1
|
Luo J, Wang J, Liu H, Jiang W, Pan L, Huang W, Liu C, Qu X, Liu C, Qin X, Xiang Y. Chloride intracellular channel 4 participates in the regulation of lipopolysaccharide-induced inflammatory responses in human bronchial epithelial cells. Respir Physiol Neurobiol 2024; 327:104303. [PMID: 39029565 DOI: 10.1016/j.resp.2024.104303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
The airway epithelium is located at the interactional boundary between the external and internal environments of the organism and is often exposed to harmful environmental stimuli. Inflammatory response that occurs after airway epithelial stress is the basis of many lung and systemic diseases. Chloride intracellular channel 4 (CLIC4) is abundantly expressed in epithelial cells. The purpose of this study was to investigate whether CLIC4 is involved in the regulation of lipopolysaccharide (LPS)-induced inflammatory response in airway epithelial cells and to clarify its potential mechanism. Our results showed that LPS induced inflammatory response and decreased CLIC4 levels in vivo and in vitro. CLIC4 silencing aggravated the inflammatory response in epithelial cells, while overexpression of CLIC4 combined with LPS exposure significantly decreased the inflammatory response compared with cells exposed to LPS without CLIC4 overexpression. By labeling intracellular chloride ions with chloride fluorescent probe MQAE, we showed that CLIC4 mediated intracellular chloride ion-regulated LPS-induced cellular inflammatory response.
Collapse
Affiliation(s)
- Jinhua Luo
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Jia Wang
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China; Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha 410016, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Wang Jiang
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Lang Pan
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China; Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wenjie Huang
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China; Department of Reproductive Medicine, Liuzhou maternity and Child Healthcare Hospital, Liuzhou, Guangxi 545001, China
| | - Caixia Liu
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Chi Liu
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China.
| |
Collapse
|
2
|
Xerez MC, da Silva Barros CC, de Souto Medeiros MR, Mafra RP, de Lucena HF, da Silveira ÉJD, de Lisboa Lopes Costa A. CLIC4 Function in the Epithelial-Mesenchymal Transition of Epithelial Odontogenic Lesions. Head Neck Pathol 2024; 18:40. [PMID: 38727794 PMCID: PMC11087429 DOI: 10.1007/s12105-024-01646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/07/2024] [Accepted: 04/04/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Odontogenic lesions constitute a heterogeneous group of lesions. CLIC4 protein regulates different cellular processes, including epithelial-mesenchymal transition and fibroblast-myofibroblast transdifferentiation. This study analyzed CLIC4, E-cadherin, Vimentin, and α-SMA immunoexpression in epithelial odontogenic lesions that exhibit different biological behavior. METHODS It analyzed the immunoexpression of CLIC4, E-cadherin, and Vimentin in the epithelial cells, as well as CLIC4 and α-SMA in the mesenchymal cells, of ameloblastoma (AM) (n = 16), odontogenic keratocyst (OKC) (n = 20), and adenomatoid odontogenic tumor (AOT) (n = 8). Immunoexpressions were categorized as score 0 (0% positive cells), 1 (< 25%), 2 (≥ 25% - < 50%), 3 (≥ 50% - < 75%), or 4 (≥ 75%). RESULTS Cytoplasmic CLIC4 immunoexpression was higher in AM and AOT (p < 0.001) epithelial cells. Nuclear-cytoplasmic CLIC4 was higher in OKC's epithelial lining (p < 0.001). Membrane (p = 0.012) and membrane-cytoplasmic (p < 0.001) E-cadherin immunoexpression were higher in OKC, while cytoplasmic E-cadherin expression was higher in AM and AOT (p < 0.001). Vimentin immunoexpression was higher in AM and AOT (p < 0.001). Stromal CLIC4 was higher in AM and OKC (p = 0.008). Similarly, α-SMA immunoexpression was higher in AM and OKC (p = 0.037). Correlations in these proteins' immunoexpression were observed in AM and OKC (p < 0.05). CONCLUSIONS CLIC4 seems to regulate the epithelial-mesenchymal transition, modifying E-cadherin and Vimentin expression. In mesenchymal cells, CLIC4 may play a role in fibroblast-myofibroblast transdifferentiation. CLIC4 may be associated with epithelial odontogenic lesions with aggressive biological behavior.
Collapse
Affiliation(s)
- Mariana Carvalho Xerez
- Oral Pathology and Medicine, Postgraduate Program in Dental Sciences, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Caio César da Silva Barros
- Oral Pathology and Medicine, Postgraduate Program in Dental Sciences, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Maurília Raquel de Souto Medeiros
- Oral Pathology and Medicine, Postgraduate Program in Dental Sciences, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Rodrigo Porpino Mafra
- Oral Pathology and Medicine, Postgraduate Program in Dental Sciences, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Hévio Freitas de Lucena
- Department of Dentistry, Federal University of Rio Grande do Norte, Av. Salgado Filho, 1787, Lagoa Nova, Natal, CEP: 59056-000, RN, Brazil
| | - Éricka Janine Dantas da Silveira
- Oral Pathology and Medicine, Postgraduate Program in Dental Sciences, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Dentistry, Federal University of Rio Grande do Norte, Av. Salgado Filho, 1787, Lagoa Nova, Natal, CEP: 59056-000, RN, Brazil
| | - Antonio de Lisboa Lopes Costa
- Oral Pathology and Medicine, Postgraduate Program in Dental Sciences, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Dentistry, Federal University of Rio Grande do Norte, Av. Salgado Filho, 1787, Lagoa Nova, Natal, CEP: 59056-000, RN, Brazil
| |
Collapse
|
3
|
Sanchez VC, Craig‐Lucas A, Cataisson C, Carofino BL, Yuspa SH. Crosstalk between tumor and stroma modifies CLIC4 cargo in extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e118. [PMID: 38264628 PMCID: PMC10803055 DOI: 10.1002/jex2.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/01/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 01/25/2024]
Abstract
Mouse models of breast cancer have revealed that tumor-bearing hosts must express the oxidoreductase CLIC4 to develop lung metastases. In the absence of host CLIC4, primary tumors grow but the lung premetastatic niche is defective for metastatic seeding. Primary breast cancer cells release EVs that incorporate CLIC4 as cargo and circulate in plasma of wildtype tumor-bearing hosts. CLIC4-deficient breast cancer cells also form tumors in wildtype hosts and release EVs in plasma, but these EVs lack CLIC4, suggesting that the tumor is the source of the plasma-derived EVs that carry CLIC4 as cargo. Paradoxically, circulating EVs are also devoid of CLIC4 when CLIC4-expressing primary tumors are grown in CLIC4 knockout hosts. Thus, the incorporation of CLIC4 (and perhaps other factors) as EV cargo released from tumors involves specific signals from the surrounding stroma determined by its genetic composition. Since CLIC4 is also detected in circulating EVs from human breast cancer patients, future studies will address its association with disease.
Collapse
Affiliation(s)
- Vanesa C. Sanchez
- Center for Drug Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Alayna Craig‐Lucas
- Department of SurgeryLehigh Valley Health NetworkAllentownPennsylvaniaUSA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Brandi L. Carofino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
4
|
Xerez MC, Barros CC, Queiroz SI, Silveira ÉJ, Costa AD. The stromal immunoexpression of CLIC4 may be related to the difference in the biological behavior between oral squamous cell carcinoma and oral verrucous carcinoma. Med Oral Patol Oral Cir Bucal 2023; 28:e418-e424. [PMID: 37026609 PMCID: PMC10499346 DOI: 10.4317/medoral.25842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2022] [Accepted: 02/10/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) has high morbidity and mortality rates while oral verrucous carcinoma (OVC), an uncommon variant of OSCC, exhibits a distinct biological behavior. CLIC4 protein plays a role in the cell cycle and apoptosis regulation and participates in the myofibroblasts transdifferentiation process, which are the main cells of the tumor stroma. This study analyzed the immunoexpression of CLIC4 and α-SMA in 20 OSCC cases and 15 OVC cases. MATERIAL AND METHODS A semiquantitative analysis of CLIC4 and α-SMA immunoexpression was performed in the parenchyma and stroma. Nuclear and cytoplasmic reactivity was analyzed separately for the CLIC4 immunostaining. The data were submitted to Pearson's chi-square and Spearman's correlation tests (p ≤ 0.05). RESULTS In the CLIC4 analysis, there was a significant difference in the immunoexpression of this protein between OSCC and OVC stroma (p < 0.001). It was observed a higher expression of α-SMA in the OSCC stroma. There was a positive and significant correlation between CLIC4 and α-SMA immunoexpression in the OVC stroma (r = 0,612; p = 0,015). CONCLUSIONS The decrease or absence of nuclear CLIC4 immunoexpression in the neoplastic epithelial cells and the increase of its expression in the stroma may influence the difference in biological behavior between OSCC and OVC.
