1
|
Yan K, Lim DW, Ma BBBY. Progress in the clinical development of investigational systemic agents for recurrent and metastatic nasopharyngeal carcinoma. Expert Opin Investig Drugs 2024; 33:1019-1028. [PMID: 39297575 DOI: 10.1080/13543784.2024.2401910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/04/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION Nasopharyngeal carcinoma (NPC) remains an endemic disease in certain parts of the world, with many patients presenting with advanced disease on diagnosis. Chemotherapy had remained the standard of care with minimal progress made until recent years. This review aims to provide an overview of recent significant breakthroughs and up-and-coming novel strategies in treating this deadly disease. AREAS COVERED This review focuses on the latest clinical development of promising investigational agents in the treatment of advanced NPC. These include anti-vascular agents, signaling pathways inhibitors and immunotherapy. EXPERT OPINION The addition of immune-checkpoint inhibitors (CPI) to platinum-based chemotherapy has undoubtedly changed the therapeutic landscape of R/M NPC in the first-line setting. This leaves much room for further research on the optimal treatment strategy in subsequent-line settings, likely including the addition of CPI to anti-vascular agents or novel CPI combinations, with or without chemotherapy as a backbone. Other potential approaches include optimal CPI maintenance therapy after first-line CPI-chemotherapy combination. Potential novel agents on the horizons are antibody-drug conjugates, bi-specific antibodies and signaling inhibitors, with several phase II/III studies currently underway.
Collapse
Affiliation(s)
- Kelvin Yan
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Darren Wt Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Brigette B B Y Ma
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Wu L, Huang J, Trivedi P, Sun X, Yu H, He Z, Zhang X. Zinc finger myeloid Nervy DEAF-1 type (ZMYND) domain containing proteins exert molecular interactions to implicate in carcinogenesis. Discov Oncol 2022; 13:139. [PMID: 36520265 PMCID: PMC9755447 DOI: 10.1007/s12672-022-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Morphogenesis and organogenesis in the low organisms have been found to be modulated by a number of proteins, and one of such factor, deformed epidermal auto-regulatory factor-1 (DEAF-1) has been initially identified in Drosophila. The mammalian homologue of DEAF-1 and structurally related proteins have been identified, and they formed a family with over 20 members. The factors regulate gene expression through association with co-repressors, recognition of genomic marker, to exert histone modification by catalyze addition of some chemical groups to certain amino acid residues on histone and non-histone proteins, and degradation host proteins, so as to regulate cell cycle progression and execution of cell death. The formation of fused genes during chromosomal translocation, exemplified with myeloid transforming gene on chromosome 8 (MTG8)/eight-to-twenty one translocation (ETO) /ZMYND2, MTG receptor 1 (MTGR1)/ZMYND3, MTG on chromosome 16/MTGR2/ZMYND4 and BS69/ZMYND11 contributes to malignant transformation. Other anomaly like copy number variation (CNV) of BS69/ZMYND11 and promoter hyper methylation of BLU/ZMYND10 has been noted in malignancies. It has been reported that when fusing with Runt-related transcription factor 1 (RUNX1), the binding of MTG8/ZMYND2 with co-repressors is disturbed, and silencing of BLU/ZMYND10 abrogates its ability to inhibition of cell cycle and promotion of apoptotic death. Further characterization of the implication of ZMYND proteins in carcinogenesis would enhance understanding of the mechanisms of occurrence and early diagnosis of tumors, and effective antitumor efficacy.
Collapse
Affiliation(s)
- Longji Wu
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
- Institute of Modern Biology, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Huang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Pankaj Trivedi
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | - Xuerong Sun
- Institute of Aging, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hongbing Yu
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Zhiwei He
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Xiangning Zhang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China.
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Lamare FA, Khongsti S, Marthong L, Ghosh S, Chenkual S, Dkhar H, Maitra A, Ghosh S. Genome-wide DNA methylation profiling of stomach cancer in the ethnic population of Mizoram, North East India. Genomics 2022; 114:110478. [PMID: 36064073 DOI: 10.1016/j.ygeno.2022.110478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022]
Abstract
Stomach cancer is the fifth most common cancer in terms of prevalence and incidence and the fourth leading cause of mortality in men and women worldwide. It is well-established that aberrant DNA methylation in cells can lead to carcinogenesis. The primary objective of our study was to investigate the aberrant DNA methylation status of genes associated with stomach cancer with a particular reference to the ethnic population of Mizoram, North East India. The site-level analysis identified 2883 CpG sites differentially methylated, representing ~922 genes. Out of which 476 Differentially Methylated Positions (DMPs) were promoter-associated, 452 DMPs were hypermethylated, and 24 were hypomethylated. The region-level analysis identified 462 Differentially Methylated Regions (DMRs) corresponding to ~320 genes, of which ~281 genes were hypermethylated and ~ 40 genes were hypomethylated. TCGA analysis showed that some of the genes had been previously implicated in other cancers including stomach cancer. Five hypermethylated genes were selected as candidate genes for further investigations and they have shown to be novel and could serve as candidate hypermethylation biomarkers for stomach cancer in this particular ethnic group.
