1
|
Tian ML, Li B, Li Y, Fan HW, Du NY, Kang S. LncRNA LINC00261 associates with chemoresistance and clinical prognosis in patients with epithelial ovarian cancer. J Obstet Gynaecol Res 2024. [PMID: 39390648 DOI: 10.1111/jog.16077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/25/2024] [Indexed: 10/12/2024]
Abstract
OBJECTIVE The purpose of this experiment is to explore the role of long intergenic noncoding RNA 261 (LINC00261) gene in the chemoresistance and clinical prognosis of epithelial ovarian cancer (EOC). METHODS We used matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry to detect the methylation levels of the LINC00261 promoter region in EOC patient specimens. The expression levels of LINC00261, miR-545-3p, and MT1M in EOC patients were evaluated by quantitative real-time reverse transcriptase PCR (RT-qPCR). Spearman's correlation analysis was used for relevance analyses and clinical prognosis was counted by Kaplan-Meier analysis. Stable overexpressed LINC00261 SKOV3 cells were established to test the influence of LINC00261 on proliferation, platinum sensitivity, migration, and invasion. RESULTS The promoter region methylation level of the LINC00261 was hypermethylated and LINC00261 was significantly downregulated in platinum-resistant EOC tissues. The methylation level of LINC00261was significantly negative correlated with its RNA expression in EOC. Moreover, hypermethylation and lower expression of LINC00261 in EOC patients were related to shorter progression-free survival (PFS) and overall survival (OS). Furthermore, Spearman's correlation analysis showed that the expression of miR-545-3p had a negative relevance with LINC00261. According to the website prediction, MT1M might be the downstream target gene of LINC00261. Expression of MT1M was negatively correlated with miR-545-3p and positively with LINC00261 in EOC tissues. And lower MT1M mRNA expression was correlated with chemotherapy resistance and worse prognosis. In vitro, overexpression of LINC00261 could inhibit cisplatin resistance, proliferation, and suppression of migration and invasion in SKOV3 cells. CONCLUSIONS This research indicates that the aberrant hypermethylation and low expression of LINC00261 were associated with platinum resistance and adverse outcomes in EOC patients.
Collapse
Affiliation(s)
- Mei-Ling Tian
- Department of Obstetrics and Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, China
| | - Bin Li
- Department of Gynecology, Handan Central Hospital, Handan, Hebei, China
| | - Yan Li
- Department of Molecular Biology, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Hong-Wei Fan
- Department of Obstetrics and Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Nai-Yi Du
- Department of Obstetrics and Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Shan Kang
- Department of Obstetrics and Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
An W, Zhou J, Qiu Z, Wang P, Han X, Cheng Y, He Z, An Y, Li S. Identification of crosstalk genes and immune characteristics between Alzheimer's disease and atherosclerosis. Front Immunol 2024; 15:1443464. [PMID: 39188714 PMCID: PMC11345154 DOI: 10.3389/fimmu.2024.1443464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Background Advancements in modern medicine have extended human lifespan, but they have also led to an increase in age-related diseases such as Alzheimer's disease (AD) and atherosclerosis (AS). Growing research evidence indicates a close connection between these two conditions. Methods We downloaded four gene expression datasets related to AD and AS from the Gene Expression Omnibus (GEO) database (GSE33000, GSE100927, GSE44770, and GSE43292) and performed differential gene expression (DEGs) analysis using the R package "limma". Through Weighted gene correlation network analysis (WGCNA), we selected the gene modules most relevant to the diseases and intersected them with the DEGs to identify crosstalk genes (CGs) between AD and AS. Subsequently, we conducted functional enrichment analysis of the CGs using DAVID. To screen for potential diagnostic genes, we applied the least absolute shrinkage and selection operator (LASSO) regression and constructed a logistic regression model for disease prediction. We established a protein-protein interaction (PPI) network using STRING (https://cn.string-db.org/) and Cytoscape and analyzed immune cell infiltration using the CIBERSORT algorithm. Additionally, NetworkAnalyst (http://www.networkanalyst.ca) was utilized for gene regulation and interaction analysis, and consensus clustering was employed to determine disease subtypes. All statistical analyses and visualizations were performed using various R packages, with a significance level set at p<0.05. Results Through intersection analysis of disease-associated gene modules identified by DEGs and WGCNA, we identified a total of 31 CGs co-existing between AD and AS, with their biological functions primarily associated with immune pathways. LASSO analysis helped us identify three genes (C1QA, MT1M, and RAMP1) as optimal diagnostic CGs for AD and AS. Based on this, we constructed predictive models for both diseases, whose accuracy was validated by external databases. By establishing a PPI network and employing four topological algorithms, we identified four hub genes (C1QB, CSF1R, TYROBP, and FCER1G) within the CGs, closely related to immune cell infiltration. NetworkAnalyst further revealed the regulatory networks of these hub genes. Finally, defining C1 and C2 subtypes for AD and AS respectively based on the expression profiles of CGs, we found the C2 subtype exhibited immune overactivation. Conclusion This study utilized gene expression matrices and various algorithms to explore the potential links between AD and AS. The identification of CGs revealed interactions between these two diseases, with immune and inflammatory imbalances playing crucial roles in their onset and progression. We hope these findings will provide valuable insights for future research on AD and AS.
Collapse
Affiliation(s)
- Wenhao An
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jiajun Zhou
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zhiqiang Qiu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Peishen Wang
- Department of Research and Development, Beijing Yihua Biotechnology Co., Ltd, Beijing, China
| | - Xinye Han
- Department of Research and Development, Beijing Yihua Biotechnology Co., Ltd, Beijing, China
| | - Yanwen Cheng
- Department of Research and Development, Beijing Yihua Biotechnology Co., Ltd, Beijing, China
| | - Zi He
- Department of Research and Development, Beijing Yihua Biotechnology Co., Ltd, Beijing, China
| | - Yihua An
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Shouwei Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Camarena ME, Theunissen P, Ruiz M, Ruiz-Orera J, Calvo-Serra B, Castelo R, Castro C, Sarobe P, Fortes P, Perera-Bel J, Albà MM. Microproteins encoded by noncanonical ORFs are a major source of tumor-specific antigens in a liver cancer patient meta-cohort. SCIENCE ADVANCES 2024; 10:eadn3628. [PMID: 38985879 PMCID: PMC11235171 DOI: 10.1126/sciadv.adn3628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
The expression of tumor-specific antigens during cancer progression can trigger an immune response against the tumor. Here, we investigate if microproteins encoded by noncanonical open reading frames (ncORFs) are a relevant source of tumor-specific antigens. We analyze RNA sequencing data from 117 hepatocellular carcinoma (HCC) tumors and matched healthy tissue together with ribosome profiling and immunopeptidomics data. Combining human leukocyte antigen-epitope binding predictions and experimental validation experiments, we conclude that around 40% of the tumor-specific antigens in HCC are likely to be derived from ncORFs, including two peptides that can trigger an immune response in humanized mice. We identify a subset of 33 tumor-specific long noncoding RNAs expressing novel cancer antigens shared by more than 10% of the HCC samples analyzed, which, when combined, cover a large proportion of the patients. The results of the study open avenues for extending the range of anticancer vaccines.
Collapse
Affiliation(s)
| | - Patrick Theunissen
- Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Marta Ruiz
- Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Jorge Ruiz-Orera
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Beatriz Calvo-Serra
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Robert Castelo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carla Castro
- Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Pablo Sarobe
- Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Cancer Clinic University of Navarra (CCUN), Pamplona, Spain
| | - Puri Fortes
- Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Cancer Clinic University of Navarra (CCUN), Pamplona, Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Madrid, Spain
| | | | - M Mar Albà
- Hospital del Mar Research Institute, Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
4
|
Orman MV, Sreekanth V, Laajala TD, Cramer SD, Costello JC. ProstaMine: a bioinformatics tool for identifying subtype-specific co-alterations associated with aggressiveness in prostate cancer. Front Pharmacol 2024; 15:1360352. [PMID: 38751776 PMCID: PMC11094266 DOI: 10.3389/fphar.2024.1360352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/13/2024] [Indexed: 05/18/2024] Open
Abstract
Background Prostate cancer is a leading cause of cancer-related deaths among men, marked by heterogeneous clinical and molecular characteristics. The complexity of the molecular landscape necessitates tools for identifying multi-gene co-alteration patterns that are associated with aggressive disease. The identification of such gene sets will allow for deeper characterization of the processes underlying prostate cancer progression and potentially lead to novel strategies for treatment. Methods We developed ProstaMine to systematically identify co-alterations associated with aggressiveness in prostate cancer molecular subtypes defined by high-fidelity alterations in primary prostate cancer. ProstaMine integrates genomic, transcriptomic, and clinical data from five primary and one metastatic prostate cancer cohorts to prioritize co-alterations enriched in metastatic disease and associated with disease progression. Results Integrated analysis of primary tumors defined a set of 17 prostate cancer alterations associated with aggressive characteristics. We applied ProstaMine to NKX3-1-loss and RB1-loss tumors and identified subtype-specific co-alterations associated with metastasis and biochemical relapse in these molecular subtypes. In NKX3-1-loss prostate cancer, ProstaMine identified novel subtype-specific co-alterations known to regulate prostate cancer signaling pathways including MAPK, NF-kB, p53, PI3K, and Sonic hedgehog. In RB1-loss prostate cancer, ProstaMine identified novel subtype-specific co-alterations involved in p53, STAT6, and MHC class I antigen presentation. Co-alterations impacting autophagy were noted in both molecular subtypes. Conclusion ProstaMine is a method to systematically identify novel subtype-specific co-alterations associated with aggressive characteristics in prostate cancer. The results from ProstaMine provide insights into potential subtype-specific mechanisms of prostate cancer progression which can be formed into testable experimental hypotheses. ProstaMine is publicly available at: https://bioinformatics.cuanschutz.edu/prostamine.
Collapse
Affiliation(s)
- Michael V. Orman
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Varsha Sreekanth
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Teemu D. Laajala
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Scott D. Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
5
|
Rodrigo MAM, Michalkova H, Jimenez AMJ, Petrlak F, Do T, Sivak L, Haddad Y, Kubickova P, de Los Rios V, Casal JI, Serrano-Macia M, Delgado TC, Boix L, Bruix J, Martinez Chantar ML, Adam V, Heger Z. Metallothionein-3 is a multifunctional driver that modulates the development of sorafenib-resistant phenotype in hepatocellular carcinoma cells. Biomark Res 2024; 12:38. [PMID: 38594765 PMCID: PMC11003176 DOI: 10.1186/s40364-024-00584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND & AIMS Metallothionein-3 (hMT3) is a structurally unique member of the metallothioneins family of low-mass cysteine-rich proteins. hMT3 has poorly characterized functions, and its importance for hepatocellular carcinoma (HCC) cells has not yet been elucidated. Therefore, we investigated the molecular mechanisms driven by hMT3 with a special emphasis on susceptibility to sorafenib. METHODS Intrinsically sorafenib-resistant (BCLC-3) and sensitive (Huh7) cells with or without up-regulated hMT3 were examined using cDNA microarray and methods aimed at mitochondrial flux, oxidative status, cell death, and cell cycle. In addition, in ovo/ex ovo chick chorioallantoic membrane (CAM) assays were conducted to determine a role of hMT3 in resistance to sorafenib and associated cancer hallmarks, such as angiogenesis and metastastic spread. Molecular aspects of hMT3-mediated induction of sorafenib-resistant phenotype were delineated using mass-spectrometry-based proteomics. RESULTS The phenotype of sensitive HCC cells can be remodeled into sorafenib-resistant one via up-regulation of hMT3. hMT3 has a profound effect on mitochondrial respiration, glycolysis, and redox homeostasis. Proteomic analyses revealed a number of hMT3-affected biological pathways, including exocytosis, glycolysis, apoptosis, angiogenesis, and cellular stress, which drive resistance to sorafenib. CONCLUSIONS hMT3 acts as a multifunctional driver capable of inducing sorafenib-resistant phenotype of HCC cells. Our data suggest that hMT3 and related pathways could serve as possible druggable targets to improve therapeutic outcomes in patients with sorafenib-resistant HCC.
Collapse
Affiliation(s)
- Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic.