Collapse
Affiliation(s)
- M-C Xerez
- Department of Dentistry, Federal University of Rio Grande do Norte Av. Salgado Filho, 1787, Lagoa Nova CEP: 59056-000. Natal / RN, Brazil
| | | | | | | | | |
Collapse
|
5
|
Wang Y, Geng H, Li X, Chen P, Xu S, Zhang S, Weng P, Guo J, Huang M, Wu Y, Chen Y. A novel nomogram for predicting overall survival in peripheral T cell lymphoma patients.. [DOI: 10.21203/rs.3.rs-2823604/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 07/28/2023]
Abstract
Abstract
Background The prognosis of peripheral T cell lymphomas (PTCLs) varies greatly. This study aimed at generating a prognostic nomogram based on differentially expressed genes (DEGs).Methods Firstly, we collected RNA transcripts from Gene Expression Omnibus and identified DEGs. Secondly we used univariate Cox regression, Least absolute shrinkage and selection operator (LASSO) to screen the independent risk factors to construct nomogram in the training cohort. Thirdly, we evaluate its prediction accuracy via decision curves analysis (DCA), receiver operating characteristic (ROC) and calibration rate to confirm its performance on survival in training and validation cohort. Then we carried out subgroup analysis in training and validation to eliminate the effects of age, gender, and pathological subtype. Lastly, to verify feasibility of nomogram in practice, we applied immunohistochemistry to clinical samples and analyzed the relationship between IHC scores and prognosis.Results The 702 DEGs between 40 PTCLs and 20 non-tumor patients were identified. Then ANGPTL2, CPSF4, CLIC4 and OTUD6B were screened out as independent risk factors via univariate Cox regression and LASSO. The DCA, ROC, Harrell’s concordance index (c-index) and calibration rate showed nomogram predicting more accurately than any single specific transcript. The results showed PTCLs with higher nomogram-score had a longer survival, regardless of age, gender and pathological subtype. Finally, the high expression level of ANGPTL2, CPSF4 and OTUD6B related to poor prognosis. Higher expression of CLIC4 related to longer survival.Conclusion This nomogram showed the favorable clinical applicability, regardless of age, gender and pathological subtype.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Hai-Li Geng
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Xiao-Fan Li
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Ping Chen
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Shu-Juan Xu
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Shu-Xia Zhang
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Ping Weng
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Jiang-Rui Guo
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Mei-Juan Huang
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Yong Wu
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Yuan-Zhong Chen
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| |
Collapse
|
6
|
Faerch O, Worth R, Achilonu I, Dirr H. Nuclear localisation sequences of chloride intracellular channels 1 and 4 facilitate nuclear import via interactions with import mediator importin-α: An empirical and theoretical perspective. J Mol Recognit 2023; 36:e2996. [PMID: 36175369 PMCID: PMC10078197 DOI: 10.1002/jmr.2996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 01/14/2023]
Abstract
Chloride intracellular channel proteins (CLICs) display ubiquitous expression, with each member exhibiting specific subcellular localisation. While all CLICs, except CLIC3, exhibit a highly conserved putative nuclear localisation sequence (NLS), only CLIC1, CLIC3 and CLIC4 exist within the nucleus. The CLIC4 NLS, 199-KVVAKKYR-206, appears crucial for nuclear entry and interacts with mouse nuclear import mediator Impα isoform 1, omitting the IBB domain (mImpα1ΔIBB). The essential nature of the basic residues in the CLIC4 NLS has been established by the fact that mutating out these residues inhibits nuclear import, which in turn is linked to cutaneous squamous cell cancer. Given the conservation of the CLIC NLS, CLIC1 likely follows a similar import pathway to CLIC4. Peptides of the CLIC1 (Pep1; Pep1_S C/S mutant) and CLIC4 (Pep4) NLSs were designed to examine binding to human Impα isoform 1, omitting the IBB domain (hImpα1ΔIBB). Molecular docking indicated that the core CLIC NLS region (KKYR) forms a similar binding pattern to both mImpα1ΔIBB and hImpα1ΔIBB. Fluorescence quenching demonstrated that Pep1_S (Kd ≈ 237 μM) and Pep4 (Kd ≈ 317 μM) bind hImpα1ΔIBB weakly. Isothermal titration calorimetry confirmed the weak binding interaction between Pep4 and hImpα1ΔIBB (Kd ≈ 130 μM) and the presence of a proton-linked effect. This weak interaction may be due to regions distal from the CLIC NLS needed to stabilise and strengthen hImpα1ΔIBB binding. Additionally, this NLS may preferentially bind another hImpα isoform with different flexibility properties.
Collapse
Affiliation(s)
- Olga Faerch
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Roland Worth
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Heini Dirr
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Structure-based discovery and in vitro validation of inhibitors of chloride intracellular channel 4 protein. Comput Struct Biotechnol J 2022; 21:688-701. [PMID: 36659928 PMCID: PMC9826898 DOI: 10.1016/j.csbj.2022.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022] Open
Abstract
The use of computer-aided methods have continued to propel accelerated drug discovery across various disease models, interestingly allowing the specific inhibition of pathogenic targets. Chloride Intracellular Channel Protein 4 (CLIC4) is a novel class of intracellular ion channel highly implicated in tumor and vascular biology. It regulates cell proliferation, apoptosis and angiogenesis; and is involved in multiple pathologic signaling pathways. Absence of specific inhibitors however impedes its advancement to translational research. Here, we integrate structural bioinformatics and experimental research approaches for the discovery and validation of small-molecule inhibitors of CLIC4. High-affinity allosteric binders were identified from a library of 1615 Food and Drug Administration (FDA)-approved drugs via a high-performance computing-powered blind-docking approach, resulting in the selection of amphotericin B and rapamycin. NMR assays confirmed the binding and conformational disruptive effects of both drugs while they also reversed stress-induced membrane translocation of CLIC4 and inhibited endothelial cell migration. Structural and dynamics simulation studies further revealed that the inhibitory mechanisms of these compounds were hinged on the allosteric modulation of the catalytic glutathione (GSH)-like site loop and the extended catalytic β loop which may elicit interference with the catalytic activities of CLIC4. Structure-based insights from this study provide the basis for the selective targeting of CLIC4 to treat the associated pathologies.
Collapse
Key Words
- A9C, 9-Anthracenecarboxylic acid
- AMPhB, Amphotericin B
- Ad, Adenovirus
- Allosteric inhibition
- Bad, BCL2 associated agonist of cell death
- Bcl-2, B-cell lymphoma 2
- Bcl-xL, B-cell lymphoma-extra large
- CDK, Cyclin-dependent kinases
- CLIC, Chloride intracellular channel protein
- Chloride intracellular channel protein 4
- Computational high-throughput screening
- DAPI, 4′,6-diamidino-2-phenylindole
- DIDS, 4,4′-Diisothiocyano-2,2′-stilbenedisulfonic acid
- DMSO, Dimethyl sulfoxide
- DOPE, Discrete optimized protein energy
- GPU, Graphics Processing Unit
- GSH-like catalytic site
- GST, glutathione S-transferases
- GUI, Graphical User Interface
- HEPES, (4-(2-hydroxyethyl)− 1-piperazineethanesulfonic acid;
- HIF, Hypoxia-inducible factor
- HSQC, Heteronuclear single quantum coherence spectroscopy
- HUVEC, Human umbilical vein endothelial cells
- IKKβ, Inhibitor of nuclear kappa-B-kinase subunit beta
- JNK, c-Jun N-terminal kinase
- MKK6, Mitogen-activated protein kinase kinase-6
- MOI, Multiplicity of infection
- NF-κB, Nuclear factor kappa-light-chain-enhancer of activated B cells
- NMR, Nuclear magnetic resonance
- NPT, The constant-temperature, constant-pressure ensemble
- NaCL, Sodium chloride
- Nuclear magnetic resonance
- PAH, Pulmonary arterial hypertension
- RAPA, Rapamycin
- SASA, Solvent accessible surface area
- SEK1, Dual specificity mitogen-activated protein kinase kinase 4
- Smad, Suppressor of Mothers against Decapentaplegic
- Structure-based drug discovery
- TEV, Tobacco etch virus
- TIP3P, Transferable intermolecular potential 3 P
- TROSY, Transverse relaxation optimized spectroscopy
- UCSF, University of California, San Francisco
- VEGF, Vascular endothelial growth factor
- p38, Mitogen activated protein kinases
Collapse
|
8
|
Al Khamici H, Sanchez VC, Yan H, Cataisson C, Michalowski AM, Yang HH, Li L, Lee MP, Huang J, Yuspa SH. The oxidoreductase CLIC4 is required to maintain mitochondrial function and resistance to exogenous oxidants in breast cancer cells. J Biol Chem 2022; 298:102275. [PMID: 35863434 PMCID: PMC9418444 DOI: 10.1016/j.jbc.2022.102275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023] Open
Abstract
The chloride intracellular channel-4 (CLIC4) is one of the six highly conserved proteins in the CLIC family that share high structural homology with GST-omega in the GST superfamily. While CLIC4 is a multifunctional protein that resides in multiple cellular compartments, the discovery of its enzymatic glutaredoxin-like activity in vitro suggested that it could function as an antioxidant. Here, we found that deleting CLIC4 from murine 6DT1 breast tumor cells using CRISPR enhanced the accumulation of reactive oxygen species (ROS) and sensitized cells to apoptosis in response to H2O2 as a ROS-inducing agent. In intact cells, H2O2 increased the expression of both CLIC4 mRNA and protein. In addition, increased superoxide production in 6DT1 cells lacking CLIC4 was associated with mitochondrial hyperactivity including increased mitochondrial membrane potential and mitochondrial organelle enlargement. In the absence of CLIC4, however, H2O2-induced apoptosis was associated with low expression and degradation of the antiapoptotic mitochondrial protein Bcl2 and the negative regulator of mitochondrial ROS, UCP2. Furthermore, transcriptomic profiling of H2O2-treated control and CLIC4-null cells revealed upregulation of genes associated with ROS-induced apoptosis and downregulation of genes that sustain mitochondrial functions. Accordingly, tumors that formed from transplantation of CLIC4-deficient 6DT1 cells were highly necrotic. These results highlight a critical role for CLIC4 in maintaining redox-homeostasis and mitochondrial functions in 6DT1 cells. Our findings also raise the possibility of targeting CLIC4 to increase cancer cell sensitivity to chemotherapeutic drugs that are based on elevating ROS in cancer cells.
