. The dysregulated expression of homeobox genes has been associated with bladder cancer clinical outcomes. Although bladder cancer has high risk of tumor recurrence and progression, it is highly challenging for clinicians to accurately predict the risk of tumor recurrence and progression at the initial point of diagnosis. Cystoscopy is the routine surveillance method used to detect tumor recurrence. However, the procedure causes significant discomfort and pain that results in poor surveillance follow-up amongst patients. Therefore, the development of reliable non-invasive biomarkers for the early detection and monitoring of bladder cancer is crucial. This review provides a comprehensive overview of the diagnostic and prognostic potential of homeobox gene expression dysregulation in bladder cancer.
Collapse
Affiliation(s)
- Fee-Wai Chin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Soon-Choy Chan
- School of Liberal Arts, Science and Technology, Perdana University, Kuala Lumpur 50490, Malaysia
| | - Abhi Veerakumarasivam
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
4
|
Dhakal B, Tomita Y, Drew P, Price T, Maddern G, Smith E, Fenix K. Perhexiline: Old Drug, New Tricks? A Summary of Its Anti-Cancer Effects. Molecules 2023; 28:molecules28083624. [PMID: 37110858 PMCID: PMC10145508 DOI: 10.3390/molecules28083624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer metabolic plasticity, including changes in fatty acid metabolism utilisation, is now widely appreciated as a key driver for cancer cell growth, survival and malignancy. Hence, cancer metabolic pathways have been the focus of much recent drug development. Perhexiline is a prophylactic antianginal drug known to act by inhibiting carnitine palmitoyltransferase 1 (CPT1) and 2 (CPT2), mitochondrial enzymes critical for fatty acid metabolism. In this review, we discuss the growing evidence that perhexiline has potent anti-cancer properties when tested as a monotherapy or in combination with traditional chemotherapeutics. We review the CPT1/2 dependent and independent mechanisms of its anti-cancer activities. Finally, we speculate on the clinical feasibility and utility of repurposing perhexiline as an anti-cancer agent, its limitations including known side effects and its potential added benefit of limiting cardiotoxicity induced by other chemotherapeutics.
Collapse
Affiliation(s)
- Bimala Dhakal
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
| | - Yoko Tomita
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Paul Drew
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
| | - Timothy Price
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Guy Maddern
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
| | - Eric Smith
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
| | - Kevin Fenix
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
| |
Collapse
|
5
|
Abudourousuli A, Chen S, Hu Y, Qian W, Liao X, Xu Y, Song L, Zhang S, Li J. NKX2-8/PTHrP Axis-Mediated Osteoclastogenesis and Bone Metastasis in Breast Cancer. Front Oncol 2022; 12:907000. [PMID: 35707355 PMCID: PMC9189290 DOI: 10.3389/fonc.2022.907000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Bone metastasis is one of the most common distant metastasis of breast cancer, which could cause serious skeletal disease and increased cancer-related death. Therefore, identification of novel target(s) to develop therapeutics would improve patient outcomes. The role of NKX2-8 in modulation of bone remodeling was determined using osteoclastogenesis and micro-CT assays. The expression of NKX2-8 was examined via immunohistochemistry analysis in 344 breast cancer tissues. The mechanism underlying NKX2-8-mediated PTHrP downregulation was investigated using biotinylated deactivated Cas9 capture analysis, chromatin immunoprecipitation, co-immunoprecipitation assays. A bone-metastatic mouse model was used to examine the effect of NKX2-8 dysregulation on breast cancer bone metastasis and the impact of three PTHrP inhibitor on prevention of breast cancer bone metastasis. The downregulated expression of NKX2-8 was significantly correlated with breast cancer bone metastasis. In vivo bone-metastatic mouse model indicated that silencing NKX2-8 promoted, but overexpressing NKX2-8 inhibited, breast cancer osteolytic bone metastasis and osteoclastogenesis. Mechanistically, NKX2-8 directly interacted with HDAC1 on the PTHrP promoter, which resulted in a reduction of histone H3K27 acetylation, consequently transcriptionally downregulated PTHrP expression in breast cancer cells. Furthermore, targeting PTHrP effectively inhibited NKX2-8-downregulation-mediated breast cancer bone metastasis. Taken together, our results uncover a novel mechanism underlying NKX2-8 downregulation-mediated breast cancer bone metastasis and represent that the targeting PTHrP might be a tailored treatment for NKX2-8 silencing-induced breast cancer bone metastasis.
Collapse
Affiliation(s)
- Ainiwaerjiang Abudourousuli
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Suwen Chen
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yameng Hu
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wanying Qian
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xinyi Liao
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yingru Xu
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Libing Song
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuxia Zhang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jun Li, ; Shuxia Zhang,
| | - Jun Li
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jun Li, ; Shuxia Zhang,
| |
Collapse
|
6
|
Nkx2.8 promotes chemosensitivity in bladder urothelial carcinoma via transcriptional repression of MDR1. Cell Death Dis 2022; 13:492. [PMID: 35610207 PMCID: PMC9130207 DOI: 10.1038/s41419-022-04947-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Multidrug resistance gene 1 (MDR1), a key factor contributing to drug insensitivity, has been associated with treatment failure and poor prognoses in various cancers, including bladder urothelial carcinoma (UC). Here we show that positive Nkx2.8 expression was associated with better prognosis of UC patients received chemotherapy. Patients with positive Nkx2.8 expression had promising prognosis from adjuvant chemotherapy. Enforced expression of Nkx2.8 promotes drug sensitivity of UC cells. Mechanistic investigations showed that Nkx2.8 negatively regulated expression of MDR1 by binds directly to the MDR1 promoter and transcriptionally represses MDR1 expression. P-gp inhibitor reversed chemosensitivity inhibition by Nkx2.8 scilencing. In clinical UC specimens, expression of Nkx2.8 inversely correlated with P-gp expression, and UC patients with Nkx2.8 positivity and low P-gp expression displayed the best prognosis. Our findings uncovered a new mechanism of chemosensitivity in UC cells and proposing Nkx2.8-MDR1 axis as a novel candidate target for therapeutic intervention of UC.
Collapse
|
7
|
Li B, Xiao Q, Shan L, Song Y. NCAPH promotes cell proliferation and inhibits cell apoptosis of bladder cancer cells through MEK/ERK signaling pathway. Cell Cycle 2022; 21:427-438. [PMID: 34974790 PMCID: PMC8855866 DOI: 10.1080/15384101.2021.2021050] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bladder cancer (BC) is one of the most common cancers world-wide with a poor prognosis. Non-SMC (Structural Maintenance of Chromosomes)-condensin I complex subunit H (NCAPH) is a regulatory subunit of the condensin I complex and plays an important role in tumorigenesis and progression in several types of cancers. However, the role of NCAPH in BC remains unknown. In this study, we tried to reveal the biological functions of NCAPH in BC. We detected the expressions of NCAPH in BC and adjacent tissues, and BC cells lines. Subsequently, the gain- and loss-of-function experiments were performed to determine the effects of NCAPH on BC cell proliferation, apoptosis, and activation of the MEK/ERK signaling pathway in vitro. Moreover, we used BALB/c nude mice and established a xenograft model to investigate whether silence NCAPH using shRNA targeting NCAPH (shNCAPH) can inhibit BC tumor growth in vivo. The results showed NCAPH was overexpressed in BC tissues compared to adjacent tissues and highly expressed in BC cell lines. Additionally, overexpression of NCAPH promoted cell proliferation and inhibited apoptosis in SW780 cells. Conversely, knockdown of NCAPH reduced cell proliferation and enhanced apoptosis in UMUC3 cells. Furthermore, we found that the NCAPH activated the MEK/ERK signaling pathway in BC cells. MEK1/2 inhibitor U0126 blocked the increase of cell proliferation regulated by NCAPH overexpression. Knockdown of NCAPH significantly inhibited tumor growth in mice. Our results suggest that NCAPH might play an important role in BC progression and provide the potential marker in the diagnosis of BC.