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Ana Maria Jimenez Jimenez
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Frantisek Petrlak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Tomas Do
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Petra Kubickova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Vivian de Los Rios
- Department of Cellular and Molecular Medicine and Proteomic Facility, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, Madrid, 280 40, Spain
| | - J Ignacio Casal
- Department of Cellular and Molecular Medicine and Proteomic Facility, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, Madrid, 280 40, Spain
| | - Marina Serrano-Macia
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, 48160, Spain
| | - Teresa C Delgado
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, 48160, Spain
| | - Loreto Boix
- Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Bruix
- Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria L Martinez Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, 48160, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic.
| |
Collapse
|
6
|
Xu P, Al-Anesi MMA, Huang M, Wu S, Ge Y, Chai H, Li P, Hu Q. Copy number variation of metallothionein 1 (MT1) associates with MT1X isoform expression and the overall survival of hepatocellular carcinoma patients in Guangxi. GENE REPORTS 2024; 34:101889. [DOI: 10.1016/j.genrep.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Li K, Sun S, Lu Y, Liang W, Xu X, Zhang H, Chang Z, Wang C, Gao Y, Chen L. MT1M regulates gastric cancer progression and stemness by modulating the Hedgehog pathway protein GLI1. Biochem Biophys Res Commun 2023; 670:63-72. [PMID: 37276792 DOI: 10.1016/j.bbrc.2023.05.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Gastric cancer (GC) is a highly prevalent and aggressive malignancy with a poor prognosis. Recent evidence suggested that metallothionein 1 M (MT1M) may play a critical role in cancer development, progression, and drug resistance; however, its role in GC remains largely unknown. In this study, we investigated the expression and function of MT1M in GC both in vitro and in vivo. We found that MT1M expression was significantly downregulated in GC tissues and cell lines. Decreased expression of MT1M was associated with worse clinical prognosis, particularly in patients treated with 5-fluorouracil. Low expression of MT1M was indicative of poor overall survival (OS, HR 0.56 [95% CI 0.37-0.84], P < 0.005), first progression survival (FP, HR 0.54 [95% CI 0.36-0.79], P < 0.005), and post-progression survival (PPS, HR 0.65 [95% CI 0.45-0.94], P < 0.05). We also demonstrated that overexpression of MT1M inhibited cell proliferation and induced apoptosis in GC cells and in tumor xenografts, and it improved chemosensitivity to 5-fluorouracil. Furthermore, we found that MT1M overexpression could inhibit stem cell characteristics by targeting GLI1 and affecting GLI1 ubiquitination. Collectively, these findings indicated that MT1M may act as a tumor suppressor in GC and could serve as a potential therapeutic target to attenuate stemness and chemotherapy resistance of GC.
Collapse
Affiliation(s)
- Kai Li
- Medical School of Chinese PLA, Beijing, 100853, China; Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Shuyang Sun
- Department of Gastroenterology, Affiliated Beijing Chest Hospital of Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Yixun Lu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenquan Liang
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xinxin Xu
- Medical School of Chinese PLA, Beijing, 100853, China; Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Huan Zhang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhengyao Chang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Chuang Wang
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yunhe Gao
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Lin Chen
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
8
|
Sgro A, Cursons J, Waryah C, Woodward EA, Foroutan M, Lyu R, Yeoh GCT, Leedman PJ, Blancafort P. Epigenetic reactivation of tumor suppressor genes with CRISPRa technologies as precision therapy for hepatocellular carcinoma. Clin Epigenetics 2023; 15:73. [PMID: 37120619 PMCID: PMC10149030 DOI: 10.1186/s13148-023-01482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/09/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Epigenetic silencing of tumor suppressor genes (TSGs) is a key feature of oncogenesis in hepatocellular carcinoma (HCC). Liver-targeted delivery of CRISPR-activation (CRISPRa) systems makes it possible to exploit chromatin plasticity, by reprogramming transcriptional dysregulation. RESULTS Using The Cancer Genome Atlas HCC data, we identify 12 putative TSGs with negative associations between promoter DNA methylation and transcript abundance, with limited genetic alterations. All HCC samples harbor at least one silenced TSG, suggesting that combining a specific panel of genomic targets could maximize efficacy, and potentially improve outcomes as a personalized treatment strategy for HCC patients. Unlike epigenetic modifying drugs lacking locus selectivity, CRISPRa systems enable potent and precise reactivation of at least 4 TSGs tailored to representative HCC lines. Concerted reactivation of HHIP, MT1M, PZP, and TTC36 in Hep3B cells inhibits multiple facets of HCC pathogenesis, such as cell viability, proliferation, and migration. CONCLUSIONS By combining multiple effector domains, we demonstrate the utility of a CRISPRa toolbox of epigenetic effectors and gRNAs for patient-specific treatment of aggressive HCC.
Collapse
Affiliation(s)
- Agustin Sgro
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- School of Human Sciences, The University of Western Australia, Crawley, Perth, WA, 6009, Australia
| | - Joseph Cursons
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Charlene Waryah
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
| | - Eleanor A Woodward
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
| | - Momeneh Foroutan
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Ruqian Lyu
- Bioinformatics and Cellular Genomics, St Vincent's Institute of Medical Research, Fitzroy, Melbourne, VIC, 3065, Australia
- Melbourne Integrative Genomics/School of Mathematics and Statistics, Faculty of Science, The University of Melbourne, Royal Parade, Parkville, VIC, 3010, Australia
| | - George C T Yeoh
- Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- School of Molecular Sciences, University of Western Australia, Crawley, Perth, WA, 6009, Australia
| | - Peter J Leedman
- Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun St, Nedlands, Perth, WA, 6009, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Perth, WA, 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, 6009, Australia.
- Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia.
- School of Human Sciences, The University of Western Australia, Crawley, Perth, WA, 6009, Australia.
| |
Collapse
|
9
|
Kim M, Kim M, Salloum S, Qian T, Wong LP, Xu M, Lee Y, Shroff SG, Sadreyev RI, Corey KE, Baumert TF, Hoshida Y, Chung RT. Atorvastatin favorably modulates a clinical hepatocellular carcinoma risk gene signature. Hepatol Commun 2022; 6:2581-2593. [PMID: 35712812 PMCID: PMC9426409 DOI: 10.1002/hep4.1991] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/22/2022] Open
Abstract
Lipophilic but not hydrophilic statins have been shown to be associated with reduced risk for hepatocellular carcinoma (HCC) in patients with chronic viral hepatitis. We investigated differential actions of lipophilic and hydrophilic statins and their ability to modulate a clinical prognostic liver signature (PLS) predicting HCC risk in patients with liver disease. Hepatitis C virus (HCV)-infected Huh7.5.1 cells, recently developed as a model to screen HCC chemopreventive agents, were treated with lipophilic statins (atorvastatin and simvastatin) and hydrophilic statins (rosuvastatin and pravastatin), and then analyzed by RNA sequencing and PLS. Lipophilic statins, particularly atorvastatin, more significantly suppressed the HCV-induced high-risk pattern of PLS and genes in YAP and AKT pathway implicated in fibrogenesis and carcinogenesis, compared with the hydrophilic statins. While atorvastatin inhibited YAP activation through the mevalonate pathway, the distinctive AKT inhibition of atorvastatin was mediated by stabilizing truncated retinoid X receptor alpha, which has been known to enhance AKT activation, representing a target for HCC chemoprevention. In addition, atorvastatin modulated the high-risk PLS in an in vitro model of nonalcoholic fatty liver disease (NAFLD). Conclusion: Atorvastatin distinctively inhibits YAP and AKT activation, which are biologically implicated in HCC development, and attenuates a high-risk PLS in an in vitro model of HCV infection and NAFLD. These findings suggest that atorvastatin is the most potent statin to reduce HCC risk in patients with viral and metabolic liver diseases.
Collapse
Affiliation(s)
- Myung‐Ho Kim
- Liver CenterGastrointestinal DivisionMassachusetts General HospitalBostonMassachusettsUSA
| | - Mi‐Young Kim
- Liver CenterGastrointestinal DivisionMassachusetts General HospitalBostonMassachusettsUSA
- Department of GastroenterologyCHA Bundang Medical CenterCHA University School of MedicineSeongnamSouth Korea
- Department of Gastroenterology, Chaum Life CenterCHA University School of MedicineSeoulSouth Korea
| | - Shadi Salloum
- Liver CenterGastrointestinal DivisionMassachusetts General HospitalBostonMassachusettsUSA
| | - Tongqi Qian
- Liver Tumor Translational Research ProgramSimmons Comprehensive Cancer CenterDivision of Digestive and Liver DiseasesDepartment of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Lai Ping Wong
- Department of Molecular BiologyMassachusetts General HospitalBostonMassachusettsUSA
- Department of GeneticsHarvard Medical SchoolBostonMassachusettsUSA
| | - Min Xu
- Liver CenterGastrointestinal DivisionMassachusetts General HospitalBostonMassachusettsUSA
| | - Yoojin Lee
- Liver CenterGastrointestinal DivisionMassachusetts General HospitalBostonMassachusettsUSA
| | - Stuti G. Shroff
- Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Ruslan I. Sadreyev
- Department of Molecular BiologyMassachusetts General HospitalBostonMassachusettsUSA
- Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Kathleen E. Corey
- Liver CenterGastrointestinal DivisionMassachusetts General HospitalBostonMassachusettsUSA
| | - Thomas F. Baumert
- Institut National de la Santé et de la Recherche MédicaleU1110Institut de Recherche sur les Maladies Virales et HépatiquesStrasbourgFrance
- Pole Hepato‐digestif, IHUStrasbourg University HospitalsStrasbourgFrance
| | - Yujin Hoshida
- Liver Tumor Translational Research ProgramSimmons Comprehensive Cancer CenterDivision of Digestive and Liver DiseasesDepartment of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Raymond T. Chung
- Liver CenterGastrointestinal DivisionMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
10
|
Metallothionein 2A with Antioxidant and Antitumor Activity Is Upregulated by Caffeic Acid Phenethyl Ester in Human Bladder Carcinoma Cells. Antioxidants (Basel) 2022; 11:antiox11081509. [PMID: 36009228 PMCID: PMC9405133 DOI: 10.3390/antiox11081509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022] Open
Abstract
Functions of metallothionein 2A (MT2A) in bladder cancer have not been extensively explored even though metallothioneins are regarded as modulators in several biological regulations including oxidation and cancerous development. We evaluated MT2A in bladder carcinoma cells in terms of the mechanisms of regulation and the underlying functions. MT2A overexpression not only downregulated endogenous ROS but also blocked ROS induced by H2O2. We used the annexin V-FITC apoptosis assay to determine the modulation of H2O2-induced cell apoptosis by MT2A expression. Results of immunoblot and reporter assays indicated that caffeic acid phenethyl ester (CAPE) treatment induced MT2A and heme oxygenase-1 (HO-1) expressions; moreover, the involvement of CAPE in either upregulation of the HO-1 expression or downregulation of endogenous ROS is MT2A dependent in bladder carcinoma cells. Knockdown of MT2A increased invasion and cell growth in vitro and in vivo, whereas ectopic overexpression of MT2A had the reverse effect in bladder carcinoma cells. Unlike bladder cancer tissues, the real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) analysis showed a significant level of MT2A mRNA in the normal bladder tissues. Collectively, our results indicated that MT2A is acting as an antioxidant and also a tumor suppressor in human bladder carcinoma cells.
Collapse
|
11
|
Alsagaby SA. Transcriptomics-Based Investigation of Molecular Mechanisms Underlying Apoptosis Induced by ZnO Nanoparticles in Human Diffuse Large B-Cell Lymphoma. Int J Nanomedicine 2022; 17:2261-2281. [PMID: 35611214 PMCID: PMC9124502 DOI: 10.2147/ijn.s355408] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Zinc oxide nanoparticles (ZnO NPs) show anti-cancer activity. Diffuse Large B-cell Lymphoma (DLBCL) is a type of B-cell malignancies with unsatisfying treatment outcomes. This study was set to assess the potential of ZnO NPs to selectively induce apoptosis in human DLBCL cells (OCI-LY3), and to describe possible molecular mechanisms of action. Methods The impact of ZnO NPs on DLBCL cells and normal peripheral blood mononuclear cells (PBMCs) was studied using cytotoxicity assay and flow-cytometry. Transcriptomics analysis was conducted to identify ZnO NPs-dependent changes in the transcriptomic profiles of DLBCL cells. Results ZnO NPs selectively induced apoptosis in DLBCL cells, and caused changes in their transcriptomes. Deferential gene expression (DGE) with fold change (FC) ≥3 and p ≤ 0.008 with corrected p ≤ 0.05 was identified for 528 genes; 125 genes were over-expressed and 403 genes were under-expressed in ZnO NPs-treated DLBCL cells. The over-expressed genes involved in biological processes and pathways like stress response to metal ion, cellular response to zinc ion, metallothioneins bind metals, oxidative stress, and negative regulation of growth. In contrast, the under-expressed genes were implicated in DNA packaging complex, signaling by NOTCH, negative regulation of gene expression by epigenetic, signaling by WNT, M phase of cell cycle, and telomere maintenance. Setting the FC to ≥1.5 with p ≤ 0.05 and corrected p ≤ 0.1 showed ZnO NPs to induce over-expression of anti-oxidant genes and under-expression of oncogenes; target B-cell receptor (BCR) signaling pathway and NF-κB pathway; and promote apoptosis by intrinsic and extrinsic pathways. Discussion Overall, ZnO NPs selectively induced apoptosis in DLBCL cells, and possible molecular mechanisms of action were described.