Collapse
Affiliation(s)
- Heba Al Khamici
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Vanesa C Sanchez
- Office of Science, Division of Nonclinical Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Hualong Yan
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Aleksandra M Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Howard H Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Luowei Li
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Jing Huang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Stuart H Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA.
| |
Collapse
|
9
|
Sanchez VC, Yang HH, Craig-Lucas A, Dubois W, Carofino BL, Lack J, Dwyer JE, Simpson RM, Cataisson C, Lee MP, Luo J, Hunter KW, Yuspa SH. Host CLIC4 expression in the tumor microenvironment is essential for breast cancer metastatic competence. PLoS Genet 2022; 18:e1010271. [PMID: 35727842 PMCID: PMC9249210 DOI: 10.1371/journal.pgen.1010271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2022] [Revised: 07/01/2022] [Accepted: 05/22/2022] [Indexed: 11/18/2022] Open
Abstract
The TGF-β-regulated Chloride Intracellular Channel 4 (CLIC4) is an essential participant in the formation of breast cancer stroma. Here, we used data available from the TCGA and METABRIC datasets to show that CLIC4 expression was higher in breast cancers from younger women and those with early-stage metastatic disease. Elevated CLIC4 predicted poor outcome in breast cancer patients and was linked to the TGF-β pathway. However, these associations did not reveal the underlying biological contribution of CLIC4 to breast cancer progression. Constitutive ablation of host Clic4 in two murine metastatic breast cancer models nearly eliminated lung metastases without reducing primary tumor weight, while tumor cells ablated of Clic4 retained metastatic capability in wildtype hosts. Thus, CLIC4 was required for host metastatic competence. Pre- and post-metastatic proteomic analysis identified circulating pro-metastatic soluble factors that differed in tumor-bearing CLIC4-deficient and wildtype hosts. Vascular abnormalities and necrosis increased in primary tumors from CLIC4-deficient hosts. Transcriptional profiles of both primary tumors and pre-metastatic lungs of tumor-bearing CLIC4-deficient hosts were consistent with a microenvironment where inflammatory pathways were elevated. Altogether, CLIC4 expression in human breast cancers may serve as a prognostic biomarker; therapeutic targeting of CLIC4 could reduce primary tumor viability and host metastatic competence.
Collapse
Affiliation(s)
- Vanesa C. Sanchez
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Howard H. Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alayna Craig-Lucas
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wendy Dubois
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brandi L. Carofino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
| | - Jennifer E. Dwyer
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - R. Mark Simpson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Max P. Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kent W. Hunter
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
10
|
N6-methyladenosine demethylase FTO suppressed prostate cancer progression by maintaining CLIC4 mRNA stability. Cell Death Dis 2022; 8:184. [PMID: 35397614 PMCID: PMC8994758 DOI: 10.1038/s41420-022-01003-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
The fat mass and obesity-associated protein (FTO) is an N6-Methyladenosine (m6A) demethylase, which has been revealed to play critical roles in tumorigenesis. However, its role in the development and progression of prostate cancer (PCa) remains poorly understood. Here, we aimed to investigate the function and clinical relevance of FTO in PCa. Our results demonstrated that FTO was notably downregulated in PCa tissues compared with the paired normal tissues. In addition, the decreased expression of FTO was correlated with poor prognosis of PCa. Functional experiments showed that depletion of FTO promoted the proliferation and metastasis of PCa both in vitro and in vivo. Conversely, ectopic expression of FTO exhibited the opposite effects. Combined with RNA-sequencing, MeRIP-RT-qPCR, and mRNA stability assays indicated chloride intracellular channel 4(CLIC4) was a functional target of FTO-mediated m6A modification. FTO depletion significantly increased the m6A level of CLIC4 mRNA and then reduced the mRNA stability. In conclusion, our findings suggest that FTO suppresses PCa proliferation and metastasis through reducing the degradation of CLIC4 mRNA in an m6A dependent manner. FTO may be used as a promising novel therapeutic target and prognostic evaluation biomarker for PCa.
Collapse
|
11
|
Jing B, Hui Z. Circular RNA_0033596 aggravates endothelial cell injury induced by oxidized low-density lipoprotein via microRNA-217-5p /chloride intracellular channel 4 axis. Bioengineered 2022; 13:3410-3421. [PMID: 35081862 PMCID: PMC8974077 DOI: 10.1080/21655979.2022.2027062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022] Open
Abstract
In recent years, the modulatory functions of some circular RNAs (circRNAs) in the pathogenesis of atherosclerosis (AS) have been reported. Nonetheless, the role of circular RNA_0033596 (circ_0033596) in AS and its mechanism remains unclarified. In this study, oxidized low-density lipoprotein (ox-LDL) was applied to treat human umbilical vein endothelial cells (HUVECs) to establish a cell model of endothelial cell injury. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were employed to detect the expression of circ_0033596, microRNA-217-5p (miR-217-5p), and chloride intracellular channel 4 (CLIC4) in HUVECs. The binding sites between circ_0033596 and miR-217-5p, as well as between miR-217-5p and CLIC4 mRNA 3ʹUTR were determined through a dual-luciferase reporter gene assay. It was found that circ_0033596 expression was increased in ox-LDL-induced HUVECs. After ox-LDL stimulation, HUVEC viability and cell cycle progression were inhibited, and the apoptosis was promoted, while circ_0033596 overexpression aggravated these effects. MiR-217-5p was identified as a downstream target of circ_0033596, and circ_0033596 negatively regulated miR-217-5p expression. CLIC4 was identified as miR-217-5p’s downstream target gene and could be positively modulated by circ_0033596. All in all circ_0033596 aggravates ox-LDL-induced HUVEC apoptosis by regulating the miR-217-5p/CLIC4 axis, by which circ_0033596 participates in the pathogenesis of AS.
Collapse
Affiliation(s)
- Bai Jing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Zhou Hui
- Department of Ultrasound, wuhan Prevention and Treatment Center for Occupational Diseases Wuhan PR China
| |
Collapse
|
12
|
Carotenuto P, Amato F, Lampis A, Rae C, Hedayat S, Previdi MC, Zito D, Raj M, Guzzardo V, Sclafani F, Lanese A, Parisi C, Vicentini C, Said-Huntingford I, Hahne JC, Hallsworth A, Kirkin V, Young K, Begum R, Wotherspoon A, Kouvelakis K, Azevedo SX, Michalarea V, Upstill-Goddard R, Rao S, Watkins D, Starling N, Sadanandam A, Chang DK, Biankin AV, Jamieson NB, Scarpa A, Cunningham D, Chau I, Workman P, Fassan M, Valeri N, Braconi C. Modulation of pancreatic cancer cell sensitivity to FOLFIRINOX through microRNA-mediated regulation of DNA damage. Nat Commun 2021; 12:6738. [PMID: 34795259 PMCID: PMC8602334 DOI: 10.1038/s41467-021-27099-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2020] [Accepted: 10/29/2021] [Indexed: 01/17/2023] Open
Abstract
FOLFIRINOX, a combination of chemotherapy drugs (Fluorouracil, Oxaliplatin, Irinotecan -FOI), provides the best clinical benefit in pancreatic ductal adenocarcinoma (PDAC) patients. In this study we explore the role of miRNAs (MIR) as modulators of chemosensitivity to identify potential biomarkers of response. We find that 41 and 84 microRNA inhibitors enhance the sensitivity of Capan1 and MiaPaCa2 PDAC cells respectively. These include a MIR1307-inhibitor that we validate in further PDAC cell lines. Chemotherapy-induced apoptosis and DNA damage accumulation are higher in MIR1307 knock-out (MIR1307KO) versus control PDAC cells, while re-expression of MIR1307 in MIR1307KO cells rescues these effects. We identify binding of MIR1307 to CLIC5 mRNA through covalent ligation of endogenous Argonaute-bound RNAs cross-linking immunoprecipitation assay. We validate these findings in an in vivo model with MIR1307 disruption. In a pilot cohort of PDAC patients undergoing FOLFIRONX chemotherapy, circulating MIR1307 correlates with clinical outcome.
Collapse
Affiliation(s)
- Pietro Carotenuto
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
- TIGEM - Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Francesco Amato
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Colin Rae
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Somaieh Hedayat
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Maria C Previdi
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Domenico Zito
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Maya Raj
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | | | | | - Andrea Lanese
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | - Claudia Parisi
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | - Caterina Vicentini
- ARC-Net Research Centre and Department of Diagnostics and Public Health, Section of Pathology, , University of Verona, Verona, Italy
| | | | - Jens C Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Albert Hallsworth
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Vladimir Kirkin
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Kate Young
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | - Ruwaida Begum
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | | | | | | | | | | | - Sheela Rao
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | - David Watkins
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | | | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - David K Chang
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Andrew V Biankin
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW, Australia
| | - Nigel B Jamieson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Aldo Scarpa
- ARC-Net Research Centre and Department of Diagnostics and Public Health, Section of Pathology, , University of Verona, Verona, Italy
| | | | - Ian Chau
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | - Paul Workman
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Matteo Fassan
- Department of Medicine, University of Padua, Padua, Italy
- Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | - Chiara Braconi
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- The Royal Marsden NHS Trust, London and Surrey, London, UK.
- Beatson West of Scotland Cancer Centre, Glasgow, UK.
| |
Collapse
|
13
|
Chiang PC, Li PT, Lee MJ, Chen CT. DNA Hypermethylation Involves in the Down-Regulation of Chloride Intracellular Channel 4 (CLIC4) Induced by Photodynamic Therapy. Biomedicines 2021; 9:biomedicines9080927. [PMID: 34440131 PMCID: PMC8394338 DOI: 10.3390/biomedicines9080927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
The altered expression of chloride intracellular channel 4 (CLIC4) was reported to correlate with tumor progression. Previously, we have shown that the reduced cellular invasion induced by photodynamic therapy (PDT) is associated with suppression of CLIC4 expression in PDT-treated cells. Herein, we attempted to decipher the regulatory mechanisms involved in PDT-mediated CLIC4 suppression in A375 and MDA-MB-231 cells in vitro. We found that PDT can increase the expression and enzymatic activity of DNA methyltransferase 1 (DNMT1). Bisulfite sequencing PCR further revealed that PDT can induce hypermethylation in the CLIC4 promoter region. Silencing DNMT1 rescues the PDT-induced CLIC4 suppression and inhibits hypermethylation in its promoter. Furthermore, we found tumor suppressor p53 involves in the increased DNMT1 expression of PDT-treated cells. Finally, by comparing CLIC4 expression in lung malignant cells and normal lung fibroblasts, the extent of methylation in CLIC4 promoter was found to be inversely proportional to its expression. Taken together, our results indicate that CLIC4 suppression induced by PDT is modulated by DNMT1-mediated hypermethylation and depends on the status of p53, which provides a possible mechanistic basis for regulating CLIC4 expression in tumorigenesis.