Collapse
Affiliation(s)
- Bo Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qian Xiao
- Department of President’s Office, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liping Shan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yongsheng Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China,CONTACT Yongsheng Song Department of Urology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning110004, China, +86-24-96615-34211
| |
Collapse
|
8
|
Gu C, Zhao K, Zhou N, Liu F, Xie F, Yu S, Feng Y, Chen L, Yang J, Tian F, Jiang G. UBAC2 promotes bladder cancer proliferation through BCRC-3/miRNA-182-5p/p27 axis. Cell Death Dis 2020; 11:733. [PMID: 32913183 PMCID: PMC7484802 DOI: 10.1038/s41419-020-02935-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022]
Abstract
Emerging evidences have demonstrated that ubiquitin-associated domain-containing protein 2 (UBAC2) is closely related to the occurrence and development of malignant tumors. However, the functions and underlying molecular mechanisms of UBAC2 in bladder cancer (BC) development have not been defined. In this study, we found that both UBAC2 mRNA and protein levels were upregulated in BC tissues and cell lines, and knockdown of UBAC2 inhibited BC cells proliferation both in vitro and in vivo. Meanwhile, Kaplan-Meier survival plots of 406 BC cases from TCGA database showed that higher expression of UBAC2 in BC patients was associated with lower survival rate. Mechanistic studies revealed that knockdown of UBAC2 increased the expression of p27 by posttranscriptional regulation. Our previous study indicated that circular RNA BCRC-3 (BCRC-3) promoted the expression of p27 through interacting with miR-182-5p, and reversed miR-182-5p-induced inhibition of p27 3'UTR activity. In the present study, we found that UBAC2 could bind to BCRC-3, and subsequently affected the interaction of BCRC-3 with miR-182-5p to inhibit the expression of p27. Furthermore, knockdown of BCRC-3 partly reversed the upregulation of p27 expression induced by knockdown of UBAC2. Our findings highlight a novel mechanism of UBAC2 in regulating p27 through affecting the function of BCRC-3, and provide a research basis for the diagnostic and therapeutic application of BC.
Collapse
Affiliation(s)
- Chaohui Gu
- Departments of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Keyuan Zhao
- Departments of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Naichun Zhou
- Departments of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Feng Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Xie
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266013, China
| | - Shunli Yu
- Departments of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yongjie Feng
- Departments of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Long Chen
- Departments of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jinjian Yang
- Departments of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Fengyan Tian
- Departments of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
Shuwen H, Xi Y, Qing Z, Jing Z, Wei W. Predicting biomarkers from classifier for liver metastasis of colorectal adenocarcinomas using machine learning models. Cancer Med 2020. [PMCID: PMC7520257 DOI: 10.1002/cam4.3289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Han Shuwen
- Department of Oncology Huzhou Central HospitalAffiliated Central Hospital Huzhou University Huzhou China
| | - Yang Xi
- Department of Oncology Huzhou Central HospitalAffiliated Central Hospital Huzhou University Huzhou China
| | - Zhou Qing
- Department of Nursing Huzhou Central HospitalAffiliated Central Hospital Huzhou University Huzhou China
| | - Zhuang Jing
- Graduate School of Nursing Huzhou university Huzhou China
| | - Wu Wei
- Department of Gastroenterology Huzhou Central Hospital Affiliated Central Hospital Huzhou University Huzhou China
| |
Collapse
|
10
|
Li J, Ma W, Cheng X, Zhang X, Xie Y, Ji Z, Wu S. Activation of FOXO3 pathway is involved in polyphyllin I-induced apoptosis and cell cycle arrest in human bladder cancer cells. Arch Biochem Biophys 2020; 687:108363. [DOI: 10.1016/j.abb.2020.108363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/22/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
|
11
|
Wu WR, Lin JT, Pan CT, Chan TC, Liu CL, Wu WJ, Sheu JJC, Yeh BW, Huang SK, Jhung JY, Hsiao MS, Li CF, Shiue YL. Amplification-driven BCL6-suppressed cytostasis is mediated by transrepression of FOXO3 and post-translational modifications of FOXO3 in urinary bladder urothelial carcinoma. Am J Cancer Res 2020; 10:707-724. [PMID: 31903146 PMCID: PMC6929993 DOI: 10.7150/thno.39018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/17/2019] [Indexed: 01/14/2023] Open
Abstract
Muscle-invasive urinary bladder urothelial carcinoma (UBUC) is a lethal disease for which effective prognostic markers and potential therapy targets are still lacking. Previous array comparative genomic hybridization identified that 3q27 is frequently amplified in muscle-invasive UBUCs, one candidate proto-oncogene, B-cell CLL/lymphoma 6 (BCL6), mapped to this region. We therefore aimed to explore its downstream targets and physiological roles in UBUC progression. Methods: Specimens from UBUC patients, NOD/SCID mice and several UBUC-derived cell lines were used to perform quantitative RT-PCR, fluorescence in situ hybridization immunohistochemistry, xenograft, gene stable overexpression/knockdown and a series of in vitro experiments. Results: Amplification of the BCL6 gene lead to upregulation of BCL6 mRNA and protein levels in a substantial set of advanced UBUCs. High BCL6 protein level significantly predicted poor disease-specific and metastasis-free survivals. Knockdown of the BCL6 gene in J82 cells inhibited tumor growth and enhanced apoptosis in the NOD/SCID xenograft model. In vitro experiments demonstrated that BCL6 inhibited cytostasis, induced cell migration, invasion along with alteration of the expression levels of several related regulators. At molecular level, BCL6 inhibited forkhead box O3 (FOXO3) transcription, subsequent translation and upregulation of phosphorylated/inactive FOXO3 through phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase (AKT) and/or epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase 1/2 (MAP2K1/2) signaling pathway(s). Two BCL6 binding sites on the proximal promoter region of the FOXO3 gene were confirmed. Conclusion: Overexpression of BCL6 served a poor prognostic factor in UBUC patients. In vivo and in vitro studies suggested that BCL6 functions as an oncogene through direct transrepression of the FOXO3 gene, downregulation and phosphorylation of the FOXO3 protein.
Collapse
|
12
|
Zhu J, Wu G, Song L, Cao L, Tan Z, Tang M, Li Z, Shi D, Zhang S, Li J. NKX2-8 deletion-induced reprogramming of fatty acid metabolism confers chemoresistance in epithelial ovarian cancer. EBioMedicine 2019; 43:238-252. [PMID: 31047858 PMCID: PMC6562195 DOI: 10.1016/j.ebiom.2019.04.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 01/04/2023] Open
Abstract
Background Aberrant fatty acid (FA) metabolism is a unique vulnerability of cancer cells and may present a promising target for cancer therapy. Our study aims to elucidate the molecular mechanisms by which NKX2–8 deletion reprogrammed FA metabolism-induced chemoresistance in epithelial ovarian cancer (EOC). Methods The deletion frequency and expression of NKX2–8 in 144 EOC specimens were assayed using Fluorescence in situ hybridization and immunochemical assays. The effects of NKX2–8 deletion and the fatty acid oxidation (FAO) antagonist Perhexiline on chemoresistance were examined by Annexin V and colony formation in vitro, and via an intraperitoneal tumor model in vivo. The mechanisms of NKX2–8 deletion in reprogrammed FA metabolism was determined using Chip-seq, metabolomic analysis, FAO assays and immunoprecipitation assays. Findings NKX2–8 deletion was correlated with the overall and relapse-free survival of EOC patients. NKX2–8 inhibited the FAO pathway by epigenetically suppressing multiple key components of the FAO cascade, including CPT1A and CPT2. Loss of NKX2–8 resulted in reprogramming of FA metabolism of EOC cells in an adipose microenvironment and leading to platinum resistance. Importantly, pharmacological inhibition of FAO pathway using Perhexiline significantly counteracted NKX2–8 deletion-induced chemoresistance and enhanced platinum's therapeutic efficacy in EOC. Interpretation Our results demonstrate that NKX2–8 deletion-reprogrammed FA metabolism contributes to chemoresistance and Perhexiline might serve as a potential tailored treatment for patients with NKX2–8-deleted EOC. Fund This work was supported by Natural Science Foundation of China; Guangzhou Science and Technology Plan Projects; Natural Science Foundation of Guangdong Province; The Fundamental Research Funds for the Central Universities.