Collapse
Affiliation(s)
- Suliman A Alsagaby
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11932, Saudi Arabia
- Correspondence: Suliman A Alsagaby, Email
| |
Collapse
|
12
|
Chen B, Peng L, He M, Wang C, Hu B. Identification of cadmium containing metabolites in HepG2 cells after treatment with cadmium-selenium quantum dots. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Li X, Zhong S, Sun Y, Huang X, Li Y, Wang L, Wu Y, Yang M, Yuan HX, Liu J, Zang S. Integration analysis identifies the role of metallothionein in the progression from hepatic steatosis to steatohepatitis. Front Endocrinol (Lausanne) 2022; 13:951093. [PMID: 36329886 PMCID: PMC9622801 DOI: 10.3389/fendo.2022.951093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD), a metabolic disorder that develops from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), has become an epidemic of chronic liver dysfunction worldwide. However, mechanisms that govern the transition from NAFL to NASH have not been fully elucidated. METHODS Gene expression profile data of NAFLD liver tissues were obtained from Gene Expression Omnibus (GEO), including three microarray datasets with 60 NAFL and 44 NASH patients. Integrative differentially expressed genes (DEGs) between NAFL and NASH patients were identified using robust rank aggregation (RRA) analysis. Hub genes were identified combined with gene ontology functional annotation and protein-protein interaction network construction and validated using a sequencing dataset. Huh-7 cells with palmitate-induced lipid overload and NAFLD-diet mouse model of different stages were used to verify our findings. RESULTS RRA analysis determined 70 robust DEGs between NAFL and NASH. The most robustly upregulated genes were SPP1, AKR1B10, CHST9, and ANXA2, while the most robustly downregulated DEGs were SNORD94, SCARNA10, SNORA20, and MT1M. Cellular response to zinc ion (GO: 0071294) ranked first in GO analysis of downregulated genes, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed that mineral absorption (hsa04978) was significantly enriched. The involvement of the metallothionein pathway was further validated by the decrease of Mt1 expression during NAFL to NASH progression in NAFLD mice and the protection from lipotoxicity in liver cells by overexpressing MT1M. CONCLUSIONS Our integrated analysis identified novel gene signatures and provided comprehensive molecular mechanisms underlying the transition from NAFL to NASH. Metallothionein might be a potential intervention target for NAFLD progression.
Collapse
Affiliation(s)
- Xiaoya Li
- Department of Endocrinology of Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Shaoping Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifan Sun
- Department of Endocrinology of Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Xinmei Huang
- Department of Endocrinology of Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yue Li
- Department of Endocrinology of Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Lihong Wang
- Department of Endocrinology of Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yueyue Wu
- Department of Endocrinology of Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Min Yang
- Department of Endocrinology of Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Hai-Xin Yuan
- Department of Endocrinology of Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Endocrinology of Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Shufei Zang, ; Jun Liu,
| | - Shufei Zang
- Department of Endocrinology of Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Shufei Zang, ; Jun Liu,
| |
Collapse
|
14
|
Dai H, Wang L, Li L, Huang Z, Ye L. Metallothionein 1: A New Spotlight on Inflammatory Diseases. Front Immunol 2021; 12:739918. [PMID: 34804020 PMCID: PMC8602684 DOI: 10.3389/fimmu.2021.739918] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/18/2021] [Indexed: 01/15/2023] Open
Abstract
MT1 has been demonstrated to be an essential stress protein in maintaining physiological balance and regulating immune homeostasis. While the immunological involvement of MT1 in central nervous system disorders and cancer has been extensively investigated, mounting evidence suggests that MT1 has a broader role in inflammatory diseases and can shape innate and adaptive immunity. In this review, we will first summarize the biological features of MT1 and the regulators that influence MT1 expression, emphasizing metal, inflammation, and immunosuppressive factors. We will then focus on the immunoregulatory function of MT1 on diverse immune cells and the signaling pathways regulated by MT1. Finally, we will discuss recent advances in our knowledge of the biological role of MT1 in several inflammatory diseases to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Hanying Dai
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Lu Wang
- Respiratory Medicine Department, Shenzhen University General Hospital, Shenzhen, China
| | - Lingyun Li
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhong Huang
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Liang Ye
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
15
|
Jeong SH, Kim C, Kim J, Nam YJ, Lee H, Togloom A, Kang JY, Choi JY, Lee H, Song MO, Park EK, Baek YW, Lee JH, Lee KY. MTF1 Is Essential for the Expression of MT1B, MT1F, MT1G, and MT1H Induced by PHMG, but Not CMIT, in the Human Pulmonary Alveolar Epithelial Cells. TOXICS 2021; 9:203. [PMID: 34564354 PMCID: PMC8472727 DOI: 10.3390/toxics9090203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/14/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022]
Abstract
The inhalation of humidifier disinfectants (HDs) is linked to HD-associated lung injury (HDLI). Polyhexamethylene guanidine (PHMG) is significantly involved in HDLI, but the correlation between chloromethylisothiazolinone (CMIT) and HDLI remains ambiguous. Additionally, the differences in the molecular responses to PHMG and CMIT are poorly understood. In this study, RNA sequencing (RNA-seq) data showed that the expression levels of metallothionein-1 (MT1) isoforms, including MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, and MT1X, were increased in human pulmonary alveolar epithelial cells (HPAEpiCs) that were treated with PHMG but not in those treated with CMIT. Moreover, upregulation of MT1B, MT1F, MT1G, and MT1H was observed only in PHMG-treated HPAEpiCs. The protein expression level of metal regulatory transcription factor 1 (MTF1), which binds to the promoters of MT1 isoforms, was increased in PHMG-treated HPAEpiCs but not in CMIT-treated HPAEpiCs. However, the expression of early growth response 1 (EGR1) and nuclear receptor superfamily 3, group C, member 1 (NR3C1), other transcriptional regulators involved in MT1 isomers, were increased regardless of treatment with PHMG or CMIT. These results suggest that MTF1 is an essential transcription factor for the induction of MT1B, MT1F, MT1G, and MT1H by PHMG but not by CMIT.
Collapse
Affiliation(s)
- Sang-Hoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Korea; (S.-H.J.); (J.K.); (Y.-J.N.); (H.L.); (A.T.); (J.-Y.K.); (J.-Y.C.); (H.L.); (M.-O.S.)
| | - Cherry Kim
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Korea;
| | - Jaeyoung Kim
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Korea; (S.-H.J.); (J.K.); (Y.-J.N.); (H.L.); (A.T.); (J.-Y.K.); (J.-Y.C.); (H.L.); (M.-O.S.)
| | - Yoon-Jeong Nam
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Korea; (S.-H.J.); (J.K.); (Y.-J.N.); (H.L.); (A.T.); (J.-Y.K.); (J.-Y.C.); (H.L.); (M.-O.S.)
| | - Hong Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Korea; (S.-H.J.); (J.K.); (Y.-J.N.); (H.L.); (A.T.); (J.-Y.K.); (J.-Y.C.); (H.L.); (M.-O.S.)
| | - Ariunaa Togloom
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Korea; (S.-H.J.); (J.K.); (Y.-J.N.); (H.L.); (A.T.); (J.-Y.K.); (J.-Y.C.); (H.L.); (M.-O.S.)
| | - Ja-Young Kang
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Korea; (S.-H.J.); (J.K.); (Y.-J.N.); (H.L.); (A.T.); (J.-Y.K.); (J.-Y.C.); (H.L.); (M.-O.S.)
| | - Jin-Young Choi
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Korea; (S.-H.J.); (J.K.); (Y.-J.N.); (H.L.); (A.T.); (J.-Y.K.); (J.-Y.C.); (H.L.); (M.-O.S.)
| | - Hyejin Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Korea; (S.-H.J.); (J.K.); (Y.-J.N.); (H.L.); (A.T.); (J.-Y.K.); (J.-Y.C.); (H.L.); (M.-O.S.)
| | - Myeong-Ok Song
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Korea; (S.-H.J.); (J.K.); (Y.-J.N.); (H.L.); (A.T.); (J.-Y.K.); (J.-Y.C.); (H.L.); (M.-O.S.)
| | - Eun-Kee Park
- Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University, Busan 49267, Korea;
| | - Yong-Wook Baek
- Humidifier Disinfectant Health Center, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea;
| | - Ju-Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Korea
| | - Ki-Yeol Lee
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Korea;
| |
Collapse
|
16
|
Identification of Key Functional Modules and Immunomodulatory Regulators of Hepatocellular Carcinoma. J Immunol Res 2021; 2021:1801873. [PMID: 34423049 PMCID: PMC8378952 DOI: 10.1155/2021/1801873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/18/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
Despite the advances in the treatment of hepatocellular carcinoma (HCC), the prognosis of HCC patients remains unsatisfactory due to postsurgical recurrence and treatment resistance. Therefore, it is important to reveal the mechanisms underlying HCC and identify potential therapeutic targets against HCC, which could facilitate the development of novel therapies. Based on 12 HCC samples and 12 paired paracancerous normal tissues, we identified differentially expressed mRNAs and lncRNAs using the "limma" package in R software. Moreover, we used the weighted gene coexpression network analysis (WGCNA) to analyze the expression data and screened hub genes. Furthermore, we performed pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In addition, the relative abundance of a given gene set was estimated by single-sample Gene Set Enrichment Analysis. We identified 687 differentially expressed mRNAs and 260 differentially expressed lncRNAs. A total of 6 modules were revealed by WGCNA, and MT1M and MT1E genes from the red module were identified as hub genes. Moreover, pathway analysis revealed the top 10 enriched KEGG pathways of upregulated or downregulated genes. Additionally, we also found that CD58 might act as an immune checkpoint gene in HCC via PD1/CTLA4 pathways and regulate the levels of tumor-infiltrating immune cells in HCC tissues, which might be an immunotherapeutic target in HCC. Our research identified key functional modules and immunomodulatory regulators for HCC, which might offer novel diagnostic biomarkers and/or therapeutic targets for cancer immunotherapy.
Collapse
|
17
|
Li D, Peng W, Wu B, Liu H, Zhang R, Zhou R, Yao L, Ye L. Metallothionein MT1M Suppresses Carcinogenesis of Esophageal Carcinoma Cells through Inhibition of the Epithelial-Mesenchymal Transition and the SOD1/PI3K Axis. Mol Cells 2021; 44:267-278. [PMID: 33820882 PMCID: PMC8112171 DOI: 10.14348/molcells.2021.2179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/29/2021] [Accepted: 02/22/2021] [Indexed: 12/18/2022] Open
Abstract
Metallothionein (MT1M) belongs to a family of cysteine-rich cytosolic protein and has been reported to be a tumor suppressor gene in multiple cancers. However, its role in esophageal carcinoma carcinogenesis remains unclear. In this study, MT1M expression was correlated with tumor type, stage, drinking and smoking history, as well as patient survival. We also studied the regulation and biological function of MT1M in esophageal squamous cell carcinoma (ESCC). We have found that MT1M is significantly downregulated in ESCC tissues compared with adjacent non-cancer tissues. Furthermore, restoration of expression by treatment with the demethylation agent A + T showed that MT1M downregulation might be closely related to hypermethylation in its promoter region. Over-expression of MT1M in ESCC cells significantly altered cell morphology, induced apoptosis, and reduced colony formation, cell viability, migration and epithelial-mesenchymal transition. Moreover, based on reactive oxygen species (ROS) levels, a superoxide dismutase 1 (SOD1) activity assay and protein analysis, we verified that the tumor-suppressive function of MT1M was at least partially caused by its upregulation of ROS levels, downregulation of SOD1 activity and phosphorylation of the SOD1 downstream pathway PI3K/AKT. In conclusion, our results demonstrated that MT1M was a novel tumor-suppressor in ESCC and may be disrupted by promoter CpG methylation during esophageal carcinogenesis.