Collapse
Affiliation(s)
- Pei-Chi Chiang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (P.-C.C.); (P.-T.L.)
| | - Pei-Tzu Li
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (P.-C.C.); (P.-T.L.)
| | - Ming-Jen Lee
- Department of Neurology and Medical Genetics, National Taiwan University Hospital, Taipei 10012, Taiwan;
| | - Chin-Tin Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (P.-C.C.); (P.-T.L.)
- Correspondence:
| |
Collapse
|
14
|
Wang B, Zheng J, Chen Q, Wu C, Li Y, Yu XY, Liu B, Liang C, Liu SB, Ding H, Wang S, Xue T, Song D, Lei Z, Amin HM, Song YH, Zhou J. CLIC4 abrogation promotes epithelial-mesenchymal transition in gastric cancer. Carcinogenesis 2020; 41:841-849. [PMID: 31560739 DOI: 10.1093/carcin/bgz156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2019] [Revised: 09/04/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Chloride intracellular channel protein 4 (CLIC4) has been implicated in different types of cancers, but the role of CLIC4 in the development of gastric cancer (GC) remains unknown. We analyzed the expression of CLIC4 in 102 pairs of gastric adenocarcinomas by western blot and real-time PCR. Our data revealed that the expression of CLIC4 is reduced in GC tumor tissues compared with adjacent normal tissues. The expression levels of CLIC4 correlate inversely with the clinical stage of GC. CLIC4 expression is lowest in MKN45 cells, which have the highest tumorigenic potential and express the highest levels of cancer stem cell markers CD44 and OCT4, compared with N87 and AGS cells. Exogenous overexpression of CLIC4 downregulated the expression of CD44 and OCT4, and inhibited migration, invasion and epithelial-mesenchymal transition (EMT). Moreover, anchorage-independent growth of GC cells was decreased and the cells became more sensitive to 5-fluorouracil and etoposide treatment when CLIC4 was overexpressed. The ability of N87 cells to form tumors in nude mice was enhanced when CLIC4 was silenced. We, for the first time, demonstrate that CLIC4 suppresses tumor growth by inhibiting cancer cell stemness and EMT.
Collapse
Affiliation(s)
- Baolong Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Jiqing Zheng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Qiongyuan Chen
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Chaofan Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Yangxin Li
- Department of Cardiovascular Surgery and Institute of Cardiovascular Science, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bin Liu
- Department of Cardiology, Second Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Chun Liang
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Song-Bai Liu
- Suzhou Vocational Health College, Suzhou Key Laboratory of Biotechnology for Laboratory Medicine, Suzhou, Jiangsu Province, China
| | - Hui Ding
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Shuochen Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Ting Xue
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - David Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Zhangni Lei
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Jin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| |
Collapse
|
15
|
Ling CK, Santos LL, Zhou W, Dimitriadis E. Chloride intracellular channel 4 is dysregulated in endometrium of women with infertility and alters receptivity. Biochem Biophys Res Commun 2020; 531:490-496. [PMID: 32807494 DOI: 10.1016/j.bbrc.2020.07.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023]
Abstract
The endometrium remodels in each menstrual cycle to become receptive in preparation for embryo implantation which occurs in the mid-secretory phase of the cycle. Failure of blastocyst adhesion and implantation cause infertility. We compared chloride intracellular channel 4 (CLIC4) expression in human endometrium from women with normal fertility and primary unexplained infertility in the mid-secretory/receptive phase of the menstrual cycle. CLIC4 localised to both the epithelial and stromal regions of the endometrium of fertile tissues across the cycle. CLIC4 expression was significantly reduced in the luminal and glandular epithelium and remained unchanged in the stromal region of mid-secretory infertile endometrium compared to fertile endometrium. siRNA knockdown of CLIC4 significantly compromised adhesive capacity of Ishikawa cells (endometrial epithelial cell line). This reduced adhesion and CLIC4 expression was associated with elevated SGK1, p53, SIRT1, BCL2 and MCL1 gene expression in the Ishikawa cells. CLIC4 expression was increased in primary human endometrial stromal cells during decidualization, however, siRNA knockdown of CLIC4 did not affect decidualization. Our data provide evidence that CLIC4 may regulate receptivity and facilitate blastocyst attachment initiating implantation. Reduced CLIC4 levels may be causative of implantation failure in women.
Collapse
Affiliation(s)
- Cheuk Kwan Ling
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia; Gynaecology Research Centre, Royal Women's Hospital, Parkville, Victoria, 3052, Australia
| | - Leilani L Santos
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia; Gynaecology Research Centre, Royal Women's Hospital, Parkville, Victoria, 3052, Australia
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia; Gynaecology Research Centre, Royal Women's Hospital, Parkville, Victoria, 3052, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia; Gynaecology Research Centre, Royal Women's Hospital, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
16
|
Böhme I, Schönherr R, Eberle J, Bosserhoff AK. Membrane Transporters and Channels in Melanoma. Rev Physiol Biochem Pharmacol 2020; 181:269-374. [PMID: 32737752 DOI: 10.1007/112_2020_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Recent research has revealed that ion channels and transporters can be important players in tumor development, progression, and therapy resistance in melanoma. For example, members of the ABC family were shown to support cancer stemness-like features in melanoma cells, while several members of the TRP channel family were reported to act as tumor suppressors.Also, many transporter proteins support tumor cell viability and thus suppress apoptosis induction by anticancer therapy. Due to the high number of ion channels and transporters and the resulting high complexity of the field, progress in understanding is often focused on single molecules and is in total rather slow. In this review, we aim at giving an overview about a broad subset of ion transporters, also illustrating some aspects of the field, which have not been addressed in detail in melanoma. In context with the other chapters in this special issue on "Transportome Malfunctions in the Cancer Spectrum," a comparison between melanoma and these tumors will be possible.
Collapse
Affiliation(s)
- Ines Böhme
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Schönherr
- Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, University Medical Center Charité, Berlin, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany. .,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
17
|
Lima FJ, Lopes MLDDS, Barros CCDS, Nonaka CFW, Silveira ÉJDD. Modification in CLIC4 Expression is Associated with P53, TGF-β, TNF-α and Myofibroblasts in Lip Carcinogenesis. Braz Dent J 2020; 31:290-297. [PMID: 32667519 DOI: 10.1590/0103-6440202003104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2019] [Accepted: 12/11/2019] [Indexed: 11/21/2022] Open
Abstract
Chloride intracellular channel-4 (CLIC4) is regulated by p53 and tumor necrosis factor-α (TNF-α), it is linked to the increase of transforming growth factor-β (TGF-β), and myofibroblastic differentiation in skin carcinogenesis. This study analyzed the immunoexpression of CLIC4, p53, TGF-β, TNF-α, and α-SMA in 50 actinic cheilitis (AC) and 50 lower lip squamous cell carcinoma (LLSCC). AC and LLSCC immunoexpression were categorized as score 1 (<5% positive cells), 2 (5-50%) or 3 (>50%). For CLIC4, nuclear and cytoplasmic immunostaining of epithelial cells was considered individually. For morphologic analysis, the World Health Organization criteria were used to epithelial dysplasia grade of ACs, and Bryne grading of malignancy system was applied for LLSCC. Higher nuclear CLIC4 (CLIC4n) and TGF-β were observed in ACs with low-risk of transformation, while cytoplasmic CLIC4 (CLIC4c), p53 and TNF-α were higher in the high-risk cases (p<0.05). In LLSCCs, CLIC4c was higher in cases with lymph node metastasis, advanced clinical stages, and histological high-grade malignancy. p53 expression was higher in high-grade LLSCCs, whereas TGF-β decreased as the clinical stage and morphological grade progressed (p<0.05). ACs showed an increased expression of CLIC4n and TGF-β, while CLIC4c and α-SMA were higher in LLSCCs (p<0.0001). Both lesions showed negative correlation between CLIC4n and CLIC4c, while in LLSCCs, negative correlation was also verified between CLIC4c and p53, as well as CLIC4c and TGF-β (p<0.05). Change of CLIC4 from the nucleus to cytoplasm and alterations in p53, TGF-β, TNF-α, and α-SMA expression are involved in lip carcinogenesis.
Collapse
Affiliation(s)
- Francisco Jadson Lima
- Department of Dentistry, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | | |
Collapse
|
18
|
Nguyen LTS, Robinson DN. The Unusual Suspects in Cytokinesis: Fitting the Pieces Together. Front Cell Dev Biol 2020; 8:441. [PMID: 32626704 PMCID: PMC7314909 DOI: 10.3389/fcell.2020.00441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2020] [Accepted: 05/11/2020] [Indexed: 01/24/2023] Open
Abstract
Cytokinesis is the step of the cell cycle in which the cell must faithfully separate the chromosomes and cytoplasm, yielding two daughter cells. The assembly and contraction of the contractile network is spatially and temporally coupled with the formation of the mitotic spindle to ensure the successful completion of cytokinesis. While decades of studies have elucidated the components of this machinery, the so-called usual suspects, and their functions, many lines of evidence are pointing to other unexpected proteins and sub-cellular systems as also being involved in cytokinesis. These we term the unusual suspects. In this review, we introduce recent discoveries on some of these new unusual suspects and begin to consider how these subcellular systems snap together to help complete the puzzle of cytokinesis.
Collapse
Affiliation(s)
- Ly T. S. Nguyen
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, United States
| |
Collapse
|
19
|
Yokoyama R, Kojima H, Takai R, Ohta T, Maeda H, Miyashita K, Mutoh M, Terasaki M. Effects of CLIC4 on Fucoxanthinol-Induced Apoptosis in Human Colorectal Cancer Cells. Nutr Cancer 2020; 73:889-898. [PMID: 33703973 DOI: 10.1080/01635581.2020.1779760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
Fucoxanthin is a marine xanthophyll found in edible brown algae, and a metabolite, fucoxanthinol (FxOH), possesses a potent apoptosis inducing effect in many cancer cells. Chloride intracellular channel 4 (CLIC4) is a member of the CLIC family that plays an important role in cancer development and apoptosis. However, the role of CLIC4 in FxOH-induced apoptosis is not well understood. In this study, we investigated whether CLIC4 affects the apoptotic properties of FxOH in human colorectal cancer (CRC) cells under FxOH treatment. Treating human CRC DLD-1 cells with 5.0 μmol/L FxOH significantly induced apoptosis. FxOH downregulated CLIC4, integrin β1, NHERF2 and pSmad2 (Ser465/467) by 0.6-, 0.7-, 0.7-, and 0.5-fold, respectively, compared with control cells without alteration of Rab35 expression. No colocalizing change was observed in CLIC4-related proteins in either control or FxOH-treated cells. CLIC4 knockdown suppressed cell growth and apoptosis. Interestingly, apoptosis induction by FxOH almost disappeared with CLIC4 knockdown. Our findings suggested that CLIC4 could be involved in FxOH-induced apoptosis in human CRC.