Collapse
Affiliation(s)
- Jinrong Zhu
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; Department of biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Geyan Wu
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China
| | - Libing Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China
| | - Lixue Cao
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; Department of biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Zhanyao Tan
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; Department of biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Miaoling Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China
| | - Ziwen Li
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; Department of biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Dongni Shi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China
| | - Shuxia Zhang
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jun Li
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; Department of biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, China.
| |
Collapse
|
13
|
Liu Y, Ao X, Ding W, Ponnusamy M, Wu W, Hao X, Yu W, Wang Y, Li P, Wang J. Critical role of FOXO3a in carcinogenesis. Mol Cancer 2018; 17:104. [PMID: 30045773 PMCID: PMC6060507 DOI: 10.1186/s12943-018-0856-3] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
FOXO3a is a member of the FOXO subfamily of forkhead transcription factors that mediate a variety of cellular processes including apoptosis, proliferation, cell cycle progression, DNA damage and tumorigenesis. It also responds to several cellular stresses such as UV irradiation and oxidative stress. The function of FOXO3a is regulated by a complex network of processes, including post-transcriptional suppression by microRNAs (miRNAs), post-translational modifications (PTMs) and protein–protein interactions. FOXO3a is widely implicated in a variety of diseases, particularly in malignancy of breast, liver, colon, prostate, bladder, and nasopharyngeal cancers. Emerging evidences indicate that FOXO3a acts as a tumor suppressor in cancer. FOXO3a is frequently inactivated in cancer cell lines by mutation of the FOXO3a gene or cytoplasmic sequestration of FOXO3a protein. And its inactivation is associated with the initiation and progression of cancer. In experimental studies, overexpression of FOXO3a inhibits the proliferation, tumorigenic potential, and invasiveness of cancer cells, while silencing of FOXO3a results in marked attenuation in protection against tumorigenesis. The role of FOXO3a in both normal physiology as well as in cancer development have presented a great challenge to formulating an effective therapeutic strategy for cancer. In this review, we summarize the recent findings and overview of the current understanding of the influence of FOXO3a in cancer development and progression.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiang Ao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Wei Ding
- Department of comprehensive internal medicine, Affiliated Hospital, Qingdao University, Qingdao, 266003, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Wei Wu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiaodan Hao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Wanpeng Yu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yifei Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Jianxun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
14
|
Jiang G, Huang C, Li J, Huang H, Wang J, Li Y, Xie F, Jin H, Zhu J, Huang C. Transcriptional and post-transcriptional upregulation of p27 mediates growth inhibition of isorhapontigenin (ISO) on human bladder cancer cells. Carcinogenesis 2018; 39:482-492. [PMID: 29409027 PMCID: PMC5862297 DOI: 10.1093/carcin/bgy015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
There are few approved drugs available for the treatment of muscle-invasive bladder cancer (MIBC). Recently, we have demonstrated that isorhapontigenin (ISO), a new derivative isolated from the Chinese herb Gnetum cleistostachyum, effectively induces cell-cycle arrest at the G0/G1 phase and inhibits anchorage-independent cell growth through the miR-137/Sp1/cyclin D1 axis in human MIBC cells. Herein, we found that treatment of bladder cancer (BC) cells with ISO resulted in a significant upregulation of p27, which was also observed in ISO-treated mouse BCs that were induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Importantly, knockdown of p27 caused a decline in the ISO-induced G0-G1 growth arrest and reversed ISO suppression of anchorage-independent growth in BC cells. Mechanistic studies revealed that ISO promoted p27 expression at mRNA transcription level through increasing direct binding of forkhead box class O1 (FOXO1) to its promoter, while knockdown of FOXO1 attenuated ISO inhibition of BC cell growth. On the other hand, ISO upregulated the 3'-untranslated region (3'-UTR) activity of p27, which was accompanied by a reduction of miR-182 expression. In line with these observations, ectopic expression of miR-182 significantly blocked p27 3'-UTR activity, whereas mutation of the miR-182-binding site at p27 mRNA 3'-UTR effectively reversed this inhibition. Accordingly, ectopic expression of miR-182 also attenuated ISO upregulation of p27 expression and impaired ISO inhibition of BC cell growth. Our results not only provide novel insight into understanding of the underlying mechanism related to regulation of MIBC cell growth but also identify new roles and mechanisms underlying ISO inhibition of BC cell growth.
Collapse
Affiliation(s)
- Guosong Jiang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Huang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingxia Li
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Haishan Huang
- Department of Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Wang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Yawei Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Xie
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Honglei Jin
- Department of Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junlan Zhu
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Chuanshu Huang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| |
Collapse
|
15
|
Sanford T, Meng MV, Railkar R, Agarwal PK, Porten SP. Integrative analysis of the epigenetic basis of muscle-invasive urothelial carcinoma. Clin Epigenetics 2018; 10:19. [PMID: 29456764 PMCID: PMC5809922 DOI: 10.1186/s13148-018-0451-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/30/2018] [Indexed: 12/20/2022] Open
Abstract
Background Elucidation of epigenetic alterations in bladder cancer will lead to further understanding of the biology of the disease and hopefully improved therapies. Our aim was to perform an integrative epigenetic analysis of invasive urothelial carcinoma of the bladder to identify the epigenetic abnormalities involved in the development and progression of this cancer. Methods Pre-processed methylation data and RNA-seq data were downloaded from The Cancer Genome Atlas (TCGA) and processed using the R package TCGA-Assembler. An R package MethylMix was used to perform an analysis incorporating both methylation and gene expression data on all samples, as well as a subset analysis comparing patients surviving less than 2 years and patients surviving more than 2 years. Genes associated with poor prognosis were individually queried. Pathway analysis was performed on statistically significant genes identified by MethylMix criteria using ConsensusPathDB. Validation was performed using flow cytometry on bladder cancer cell lines. Results A total of 408 patients met all inclusion criteria. There were a total of 240 genes differentially methylated by MethylMix criteria. Review of individual genes specific to poor-prognosis patients revealed the majority to be candidate tumor suppressors in other cancer types. Pathway analysis showed increase in methylation of genes involved in antioxidant pathways including glutathione and NRF2. Genes involved in estrogen metabolism were also hypermethylated while genes involved in the EGFR pathway were found to be hypomethylated. EGFR expression was confirmed to be elevated in six bladder cancer cell lines. Conclusions In patients with invasive urothelial carcinoma, we found differential methylation in patients with better and worse prognosis after cystectomy. Differentially methylated genes are involved in many relevant oncologic pathways, including EGFR and antioxidant pathways, that may be a target for therapy or chemoprevention.