Collapse
Affiliation(s)
- Dandan Li
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Otolaryngology Head and Neck Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Bin Wu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Huan Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ruizhen Zhang
- Department of Otolaryngology Head and Neck Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ruiqin Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lijun Yao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lin Ye
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
18
|
Zhang F, Guo S, Zhong W, Huang K, Liu Y. Integrative Analysis of Metallothioneins Identifies MT1H as Candidate Prognostic Biomarker in Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:672416. [PMID: 34676244 PMCID: PMC8523949 DOI: 10.3389/fmolb.2021.672416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Metallothioneins (MTs) play crucial roles in the modulation of zinc/copper homeostasis, regulation of neoplastic growth and proliferation, and protection against apoptosis. The present study attempted to visualize the prognostic landscape of MT functional isoforms and identify potential prognostic biomarkers in hepatocellular carcinoma (HCC). Methods: The transcriptional expression, comprehensive prognostic performances, and gene-gene interaction network of MT isoforms in HCC were evaluated via Oncomine, GEPIA, Kaplan-Meier plotter, and GeneMANIA databases. Characterized by good prognostic value in three external cohorts, MT1H was specifically selected as a potential prognostic biomarker in HCC with various clinicopathological features. Functional and pathway enrichment analyses of MT1H status were performed using cBioPortal, the Database for Annotation, Visualization, and Integrated Discovery (DAVID), and ssGSVA method. Results: MT1E/1F/1G/1H/1M/1X/2A was greatly downregulated in HCC. Prognostic analyses elucidated the essential correlations between MT1A/1B/1H/1X/2A/4 attenuation and poor overall survival, between MT1B/1H/4 downregulation and worse relapse-free survival, and between MT1A/1B/1E/1H/1M/2A/4 downregulation and diminished progression-free survival in HCC. Taken together, these results indicated the powerful prognostic value of MT1H among MTs in HCC. In-depth analyses suggested that MT1H may be more applicable to alcohol-derived HCC and involved in the downregulation of the inflammatory pathway, Jak-STAT pathway, TNF pathway, and Wnt signaling pathway. Conclusion: MT-specific isoforms displayed aberrant expression and varying prognostic value in HCC. MT1H repression in HCC was multi-dimensionally detrimental to patient outcomes. Therefore, MT1H was possibly associated with carcinogenesis and exploited as a novel prognostic biomarker and candidate therapeutic target for HCC.
Collapse
Affiliation(s)
- Feng Zhang
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Shuijiao Guo
- Department of Operating Room, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wenhui Zhong
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Kaijun Huang
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Yubin Liu, ; Kaijun Huang,
| | - Yubin Liu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Yubin Liu, ; Kaijun Huang,
| |
Collapse
|
19
|
Gerovska D, García-Gallastegi P, Descarpentrie J, Crende O, Casado-Andrés M, Martín A, Eguia J, Khatib AM, Araúzo-Bravo MJ, Badiola I. Proprotein convertases blockage up-regulates specifically metallothioneins coding genes in human colon cancer stem cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118912. [PMID: 33249002 DOI: 10.1016/j.bbamcr.2020.118912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Despite continuous exertion made, colon cancer still represents a major health problem and its incidence continues being high worldwide. There is growing evidence in support of the cancer stem cells (CSCs) being central in the initiation of this cancer, and CSCs have been the focus of various studies for the identification of new ways of treatment. Lately, the proprotein convertases (PCs) were reported to regulate the maturation and expression of various molecules involved in the malignant phenotype of colon cancer cells, however, the identity of the molecules regulated by these serine proteases in CSCs is unknown. In this study, we used the general PCs inhibitor, the Decanoyl-RVKR-chloromethylketone (Decanoyl-RVKR-CMK) that inhibits all the PCs found in the secretory pathway, and analyzed its effect on CSCs using RNA-seq analysis. Remarkably, from the only 9 up-regulated genes in the human SW620-derived sphere-forming cells, we identified 7 of the 11 human metallothioneins, all of them localized on chromosome 16, and zinc related proteins as downstream effectors of the PCs. The importance of these molecules in the regulation of cell proliferation, differentiation and chemoresistance, and their reported potential tumor suppressor role and loss in colon cancer patients associated with worse prognosis, suggests that targeting PCs in the control of the malignant phenotype of CSCs is a new potential therapeutic strategy in colon cancer.
Collapse
Affiliation(s)
- Daniela Gerovska
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, Calle Doctor 8 Beguiristain s/n, 20014 San Sebastián, Spain; Computational Biomedicine Data Analysis Platform, Biodonostia Health Research Institute, C/ Doctor 8 Beguiristain s/n, 20014 San Sebastián, Spain
| | - Patricia García-Gallastegi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Spain; Univ. Bordeaux, INSERM, LAMC, U1029, F-33600 Pessac, France
| | | | - Olatz Crende
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Spain
| | - María Casado-Andrés
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Spain; Univ. Bordeaux, INSERM, LAMC, U1029, F-33600 Pessac, France
| | - Ander Martín
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Spain
| | - Jokin Eguia
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Spain
| | | | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, Calle Doctor 8 Beguiristain s/n, 20014 San Sebastián, Spain; Computational Biomedicine Data Analysis Platform, Biodonostia Health Research Institute, C/ Doctor 8 Beguiristain s/n, 20014 San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, C/ María Díaz Harokoa 3, 48013 Bilbao, Spain; CIBER of Frailty and Healthy Aging (CIBERfes), Madrid, Spain.
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Spain.
| |
Collapse
|
20
|
Alsagaby SA, Vijayakumar R, Premanathan M, Mickymaray S, Alturaiki W, Al-Baradie RS, AlGhamdi S, Aziz MA, Alhumaydhi FA, Alzahrani FA, Alwashmi AS, Al Abdulmonem W, Alharbi NK, Pepper C. Transcriptomics-Based Characterization of the Toxicity of ZnO Nanoparticles Against Chronic Myeloid Leukemia Cells. Int J Nanomedicine 2020; 15:7901-7921. [PMID: 33116508 PMCID: PMC7568638 DOI: 10.2147/ijn.s261636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Zinc oxide nanoparticles (ZnO NPs) have recently attracted attention as potential anti-cancer agents. To the best of our knowledge, the toxicity of ZnO NPs against human chronic myeloid leukemia cells (K562 cell line) has not been studied using transcriptomics approach. OBJECTIVE The goals of this study were to evaluate the capability of ZnO NPs to induce apoptosis in human chronic myeloid leukemia cells (K562 cells) and to investigate the putative mechanisms of action. METHODS We used viability assay and flowcytometry coupled with Annexin V-FITC and propidium iodide to investigate the toxicity of ZnO NPs on K562 cells and normal peripheral blood mononuclear cells. Next we utilized a DNA microarray-based transcriptomics approach to characterize the ZnO NPs-induced changes in the transcriptome of K562 cells. RESULTS ZnO NPs exerted a selective toxicity (mainly by apoptosis) on the leukemic cells (p≤0.005) and altered their transcriptome; 429 differentially expressed genes (DEGs) with fold change (FC)≥4 and p≤0.008 with corrected p≤0.05 were identified in K562 cells post treatment with ZnO NPs. The over-expressed genes were implicated in "response to zinc", "response to toxic substance" and "negative regulation of growth" (corrected p≤0.05). In contrast, the repressed genes positively regulated "cell proliferation", "cell migration", "cell adhesion", "receptor signaling pathway via JAK-STAT" and "phosphatidylinositol 3-kinase signaling" (corrected p≤0.05). Lowering the FC to ≥1.5 with p≤0.05 and corrected p≤0.1 showed that ZnO NPs over-expressed the anti-oxidant defense system, drove K562 cells to undergo mitochondrial-dependent apoptosis, and targeted NF-κB pathway. CONCLUSION Taken together, our findings support the earlier studies that reported anti-cancer activity of ZnO NPs and revealed possible molecular mechanisms employed by ZnO NPs to induce apoptosis in K562 cells.
Collapse
Affiliation(s)
- Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Rajendran Vijayakumar
- Department of Biology, College of Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Mariappan Premanathan
- Department of Biology, College of Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Suresh Mickymaray
- Department of Biology, College of Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Raid S Al-Baradie
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Saleh AlGhamdi
- Clinical Research Department, Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh11426, Saudi Arabia
| | - Mohammad A Aziz
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh11426, Saudi Arabia
- Colorectal Cancer Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Faisal A Alzahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah21589, Saudi Arabia
| | - Ameen S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Naif Khalaf Alharbi
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh11426, Saudi Arabia
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Chris Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| |
Collapse
|
21
|
Roma J, Matos AR, Vinagre C, Duarte B. Engineered metal nanoparticles in the marine environment: A review of the effects on marine fauna. MARINE ENVIRONMENTAL RESEARCH 2020; 161:105110. [PMID: 32977204 DOI: 10.1016/j.marenvres.2020.105110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 05/27/2023]
Abstract
There is an increasing awareness of how damaging pollutants in the marine environment can be, however information on the effects of metal engineered nanoparticles (ENPs) on marine biota is still insufficient, despite an exponential rising in related publications in recent years. In order to provide an integrated insight on the present state of the art on metal ENP-related ecotoxicology studies on marine fauna, this review aimed to: (i) highlight the means of toxicity of metal ENPs in the marine environment, (ii) identify the principal biotic and abiotic factors that may alter metal ENP toxicity, and (iii) analyse and categorize results of these studies, including accumulation, molecular and histological biomarkers, genotoxicity and behavioural changes. Data retrieved from Scopus yielded 134 studies that met pre-established criteria. Most often, the target ENPs were titanium, zinc, copper or silver, and most studies (61.2%) focused on the phylum Mollusca. The degree of toxicity of metal ENPs was often dependent on the concentrations tested, length of exposure and the type of tissue sampled. Effects from simple tissue accumulation to DNA damage or behavioural alterations were identified, even when concentrations below environmentally available levels were used. It is proposed that other phyla besides the traditional Mollusca (and within it Bivalvia) should be used more often in this kind of studies, that exact pathways of toxicity be further explored, and lastly that co-stressors be used in order to best mimic conditions observed in nature. In this review, the current knowledge on engineered metal nanoparticles and their effects on marine fauna was summarized, highlighting present knowledge gaps. Guidelines for future studies focusing on under-developed subjects in ENP toxicology are also briefly provided.
Collapse
Affiliation(s)
- Joana Roma
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal.
| | - Ana Rita Matos
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal da Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Catarina Vinagre
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139, Faro, Portugal
| | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal da Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
22
|
Li C, Han T, Guo R, Chen P, Peng C, Prag G, Hu R. An Integrative Synthetic Biology Approach to Interrogating Cellular Ubiquitin and Ufm Signaling. Int J Mol Sci 2020; 21:ijms21124231. [PMID: 32545848 PMCID: PMC7352202 DOI: 10.3390/ijms21124231] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Global identification of substrates for PTMs (post-translational modifications) represents a critical but yet dauntingly challenging task in understanding biology and disease pathology. Here we presented a synthetic biology approach, namely ‘YESS’, which coupled Y2H (yeast two hybrid) interactome screening with PTMs reactions reconstituted in bacteria for substrates identification and validation, followed by the functional validation in mammalian cells. Specifically, the sequence-independent Gateway® cloning technique was adopted to afford simultaneous transfer of multiple hit ORFs (open reading frames) between the YESS sub-systems. In proof-of-evidence applications of YESS, novel substrates were identified for UBE3A and UFL1, the E3 ligases for ubiquitination and ufmylation, respectively. Therefore, the YESS approach could serve as a potentially powerful tool to study cellular signaling mediated by different PTMs.
Collapse
Affiliation(s)
- Chuanyin Li
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (C.L.); (T.H.); (R.G.); (P.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Tianting Han
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (C.L.); (T.H.); (R.G.); (P.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Rong Guo
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (C.L.); (T.H.); (R.G.); (P.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Peng Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (C.L.); (T.H.); (R.G.); (P.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Chao Peng
- University of Chinese Academy of Sciences, Beijing 100049, China;
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Gali Prag
- The Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (C.L.); (T.H.); (R.G.); (P.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 20072, China
- Correspondence:
| |
Collapse
|
23
|
Making a case for metallothioneins conferring cardioprotection in pulmonary hypertension. Med Hypotheses 2020; 137:109572. [DOI: 10.1016/j.mehy.2020.109572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/30/2019] [Accepted: 01/15/2020] [Indexed: 11/23/2022]
|
24
|
Merlos Rodrigo MA, Jimenez Jimemez AM, Haddad Y, Bodoor K, Adam P, Krizkova S, Heger Z, Adam V. Metallothionein isoforms as double agents - Their roles in carcinogenesis, cancer progression and chemoresistance. Drug Resist Updat 2020; 52:100691. [PMID: 32615524 DOI: 10.1016/j.drup.2020.100691] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023]
Abstract
Metallothioneins (MTs) are small cysteine-rich intracellular proteins with four major isoforms identified in mammals, designated MT-1 through MT-4. The best known biological functions of MTs are their ability to bind and sequester metal ions as well as their active role in redox homeostasis. Despite these protective roles, numerous studies have demonstrated that changes in MT expression could be associated with the process of carcinogenesis and participation in cell differentiation, proliferation, migration, and angiogenesis. Hence, MTs have the role of double agents, i.e., working with and against cancer. In view of their rich biochemical properties, it is not surprising that MTs participate in the emergence of chemoresistance in tumor cells. Many studies have demonstrated that MT overexpression is involved in the acquisition of resistance to anticancer drugs including cisplatin, anthracyclines, tyrosine kinase inhibitors and mitomycin. The evidence is gradually increasing for a cellular switch in MT functions, showing that they indeed have two faces: protector and saboteur. Initially, MTs display anti-oncogenic and protective roles; however, once the oncogenic process was launched, MTs are utilized by cancer cells for progression, survival, and contribution to chemoresistance. The duality of MTs can serve as a potential prognostic/diagnostic biomarker and can therefore pave the way towards the development of new cancer treatment strategies. Herein, we review and discuss MTs as tumor disease markers and describe their role in chemoresistance to distinct anticancer drugs.