Collapse
Affiliation(s)
- Reo Yokoyama
- School of Pharmaceutical Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Rie Takai
- Research Institute of Health Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Tohru Ohta
- Research Institute of Health Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Kazuo Miyashita
- Laboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Michihiro Mutoh
- Epidemiology and Preventions Group, Center for Public Health Sciences, National Cancer Center, Chuo-ku, Tokyo, Japan
| | - Masaru Terasaki
- School of Pharmaceutical Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan.,Cancer Prevention Laboratories, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|
20
|
Gururaja Rao S, Patel NJ, Singh H. Intracellular Chloride Channels: Novel Biomarkers in Diseases. Front Physiol 2020; 11:96. [PMID: 32116799 PMCID: PMC7034325 DOI: 10.3389/fphys.2020.00096] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2019] [Accepted: 01/27/2020] [Indexed: 12/27/2022] Open
Abstract
Ion channels are integral membrane proteins present on the plasma membrane as well as intracellular membranes. In the human genome, there are more than 400 known genes encoding ion channel proteins. Ion channels are known to regulate several cellular, organellar, and physiological processes. Any mutation or disruption in their function can result in pathological disorders, both common or rare. Ion channels present on the plasma membrane are widely acknowledged for their role in various biological processes, but in recent years, several studies have pointed out the importance of ion channels located in intracellular organelles. However, ion channels located in intracellular organelles are not well-understood in the context of physiological conditions, such as the generation of cellular excitability and ionic homeostasis. Due to the lack of information regarding their molecular identity and technical limitations of studying them, intracellular organelle ion channels have thus far been overlooked as potential therapeutic targets. In this review, we focus on a novel class of intracellular organelle ion channels, Chloride Intracellular Ion Channels (CLICs), mainly documented for their role in cardiovascular, neurophysiology, and tumor biology. CLICs have a single transmembrane domain, and in cells, they exist in cytosolic as well as membranous forms. They are predominantly present in intracellular organelles and have recently been shown to be localized to cardiomyocyte mitochondria as well as exosomes. In fact, a member of this family, CLIC5, is the first mitochondrial chloride channel to be identified on the molecular level in the inner mitochondrial membrane, while another member, CLIC4, is located predominantly in the outer mitochondrial membrane. In this review, we discuss this unique class of intracellular chloride channels, their role in pathologies, such as cardiovascular, cancer, and neurodegenerative diseases, and the recent developments concerning their usage as theraputic targets.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Neel J Patel
- Department of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
21
|
Carofino BL, Dinshaw KM, Ho PY, Cataisson C, Michalowski AM, Ryscavage A, Alkhas A, Wong NW, Koparde V, Yuspa SH. Head and neck squamous cancer progression is marked by CLIC4 attenuation in tumor epithelium and reciprocal stromal upregulation of miR-142-3p, a novel post-transcriptional regulator of CLIC4. Oncotarget 2019; 10:7251-7275. [PMID: 31921386 PMCID: PMC6944452 DOI: 10.18632/oncotarget.27387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Chloride intracellular channel 4 (CLIC4) is a tumor suppressor implicated in processes including growth arrest, differentiation, and apoptosis. CLIC4 protein expression is diminished in the tumor parenchyma during progression in squamous cell carcinoma (SCC) and other neoplasms, but the underlying mechanisms have not been identified. Data from The Cancer Genome Atlas suggest this is not driven by genomic alterations. However, screening and functional assays identified miR-142-3p as a regulator of CLIC4. CLIC4 and miR-142-3p expression are inversely correlated in head and neck (HN) SCC and cervical SCC, particularly in advanced stage cancers. In situ localization revealed that stromal immune cells, not tumor cells, are the predominant source of miR-142-3p in HNSCC. Furthermore, HNSCC single-cell expression data demonstrated that CLIC4 is lower in tumor epithelial cells than in stromal fibroblasts and endothelial cells. Tumor-specific downregulation of CLIC4 was confirmed in an SCC xenograft model concurrent with immune cell infiltration and miR-142-3p upregulation. These findings provide the first evidence of CLIC4 regulation by miRNA. Furthermore, the distinct localization of CLIC4 and miR-142-3p within the HNSCC tumor milieu highlight the limitations of bulk tumor analysis and provide critical considerations for both future mechanistic studies and use of miR-142-3p as a HNSCC biomarker.
Collapse
Affiliation(s)
- Brandi L. Carofino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kayla M. Dinshaw
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Pui Yan Ho
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Aleksandra M. Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Andrew Ryscavage
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Nathan W. Wong
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Vishal Koparde
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
22
|
Uretmen Kagiali ZC, Saner N, Akdag M, Sanal E, Degirmenci BS, Mollaoglu G, Ozlu N. CLIC4 and CLIC1 bridge plasma membrane and cortical actin network for a successful cytokinesis. Life Sci Alliance 2019; 3:3/2/e201900558. [PMID: 31879279 PMCID: PMC6933522 DOI: 10.26508/lsa.201900558] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 11/24/2022] Open
Abstract
CLIC members are required for the progression of cytokinesis by coupling the plasma membrane and cortical actin network at the cleavage furrow and polar cortex. CLIC4 and CLIC1 are members of the well-conserved chloride intracellular channel proteins (CLICs) structurally related to glutathione-S-transferases. Here, we report new roles of CLICs in cytokinesis. At the onset of cytokinesis, CLIC4 accumulates at the cleavage furrow and later localizes to the midbody in a RhoA-dependent manner. The cell cycle–dependent localization of CLIC4 is abolished when its glutathione S-transferase activity–related residues (C35A and F37D) are mutated. Ezrin, anillin, and ALIX are identified as interaction partners of CLIC4 at the cleavage furrow and midbody. Strikingly, CLIC4 facilitates the activation of ezrin at the cleavage furrow and reciprocally inhibition of ezrin activation diminishes the translocation of CLIC4 to the cleavage furrow. Furthermore, knockouts of CLIC4and CLIC1 cause abnormal blebbing at the polar cortex and regression of the cleavage furrow at late cytokinesis leading to multinucleated cells. We conclude that CLIC4 and CLIC1 function together with ezrin where they bridge plasma membrane and actin cytoskeleton at the polar cortex and cleavage furrow to promote cortical stability and successful completion of cytokinesis in mammalian cells.
Collapse
Affiliation(s)
| | - Nazan Saner
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Mehmet Akdag
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Erdem Sanal
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | | | - Gurkan Mollaoglu
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey .,Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| |
Collapse
|
23
|
CLIC1 and CLIC4 complement CA125 as a diagnostic biomarker panel for all subtypes of epithelial ovarian cancer. Sci Rep 2018; 8:14725. [PMID: 30282979 PMCID: PMC6170428 DOI: 10.1038/s41598-018-32885-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2018] [Accepted: 09/18/2018] [Indexed: 01/20/2023] Open
Abstract
New plasma and tissue biomarkers of epithelial ovarian cancer (EOC) could improve early diagnosis and post-diagnosis clinical management. Here we investigated tissue staining and tissue secretion of CLIC1 and CLIC4 across EOC subtypes. CLIC1 and CLIC4 are two promising biomarkers we previously showed were elevated in EOC patient sera. Individually, CLIC1 or CLIC4 stained larger percentages of malignant tumors across all EOC subtypes compared with CA125, particularly early stage and mucinous tumors. CLIC4 also stained benign tumors but staining was limited to nuclei; whereas malignant tumors showed diffuse cellular staining of stromal and tumor cells. Both proteins were shed by all EOC subtypes tumors in short term organ culture at more consistent levels than CA125, supporting their potential as pan-subtype serum and tissue biomarkers. Elevated CLIC4 expression, but not CLIC1 expression, was a negative indicator of patient survival, and CLIC4 knockdown in cultured cells decreased cell proliferation and migration indicating a potential role in tumor progression. These results suggest CLIC1 and CLIC4 are promising serum and tissue biomarkers as well as potential therapeutic targets for all EOC subtypes. This justifies development of high throughput serum/plasma biomarker assays to evaluate utility of a biomarker panel consisting of CLIC1, CLIC4 and CA125.
Collapse
|
24
|
Huang MC, Chu IT, Wang ZF, Lin S, Chang TC, Chen CT. A G-Quadruplex Structure in the Promoter Region of CLIC4 Functions as a Regulatory Element for Gene Expression. Int J Mol Sci 2018; 19:ijms19092678. [PMID: 30201851 PMCID: PMC6165315 DOI: 10.3390/ijms19092678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022] Open
Abstract
The differential transcriptional expression of CLIC4 between tumor cells and the surrounding stroma during cancer progression has been suggested to have a tumor-promoting effect. However, little is known about the transcriptional regulation of CLIC4. To better understand how this gene is regulated, the promoter region of CLIC4 was analyzed. We found that a high GC content near the transcriptional start site (TSS) might form an alternative G-quadruplex (G4) structure. Nuclear magnetic resonance spectroscopy (NMR) confirmed their formation in vitro. The reporter assay showed that one of the G4 structures exerted a regulatory role in gene transcription. When the G4-forming sequence was mutated to disrupt the G4 structure, the transcription activity dropped. To examine whether this G4 structure actually has an influence on gene transcription in the chromosome, we utilized the CRISPR/Cas9 system to edit the G4-forming sequence within the CLIC4 promoter in the cell genome. The pop-in/pop-out strategy was adopted to isolate the precisely-edited A375 cell clone. In CRISPR-modified A375 cell clones whose G4 was disrupted, there was a decrease in the endogenous CLIC4 messenger RNA (mRNA) expression level. In conclusion, we found that the G4 structure in the CLIC4 promoter might play an important role in regulating the level of transcription.