Collapse
Affiliation(s)
- Thomas Sanford
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 10—Hatfield CRC, Room 2-5952, Bethesda, MD 20892-1210 USA
| | - Maxwell V. Meng
- Department of Urology, University of California, Mail code 1695, 550 16th Street, 6th Floor, San Francisco, CA 94143 USA
| | - Reema Railkar
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 10—Hatfield CRC, Room 2-5952, Bethesda, MD 20892-1210 USA
| | - Piyush K. Agarwal
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 10—Hatfield CRC, Room 2-5952, Bethesda, MD 20892-1210 USA
| | - Sima P. Porten
- Department of Urology, University of California, Mail code 1695, 550 16th Street, 6th Floor, San Francisco, CA 94143 USA
| |
Collapse
|
16
|
Yu C, Liu Z, Chen Q, Li Y, Jiang L, Zhang Z, Zhou F. Nkx2.8 Inhibits Epithelial-Mesenchymal Transition in Bladder Urothelial Carcinoma via Transcriptional Repression of Twist1. Cancer Res 2018; 78:1241-1252. [PMID: 29311157 DOI: 10.1158/0008-5472.can-17-1545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/19/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) promotes metastasis, which is the main cause of bladder urothelial carcinoma-related death. Loss of the candidate tumor-suppressor gene Nkx2.8 has been associated with urothelial carcinoma lymph node metastasis. Here, we show that enforced expression of Nkx2.8 is sufficient to inhibit EMT, reduce motility, and blunt invasiveness of urothelial carcinoma cells. Mechanistic investigations showed that Nkx2.8 negatively regulated expression of the EMT inducer Twist1 in urothelial carcinoma cells, at both the level of mRNA and protein accumulation. Nkx2.8 bound directly to the promoter region of this gene and transcriptionally repressed its expression. Twist1 upregulation reversed EMT inhibition by Nkx2.8, restoring the invasive phenotype of urothelial carcinoma cells. In clinical urothelial carcinoma specimens, expression of Nkx2.8 inversely correlated with Twist1 expression, and urothelial carcinoma patients with Nkx2.8 positivity and low Twist1 expression displayed the best prognosis. Our findings highlight the Nkx2.8-Twist1 axis as candidate target for therapeutic intervention in advanced urothelial carcinoma.Significance: These findings highlight a novel EMT signaling axis as a candidate target for therapeutic intervention in advanced urothelial carcinomas. Cancer Res; 78(5); 1241-52. ©2018 AACR.
Collapse
Affiliation(s)
- Chunping Yu
- State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhuowei Liu
- State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qiuhong Chen
- State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yonghong Li
- State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lijuan Jiang
- State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhiling Zhang
- State Key Laboratory of Oncology in Southern China, Guangzhou, China. .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fangjian Zhou
- State Key Laboratory of Oncology in Southern China, Guangzhou, China. .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
17
|
Li D, Zhang Y, Liu K, Zhao Y, Xu B, Xu L, Tan L, Tian Y, Li C, Zhang W, Cao H, Zhan YY, Hu T. Berberine inhibits colitis-associated tumorigenesis via suppressing inflammatory responses and the consequent EGFR signaling-involved tumor cell growth. J Transl Med 2017; 97:1343-1353. [PMID: 28759012 DOI: 10.1038/labinvest.2017.71] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 01/04/2023] Open
Abstract
The anti-inflammatory and anti-tumor effects of berberine, a traditional Chinese medicine, were separately discovered in pathological intestinal tissues. However, whether the anti-inflammatory effect of berberine contributes to its anti-tumor effect on colitis-associated colorectal cancer (CACRC) remains unknown. In the present study, we found that berberine effectively inhibited colitis-associated tumorigenesis and colonic epithelium hyperproliferation in dextran sulfate sodium (DSS)-treated ApcMin/+ mice. A mechanistic study identified that these inhibitory effects of berberine occurred through blocking interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) expression in colonic macrophages. An in vitro study on cell lines identified that berberine treatment of Raw 264.7 macrophages resulted in conditioned media with fewer proliferative effects on a cell line with a heterozygous Apc mutation (Immorto-Min colonic epithelium, IMCE). EGFR-ERK signaling act downstream of berberine/pro-inflammatory cytokines axis to regulate CACRC cell proliferation. Furthermore, in vivo administration of IL-6 to DSS-treated ApcMin/+ mice effectively weakened the inhibitory effects of berberine on tumorigenesis and EGFR-ERK signaling in colon tissues. Altogether, the results of our studies have revealed that berberine inhibits the development of CACRC by interfering with inflammatory response-driven EGFR signaling in tumor cell growth. The findings of this study support the possibility that berberine and other anti-inflammatory drugs may be beneficial in the treatment of CACRC.
Collapse
Affiliation(s)
- Dandan Li
- Cancer Research Center, Xiamen University Medical College, Xiamen, China
| | - Youyu Zhang
- Cancer Research Center, Xiamen University Medical College, Xiamen, China
| | - Kun Liu
- Cancer Research Center, Xiamen University Medical College, Xiamen, China
| | - Yujie Zhao
- Cancer Research Center, Xiamen University Medical College, Xiamen, China
| | - Beibei Xu
- Cancer Research Center, Xiamen University Medical College, Xiamen, China
| | - Liang Xu
- Cancer Research Center, Xiamen University Medical College, Xiamen, China
| | - Li Tan
- Cancer Research Center, Xiamen University Medical College, Xiamen, China
| | - Yuan Tian
- Cancer Research Center, Xiamen University Medical College, Xiamen, China
| | - Cunxi Li
- Cancer Research Center, Xiamen University Medical College, Xiamen, China.,Jiaen Hospital, Beijing, China
| | - Wenqing Zhang
- Cancer Research Center, Xiamen University Medical College, Xiamen, China
| | - Hanwei Cao
- Cancer Research Center, Xiamen University Medical College, Xiamen, China
| | - Yan-Yan Zhan
- Cancer Research Center, Xiamen University Medical College, Xiamen, China
| | - Tianhui Hu
- Cancer Research Center, Xiamen University Medical College, Xiamen, China
| |
Collapse
|
18
|
Zhang Y, Jia L, Zhang Y, Ji W, Li H. Higher expression of FOXOs correlates to better prognosis of bladder cancer. Oncotarget 2017; 8:96313-96322. [PMID: 29221208 PMCID: PMC5707102 DOI: 10.18632/oncotarget.22029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/24/2017] [Indexed: 02/07/2023] Open
Abstract
Background We aimed to explore the expression of forkhead box class O (FOXO) and relations between expressions of FOXOs and clinicopathological characteristics and prognosis of bladder cancer. Methods We enrolled a cohort of 276 patients with bladder cancer in our study. Expressions of FOXOs in bladder cancer tissue and adjacent tissue were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Correlations between expression of FOXOs and clinicopathological characteristics and prognosis were analyzed. The relationship between expression of FOXOs and survival time of patients with bladder cancer was analyzed by the Kaplan-Meier survival analysis and the Log-rank test; individual variables which may affect the prognosis of bladder cancer were detected by the Cox proportional hazard regression model. Results Compared with bladder cancer tissue, a higher expression of FOXOs was detected in paracancerous tissue. We found significant associations between histological grade and the expressions of FOXOs, clinical stage and the expressions of FOXOs, and lymph node metastasis and the expressions of FOXOs (all P < 0.05). When used for diagnosing bladder cancer, the mRNA expression of FOXO1/3/4 produced cut off values of 1.475, 1.305, and 1.295, respectively, exhibiting relatively high specificity and sensitivity. The Kaplan-Meier curves indicated that patients with a higher expression of FOXOs tended to have a longer overall survival than those with lower expression. The Cox regression analysis revealed that lymph node metastasis, high clinical stage, and low expression of FOXOs were independent risk factors for bladder cancer prognosis. Conclusion Our results indicate that the expression of FOXOs is closely correlated with clinicopathological characteristics and prognosis of bladder cancer.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Linpei Jia
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Ying Zhang
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Wei Ji
- Department of Vascular Surgery, Jilin Provincial People's Hospital, Changchun 130000, P.R. China
| | - Hai Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| |
Collapse
|
19
|