Collapse
Affiliation(s)
- Miguel Angel Merlos Rodrigo
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| | - Ana Maria Jimenez Jimemez
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Yazan Haddad
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Khaldon Bodoor
- Department of Applied Biology, Jordan University of Science and Technology, 3030, Irbid, Jordan
| | - Pavlina Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Sona Krizkova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
25
|
Metallothionein Expression and its Influence on the In Vitro Biological Behavior of Mucoepidermoid Carcinoma. Cells 2020; 9:cells9010157. [PMID: 31936364 PMCID: PMC7016984 DOI: 10.3390/cells9010157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/09/2023] Open
Abstract
Mucoepidermoid carcinoma (MEC) is the most common tumor in the salivary glands, often presenting with recurrence and metastasis due to its high invasive capacity. Metallothionein (MT), a zinc storage protein that supplies this element for protease activity, is probably related to mucoepidermoid carcinoma behavior. This prompted us to characterize a cell line derived from mucoepidermoid carcinoma and to correlate metallothionein expression with transforming growth factor-α (TGF-α), tumor necrosis factor-α (TNF-α) and matrix metalloproteinases (MMPs). Transcriptomic analysis and cytogenetic assays were performed to detect the expression of genes of interest and cellular chromosomal alterations, respectively. MEC cells with a depleted metallothionein 2A (MT2A) gene were subjected to Western blot to correlate metallothionein expression with growth factors and MMPs. Additionally, cells with depleted MT were subjected to migration and invasion assays. The transcriptomic study revealed reads mapped to cytokeratins 19 and AE1/AE3, α-smooth muscle actin, vimentin, and fibronectin. Cytogenetic evaluation demonstrated structural and numerical alterations, including the translocation t(11;19)(q21;p13), characteristic of MEC. Metallothionein depletion was correlated with the decreased expression of TGF-α and MMP-9, while TNF-α protein levels were augmented. Migration and invasion activity were diminished after metallothionein silencing. Our findings suggest an important role of MT in MEC invasion, through the regulation of proteins involved in this process.
Collapse
|
26
|
Wang Y, Wang G, Tan X, Ke K, Zhao B, Cheng N, Dang Y, Liao N, Wang F, Zheng X, Li Q, Liu X, Liu J. MT1G serves as a tumor suppressor in hepatocellular carcinoma by interacting with p53. Oncogenesis 2019; 8:67. [PMID: 31732712 PMCID: PMC6858331 DOI: 10.1038/s41389-019-0176-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Poor prognosis of hepatocellular carcinoma (HCC) patients is frequently associated with rapid tumor growth, recurrence and drug resistance. MT1G is a low-molecular weight protein with high affinity for zinc ions. In the present study, we investigated the expression of MT1G, analyzed clinical significance of MT1G, and we observed the effects of MT1G overexpression on proliferation and apoptosis of HCC cell lines in vitro and in vivo. Our results revealed that MT1G was significantly downregulated in tumor tissues, and could inhibit the proliferation as well as enhance the apoptosis of HCC cells. The mechanism study suggested that MT1G increased the stability of p53 by inhibiting the expression of its ubiquitination factor, MDM2. Furthermore, MT1G also could enhance the transcriptional activity of p53 through direct interacting with p53 and providing appropriate zinc ions to p53. The modulation of MT1G on p53 resulted in upregulation of p21 and Bax, which leads cell cycle arrest and apoptosis, respectively. Our in vivo assay further confirmed that MT1G could suppress HCC tumor growth in nude mice. Overall, this is the first report on the interaction between MT1G and p53, and adequately uncover a new HCC suppressor which might have therapeutic values by diminishing the aggressiveness of HCC cells.
Collapse
Affiliation(s)
- Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, People's Republic of China
| | - Gaoxiong Wang
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Xionghong Tan
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
| | - Kun Ke
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, People's Republic of China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, People's Republic of China
| | - Niangmei Cheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, People's Republic of China
| | - Yuan Dang
- Department of Comparative Medicine, Dongfang Affiliated Hospital of Xiamen University (900 Hospital of The Joint Logistics Team), Fuzhou, Fujian, 350025, People's Republic of China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, People's Republic of China
| | - Fei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, People's Republic of China
| | - Xiaoyuan Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, People's Republic of China
| | - Qin Li
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China. .,Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, People's Republic of China. .,Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China.
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China. .,Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, People's Republic of China. .,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China.
| |
Collapse
|
27
|
Liao X, Yu T, Yang C, Huang K, Wang X, Han C, Huang R, Liu X, Yu L, Zhu G, Su H, Qin W, Deng J, Zeng X, Han B, Han Q, Liu Z, Zhou X, Liu J, Gong Y, Liu Z, Huang J, Lu L, Ye X, Peng T. Comprehensive investigation of key biomarkers and pathways in hepatitis B virus-related hepatocellular carcinoma. J Cancer 2019; 10:5689-5704. [PMID: 31737106 PMCID: PMC6843875 DOI: 10.7150/jca.31287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/30/2019] [Indexed: 02/06/2023] Open
Abstract
Objective: Our study is aim to explore potential key biomarkers and pathways in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) using genome-wide expression profile dataset and methods. Methods: Dataset from the GSE14520 is used as the training cohort and The Cancer Genome Atlas dataset as the validation cohort. Differentially expressed genes (DEGs) screening were performed by the limma package. Gene set enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), gene ontology, the Kyoto Encyclopedia of Genes and Genomes, and risk score model were used for pathway and genes identification. Results: GSEA revealed that several pathways and biological processes are associated with hepatocarcinogenesis, such as the cell cycle, DNA repair, and p53 pathway. A total of 160 DEGs were identified. The enriched functions and pathways of the DEGs included toxic substance decomposition and metabolism processes, and the P450 and p53 pathways. Eleven of the DEGs were identified as hub DEGs in the WGCNA. In survival analysis of hub DEGs, high expression of PRC1 and TOP2A were significantly associated with poor clinical outcome of HBV-related HCC, and shown a good performance in HBV-related HCC diagnosis. The prognostic signature consisting of PRC1 and TOP2A also doing well in the prediction of HBV-related HCC prognosis. The diagnostic and prognostic values of PRC1 and TOP2A was confirmed in TCGA HCC patients. Conclusions: Key biomarkers and pathways identified in the present study may enhance the comprehend of the molecular mechanisms underlying hepatocarcinogenesis. Additionally, mRNA expression of PRC1 and TOP2A may serve as potential diagnostic and prognostic biomarkers for HBV-related HCC.
Collapse
Affiliation(s)
- Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiaoguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong Province, China
| | - Long Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan Province, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jianlong Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, 537000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xianmin Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Bowen Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Quanfa Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhengqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Junqi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yizhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Evidence-based Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhengtao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, People's Republic of China.,Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Jianlv Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Lei Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of General Surgery, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, 100080, People's Republic of China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
28
|
Hata A, Nakajima T, Matsusaka K, Fukuyo M, Morimoto J, Yamamoto T, Sakairi Y, Rahmutulla B, Ota S, Wada H, Suzuki H, Matsubara H, Yoshino I, Kaneda A. A low DNA methylation epigenotype in lung squamous cell carcinoma and its association with idiopathic pulmonary fibrosis and poorer prognosis. Int J Cancer 2019; 146:388-399. [PMID: 31241180 DOI: 10.1002/ijc.32532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022]
Abstract
Patients with idiopathic pulmonary fibrosis (IPF) have higher risk of developing lung cancer, for example, squamous cell carcinoma (SCC), and show poor prognosis, while the molecular basis has not been fully investigated. Here we conducted DNA methylome analysis of lung SCC using 20 SCC samples with/without IPF, and noncancerous lung tissue samples from smokers/nonsmokers, using Infinium HumanMethylation 450K array. SCC was clustered into low- and high-methylation epigenotypes by hierarchical clustering analysis. Genes hypermethylated in SCC significantly included genes targeted by polycomb repressive complex in embryonic stem cells, and genes associated with Gene Ontology terms, for example, "transcription" and "cell adhesion," while genes hypermethylated specifically in high-methylation subgroup significantly included genes associated with "negative regulation of growth." Low-methylation subgroup significantly correlated with IPF (78%, vs. 17% in high-methylation subgroup, p = 0.04), and the correlation was validated by additional Infinium analysis of SCC samples (n = 44 in total), and data from The Cancer Genome Atlas (n = 390). The correlation between low-methylation subgroup and IPF was further validated by quantitative methylation analysis of marker genes commonly hypermethylated in SCC (HOXA2, HOXA9 and PCDHGB6), and markers specifically hypermethylated in high-methylation subgroup (DLEC1, CFTR, MT1M, CRIP3 and ALDH7A1) in 77 SCC cases using pyrosequencing (p = 0.003). Furthermore, low-methylation epigenotype significantly correlated with poorer prognosis among all SCC patients, or among patients without IPF. Multivariate analysis showed that low-methylation epigenotype is an independent predictor of poor prognosis. These may suggest that lung SCC could be stratified into molecular subtypes with distinct prognosis, and low-methylation lung SCC that significantly correlates with IPF shows unfavorable outcome.
Collapse
Affiliation(s)
- Atsushi Hata
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahiro Nakajima
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keisuke Matsusaka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Genome Research and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Junichi Morimoto
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayoshi Yamamoto
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuichi Sakairi
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Ota
- Department of Pathology, Chiba University Hospital, Chiba, Japan
| | - Hironobu Wada
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidemi Suzuki
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
29
|
Wu YJ, Ko BS, Liang SM, Lu YJ, Jan YJ, Jiang SS, Shyue SK, Chen L, Liou JY. ZNF479 downregulates metallothionein-1 expression by regulating ASH2L and DNMT1 in hepatocellular carcinoma. Cell Death Dis 2019; 10:408. [PMID: 31138789 PMCID: PMC6538656 DOI: 10.1038/s41419-019-1651-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Decreased expression of metallothionein-1 (MT-1) is associated with a poor prognosis in hepatocellular carcinoma (HCC). Here, we found that MT-1 expression was suppressed by 14-3-3ε, and MT-1 overexpression abolished 14-3-3ε-induced cell proliferation and tumor growth. We identified that 14-3-3ε induced expression of ZNF479, a novel potential transcriptional regulator by gene expression profiling and ZNF479 contributed to 14-3-3ε-suppressed MT-1 expression. ZNF479 induced the expression of DNMT1, UHRF1, and mixed-lineage leukemia (MLL) complex proteins (ASH2L and Menin), and increased tri-methylated histone H3 (H3K4me3) levels, but suppressed H3K4 (H3K4me2) di-methylation. ZNF479-suppressed MT-1 expression was restored by silencing of ASH2L and DNMT1. Furthermore, ZNF479 expression was higher in HCC tissues than that in the non-cancerous tissues. Expression analyses revealed a positive correlation between the expression of ZNF479 and DNMT1, UHRF1, ASH2L, and Menin, and an inverse correlation with that of ZNF479, ASH2L, Menin, and MT-1 isoforms. Moreover, correlations between the expression of ZNF479 and its downstream factors were more pronounced in HCC patients with hepatitis B. Here, we found that ZNF479 regulates MT-1 expression by modulating ASH2L in HCC. Approaches that target ZNF479/MLL complex/MT-1 or related epigenetic regulatory factors are potential therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Yi-Ju Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, 350, Zhunan, Taiwan.,Institute of Molecular Medicine, National Tsing Hua University, 300, Hsinchu, Taiwan
| | - Bor-Sheng Ko
- Department of Internal Medicine, National Taiwan University Hospital, 100, Taipei, Taiwan
| | - Shu-Man Liang
- Institute of Cellular and System Medicine, National Health Research Institutes, 350, Zhunan, Taiwan
| | - Yi-Jhu Lu
- Institute of Cellular and System Medicine, National Health Research Institutes, 350, Zhunan, Taiwan
| | - Yee-Jee Jan
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, 407, Taichung, Taiwan
| | - Shih-Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, 350, Zhunan, Taiwan
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, 115, Taipei, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, 300, Hsinchu, Taiwan
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, 350, Zhunan, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, 404, Taichung, Taiwan.