Collapse
Affiliation(s)
- Mu-Ching Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - I-Te Chu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Zi-Fu Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Steven Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Ta-Chau Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Chin-Tin Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
25
|
Purnell MC, Butawan MBA, Bingol K, Tolley EA, Whitt MA. Modulation of endoplasmic reticulum stress and the unfolded protein response in cancerous and noncancerous cells. SAGE Open Med 2018; 6:2050312118783412. [PMID: 29977552 PMCID: PMC6024343 DOI: 10.1177/2050312118783412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2018] [Accepted: 05/25/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES The bio-field array is a device that generates a dielectrophoretic electromagnetic field when placed in a hypotonic saline solution and a direct current of approximately 3 A is applied. It is known that cell physiology is guided by bioelectrical properties, and there is a significant growth inhibition in cancerous (MDA-MB-231) cells that are grown in media that has been reconstituted with the saline that has been exposed to the bio-field array direct current dielectrophoretic electromagnetic field, alternatively there is no growth inhibition noted in noncancerous cells (MCF-10A) when grown in the bio-field array direct current dielectrophoretic electromagnetic field treated versus control media. METHODS To examine the basis for selective growth inhibition in human breast carcinoma, we employed cell death assays, cell cycle assays, microarray analysis and reverse transcription-quantitative polymerase chain reaction. RESULTS We found a large transcriptional reprogramming in the cell lines and of the genes affected, those involved in endoplasmic reticulum stress and the unfolded protein response pathways showed some of the most dramatic changes. Cancerous cells grown in media that has been reconstituted with a hypotonic saline solution that has been exposed to the bio-field array direct current dielectrophoretic electromagnetic field show a significant and strong upregulation of the apoptotic arms of the unfolded protein response while the noncancerous cells show a decrease in endoplasmic reticulum stress via microarray analyses and reverse transcription-quantitative polymerase chain reaction. CONCLUSION The bio-field array shows potential to initiate apoptosis in cancerous cells while relieving cell stress in noncancerous cells in vitro. These studies lay a foundation for nurses to conduct future in vivo models for the possible development of future adjunct treatments in chronic disease.
Collapse
Affiliation(s)
- Marcy C Purnell
- Department of Microbiology, Immunology
and Biochemistry, College of Medicine, The University of Tennessee Health Science
Center, Memphis, TN, USA
- The Loewenberg College of Nursing, The
University of Memphis, Memphis, TN, USA
| | | | - Kemal Bingol
- Department of Microbiology, Immunology
and Biochemistry, College of Medicine, The University of Tennessee Health Science
Center, Memphis, TN, USA
| | - Elizabeth A Tolley
- Department of Preventive Medicine, The
University of Tennessee Health Science Center, Memphis, TN, USA
| | - Michael A Whitt
- Department of Microbiology, Immunology
and Biochemistry, College of Medicine, The University of Tennessee Health Science
Center, Memphis, TN, USA
| |
Collapse
|
26
|
Gururaja Rao S, Ponnalagu D, Patel NJ, Singh H. Three Decades of Chloride Intracellular Channel Proteins: From Organelle to Organ Physiology. CURRENT PROTOCOLS IN PHARMACOLOGY 2018; 80:11.21.1-11.21.17. [PMID: 30040212 PMCID: PMC6060641 DOI: 10.1002/cpph.36] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Intracellular organelles are membranous structures central for maintaining cellular physiology and the overall health of the cell. To maintain cellular function, intracellular organelles are required to tightly regulate their ionic homeostasis. Any imbalance in ionic concentrations can disrupt energy production (mitochondria), protein degradation (lysosomes), DNA replication (nucleus), or cellular signaling (endoplasmic reticulum). Ionic homeostasis is also important for volume regulation of intracellular organelles and is maintained by cation and anion channels as well as transporters. One of the major classes of ion channels predominantly localized to intracellular membranes is chloride intracellular channel proteins (CLICs). They are non-canonical ion channels with six homologs in mammals, existing as either soluble or integral membrane protein forms, with dual functions as enzymes and channels. Provided in this overview is a brief introduction to CLICs, and a summary of recent information on their localization, biophysical properties, and physiological roles. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Devasena Ponnalagu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Neel J Patel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Harpreet Singh
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Liang J, Shaulov Y, Savage-Dunn C, Boissinot S, Hoque T. Chloride intracellular channel proteins respond to heat stress in Caenorhabditis elegans. PLoS One 2017; 12:e0184308. [PMID: 28886120 PMCID: PMC5590911 DOI: 10.1371/journal.pone.0184308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2017] [Accepted: 08/21/2017] [Indexed: 01/05/2023] Open
Abstract
Chloride intracellular channel proteins (CLICs) are multi-functional proteins that are expressed in various cell types and differ in their subcellular location. Two CLIC homologs, EXL-1 (excretory canal abnormal like-1) and EXC-4 (excretory canal abnormal- 4), are encoded in the Caenorhabditis elegans genome, providing an excellent model to study the functional diversification of CLIC proteins. EXC-4 functions in excretory canal formation during normal animal development. However, to date, the physiological function of EXL-1 remains largely unknown. In this study, we demonstrate that EXL-1 responds specifically to heat stress and translocates from the cytoplasm to the nucleus in intestinal cells and body wall muscle cells under heat shock. In contrast, we do not observe EXC-4 nuclear translocation under heat shock. Full protein sequence analysis shows that EXL-1 bears a non-classic nuclear localization signal (NLS) that EXC-4 is lacking. All mammalian CLIC members have a nuclear localization signal, with the exception of CLIC3. Our phylogenetic analysis of the CLIC gene families across various animal species demonstrates that the duplication of CLICs in protostomes and deuterostomes occurred independently and that the NLS was subsequently lost in amniotes and nematodes, suggesting convergent evolution. We also observe that EXL-1 nuclear translocation occurs in a timely ordered manner in the intestine, from posterior to anterior regions. Finally, we find that exl-1 loss of function mutants are more susceptible to heat stress than wild-type animals, demonstrating functional relevance of the nuclear translocation. This research provides the first link between CLICs and environmental heat stress. We propose that C. elegans CLICs evolved to achieve different physiological functions through subcellular localization change and spatial separation in response to external or internal signals.
Collapse
Affiliation(s)
- Jun Liang
- Department of Science, Borough of Manhattan Community College / CUNY, New York, New York, United States of America
- * E-mail:
| | - Yakov Shaulov
- Department of Biology, Queens College, CUNY, Flushing, New York, United States of America
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, CUNY, Flushing, New York, United States of America
- Biology PhD Program and Biochemistry PhD Program, the Graduate Center, New York, New York, United States of America
| | - Stephane Boissinot
- New York University Abu Dhabi, Saadiyat Island campus, Abu Dhabi, United Arab Emirates
| | - Tasmia Hoque
- Department of Science, Borough of Manhattan Community College / CUNY, New York, New York, United States of America
| |
Collapse
|
28
|
Mittal VK, McDonald JF. De novo assembly and characterization of breast cancer transcriptomes identifies large numbers of novel fusion-gene transcripts of potential functional significance. BMC Med Genomics 2017; 10:53. [PMID: 28851357 PMCID: PMC5575902 DOI: 10.1186/s12920-017-0289-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2016] [Accepted: 08/17/2017] [Indexed: 11/10/2022] Open
Abstract
Background Gene-fusion or chimeric transcripts have been implicated in the onset and progression of a variety of cancers. Massively parallel RNA sequencing (RNA-Seq) of the cellular transcriptome is a promising approach for the identification of chimeric transcripts of potential functional significance. We report here the development and use of an integrated computational pipeline for the de novo assembly and characterization of chimeric transcripts in 55 primary breast cancer and normal tissue samples. Methods An integrated computational pipeline was employed to screen the transcriptome of breast cancer and control tissues for high-quality RNA-sequencing reads. Reads were de novo assembled into contigs followed by reference genome mapping. Chimeric transcripts were detected, filtered and characterized using our R-SAP algorithm. The relative abundance of reads was used to estimate levels of gene expression. Results De novo assembly allowed for the accurate detection of 1959 chimeric transcripts to nucleotide level resolution and facilitated detailed molecular characterization and quantitative analysis. A number of the chimeric transcripts are of potential functional significance including 79 novel fusion-protein transcripts and many chimeric transcripts with alterations in their un-translated leader regions. A number of chimeric transcripts in the cancer samples mapped to genomic regions devoid of any known genes. Several ‘pro-neoplastic’ fusions comprised of genes previously implicated in cancer are expressed at low levels in normal tissues but at high levels in cancer tissues. Conclusions Collectively, our results underscore the utility of deep sequencing technologies and improved bioinformatics workflows to uncover novel and potentially significant chimeric transcripts in cancer and normal somatic tissues. Electronic supplementary material The online version of this article (doi:10.1186/s12920-017-0289-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vinay K Mittal
- Integrated Cancer Research Center, School of Biological Sciences, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA, 30332, USA
| | - John F McDonald
- Integrated Cancer Research Center, School of Biological Sciences, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA, 30332, USA.