McDonald MLN, Won S, Mattheisen M, Castaldi PJ, Cho MH, Rutten E, Hardin M, Yip WK, Rennard SI, Lomas DA, Wouters EFM, Agusti A, Casaburi R, Lange CP, O'Connor G, Hersh CP, Silverman EK. Body mass index change in gastrointestinal cancer and chronic obstructive pulmonary disease is associated with Dedicator of Cytokinesis 1. J Cachexia Sarcopenia Muscle 2017; 8:428-436. [PMID: 28044437 PMCID: PMC5476850 DOI: 10.1002/jcsm.12171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/26/2016] [Accepted: 11/02/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND There have been a number of candidate gene association studies of cancer cachexia-related traits, but no genome-wide association study (GWAS) has been published to date. Cachexia presents in patients with a number of complex traits, including both cancer and COPD. The objective of the current investigation was to search for a shared genetic aetiology for change in body mass index (ΔBMI) among cancer and COPD by using GWAS data in the Framingham Heart Study. METHODS A linear mixed effects model accounting for age, sex, and change in smoking status was used to calculate ΔBMI in participants over 40 years of age with three consecutive BMI time points (n = 4162). Four GWAS of ΔBMI using generalized estimating equations were performed among 1085 participants with a cancer diagnosis, 204 with gastrointestinal (GI) cancer, 112 with lung cancer, and 237 with COPD to test for association with 418 365 single-nucleotide polymorphisms (SNPs). RESULTS Two SNPs reached a level of genome-wide significance (P < 5 × 10-8 ) with ΔBMI: (i) rs41526344 within the CNTN4 gene, among COPD cases (β = 0.13, P = 4.3 × 10-8 ); and (ii) rs4751240 in the gene Dedicator of Cytokinesis 1 (DOCK1) among GI cancer cases (β = 0.10, P = 1.9 × 10-8 ). The DOCK1 SNP association replicated in the ΔBMI GWAS among COPD cases (βmeta-analyis = 0.10, Pmeta-analyis = 9.3 × 10-10 ). The DOCK1 gene codes for the dedicator of cytokinesis 1 protein, which has a role in myoblast fusion. CONCLUSIONS In sum, one statistically significant common variant in the DOCK1 gene was associated with ΔBMI in GI cancer and COPD cases providing support for at least partially shared aetiology of ΔBMI in complex diseases.
Collapse
Affiliation(s)
- Merry-Lynn Noelle McDonald
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sungho Won
- Department of Public Health Science, Seoul National University, Seoul, South Korea
| | - Manuel Mattheisen
- Department of Biomedicine and Centre for integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Primary Care and Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Erica Rutten
- CIRO+, Centre of Expertise for Chronic Organ Failure, Horn, The Netherlands
| | - Megan Hardin
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wai-Ki Yip
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Stephen I Rennard
- Department of Medicine, Nebraska Medical Center, Omaha, Nebraska, USA
| | - David A Lomas
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Emiel F M Wouters
- CIRO+, Centre of Expertise for Chronic Organ Failure, Horn, The Netherlands.,Department of Respiratory Medicine, Maastricht University Medical Center Maastricht, Maastricht, The Netherlands
| | - Alvar Agusti
- Thorax Institute, Hospital Clinic-IDIBAPS, CIBERES, University of Barcelona, Barcelona, Spain
| | - Richard Casaburi
- Rehabilitation Clinical Trials Center, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Christoph P Lange
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - George O'Connor
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA.,Section of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Correlations of Foxo3 and Foxo4 expressions with clinicopathological features and prognosis of bladder cancer. Pathol Res Pract 2017; 213:766-772. [PMID: 28554751 DOI: 10.1016/j.prp.2017.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/13/2017] [Accepted: 04/12/2017] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The study is performed to explore the correlations of forkhead box O3 (FoxO3) and forkhead box O4 (FoxO4) expressions with clinicopathological features and prognosis of bladder cancer. METHODS Bladder cancer tissues and adjacent normal tissues from the recruited 222 patients were collected. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting and immunohistochemistry were applied to determine the expressions of FoxO3 and FoxO4. Spearman correlation analysis was conducted to examine the correlation between the expressions of FoxO3 and FoxO4. All patients were followed up and overall survival (OS) and disease-free survival (DFS) were recorded. Kaplan-Meier survival curve was drawn to determine the associations of FoxO3 and FoxO4 expressions and postoperative survival. Cox proportional hazards model was conducted to analyze the risk factors for poor prognosis of bladder cancer. RESULTS The mRNA and expressions of FoxO3 and FoxO4 proteins in the bladder cancer tissues were lower than that in the adjacent normal tissues (both P<0.05). The positive rates of FoxO3 and FoxO4 were lower in the patients with lymph node metastasis than that in the patients without lymph node metastasis (P<0.05), and significantly lower in the patients with non-muscle invasive bladder cancer (Tis-T1) than in those with non-muscle invasive bladder cancer (T2-T3) in TNM staging, and remarkably lower in the patients with high grade than in those with low grade in the histological type (P<0.05). Furthermore, the expressions of FoxO3 and FoxO4 were positively correlated in the bladder cancer tissues (P<0.05). Negative expressions of FoxO3 and FoxO4 and lymph node metastasis were the risk factors for the poor prognosis of bladder cancer. CONCLUSIONS The FoxO3 and FoxO4 expressions may potentially associate with the clinicopathological features and prognosis of bladder cancer.
Collapse
|
21
|
Abstract
Genomic and transcriptional studies have identified discrete molecular subtypes of bladder cancer. These observations could be the starting point to identify new treatments. Several members of the forkhead box (FOX) superfamily of transcription factors have been found to be differentially expressed in the different bladder cancer subtypes. In addition, the FOXA protein family are key regulators of embryonic bladder development and patterning. Both experimental and clinical data support a role for FOXA1 and FOXA2 in urothelial carcinoma. FOXA1 is expressed in embryonic and adult urothelium and its expression is altered in urothelial carcinomas and across disparate molecular bladder cancer subtypes. FOXA2 is normally absent from the adult urothelium, but developmental studies identified FOXA2 as a marker of a transient urothelial progenitor cell population during bladder development. Studies also implicate FOXA2 in bladder cancer and several other FOX proteins might be involved in development and/or progression of this disease; for example, FOXA1 and FOXO3A have been associated with clinical patient outcomes. Future studies should investigate to what extent and by which mechanisms FOX proteins might be directly involved in bladder cancer pathogenesis and treatment responses.
Collapse
|
22
|
Das TP, Suman S, Alatassi H, Ankem MK, Damodaran C. Inhibition of AKT promotes FOXO3a-dependent apoptosis in prostate cancer. Cell Death Dis 2016; 7:e2111. [PMID: 26913603 PMCID: PMC4849149 DOI: 10.1038/cddis.2015.403] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 01/02/2023]
Abstract
Growth factor-induced activation of protein kinase-B (PKB), also known as AKT, induces pro-survival signaling and inhibits activation of pro-apoptotic signaling molecules including the Forkhead box O-3a (FOXO3a) transcription factor and caspase in transformed prostate cells in vitro. Earlier we reported that Withaferin-A (WA), a small herbal molecule, induces pro-apoptotic response-4 (Par-4) mediated apoptosis in castration-resistant prostate cancer (CRPC) cells. In the present study, we demonstrate that inhibition of AKT facilitates nuclear shuttling of FOXO3a where it regulates Par-4 transcription in CRPC cells. FOXO3a is upstream of Par-4 signaling, which is required for induction of apoptosis in CRPC cells. Promoter bashing studies and Ch-IP analysis confirm a direct interaction of FOXO3a and Par-4; a sequential deletion of FOXO3a-binding sites in the Par-4 promoter fails to induce Par-4 activation. To confirm these observations, we either overexpressed AKT or silenced FOXO3a activation in CRPC cells. Both methods inhibit Par-4 function and apoptosis is significantly compromised. In xenograft tumors derived from AKT-overexpressed CRPC cells, FOXO3a and Par-4 expression is downregulated, leading to aggressive tumor growth. Oral administration of WA to mice with xenograft tumors restores FOXO3a-mediated Par-4 functions and results in inhibited tumor growth. Finally, an inverse correlation of nuclear localization of AKT expression corresponds to cytoplasmic Par-4 localization in human prostate tissue array. Our studies suggest that Par-4 is one of the key transcriptional targets of FOXO3a, and Par-4 activation is required for induction of apoptosis in CRPC cells. Activation of FOXO3a appears to be an attractive target for the treatment of CRPC and molecules such as WA can be explored further for the treatment of CRPC.