| |
Collapse
|
30
|
Hui B, Xu Y, Zhao B, Ji H, Ma Z, Xu S, He Z, Wang K, Lu J. Overexpressed long noncoding RNA TUG1 affects the cell cycle, proliferation, and apoptosis of pancreatic cancer partly through suppressing RND3 and MT2A. Onco Targets Ther 2019; 12:1043-1057. [PMID: 30787623 PMCID: PMC6368419 DOI: 10.2147/ott.s188396] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are involved in various human diseases, including cancers. However, their mechanisms remain undocumented. We investigated alterations in lncRNA that may be related to pancreatic cancer (PC) through analysis of microarray data. Methods In the present study, quantitative real-time PCR analysis was used to examine the expression of taurine upregulated 1 (TUG1) in PC tissue samples and PC cell lines. In PC cell lines, MTT assays, colony formation assays, and flow cytometry were used to investigate the effects of TUG1 on proliferation, cell cycle regulation, and apoptosis. Moreover, we established a xenograft model to assess the effect of TUG1 on tumor growth in vivo. The molecular mechanism of potential target genes was detected through nuclear separation experiments, RNA immunoprecipitation (RIP), chromatin immunoprecipitation assays (ChIP), and other experimental methods. Results The findings suggest that the abnormally high expression of TUG1 in PC tissues was associated with tumor size and pathological stage. Knockdown of TUG1 blocked the cell cycle and accelerated apoptosis, thereby inhibiting the proliferation of PC cells. In addition, RIP experiments showed that TUG1 can recruit enhancer of zeste homolog 2 (EZH2) to the promoter regions of Rho family GTPase 3 (RND3) and metallothionein 2A (MT2A) and inhibit their expression at the transcriptional level. Furthermore, ChIP experiments demonstrated that EZH2 could bind to the promoter regions of RND3 and MT2A. The knockdown of TUG1 reduced this binding capacity. Conclusion In conclusion, our data suggest that TUG1 may regulate the expression of PC-associated tumor suppressor genes at the transcriptional level and these may become potential targets for the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Bingqing Hui
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China, .,Department of Oncology, Second Clinical Medical College of Nanjing Medical University, Nanjing 210000, Jiangsu, China,
| | - Yetao Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Benpeng Zhao
- Basic Medicine Faculty of Shanghai Jiaotong University, Core Facility of Basic Medical Sciences, Shanghai 200000, China
| | - Hao Ji
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China, .,Department of Oncology, Second Clinical Medical College of Nanjing Medical University, Nanjing 210000, Jiangsu, China,
| | - Zhonghua Ma
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China, .,Department of Oncology, Second Clinical Medical College of Nanjing Medical University, Nanjing 210000, Jiangsu, China,
| | - Shufen Xu
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China, .,Department of Oncology, Second Clinical Medical College of Nanjing Medical University, Nanjing 210000, Jiangsu, China,
| | - ZhenYu He
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China, .,Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China, .,Department of Oncology, Second Clinical Medical College of Nanjing Medical University, Nanjing 210000, Jiangsu, China,
| | - Jianwei Lu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210000, Jiangsu, China,
| |
Collapse
|
31
|
Wang L, Xin F, Lin N, Wang Y, Liu X, Liu J. Metallothioneins may be a potential prognostic biomarker for tumors: A Prisma-compliant meta-analysis. Medicine (Baltimore) 2018; 97:e13786. [PMID: 30593161 PMCID: PMC6314702 DOI: 10.1097/md.0000000000013786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Metallothioneins (MTs) were reported to be associated with many kinds of tumors' prognosis, although MTs expression varied greatly among tumors. To assess the prognostic value of Metallothioneins (MTs) in different kinds of tumors, comprehensive literature search was conducted to perform a meta-analysis. METHODS Eligible studies were identified by PubMed, MEDLINE, Web of Science (WOS), the Cochrane Library of Systematic Reviews, EMBASE, China National Knowledge Infrastructure (CNKI), WANFANG database and SinoMed database up to December 2017, which was designed to assess the prognostic value of MTs in different kinds of tumors. The main endpoint events were overall survival (OS) and disease-free survival (DFS). Hazard ratios (HRs) and its variance were retrieved from the original studies directly or calculated using Engauge Digitizer version 4.1. Random or fixed effects model meta-analysis was employed depending on the heterogeneity. Publication bias was evaluated by funnel plots, Begg and Egger tests. RESULTS A total of 22 studies were enrolled in this meta-analysis, including 2843 tumor tissues (1517 were MTs negative/low, and 1326 were MTs high). Results showed that there was significant association between MTs expression and tumors' OS (HR = 1.60; 95%CI 1.34∼1.92, P < .00001). Subgroup analysis showed that high level of MTs expression was associated with prolonged OS in liver cancer (HR = 0.65, 95%CI 0.48∼0.89, P = .007), but it was on the contrary in the tumor of ovary (HR = 1.47, 95%CI 1.01∼2.14, P = .04), bladder (HR = 1.71, 95%CI 1.21∼2.42, P = .002), intestine (HR = 3.13, 95%CI 1.97∼4.97, P < .00001), kidney (HR = 3.31, 95%CI 1.61∼6.79, P = .001). However, there was no significant association between MTs expression and OS in breast (HR = 1.02, 95%CI 0.69∼1.51, P = .93). CONCLUSIONS MTs could be taken as a potential prognostic biomarker for tumors, and uniqueness of MTs prognostic value in liver cancer deserved further study.
Collapse
|
32
|
Pulmonary arterial hypertension and the potential roles of metallothioneins: A focused review. Life Sci 2018; 214:77-83. [PMID: 30355531 DOI: 10.1016/j.lfs.2018.10.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 12/17/2022]
Abstract
The pathophysiology of pulmonary arterial hypertension (PAH) is underlined by cell proliferation and vasoconstriction of pulmonary arterioles this involves multiple molecular factors or proteins, but it is not clear what the exact roles of these factors/proteins are. In addition, there may be other factors/proteins that have not been identified that contribute to PAH pathophysiology. Therefore, research has focused on investigating novel role players, in order to facilitate a better understanding of how PAH develop. Evidence suggest that mitochondrial regulators are key role players in PAH pathophysiology, but regulators that have not received sufficient attention in PAH are metallothioneins (MTs). In PAH patients, MT expression is elevated compared to healthy individuals, suggesting that MTs may be possible biomarkers. In other disease-models, MTs have been shown to regulate cell proliferation and vasoconstriction, processes that are instrumental in PAH pathophysiology. Due to the involvement of these processes in PAH pathophysiology and the ability of MTs to modulate them, this paper propose that cellular MTs may also play a role in PAH development. This paper suggests that PAH-research should perhaps begin to investigate the involvement of cellular MTs in the development of PAH.
Collapse
|
33
|
Changjun L, Feizhou H, Dezhen P, Zhao L, Xianhai M. MiR-545-3p/MT1M axis regulates cell proliferation, invasion and migration in hepatocellular carcinoma. Biomed Pharmacother 2018; 108:347-354. [PMID: 30227328 DOI: 10.1016/j.biopha.2018.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 12/16/2022] Open
Abstract
Studies have shown that metallothionein 1 M (MT1M) is a tumor suppressor gene which is frequently down-regulated in human hepatocellular carcinoma (HCC). The methylation of MT1M promoter region is one of the important transcriptional regulation mechanisms that contribute to the loss of its expression. In our study, we found that there are still half of the 55 HCC tumor tissues in our cohort do not share the promoter methylation of MT1M. So, we speculated there maybe another mechanism participating in the downregulation of MT1M in HCC. Then, we provided evidences that miR-545-3p, which served as a tumor promoter, post-transcriptionally regulate MT1M in HCC through binding to its untranslated region (3'UTR). Taking together, we investigated the role of miR-545-3p in the process of HCC through regulating MT1M.
Collapse
Affiliation(s)
- Liu Changjun
- Department of Hepatobiliary Surgery, Hunan People's Hospital, Changsha 410005, China; Department of General surgery, the Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Huang Feizhou
- Department of General surgery, the Third Xiangya Hospital of Central South University, Changsha 410013, China.
| | - Peng Dezhen
- Department of Medicine-Neurology, the Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Lei Zhao
- Department of Hepatobiliary Surgery, Hunan People's Hospital, Changsha 410005, China
| | - Mao Xianhai
- Department of Hepatobiliary Surgery, Hunan People's Hospital, Changsha 410005, China
| |
Collapse
|
34
|
Liu Z, Ye Q, Wu L, Gao F, Xie H, Zhou L, Zheng S, Xu X. Metallothionein 1 family profiling identifies MT1X as a tumor suppressor involved in the progression and metastastatic capacity of hepatocellular carcinoma. Mol Carcinog 2018; 57:1435-1444. [PMID: 29873415 DOI: 10.1002/mc.22846] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 05/14/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
Abstract
Metallothionein 1 (MT1s) is a family of cysteine-rich proteins with diverse functions such as metal homeostasis, oxidative stress, and carcinogenesis. However, its involvement in hepatocellular carcinoma (HCC) remains not fully understood. We aimed to explore the contribution of the individual member of MT1s to HCC. Its member mRNA levels were determined in cohort 1 of normal (n = 30), cirrhotic (n = 30), peritumoral (n = 135), and HCC (n = 135). In cohort 1, seven of eight members were down-regulated during the transition from normal liver to HCC, and only MT1G and MT1X were correlated with tumor features and outcomes. The MT1X was selected to be further stained in cohort 2 consisting of a series of liver nodules (15 normal livers, 33 cirrhotic livers, 12 dysplastic nodules, 31 HCC, and 9 HCC metastasis), and in cohort 3 (HCC, n = 85). In cohort 2, MT1X immunoreactivity was reduced in HCC and lost in metastatic HCC and showed good diagnostic performance for HCC (AUC = 0.754, 95%IC = 0.659-0.849). In cohort 3, MT1X expression in peritumoral tissues was independent predictor for HCC (recurrence free survival: HR = 0.34, 95%CI = 0.17-0.66; overall survival: HR = 0.32, 95%CI = 0.16-0.60). Moreover, we found that ectopic overexpression of MT1X delayed G1/S progression of cell cycle and promoted apoptosis in HCC cells in vitro, and suppressed tumor growth and lung metastasis in nude mice in vivo. We further demonstrated that MT1X induces cell cycle arrest and apoptosis by inactivating NF-κB signaling in HCC. In conclusion, MT1X may serve as a candidate of prognostic indicator and inhibits the progression and metastasis of HCC.
Collapse
Affiliation(s)
- Zhikun Liu
- Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Qianwei Ye
- Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Lingjiao Wu
- Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Feng Gao
- Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Haiyang Xie
- Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Lin Zhou
- Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| |
Collapse
|
35
|
Abstract
Metallothioneins (MTs) are small cysteine-rich proteins that play important roles in metal homeostasis and protection against heavy metal toxicity, DNA damage, and oxidative stress. In humans, MTs have four main isoforms (MT1, MT2, MT3, and MT4) that are encoded by genes located on chromosome 16q13. MT1 comprises eight known functional (sub)isoforms (MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, and MT1X). Emerging evidence shows that MTs play a pivotal role in tumor formation, progression, and drug resistance. However, the expression of MTs is not universal in all human tumors and may depend on the type and differentiation status of tumors, as well as other environmental stimuli or gene mutations. More importantly, the differential expression of particular MT isoforms can be utilized for tumor diagnosis and therapy. This review summarizes the recent knowledge on the functions and mechanisms of MTs in carcinogenesis and describes the differential expression and regulation of MT isoforms in various malignant tumors. The roles of MTs in tumor growth, differentiation, angiogenesis, metastasis, microenvironment remodeling, immune escape, and drug resistance are also discussed. Finally, this review highlights the potential of MTs as biomarkers for cancer diagnosis and prognosis and introduces some current applications of targeting MT isoforms in cancer therapy. The knowledge on the MTs may provide new insights for treating cancer and bring hope for the elimination of cancer.
Collapse
Affiliation(s)
- Manfei Si
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| |
Collapse
|
36
|
Hu N, Fan XP, Fan YC, Chen LY, Qiao CY, Han LY, Wang K. Hypomethylated Ubiquitin-Conjugating Enzyme2 Q1 (UBE2Q1) Gene Promoter in the Serum Is a Promising Biomarker for Hepatitis B Virus-Associated Hepatocellular Carcinoma. TOHOKU J EXP MED 2018; 242:93-100. [PMID: 28592717 DOI: 10.1620/tjem.242.93] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aberrant DNA methylation, which can be detected in circulating cell-free DNA (cfDNA), is one of the major epigenetic alterations in hepatocellular carcinoma (HCC). UBE2Q1, a putative member of the ubiquitin-conjugating enzyme family, might play substantial roles in tumorigenesis. However, the methylation status of the UBE2Q1 gene in HCC remains unknown. We aimed to determine the methylation status of the UBE2Q1 gene promoter and to evaluate its potential clinical significance for HCC detection. The methylation-specific polymerase chain reaction (MSP) assay was used to detect the UBE2Q1 gene methylation status in serum samples from 80 patients with hepatitis B virus (HBV)-related HCC, 40 patients with liver cirrhosis (LC), 40 patients with chronic hepatitis B (CHB), and 20 healthy controls (HCs). Significantly lower methylation frequencies were detected in HCC patients (33.75%) compared with LC patients (55.00%, p = 0.026) and CHB patients (60.00%, p = 0.006) and HCs (65.00%, p = 0.011). Hypomethylation of the UBE2Q1 gene was negatively associated with the tumor node metastasis stage (rs = -0.30, p = 0.008). The UBE2Q1 gene methylation status combined with alpha fetoprotein using cut-off points of 20, 200 and 400 ng/ml showed sensitivity and specificity values of 58.8% and 75.0%, 53.8% and 87.5%, and 37.5% and 88.7%, respectively, and yielded a significantly increased area under the ROC curve (0.720, 0.760 and 0.694, respectively) for discriminating HCC from LC and CHB. Our study results suggest that hypomethylation of the UBE2Q1 gene promoter is a potential biomarker for detecting HBV-associated HCC.