| |
Collapse
|
29
|
Yu Q, Zhou X, Xia Q, Shen J, Yan J, Zhu J, Li X, Shu M. Retracted
: SiRNA‐Mediated Down‐Regulation of CLIC4 Gene Inhibits Cell Proliferation and Accelerates Cell Apoptosis of Mouse Liver Cancer Hca‐F and Hca‐P Cells. J Cell Biochem 2017. [DOI: 10.1002/jcb.26229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qiu‐Yun Yu
- Department of LaboratoryNingbo No.2 HospitalNingbo315010P.R. China
| | - Xin‐Feng Zhou
- Department of Hepatopancreatobiliary SurgerNingbo No.2 HospitalNingbo315010P.R. China
| | - Qing Xia
- Department of Hepatopancreatobiliary SurgerNingbo No.2 HospitalNingbo315010P.R. China
| | - Jia Shen
- Department of Hepatopancreatobiliary SurgerNingbo No.2 HospitalNingbo315010P.R. China
| | - Jia Yan
- Department of Hepatopancreatobiliary SurgerNingbo No.2 HospitalNingbo315010P.R. China
| | - Jiu‐Ting Zhu
- Department of Hepatopancreatobiliary SurgerNingbo No.2 HospitalNingbo315010P.R. China
| | - Xiang Li
- Department of Hepatopancreatobiliary SurgerNingbo No.2 HospitalNingbo315010P.R. China
| | - Ming Shu
- Department of Hepatopancreatobiliary SurgerNingbo No.2 HospitalNingbo315010P.R. China
| |
Collapse
|
30
|
Hernandez-Fernaud JR, Ruengeler E, Casazza A, Neilson LJ, Pulleine E, Santi A, Ismail S, Lilla S, Dhayade S, MacPherson IR, McNeish I, Ennis D, Ali H, Kugeratski FG, Al Khamici H, van den Biggelaar M, van den Berghe PV, Cloix C, McDonald L, Millan D, Hoyle A, Kuchnio A, Carmeliet P, Valenzuela SM, Blyth K, Yin H, Mazzone M, Norman JC, Zanivan S. Secreted CLIC3 drives cancer progression through its glutathione-dependent oxidoreductase activity. Nat Commun 2017; 8:14206. [PMID: 28198360 PMCID: PMC5316871 DOI: 10.1038/ncomms14206] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023] Open
Abstract
The secretome of cancer and stromal cells generates a microenvironment that contributes to tumour cell invasion and angiogenesis. Here we compare the secretome of human mammary normal and cancer-associated fibroblasts (CAFs). We discover that the chloride intracellular channel protein 3 (CLIC3) is an abundant component of the CAF secretome. Secreted CLIC3 promotes invasive behaviour of endothelial cells to drive angiogenesis and increases invasiveness of cancer cells both in vivo and in 3D cell culture models, and this requires active transglutaminase-2 (TGM2). CLIC3 acts as a glutathione-dependent oxidoreductase that reduces TGM2 and regulates TGM2 binding to its cofactors. Finally, CLIC3 is also secreted by cancer cells, is abundant in the stromal and tumour compartments of aggressive ovarian cancers and its levels correlate with poor clinical outcome. This work reveals a previously undescribed invasive mechanism whereby the secretion of a glutathione-dependent oxidoreductase drives angiogenesis and cancer progression by promoting TGM2-dependent invasion.
Collapse
Affiliation(s)
| | | | - Andrea Casazza
- Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven B-3000, Belgium
| | | | - Ellie Pulleine
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Alice Santi
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| | - Shehab Ismail
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| | - Sergio Lilla
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| | | | - Iain R. MacPherson
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G611QH, UK
| | - Iain McNeish
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G611QH, UK
| | - Darren Ennis
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G611QH, UK
| | - Hala Ali
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Centre for Health Technologies, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | | | - Heba Al Khamici
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Centre for Health Technologies, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | | | | | | | - Laura McDonald
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| | - David Millan
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Aoisha Hoyle
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Anna Kuchnio
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, Vesalius Research Center, VIB, B-3000 Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, Vesalius Research Center, VIB, B-3000 Leuven, Belgium
| | - Stella M. Valenzuela
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Centre for Health Technologies, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| | - Huabing Yin
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Massimiliano Mazzone
- Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven B-3000, Belgium
| | - Jim C. Norman
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| |
Collapse
|
31
|
Peruzzo R, Biasutto L, Szabò I, Leanza L. Impact of intracellular ion channels on cancer development and progression. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2016; 45:685-707. [PMID: 27289382 PMCID: PMC5045486 DOI: 10.1007/s00249-016-1143-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/15/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
Cancer research is nowadays focused on the identification of possible new targets in order to try to develop new drugs for curing untreatable tumors. Ion channels have emerged as "oncogenic" proteins, since they have an aberrant expression in cancers compared to normal tissues and contribute to several hallmarks of cancer, such as metabolic re-programming, limitless proliferative potential, apoptosis-resistance, stimulation of neo-angiogenesis as well as cell migration and invasiveness. In recent years, not only the plasma membrane but also intracellular channels and transporters have arisen as oncological targets and were proposed to be associated with tumorigenesis. Therefore, the research is currently focusing on understanding the possible role of intracellular ion channels in cancer development and progression on one hand and, on the other, on developing new possible drugs able to modulate the expression and/or activity of these channels. In a few cases, the efficacy of channel-targeting drugs in reducing tumors has already been demonstrated in vivo in preclinical mouse models.
Collapse
Affiliation(s)
| | - Lucia Biasutto
- CNR Institute of Neuroscience, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padua, Padua, Italy
- CNR Institute of Neuroscience, Padua, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
32
|
Elevating CLIC4 in Multiple Cell Types Reveals a TGF- Dependent Induction of a Dominant Negative Smad7 Splice Variant. PLoS One 2016; 11:e0161410. [PMID: 27536941 PMCID: PMC4990216 DOI: 10.1371/journal.pone.0161410] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2016] [Accepted: 08/04/2016] [Indexed: 12/22/2022] Open
Abstract
CLIC4 (Chloride intracellular channel 4) belongs to a family of putative intracellular chloride channel proteins expressed ubiquitously in multiple tissues. CLIC4 is predominantly soluble and traffics between the cytoplasm and nucleus and participates in cell cycle control and differentiation. Transforming growth factor beta (TGF-β) elevates CLIC4, which enhances TGF-β signaling through CLIC4 mediated stabilization of phospho-Smad2/3. CLIC4 is essential for TGF-β induced conversion of fibroblasts to myofibroblasts and expression of matrix proteins, signaling via the p38MAPK pathway. Therefore, regulation of TGF-β signaling is a major mechanism by which CLIC4 modifies normal growth and differentiation. We now report that elevated CLIC4 alters Smad7 function, a feedback inhibitor of the TGF-β pathway. Overexpression of CLIC4 in keratinocytes, mouse embryonic fibroblasts and other mouse and human cell types increases the expression of Smad7Δ, a novel truncated form of Smad7. The alternatively spliced Smad7Δ variant is missing 94bp in exon 4 of Smad 7 and is conserved between mouse and human cells. The deletion is predicted to lack the TGF-β signaling inhibitory MH2 domain of Smad7. Treatment with exogenous TGF-β1 also enhances expression of Smad7Δ that is amplified in the presence of CLIC4. While Smad7 expression inhibits TGF-β signaling, exogenously expressed Smad7Δ does not inhibit TGF-β signaling as determined by TGF-β dependent proliferation, reporter assays and phosphorylation of Smad proteins. Instead, exogenous Smad7Δ acts as a dominant negative inhibitor of Smad7, thus increasing TGF-β signaling. This discovery adds another dimension to the myriad ways by which CLIC4 modifies TGF-β signaling.
Collapse
|
33
|
Trevino V, Cassese A, Nagy Z, Zhuang X, Herbert J, Antzack P, Clarke K, Davies N, Rahman A, Campbell MJ, Guindani M, Bicknell R, Vannucci M, Falciani F. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells. PLoS Comput Biol 2016; 12:e1004884. [PMID: 27124473 PMCID: PMC4849722 DOI: 10.1371/journal.pcbi.1004884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2015] [Accepted: 03/24/2016] [Indexed: 11/19/2022] Open
Abstract
The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks in a wide spectrum of biological systems. In the current era of cancer research, stimulated by the release of the entire human genome, it has become increasingly clear that to understand cancer we need to understand how the many thousands of genes and proteins involved interact. Modern techniques have enabled the collection of unprecedented amounts of high quality data describing the state of these molecules during cancer development. In cancer research particularly, this strategy has been particularly successful, leading to the discovery of new drugs able to target key factors promoting cancer growth. However, a large body of research suggests that in complex organs, the interaction between cancer and its surrounding environment is an essential part of the biology of both diseased and healthy tissues, therefore it is of paramount importance that this process is further investigated. Here we report a strategy designed to reveal communication signals between cancer cells and adjacent cell types. We apply the strategy to prostate cancer and find that normal cells surrounding the tumour do exert an anti-tumour activity on prostate cancer cells. By using a statistical model which integrates multiple levels of genetic data, we show that cell-to-cell communication genes are controlled by DNA alterations and have potential prognostic value.