Collapse
Affiliation(s)
- T P Das
- Department of Urology, University of Louisville, Louisville, KY 40202, USA
| | - S Suman
- Department of Urology, University of Louisville, Louisville, KY 40202, USA
| | - H Alatassi
- Department of Pathology, University of Louisville, Louisville, KY 40202, USA
| | - M K Ankem
- Department of Urology, University of Louisville, Louisville, KY 40202, USA
| | - C Damodaran
- Department of Urology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
23
|
Liu M, Fu Z, Wu X, Du K, Zhang S, Zeng L. Inhibition of phospholipaseD2 increases hypoxia-induced human colon cancer cell apoptosis through inactivating of the PI3K/AKT signaling pathway. Tumour Biol 2015; 37:6155-68. [PMID: 26614430 DOI: 10.1007/s13277-015-4348-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/30/2015] [Indexed: 12/19/2022] Open
Abstract
Hypoxia is a common feature of solid tumor, and is a direct stress that triggers apoptosis in many human cell types. As one of solid cancer, hypoxia exists in the whole course of colon cancer occurrence and progression. Our previous studies shown that hypoxia induce high expression of phospholipase D2 (PLD2) and survivin in colon cancer cells. However, the correlation between PLD2 and survivin in hypoxic colon cancer cells remains unknown. In this study, we observed significantly elevated PLD2 and survivin expression levels in colon cancer tissues and cells. This is a positive correlation between of them, and co-expression of PLD2 and survivin has a positive correlation with the clinicpatholic features including tumor size, TNM stage, and lymph node metastasis. We also found that hypoxia induced the activity of PLD increased significant mainly caused by PLD2 in colon cancer cells. However, inhibition the activity of PLD2 induced by hypoxia promotes the apoptosis of human colon cancer cells, as well as decreased the expression of apoptosis markers including survivin and bcl2. Moreover, the pharmacological inhibition of PI3K/AKT supported the hypothesis that promotes the apoptosis of hypoxic colon cancer cells by PLD2 activity inhibition may through inactivation of the PI3K/AKT signaling pathway. Furthermore, interference the PLD2 gene expression leaded to the apoptosis of hypoxic colon cancer cells increased and also decreased the expression level of survivin and bcl2 may through inactivation of PI3K/AKT signaling pathway. These results indicated that PLD2 play antiapoptotic role in colon cancer under hypoxic conditions, inhibition of the activity, or interference of PLD2 gene expression will benefit for the treatment of colon cancer patients.
Collapse
Affiliation(s)
- Maoxi Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, Peoples's Republic of China
| | - Zhongxue Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, Peoples's Republic of China.
| | - Xingye Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, Peoples's Republic of China.
| | - Kunli Du
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, Peoples's Republic of China
| | - Shouru Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, Peoples's Republic of China
| | - Li Zeng
- Department of traditional Chinese Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, Peoples's Republic of China
| |
Collapse
|
24
|
Zheng F, Wu J, Zhao S, Luo Q, Tang Q, Yang L, Li L, Wu W, Hann SS. Baicalein increases the expression and reciprocal interplay of RUNX3 and FOXO3a through crosstalk of AMPKα and MEK/ERK1/2 signaling pathways in human non-small cell lung cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:41. [PMID: 25948105 PMCID: PMC4457308 DOI: 10.1186/s13046-015-0160-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/20/2015] [Indexed: 12/19/2022]
Abstract
Background Baicalein, a natural flavonoid obtained from the Scutellaria baicalensis root, has been reported to inhibit growth of human lung cancer. However, the detailed mechanism underlying this has not been well elucidated. Methods Cell viability was measured using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays. Apoptosis was detected by flow cytometry analysis and caspase 3/7 assays. The expression of RUNX3 and FOXO3a mRNA were measured by real time RT-PCR methods. Western blot analysis was performed to measure the phosphorylation and protein expression of AMP-activated protein kinase alpha (AMPKα) and extracellular signal-regulated kinase 1/2 (ERK1/2), runt-related transcription factor 3 (RUNX3) and forkhead box O3a (FOXO3a). Silencing of FOXO3a and RUNX3 were performed by small interfering RNA (siRNA) methods. Exogenous expression of FOXO3a or RUNX3 was carried out by electroporated transfection assays. Results We showed that baicalein significantly inhibited growth and induced apoptosis of non-small cell lung cancer (NSCLC) cells in a time- and dose-dependent manner. Baicalein induced RUNX3 and FOXO3a protein expression, and increased phosphorylation of AMPKα and ERK1/2. Moreover, the inhibitors of AMPK and MEK/ERK1/2 reversed the effect of baicalein on RUNX3 and FOXO3a protein expression. Interestingly, while compound C had little effect on blockade of baicalein-induced phosphorylation of ERK1/2, PD98059 significantly abrogated baicalein-induced phosphorylation of AMPKα. Intriguingly, while silencing of RUNX3 abolished the effect of baicalein on expression of FOXO3a and apoptosis, silencing of FOXO3a significantly attenuated baicalein-reduced cell proliferation. On the contrary, overexpression of FOXO3a restored the effect of baicalein on cell growth inhibition in cells silencing of endogenous FOXO3a gene and enhanced the effect of baicalein on RUNX3 protein expression. Finally, exogenous expression of RUNX3 increased FOXO3a protein and strengthened baicalein-induced phosphorylation of ERK1/2. Conclusion Collectively, our results show that baicalein inhibits growth and induces apoptosis of NSCLC cells through AMPKα- and MEK/ERK1/2-mediated increase and interaction of FOXO3a and RUNX3 protein. The crosstalk between AMPKα and MEK/ERK1/2 signaling pathways, and the reciprocal interplay of FOXO3a and RUNX3 converge on the overall response of baicalein. This study reveals a novel mechanism for regulating FOXO3a and RUNX3 signaling axis in response to baicalein and suggests a new strategy for NSCLC associated targeted therapy.