Collapse
Affiliation(s)
- Na Hu
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Xiao-Peng Fan
- Department of Hepatology, Qilu Hospital of Shandong University.,Institute of Hepatology, Shandong University
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University.,Institute of Hepatology, Shandong University
| | - Long-Yan Chen
- Department of Hepatology, Qilu Hospital of Shandong University.,Institute of Hepatology, Shandong University
| | - Chen-Yang Qiao
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Li-Yan Han
- Department of Hepatology, Qilu Hospital of Shandong University.,Institute of Hepatology, Shandong University
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University.,Institute of Hepatology, Shandong University
| |
Collapse
|
37
|
Fu CL, Pan B, Pan JH, Gan MF. Metallothionein 1M suppresses tumorigenesis in hepatocellular carcinoma. Oncotarget 2018; 8:33037-33046. [PMID: 28380433 PMCID: PMC5464848 DOI: 10.18632/oncotarget.16521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/10/2017] [Indexed: 12/29/2022] Open
Abstract
Members of the metallothionein (MT) family are involved in metal detoxifcation and in the protection of cells against certain electrophilic carcinogens. In present study, it was found that MT1M was downregulated in more than 77.1% (91/118) of hepatocellular carcinoma (HCC) tissues compared with adjacent non-tumor tissues. Furthermore, overexpression of MT1M inhibited cell viability, colony formation, cell migration and invasion in HCC cell lines and tumor cell growth in xenograft nude mice, and activated cell apoptosis in HCC cell lines. In addition, immunohistochemistry analysis showed MT1M was negative or weak staining in tumor tissues but moderate or strong staining in adjacent non-tumor tissues. The sensitivity and specificity of MT1M for HCC diagnosis were 76.27% and 89.83%, respectively. In conclusion, MT1M was identified as a potential tumor marker for HCC and may serve as a useful therapeutic agent for HCC gene therapy.
Collapse
Affiliation(s)
- Cheng-Lin Fu
- Department of Pathology, The First Hospital of Taizhou, Wenzhou Medical University, Taizhou 318020, China
| | - Bing Pan
- Department of Pathology, The First Hospital of Taizhou, Wenzhou Medical University, Taizhou 318020, China
| | - Ju-Hua Pan
- Department of Pathology, The First Hospital of Taizhou, Wenzhou Medical University, Taizhou 318020, China
| | - Mei-Fu Gan
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Taizhou Hospital of Zhejiang Province, Taizhou Enze Medical Center (Group), Linhai 317000, China
| |
Collapse
|
38
|
Rahman MT, Karim MM. Metallothionein: a Potential Link in the Regulation of Zinc in Nutritional Immunity. Biol Trace Elem Res 2018; 182:1-13. [PMID: 28585004 DOI: 10.1007/s12011-017-1061-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023]
Abstract
Nutritional immunity describes mechanisms for withholding essential transition metals as well as directing the toxicity of these metals against infectious agents. Zinc is one of these transition elements that are essential for both humans and microbial pathogens. At the same time, Zn can be toxic both for man and microbes if its concentration is higher than the tolerance limit. Therefore a "delicate" balance of Zn must be maintained to keep the immune cells surveilling while making the level of Zn either to starve or to intoxicate the pathogens. On the other hand, the invading pathogens will exploit the host Zn pool for its survival and replication. Apparently, different sets of protein in human and bacteria are involved to maintain their Zn need. Metallothionein (MT)-a group of low molecular weight proteins, is well known for its Zn-binding ability and is expected to play an important role in that Zn balance at the time of active infection. However, the differences in structural, functional, and molecular control of biosynthesis between human and bacterial MT might play an important role to determine the proper use of Zn and the winning side. The current review explains the possible involvement of human and bacterial MT at the time of infection to control and exploit Zn for their need.
Collapse
|
39
|
Krizkova S, Kepinska M, Emri G, Eckschlager T, Stiborova M, Pokorna P, Heger Z, Adam V. An insight into the complex roles of metallothioneins in malignant diseases with emphasis on (sub)isoforms/isoforms and epigenetics phenomena. Pharmacol Ther 2017; 183:90-117. [PMID: 28987322 DOI: 10.1016/j.pharmthera.2017.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metallothioneins (MTs) belong to a group of small cysteine-rich proteins that are ubiquitous throughout all kingdoms. The main function of MTs is scavenging of free radicals and detoxification and homeostating of heavy metals. In humans, 16 genes localized on chromosome 16 have been identified to encode four MT isoforms labelled by numbers (MT-1-MT-4). MT-2, MT-3 and MT-4 proteins are encoded by a single gene. MT-1 comprises many (sub)isoforms. The known active MT-1 genes are MT-1A, -1B, -1E, -1F, -1G, -1H, -1M and -1X. The rest of the MT-1 genes (MT-1C, -1D, -1I, -1J and -1L) are pseudogenes. The expression and localization of individual MT (sub)isoforms and pseudogenes vary at intra-cellular level and in individual tissues. Changes in MT expression are associated with the process of carcinogenesis of various types of human malignancies, or with a more aggressive phenotype and therapeutic resistance. Hence, MT (sub)isoform profiling status could be utilized for diagnostics and therapy of tumour diseases. This review aims on a comprehensive summary of methods for analysis of MTs at (sub)isoforms levels, their expression in single tumour diseases and strategies how this knowledge can be utilized in anticancer therapy.
Collapse
Affiliation(s)
- Sona Krizkova
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Marta Kepinska
- Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic
| | - Petra Pokorna
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic; Department of Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
40
|
Agarwal R, Narayan J, Bhattacharyya A, Saraswat M, Tomar AK. Gene expression profiling, pathway analysis and subtype classification reveal molecular heterogeneity in hepatocellular carcinoma and suggest subtype specific therapeutic targets. Cancer Genet 2017; 216-217:37-51. [PMID: 29025594 DOI: 10.1016/j.cancergen.2017.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/12/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023]
Abstract
A very low 5-year survival rate among hepatocellular carcinoma (HCC) patients is mainly due to lack of early stage diagnosis, distant metastasis and high risk of postoperative recurrence. Hence ascertaining novel biomarkers for early diagnosis and patient specific therapeutics is crucial and urgent. Here, we have performed a comprehensive analysis of the expression data of 423 HCC patients (373 tumors and 50 controls) downloaded from The Cancer Genome Atlas (TCGA) followed by pathway enrichment by gene ontology annotations, subtype classification and overall survival analysis. The differential gene expression analysis using non-parametric Wilcoxon test revealed a total of 479 up-regulated and 91 down-regulated genes in HCC compared to controls. The list of top differentially expressed genes mainly consists of tumor/cancer associated genes, such as AFP, THBS4, LCN2, GPC3, NUF2, etc. The genes over-expressed in HCC were mainly associated with cell cycle pathways. In total, 59 kinases associated genes were found over-expressed in HCC, including TTK, MELK, BUB1, NEK2, BUB1B, AURKB, PLK1, CDK1, PKMYT1, PBK, etc. Overall four distinct HCC subtypes were predicted using consensus clustering method. Each subtype was unique in terms of gene expression, pathway enrichment and median survival. Conclusively, this study has exposed a number of interesting genes which can be exploited in future as potential markers of HCC, diagnostic as well as prognostic and subtype classification may guide for improved and specific therapy.
Collapse
Affiliation(s)
- Rahul Agarwal
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Jitendra Narayan
- Unité de recherche en biologie environnementale et évolutive (URBE), University of Namur, Belgium
| | | | - Mayank Saraswat
- Transplantation Laboratory, Haartmaninkatu 3, University of Helsinki, Helsinki, Finland
| | - Anil Kumar Tomar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
41
|
Ally A, Balasundaram M, Carlsen R, Chuah E, Clarke A, Dhalla N, Holt RA, Jones SJ, Lee D, Ma Y, Marra MA, Mayo M, Moore RA, Mungall AJ, Schein JE, Sipahimalani P, Tam A, Thiessen N, Cheung D, Wong T, Brooks D, Robertson AG, Bowlby R, Mungall K, Sadeghi S, Xi L, Covington K, Shinbrot E, Wheeler DA, Gibbs RA, Donehower LA, Wang L, Bowen J, Gastier-Foster JM, Gerken M, Helsel C, Leraas KM, Lichtenberg TM, Ramirez NC, Wise L, Zmuda E, Gabriel SB, Meyerson M, Cibulskis C, Murray BA, Shih J, Beroukhim R, Cherniack AD, Schumacher SE, Saksena G, Pedamallu CS, Chin L, Getz G, Noble M, Zhang H, Heiman D, Cho J, Gehlenborg N, Saksena G, Voet D, Lin P, Frazer S, Defreitas T, Meier S, Lawrence M, Kim J, Creighton CJ, Muzny D, Doddapaneni H, Hu J, Wang M, Morton D, Korchina V, Han Y, Dinh H, Lewis L, Bellair M, Liu X, Santibanez J, Glenn R, Lee S, Hale W, Parker JS, Wilkerson MD, Hayes DN, Reynolds SM, Shmulevich I, Zhang W, Liu Y, Iype L, Makhlouf H, Torbenson MS, Kakar S, Yeh MM, Jain D, Kleiner DE, Jain D, Dhanasekaran R, El-Serag HB, Yim SY, Weinstein JN, Mishra L, Zhang J, Akbani R, Ling S, Ju Z, Su X, Hegde AM, Mills GB, Lu Y, Chen J, Lee JS, Sohn BH, Shim JJ, Tong P, Aburatani H, Yamamoto S, Tatsuno K, Li W, Xia Z, Stransky N, Seiser E, Innocenti F, Gao J, Kundra R, Zhang H, Heins Z, Ochoa A, Sander C, Ladanyi M, Shen R, Arora A, Sanchez-Vega F, Schultz N, Kasaian K, Radenbaugh A, Bissig KD, Moore DD, Totoki Y, Nakamura H, Shibata T, Yau C, Graim K, Stuart J, Haussler D, Slagle BL, Ojesina AI, Katsonis P, Koire A, Lichtarge O, Hsu TK, Ferguson ML, Demchok JA, Felau I, Sheth M, Tarnuzzer R, Wang Z, Yang L, Zenklusen JC, Zhang J, Hutter CM, Sofia HJ, Verhaak RG, Zheng S, Lang F, Chudamani S, Liu J, Lolla L, Wu Y, Naresh R, Pihl T, Sun C, Wan Y, Benz C, Perou AH, Thorne LB, Boice L, Huang M, Rathmell WK, Noushmehr H, Saggioro FP, Tirapelli DPDC, Junior CGC, Mente ED, Silva ODC, Trevisan FA, Kang KJ, Ahn KS, Giama NH, Moser CD, Giordano TJ, Vinco M, Welling TH, Crain D, Curley E, Gardner J, Mallery D, Morris S, Paulauskis J, Penny R, Shelton C, Shelton T, Kelley R, Park JW, Chandan VS, Roberts LR, Bathe OF, Hagedorn CH, Auman JT, O'Brien DR, Kocher JPA, Jones CD, Mieczkowski PA, Perou CM, Skelly T, Tan D, Veluvolu U, Balu S, Bodenheimer T, Hoyle AP, Jefferys SR, Meng S, Mose LE, Shi Y, Simons JV, Soloway MG, Roach J, Hoadley KA, Baylin SB, Shen H, Hinoue T, Bootwalla MS, Van Den Berg DJ, Weisenberger DJ, Lai PH, Holbrook A, Berrios M, Laird PW. Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell 2017; 169:1327-1341.e23. [PMID: 28622513 PMCID: PMC5680778 DOI: 10.1016/j.cell.2017.05.046] [Citation(s) in RCA: 1752] [Impact Index Per Article: 219.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/02/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022]
Abstract
Liver cancer has the second highest worldwide cancer mortality rate and has limited therapeutic options. We analyzed 363 hepatocellular carcinoma (HCC) cases by whole-exome sequencing and DNA copy number analyses, and we analyzed 196 HCC cases by DNA methylation, RNA, miRNA, and proteomic expression also. DNA sequencing and mutation analysis identified significantly mutated genes, including LZTR1, EEF1A1, SF3B1, and SMARCA4. Significant alterations by mutation or downregulation by hypermethylation in genes likely to result in HCC metabolic reprogramming (ALB, APOB, and CPS1) were observed. Integrative molecular HCC subtyping incorporating unsupervised clustering of five data platforms identified three subtypes, one of which was associated with poorer prognosis in three HCC cohorts. Integrated analyses enabled development of a p53 target gene expression signature correlating with poor survival. Potential therapeutic targets for which inhibitors exist include WNT signaling, MDM4, MET, VEGFA, MCL1, IDH1, TERT, and immune checkpoint proteins CTLA-4, PD-1, and PD-L1.