Collapse
Affiliation(s)
- Victor Trevino
- Catedra de Bioinformatica, Escuela de Medicina, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | - Alberto Cassese
- Department of Methodology and Statistics, Maastricht University, Maastricht, Netherlands
| | - Zsuzsanna Nagy
- School of Experimental and Clinical Medicine, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Xiaodong Zhuang
- School of Immunity and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - John Herbert
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Philipp Antzack
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Kim Clarke
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nicholas Davies
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ayesha Rahman
- School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Moray J. Campbell
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Michele Guindani
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Roy Bicknell
- School of Immunity and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Marina Vannucci
- Department of Statistics, Rice University, Houston, Texas, United States of America
| | - Francesco Falciani
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Xue H, Lu J, Yuan R, Liu J, Liu Y, Wu K, Wu J, Du J, Shen B. Knockdown of CLIC4 enhances ATP-induced HN4 cell apoptosis through mitochondrial and endoplasmic reticulum pathways. Cell Biosci 2016; 6:5. [PMID: 26816615 PMCID: PMC4727302 DOI: 10.1186/s13578-016-0070-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2015] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
Background Human head and neck squamous carcinoma is the 6th most prevalent carcinoma worldwide. Although many novel therapies have been developed, the clinical treatment for patients remains non-ideal. Chloride intracellular channel 4 (CLIC4), one of the seven members of the CLIC family, is a newly found Cl− channel that participates in various biological processes, including cellular apoptosis and differentiation. Accumulating evidence has revealed the significant role of CLIC4 in regulating the apoptosis of different cancer cells. Here, we investigated the functional role of CLIC4 in the apoptosis of HN4 cells, a human head and neck squamous carcinoma cell line. Results In the present study, we used immunohistochemical staining to demonstrate that the expression level of CLIC4 is elevated in the tissue of human oral squamous carcinoma compared with healthy human gingival tissue. Specific CLIC4 small interfering RNA was used to knockdown the expression of CLIC4. The results showed that knockdown of CLIC4 with or without 100 μM adenosine triphosphate (ATP) treatment significantly increased the expression of Bax, active caspase 3, active caspase 4 and CHOP but suppressed Bcl-2 expression in HN4 cells. Moreover, the results from the TdT-mediated dUTP nick end labeling assay indicated that CLIC4 knockdown induced a higher apoptotic rate in HN4 cells under the induction of ATP. In addition, knockdown of CLIC4 dramatically enhanced ATP-induced mitochondrial membrane depolarization in HN4 cells. Moreover, intracellular Ca2+ measurement revealed that Ca2+ release induced by ATP and thapsigargin, a Ca2+-ATPase inhibitor of the endoplasmic reticulum, was significantly enhanced by the suppression of CLIC4 in HN4 cells. Conclusions Knockdown of CLIC4 enhanced ATP-induced apoptosis in HN4 cells. Both the pathways of mitochondria and endoplasmic reticulum stress were involved in CLIC4-mediated cell apoptosis. Based on our finding, CLIC4 may be a potential and valuable target for the clinical treatment of head and neck squamous carcinoma. Electronic supplementary material The online version of this article (doi:10.1186/s13578-016-0070-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haowei Xue
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Jinsen Lu
- Department of Physiology, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui China
| | - Renxiang Yuan
- Department of Physiology, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui China
| | - Jinli Liu
- Department of Dermatology, Anhui Provincial Hospital, Hefei, 230001 Anhui China
| | - Yehai Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Kaile Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Jing Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Juan Du
- Department of Physiology, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui China
| | - Bing Shen
- Department of Physiology, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui China
| |
Collapse
|
35
|
Peretti M, Angelini M, Savalli N, Florio T, Yuspa SH, Mazzanti M. Chloride channels in cancer: Focus on chloride intracellular channel 1 and 4 (CLIC1 AND CLIC4) proteins in tumor development and as novel therapeutic targets. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2523-31. [PMID: 25546839 DOI: 10.1016/j.bbamem.2014.12.012] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/16/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 02/07/2023]
Abstract
In recent decades, growing scientific evidence supports the role of ion channels in the development of different cancers. Both potassium selective pores and chloride permeabilities are considered the most active channels during tumorigenesis. High rate of proliferation, active migration, and invasiveness into non-neoplastic tissues are specific properties of neoplastic transformation. All these actions require partial or total involvement of chloride channel activity. In this context, this class of membrane proteins could represent valuable therapeutic targets for the treatment of resistant tumors. However, this encouraging premise has not so far produced any valid new channel-targeted antitumoral molecule for cancer treatment. Problematic for drug design targeting ion channels is their vital role in normal cells for essential physiological functions. By targeting these membrane proteins involved in pathological conditions, it is inevitable to cause relevant side effects in healthy organs. In light of this, a new protein family, the chloride intracellular channels (CLICs), could be a promising class of therapeutic targets for its intrinsic individualities: CLIC1 and CLIC4, in particular, not only are overexpressed in specific tumor types or their corresponding stroma but also change localization and function from hydrophilic cytosolic to integral transmembrane proteins as active ionic channels or signal transducers during cell cycle progression in certain cases. These changes in intracellular localization, tissue compartments, and channel function, uniquely associated with malignant transformation, may offer a unique target for cancer therapy, likely able to spare normal cells. This article is part of a special issue itled "Membrane Channels and Transporters in Cancers."
Collapse
Affiliation(s)
- Marta Peretti
- Department of Life Science, University of Milan, Milano I-20133, Italy
| | - Marina Angelini
- Department of Life Science, University of Milan, Milano I-20133, Italy
| | - Nicoletta Savalli
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90075, USA
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), University of Genova, Genova, Italy
| | - Stuart H Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Michele Mazzanti
- Department of Life Science, University of Milan, Milano I-20133, Italy.
| |
Collapse
|
36
|
Kondratskyi A, Kondratska K, Skryma R, Prevarskaya N. Ion channels in the regulation of apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2532-46. [PMID: 25450339 DOI: 10.1016/j.bbamem.2014.10.030] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/28/2014] [Revised: 10/08/2014] [Accepted: 10/20/2014] [Indexed: 02/07/2023]
Abstract
Apoptosis, a type of genetically controlled cell death, is a fundamental cellular mechanism utilized by multicellular organisms for disposal of cells that are no longer needed or potentially detrimental. Given the crucial role of apoptosis in physiology, deregulation of apoptotic machinery is associated with various diseases as well as abnormalities in development. Acquired resistance to apoptosis represents the common feature of most and perhaps all types of cancer. Therefore, repairing and reactivating apoptosis represents a promising strategy to fight cancer. Accumulated evidence identifies ion channels as essential regulators of apoptosis. However, the contribution of specific ion channels to apoptosis varies greatly depending on cell type, ion channel type and intracellular localization, pathology as well as intracellular signaling pathways involved. Here we discuss the involvement of major types of ion channels in apoptosis regulation. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Artem Kondratskyi
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Kateryna Kondratska
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Roman Skryma
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France.
| |
Collapse
|
37
|
Okudela K, Katayama A, Woo T, Mitsui H, Suzuki T, Tateishi Y, Umeda S, Tajiri M, Masuda M, Nagahara N, Kitamura H, Ohashi K. Proteome analysis for downstream targets of oncogenic KRAS--the potential participation of CLIC4 in carcinogenesis in the lung. PLoS One 2014; 9:e87193. [PMID: 24503901 PMCID: PMC3913595 DOI: 10.1371/journal.pone.0087193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2013] [Accepted: 12/20/2013] [Indexed: 01/27/2023] Open
Abstract
This study investigated the proteome modulated by oncogenic KRAS in immortalized airway epithelial cells. Chloride intracellular channel protein 4 (CLIC4), S100 proteins (S100A2 and S100A11), tropomyosin 2, cathepsin L1, integrinsα3, eukaryotic elongation factor 1, vimentin, and others were discriminated. We here focused on CLIC4 to investigate its potential involvement in carcinogenesis in the lung because previous studies suggested that some chloride channels and chloride channel regulators could function as tumor suppressors. CILC4 protein levels were reduced in some lung cancer cell lines. The restoration of CLIC4 in lung cancer cell lines in which CLIC4 expression was reduced attenuated their growth activity. The immunohistochemical expression of the CLIC4 protein was weaker in primary lung cancer cells than in non-tumorous airway epithelial cells and was occasionally undetectable in some tumors. CLIC4 protein levels were significantly lower in a subtype of mucinous ADC than in others, and were also significantly lower in KRAS-mutated ADC than in EGFR-mutated ADC. These results suggest that the alteration in CLIC4 could be involved in restrictedly the development of a specific fraction of lung adenocarcinomas. The potential benefit of the proteome modulated by oncogenic KRAS to lung cancer research has been demonstrated.
Collapse
Affiliation(s)
- Koji Okudela
- Department of Pathology, Yokohama City University Graduate School of Medicine, 3-9, Future, Kanazawa-ku, Yokohama, Japan
- * E-mail:
| | - Akira Katayama
- Department of Biochemistry/Cell Biology, Nippon Medical University, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, Japan
| | - Tetsukan Woo
- Department of Surgey, Yokohama City University Graduate School of Medicine, 3-9, Future, Kanazawa-ku, Yokohama, Japan
| | - Hideaki Mitsui
- Department of Pathology, Yokohama City University Graduate School of Medicine, 3-9, Future, Kanazawa-ku, Yokohama, Japan
| | - Takehisa Suzuki
- Department of Pathology, Yokohama City University Graduate School of Medicine, 3-9, Future, Kanazawa-ku, Yokohama, Japan
| | - Yoko Tateishi
- Department of Pathology, Yokohama City University Graduate School of Medicine, 3-9, Future, Kanazawa-ku, Yokohama, Japan
| | - Shigeaki Umeda
- Department of Pathology, Yokohama City University Graduate School of Medicine, 3-9, Future, Kanazawa-ku, Yokohama, Japan
| | - Michihiko Tajiri
- Division of General Thoracic Surgery, Kanagawa Prefectural Cardiovascular and Respiratory Center Hospital, 6-16-1, Tomioka-higashi, Kanazawa-ku, Yokohama, Japan
| | - Munetaka Masuda
- Department of Surgey, Yokohama City University Graduate School of Medicine, 3-9, Future, Kanazawa-ku, Yokohama, Japan
| | - Noriyuki Nagahara
- Department of Enviromental Medicine, Nippon Medical University, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Kitamura
- Department of Pathology, Yokohama City University Graduate School of Medicine, 3-9, Future, Kanazawa-ku, Yokohama, Japan
| | - Kenichi Ohashi
- Department of Pathology, Yokohama City University Graduate School of Medicine, 3-9, Future, Kanazawa-ku, Yokohama, Japan
| |
Collapse
|
38
|
Leanza L, Biasutto L, Managò A, Gulbins E, Zoratti M, Szabò I. Intracellular ion channels and cancer. Front Physiol 2013; 4:227. [PMID: 24027528 PMCID: PMC3759743 DOI: 10.3389/fphys.2013.00227] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2013] [Accepted: 08/05/2013] [Indexed: 02/02/2023] Open
Abstract
Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome, and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K+ channels (Ca2+-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K+ channel-3 (TASK-3)), Ca2+ uniporter MCU, Mg2+-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC) and the Permeability Transition Pore (MPTP) contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER)-located inositol 1,4,5-trisphosphate (IP3) receptor, the ER-located Ca2+ depletion sensor STIM1 (stromal interaction molecule 1), a component of the store-operated Ca2+ channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova Padova, Italy
| | | | | | | | | | | |
Collapse
|