Collapse
Affiliation(s)
- Fang Zheng
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Jingjing Wu
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Shunyu Zhao
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Qingmei Luo
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Qing Tang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - LiJun Yang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Liuning Li
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - WanYing Wu
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China. .,Higher Education Mega Center, No. 55, Neihuan West Road, Panyu District, Guangzhou, Guangdong Province, 510006, People's Republic of China.
| |
Collapse
|
25
|
Zhou W, He MR, Jiao HL, He LQ, Deng DL, Cai JJ, Xiao ZY, Ye YP, Ding YQ, Liao WT, Liu SD. The tumor-suppressor gene LZTS1 suppresses colorectal cancer proliferation through inhibition of the AKT-mTOR signaling pathway. Cancer Lett 2015; 360:68-75. [PMID: 25667121 DOI: 10.1016/j.canlet.2015.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/14/2015] [Accepted: 02/03/2015] [Indexed: 10/24/2022]
Abstract
The Leucine zipper tumor suppressor gene 1 (LZTS1/FEZ1) gene was originally identified as a potential tumor suppressor. However, the expression pattern and the role of LZTS1 in the progression of colorectal cancer (CRC) have not been well characterized. Herein, we reported that LZTS1 was markedly reduced in CRC tissues compared with matched adjacent normal intestine epithelial tissues. In analysis of 160 CRC specimens, we revealed that decreased expression of LZTS1 was correlated to aggressive characteristics and poor survival of patients with CRC. Moreover, we found that expression of LZTS1 in CRC cells significantly inhibited cell proliferation in vitro and prohibited tumor growth in vitro. On the contrary, silence of LZTS1 promoted cell proliferation and tumor growth in CRC cells. Furthermore, we demonstrated that LZTS1 inhibited cell proliferation and tumor growth in CRC in part via suppression of AMT-mTOR, subsequently down-regulating p27Kip and up-regulating cyclin D1. These findings suggest that LZTS1 plays a potential tumor suppressor role in CRC progression and represents a valuable clinical prognostic marker of this disease.
Collapse
Affiliation(s)
- Wei Zhou
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mei-Rong He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hong-Li Jiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Liu-Qing He
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Dan-Ling Deng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Juan-Juan Cai
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Zhi-Yuan Xiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Ya-Ping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Wen-Ting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| | - Si-De Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
26
|
Larsen SK, Ahmad SM, Idorn M, Met Ö, Martinenaite E, Svane IM, Straten PT, Andersen MH. Spontaneous presence of FOXO3-specific T cells in cancer patients. Oncoimmunology 2014; 3:e953411. [PMID: 25960934 DOI: 10.4161/21624011.2014.953411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
In the present study, we describe forkhead box O3 (FOXO3)-specific, cytotoxic CD8+ T cells existent among peripheral-blood mononuclear cells (PBMCs) of cancer patients. FOXO3 immunogenicity appears specific, as we did not detect reactivity toward FOXO3 among T cells in healthy individuals. FOXO3 may naturally serve as a target antigen for tumor-reactive T cells as it is frequently over-expressed in cancer cells. In addition, expression of FOXO3 plays a critical role in immunosuppression mediated by tumor-associated dendritic cells (TADCs). Indeed, FOXO3-specific cytotoxic T lymphocytes (CTLs) were able to specifically recognize and kill both FOXO3-expressing cancer cells as well as dendritic cells. Thus, FOXO3 was processed and presented by HLA-A2 on the cell surface of both immune cells and cancer cells. As FOXO3 programs TADCs to become tolerogenic, FOXO3 signaling thereby comprises a significant immunosuppressive mechanism, such that FOXO3 targeting by means of specific T cells is an attractive clinical therapy to boost anticancer immunity. In addition, the natural occurrence of FOXO3-specific CTLs in the periphery suggests that these T cells hold a function in the complex network of immune regulation in cancer patients.
Collapse
Key Words
- APC, antigen presenting cell
- CTL
- CTL, cytotoxic T lymphocyte
- CTLA4, cytotoxic T-lymphocyte associated protein 4
- DC, dendritic cell
- FOXO3
- FOXO3, forkhead box O3
- IDO, indoleamine-2,3-dioxygenase
- PBMC, peripheral blood mononuclear cell
- TADC, tumor-associated DCs
- TGFβ, tumor growth factor β
- TNFα, tumor necrosis factor α
- Tregs, regulatory T cell
- antigens
- immune regulation
- tumor-associated dendritic cells
Collapse
Affiliation(s)
- Stine Kiaer Larsen
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark ; These authors contributed equally to this work
| | - Shamaila Munir Ahmad
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark ; These authors contributed equally to this work
| | - Manja Idorn
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| | - Özcan Met
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| | - Evelina Martinenaite
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| | - Per Thor Straten
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| |
Collapse
|
27
|
Qu L, Deng B, Zeng Y, Cao Z. Decreased expression of the Nkx2.8 gene correlates with tumor progression and a poor prognosis in HCC cancer. Cancer Cell Int 2014; 14:28. [PMID: 24678995 PMCID: PMC4011771 DOI: 10.1186/1475-2867-14-28] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/18/2014] [Indexed: 12/03/2022] Open
Abstract
Background Nkx2.8 (Nk2 homeobox 8) is a novel NK-2 gene family member that has been implicated in the progression of human cancer. Its role in the progression of HCC remains unknown. In this study, we investigated the expression levels and prognostic value of Nkx2.8 in hepatocellular carcinoma. Methods The expression of Nkx2.8 was determined by real-time quantitative RT-PCR (qRT-PCR) and immunochemistry in paired cancerous and non-cancerous tissues of 48 patients with HCC. The relationships between the Nkx2.8 expression levels, the clinicopathological characteristics and patient survival were analyzed. The effects of Nkx2.8 overexpression on cellular proliferation ability, including MTT and colony formation assays, were investigated. Results Nkx2.8 expression was significantly downregulated in HCC cancer tissues compared with adjacent non-cancerous tissues. Further immunohistochemical analysis showed low expression of Nkx2.8 in HCC cancer tissues, and the clinicopathological analysis showed that the Nkx2.8 mRNA and protein expression levels were significantly correlated with the TNM stage (p = 0.032; p = 0.026, respectively). Kaplan–Meier survival curves revealed that lower Nkx2.8 expression was associated with a poor overall survival in HCC patients (P = 0.00172). The overexpression of Nkx2.8 in HCC cell lines inhibits cell proliferation and colony formation. Conclusions Our data indicated that Nkx2.8 plays important roles in the development and progression of HCC and might be a valuable prognostic biomarker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Lei Qu
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, China
| | - Biao Deng
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, China
| | - Yue Zeng
- Department of Gastroenterology, Shanghai First People`s Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, China
| | - Zhongwei Cao
- Department of Gastroenterology, Shanghai First People`s Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, China
| |
Collapse
|
28
|
Perez A, Loizaga A, Arceo R, Lacasa I, Rabade A, Zorroza K, Mosen-Ansorena D, Gonzalez E, Aransay AM, Falcon-Perez JM, Unda-Urzaiz M, Royo F. A Pilot Study on the Potential of RNA-Associated to Urinary Vesicles as a Suitable Non-Invasive Source for Diagnostic Purposes in Bladder Cancer. Cancers (Basel) 2014; 6:179-92. [PMID: 24458310 PMCID: PMC3980604 DOI: 10.3390/cancers6010179] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/20/2013] [Accepted: 01/13/2014] [Indexed: 12/26/2022] Open
Abstract
Bladder cancer is one of the most common cancers and, together with prostate carcinoma, accounts for the majority of the malignancies of the genitourinary tract. Since prognosis ameliorates with early detection, it will be beneficial to have a repertoire of diagnostic markers that could complement the current diagnosis protocols. Recently, cell-secreted extracellular vesicles have received great interest as a source of low invasive disease biomarkers because they are found in many body fluids, including urine. The current work describes a pilot study to generate an array-based catalogue of mRNA associated to urinary vesicles, and also a comparison with samples obtained from bladder cancer patients. After an analysis of presence/absence of transcripts in bladder cancer EVs, a list of genes was selected for further validation using PCR technique. We found four genes differentially expressed in cancer samples. LASS2 and GALNT1 were present in cancer patients, while ARHGEF39 and FOXO3 were found only in non-cancer urinary vesicles. Previous studies have pointed to the involvement of those genes in tumour progression and metastasis.