Collapse
|
42
|
Rahman MT, Haque N, Abu Kasim NH, De Ley M. Origin, Function, and Fate of Metallothionein in Human Blood. Rev Physiol Biochem Pharmacol 2017; 173:41-62. [PMID: 28417197 DOI: 10.1007/112_2017_1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Toxic heavy metals, toxic organic compounds, reactive oxygen species (ROS), infections, and temperature are well-known metallothionein (MT) inducers in human blood. The current review aims to summarize synthesis, function, and fate of human blood MT in response to the known MT inducers. Part of the MTs that are synthesized in different organs such as the liver, kidney, and spleen is transported and stored in different blood cells and in plasma. Cells of the circulatory system also synthesize MT. From the circulation, MT returns to the kidney where the metal-bound MTs are degraded to release the metal ion that in turn induces MT expression therein. The blood MTs play important roles in metal detoxification, transportation, and storage. By neutralizing ROS, MTs protect blood cells from oxidative stress-induced cytotoxicity and genotoxicity. Arguably, MTs are also involved in immune suppression. Given the permeating distribution of blood MT throughout the body as well as its diverse role in the protection against harmful environmental factors and in metal homeostasis, MT could be better recognized as a major public health protein.
Collapse
Affiliation(s)
| | - Nazmul Haque
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Marc De Ley
- Laboratorium voor Biochemie, KU Leuven, Celestijnenlaan 200G, Postbus 2413, Heverlee, 3001, Leuven, Belgium
| |
Collapse
|
43
|
Li H, Lu YF, Chen H, Liu J. Dysregulation of metallothionein and circadian genes in human hepatocellular carcinoma. Chronobiol Int 2016; 34:192-202. [PMID: 27997226 DOI: 10.1080/07420528.2016.1256300] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is the major threat to human health, and disruption of circadian clock genes is implicated in hepatocarcinogenesis. This study examined the dysregulation of metallothioneins and circadian genes in achieved human HCC (n = 24), peri-HCC tissues (n = 24) as compared with normal human livers (n = 36). Total RNA was extracted and reverse transcribed. Real-time RT-qPCR was performed to determine the expression of genes of interest. The results demonstrated the downregulation of metallothionein-1 (MT-1), MT-2, and metal transcription factor-1 (MFT-1) in human HCC as compared with Peri-HCC and normal tissues. MTs are a biomarker for HCC and have typical circadian rhythms; the expression of major circadian clock genes was also determined. HCC produced a dramatic decrease in the expression of core clock genes, circadian locomotor output cycles kaput (Clock) and brain and muscle Arnt-like protein 1 (Bmal1), and decreased the expression of the clock feedback control genes, Periods (Per1, Per2) and Cryptochromes (Cry1, Cry2). On the other hand, the expression of clock target genes nuclear orphan receptor factor protein (Nr1d1) and D-box-binding protein (Dbp) was upregulated as compared with Peri-HCC and normal livers. Peri-HCC also had mild alterations in these gene expressions. In summary, the present study clearly demonstrated the dysregulation of MTs and circadian clock genes in human HCC, which could provide the information of targeting MT and circadian clock in HCC management.
Collapse
Affiliation(s)
- Huan Li
- a Key Lab for Basic Pharmacology of Ministry of Education , Zunyi Medical College , Zunyi , China
| | - Yuan-Fu Lu
- a Key Lab for Basic Pharmacology of Ministry of Education , Zunyi Medical College , Zunyi , China
| | - Hong Chen
- b The Institute of Organ Transplantation , The General Hospital of Chinese People's Armed Police Forces , Beijing , China
| | - Jie Liu
- a Key Lab for Basic Pharmacology of Ministry of Education , Zunyi Medical College , Zunyi , China
| |
Collapse
|
44
|
Dong X, Ding W, Ye J, Yan D, Xue F, Xu L, Yin J, Guo W. MiR-24-3p enhances cell growth in hepatocellular carcinoma by targeting metallothionein 1M. Cell Biochem Funct 2016; 34:491-496. [PMID: 27650047 DOI: 10.1002/cbf.3213] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/14/2016] [Accepted: 08/15/2016] [Indexed: 12/12/2022]
Abstract
Dysregulation of microRNAs has been demonstrated to contribute to malignant progression of cancers, including hepatocellular carcinoma (HCC). MiR-24-3p was previously reported to be significantly upregulated in HCC. However, the potential role and mechanism of action of miR-24-3p in the initiation and progression of HCC remain largely unknown. Quantitative reverse transcription polymerase chain reaction demonstrated that miR-24-3p was significantly upregulated in HCC tumor tissues compared with nontumor tissues. The cell viability, colony formation assay, and tumorigenicity assays in nude mice showed that miR-24-3p could enhance HCC cell growth in vitro and in vivo. Metallothionein 1M was verified as an miR-24-3p target gene by using dual-luciferase reporter assays, quantitative reverse transcription polymerase chain reaction, and Western blotting, which was involved in miR-24-3p regulated HCC cell growth. These results indicated that miR-24-3p plays an important role in the initiation and progression of HCC by targeting metallothionein 1M, and the miR-24-3p/metallothionein 1M pathway may contribute to the development of novel therapeutic strategies for HCC in the future.
Collapse
Affiliation(s)
- Xiaogang Dong
- Department of Hepatopancreatobiliary Surgery, Cancer Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wei Ding
- Department of Hepatopancreatobiliary Surgery, Cancer Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jianwei Ye
- Department of Cancer Center, The first affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Dong Yan
- Department of Hepatopancreatobiliary Surgery, Cancer Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Feng Xue
- Department of Hepatopancreatobiliary Surgery, Cancer Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Lin Xu
- Department of Hepatopancreatobiliary Surgery, Cancer Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jiwei Yin
- Department of Hepatopancreatobiliary Surgery, Cancer Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wenjia Guo
- Department of Cancer Research Institute, Cancer Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
45
|
Systemic transcriptome analysis of hepatocellular carcinoma. Tumour Biol 2016; 37:13323-13331. [PMID: 27460080 DOI: 10.1007/s13277-016-5286-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/18/2016] [Indexed: 11/26/2022] Open
|
46
|
Babaei J, Jalali A, Galehdari H, Saki A. MT1A (A>G), MT1A (C>G), MT1M (A>C) and MT4 (G>A) single nucleotide polymorphism allele frequencies in Iranian populations. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1207487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Javad Babaei
- Department of Pharmacology and Toxicology, School of Pharmacy and Toxicology Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Amir Jalali
- Department of Pharmacology and Toxicology, School of Pharmacy and Toxicology Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Hamid Galehdari
- Department of Genetics, School of Sciences, Shaheed Chamran University, Ahvaz, Iran
| | - Amal Saki
- Department of Statistics, School of Health, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| |
Collapse
|
47
|
Pan Y, Lin S, Xing R, Zhu M, Lin B, Cui J, Li W, Gao J, Shen L, Zhao Y, Guo M, Wang JM, Huang J, Lu Y. Epigenetic Upregulation of Metallothionein 2A by Diallyl Trisulfide Enhances Chemosensitivity of Human Gastric Cancer Cells to Docetaxel Through Attenuating NF-κB Activation. Antioxid Redox Signal 2016; 24:839-54. [PMID: 26801633 PMCID: PMC4876530 DOI: 10.1089/ars.2014.6128] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS Metallothionein 2A (MT2A) and nuclear factor-kappaB (NF-κB) are both involved in carcinogenesis and cancer chemosensitivity. We previously showed decreased expression of MT2A and IκB-α in human gastric cancer (GC) associated with poor prognosis of GC patients. The present study investigated the effect of diallyl trisulfide (DATS), a garlic-derived compound, and docetaxel (DOC) on regulation of MT2A in relation to NF-κB in GC cells. RESULTS DATS attenuated NF-κB signaling in GC cells, resulting in G2/M cell cycle arrest and apoptosis, culminating in the inhibition of cell proliferation and tumorigenesis in nude mice. The anti-GC effect of DATS was attributable to its capacity to epigenetically upregulate MT2A, which in turn enhanced transcription of IκB-α to suppress NF-κB activation in GC cells. The combination of DATS with DOC exhibited a synergistic anti-GC activity accompanied by MT2A upregulation and NF-κB inactivation. Histopathologic analysis of GC specimens from patients showed a significant increase in MT2A expression following DOC treatment. GC patients with high MT2A expression in tumor specimens showed significantly improved response to chemotherapy and prolonged survival compared with those with low MT2A expression in tumors. INNOVATION AND CONCLUSION We conclude that DATS exerts its anti-GC activity and enhances chemosensitivity of GC to DOC by epigenetic upregulation of MT2A to attenuate NF-κB signaling. Our findings delineate a mechanistic basis of MT2A/NF-κB signaling for DATS- and DOC-mediated anti-GC effects, suggesting that MT2A may be a chemosensitivity indicator in GC patients receiving DOC-based treatment and a promising target for more effective treatment of GC by combination of DATS and DOC. Antioxid. Redox Signal. 24, 839-854.
Collapse
Affiliation(s)
- Yuanming Pan
- 1 Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute , Beijing, P.R. China
| | - Shuye Lin
- 2 College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, 3 Shangyuancun, Haidian District, Beijing, P.R. China .,3 Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Rui Xing
- 1 Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute , Beijing, P.R. China
| | - Min Zhu
- 1 Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute , Beijing, P.R. China
| | - Bonan Lin
- 2 College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, 3 Shangyuancun, Haidian District, Beijing, P.R. China
| | - Jiantao Cui
- 1 Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute , Beijing, P.R. China
| | - Wenmei Li
- 1 Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute , Beijing, P.R. China
| | - Jing Gao
- 4 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of GI Oncology, Peking University School of Oncology , Peking Cancer Hospital, Beijing, P.R. China
| | - Lin Shen
- 4 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of GI Oncology, Peking University School of Oncology , Peking Cancer Hospital, Beijing, P.R. China
| | - Yuanyuan Zhao
- 5 CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China , Beijing, P.R. China
| | - Mingzhou Guo
- 6 Department of Gastroenterology and Hepatology, Chinese PLA General Hospital , Beijing, P.R. China
| | - Ji Ming Wang
- 3 Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Jiaqiang Huang
- 2 College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, 3 Shangyuancun, Haidian District, Beijing, P.R. China .,3 Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Youyong Lu
- 1 Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute , Beijing, P.R. China
| |
Collapse
|
48
|
Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, Podhorska-Okolow M. The Role of Metallothioneins in Carcinogenesis. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2016. [DOI: 10.1007/978-3-319-27472-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Liu TP, Hong YH, Tung KY, Yang PM. In silico and experimental analyses predict the therapeutic value of an EZH2 inhibitor GSK343 against hepatocellular carcinoma through the induction of metallothionein genes. Oncoscience 2016; 3:9-20. [PMID: 26973856 PMCID: PMC4751912 DOI: 10.18632/oncoscience.285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 01/22/2016] [Indexed: 12/24/2022] Open
Abstract
There are currently no effective molecular targeted therapies for hepatocellular carcinoma (HCC), the third leading cause of cancer-related death worldwide. Enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 (H3K27)-specific methyltransferase, has been emerged as novel anticancer target. Our previous study has demonstrated that GSK343, an S-adenosyl-L-methionine (SAM)-competitive inhibitor of EZH2, induces autophagy and enhances drug sensitivity in cancer cells including HCC. In this study, an in silico study was performed and found that EZH2 was overexpressed in cancerous tissues of HCC patients at both gene and protein levels. Microarray analysis and in vitro experiments indicated that the anti-HCC activity of GSK343 was associated with the induction of metallothionein (MT) genes. In addition, the negative association of EZH2 and MT1/MT2A genes in cancer cell lines and tissues was found in public gene expression database. Taken together, our findings suggest that EZH2 inhibitors could be a good therapeutic option for HCC, and induction of MT genes was associated with the anti-HCC activity of EZH2 inhibitors.
Collapse
Affiliation(s)
- Tsang-Pai Liu
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan; Mackay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Liver Medical Center, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yi-Han Hong
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Kwang-Yi Tung
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Pei-Ming Yang
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
50
|
Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, Podhorska-Okolow M. Metallothioneins: Structure and Functions. METALLOTHIONEINS IN NORMAL AND CANCER CELLS 2016. [DOI: 10.1007/978-3-319-27472-0_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|