Collapse
Affiliation(s)
- Amparo Perez
- Urology Service, Basurto University Hospital, Bilbao 48013, Bizkaia, Spain; E-Mails: (A.P.); (A.L.); (R.A.); (I.L.); (A.R.); (M.U.-U.)
| | - Ana Loizaga
- Urology Service, Basurto University Hospital, Bilbao 48013, Bizkaia, Spain; E-Mails: (A.P.); (A.L.); (R.A.); (I.L.); (A.R.); (M.U.-U.)
| | - Raquel Arceo
- Urology Service, Basurto University Hospital, Bilbao 48013, Bizkaia, Spain; E-Mails: (A.P.); (A.L.); (R.A.); (I.L.); (A.R.); (M.U.-U.)
| | - Isabel Lacasa
- Urology Service, Basurto University Hospital, Bilbao 48013, Bizkaia, Spain; E-Mails: (A.P.); (A.L.); (R.A.); (I.L.); (A.R.); (M.U.-U.)
| | - Ainara Rabade
- Urology Service, Basurto University Hospital, Bilbao 48013, Bizkaia, Spain; E-Mails: (A.P.); (A.L.); (R.A.); (I.L.); (A.R.); (M.U.-U.)
| | - Kerman Zorroza
- Basque Foundation for Health Innovation and Research (BIOEF), DNA Laboratory, Basurto Hospital, Bilbao 48013, Bizkaia, Spain; E-Mail:
| | - David Mosen-Ansorena
- Genome Analysis Platform, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio 48160, Bizkaia, Spain; E-Mails: (D.M.-A); (A.M.A.)
| | - Esperanza Gonzalez
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio 48160, Bizkaia, Spain; E-Mails: (E.G.); (J.M.F.-P.)
| | - Ana M. Aransay
- Genome Analysis Platform, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio 48160, Bizkaia, Spain; E-Mails: (D.M.-A); (A.M.A.)
| | - Juan M. Falcon-Perez
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio 48160, Bizkaia, Spain; E-Mails: (E.G.); (J.M.F.-P.)
- IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Bizkaia, Spain; E-Mail:
| | - Miguel Unda-Urzaiz
- Urology Service, Basurto University Hospital, Bilbao 48013, Bizkaia, Spain; E-Mails: (A.P.); (A.L.); (R.A.); (I.L.); (A.R.); (M.U.-U.)
| | - Felix Royo
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio 48160, Bizkaia, Spain; E-Mails: (E.G.); (J.M.F.-P.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-944-061-325; Fax: +34-944-061-301
| |
Collapse
|
29
|
Steenbergen RDM, Ongenaert M, Snellenberg S, Trooskens G, van der Meide WF, Pandey D, Bloushtain-Qimron N, Polyak K, Meijer CJLM, Snijders PJF, Van Criekinge W. Methylation-specific digital karyotyping of HPV16E6E7-expressing human keratinocytes identifies novel methylation events in cervical carcinogenesis. J Pathol 2013; 231:53-62. [DOI: 10.1002/path.4210] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/17/2013] [Accepted: 05/07/2013] [Indexed: 12/12/2022]
Affiliation(s)
| | - Maté Ongenaert
- BioBix, Department of Mathematical Modelling, Statistics and Bioinformatics; Ghent University; Belgium
- Centre for Medical Genetics; Ghent University; Belgium
| | - Suzanne Snellenberg
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
| | - Geert Trooskens
- BioBix, Department of Mathematical Modelling, Statistics and Bioinformatics; Ghent University; Belgium
| | | | - Deeksha Pandey
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
| | - Noga Bloushtain-Qimron
- Department of Medical Oncology; Dana-Farber Cancer Institute, Harvard Medical School; Boston MA USA
| | - Kornelia Polyak
- Department of Medical Oncology; Dana-Farber Cancer Institute, Harvard Medical School; Boston MA USA
| | - Chris JLM Meijer
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
| | - Peter JF Snijders
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
| | - Wim Van Criekinge
- BioBix, Department of Mathematical Modelling, Statistics and Bioinformatics; Ghent University; Belgium
| |
Collapse
|
30
|
Lin C, Song L, Gong H, Liu A, Lin X, Wu J, Li M, Li J. Nkx2-8 Downregulation Promotes Angiogenesis and Activates NF-κB in Esophageal Cancer. Cancer Res 2013; 73:3638-48. [DOI: 10.1158/0008-5472.can-12-4028] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Snyder EL, Watanabe H, Magendantz M, Hoersch S, Chen TA, Wang DG, Crowley D, Whittaker CA, Meyerson M, Kimura S, Jacks T. Nkx2-1 represses a latent gastric differentiation program in lung adenocarcinoma. Mol Cell 2013; 50:185-99. [PMID: 23523371 DOI: 10.1016/j.molcel.2013.02.018] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 11/07/2012] [Accepted: 02/14/2013] [Indexed: 12/23/2022]
Abstract
Tissue-specific differentiation programs become dysregulated during cancer evolution. The transcription factor Nkx2-1 is a master regulator of pulmonary differentiation that is downregulated in poorly differentiated lung adenocarcinoma. Here we use conditional murine genetics to determine how the identity of lung epithelial cells changes upon loss of their master cell-fate regulator. Nkx2-1 deletion in normal and neoplastic lungs causes not only loss of pulmonary identity but also conversion to a gastric lineage. Nkx2-1 is likely to maintain pulmonary identity by recruiting transcription factors Foxa1 and Foxa2 to lung-specific loci, thus preventing them from binding gastrointestinal targets. Nkx2-1-negative murine lung tumors mimic mucinous human lung adenocarcinomas, which express gastric markers. Loss of the gastrointestinal transcription factor Hnf4α leads to derepression of the embryonal proto-oncogene Hmga2 in Nkx2-1-negative tumors. These observations suggest that loss of both active and latent differentiation programs is required for tumors to reach a primitive, poorly differentiated state.
Collapse
Affiliation(s)
- Eric L Snyder
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Di Pierro GB, Gulia C, Cristini C, Fraietta G, Marini L, Grande P, Gentile V, Piergentili R. Bladder cancer: a simple model becomes complex. Curr Genomics 2013; 13:395-415. [PMID: 23372425 PMCID: PMC3401896 DOI: 10.2174/138920212801619232] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer is one of the most frequent malignancies in developed countries and it is also characterized by a high number of recurrences. Despite this, several authors in the past reported that only two altered molecular pathways may genetically explain all cases of bladder cancer: one involving the FGFR3 gene, and the other involving the TP53 gene. Mutations in any of these two genes are usually predictive of the malignancy final outcome. This cancer may also be further classified as low-grade tumors, which is always papillary and in most cases superficial, and high-grade tumors, not necessarily papillary and often invasive. This simple way of considering this pathology has strongly changed in the last few years, with the development of genome-wide studies on expression profiling and the discovery of small non-coding RNA affecting gene expression. An easy search in the OMIM (On-line Mendelian Inheritance in Man) database using "bladder cancer" as a query reveals that genes in some way connected to this pathology are approximately 150, and some authors report that altered gene expression (up- or down-regulation) in this disease may involve up to 500 coding sequences for low-grade tumors and up to 2300 for high-grade tumors. In many clinical cases, mutations inside the coding sequences of the above mentioned two genes were not found, but their expression changed; this indicates that also epigenetic modifications may play an important role in its development. Indeed, several reports were published about genome-wide methylation in these neoplastic tissues, and an increasing number of small non-coding RNA are either up- or down-regulated in bladder cancer, indicating that impaired gene expression may also pass through these metabolic pathways. Taken together, these data reveal that bladder cancer is far to be considered a simple model of malignancy. In the present review, we summarize recent progress in the genome-wide analysis of bladder cancer, and analyse non-genetic, genetic and epigenetic factors causing extensive gene mis-regulation in malignant cells.
Collapse
Affiliation(s)
- Giovanni Battista Di Pierro
- Dipartimento di Scienze Ginecologico-Ostetriche e Scienze Urologiche, Policlinico Umberto I, Sapienza - Università di Roma
| | | | | | | | | | | | | | | |
Collapse
|