Collapse
Affiliation(s)
- F A Lamare
- Department of Zoology, North-Eastern Hill University (NEHU), Shillong, India
| | - S Khongsti
- Department of Zoology, North-Eastern Hill University (NEHU), Shillong, India
| | - L Marthong
- Department of Zoology, North-Eastern Hill University (NEHU), Shillong, India
| | - S Ghosh
- National Institute of Biomedical Genomics (NIBMG), Kalyani, West Bengal, India
| | | | - H Dkhar
- Nazareth Hospital, Shillong, India
| | - A Maitra
- National Institute of Biomedical Genomics (NIBMG), Kalyani, West Bengal, India
| | - S Ghosh
- Department of Zoology, North-Eastern Hill University (NEHU), Shillong, India.
| |
Collapse
|
4
|
Taverna C, Agaimy A, Franchi A. MDM2 is a useful diagnostic marker for nasopharyngeal carcinoma. Pathol Res Pract 2022; 236:153978. [PMID: 35714490 DOI: 10.1016/j.prp.2022.153978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The MDM2 gene appears to be involved in the development of nasopharyngeal carcinoma. The aim of this study was to examine MDM2 expression in a series of nasopharyngeal carcinoma biopsies to explore its potential diagnostic significance. METHODS The study cohort consisted of 26 nasopharyngeal carcinomas, including 22 EBV positive non-keratinizing squamous cell carcinomas (NKSCC), 1 EBV negative NKSCC and 3 EBV negative keratinizing SCC. For comparison, we selected 48 oropharyngeal carcinomas, including 17 HPV positive SCC (14 non-keratinizing and 3 keratinizing) and 31 HPV negative SCCs (28 keratinizing and 3 non-keratinizing). In addition, we examined MDM2 expression in a group of 26 cervical lymph node metastases, including 5 with EBV positive nasopharyngeal NKSCC and 21 from oropharyngeal carcinoma (18 non keratinizing HPV positive, 1 keratinizing HPV positive, 1 keratinizing HPV negative and 1 non-keratinizing HPV negative). Finally, 2 bone metastases from EBV positive nasopharyngeal NKSCC were also included. A tissue microarray was constructed from formalin-fixed paraffin embedded tumor tissue specimens. Sections were immunostained for MDM2 and in situ hybridization for EBER and CISH analysis for the MDM2 gene were also conducted in all cases. RESULTS Overall, MDM2 positivity was detected in 28 of 102 SCCs (27.2 %). MDM2 positivity was significantly more frequent in EBV positive NKSCC (80 %) than in oropharyngeal HPV positive NKSCC (6.1 %) and keratinizing SCCs (9.4 %) (p < 0.001, Pearson chi square). Considering only the primary tumors, 86.4 % of the nasopharyngeal carcinomas were positive, versus 13.5 % of the oropharyngeal carcinomas (p < 0.001, Pearson chi square). Considering the lymph node metastases, 3 of 5 EBV positive carcinomas with nasopharyngeal primary were positive, whereas only one of the HPV positive carcinomas was positive. Finally, both the bone metastases from EBV positive nasopharyngeal carcinoma were positive for MDM2. No amplification of the MDM2 gene was identified by in situ hybridization analysis. CONCLUSIONS Our data indicate that MDM2 could be a valuable diagnostic marker to support the diagnosis of nasopharyngeal EBV positive NKSCC.
Collapse
Affiliation(s)
- Cecilia Taverna
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Germany
| | - Alessandro Franchi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
5
|
Takeuchi Y, Yoshida K, Halik A, Kunitz A, Suzuki H, Kakiuchi N, Shiozawa Y, Yokoyama A, Inoue Y, Hirano T, Yoshizato T, Aoki K, Fujii Y, Nannya Y, Makishima H, Pfitzner BM, Bullinger L, Hirata M, Jinnouchi K, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Okamoto T, Haga H, Ogawa S, Damm F. The landscape of genetic aberrations in myxofibrosarcoma. Int J Cancer 2022; 151:565-577. [PMID: 35484982 DOI: 10.1002/ijc.34051] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/25/2022] [Accepted: 04/08/2022] [Indexed: 11/08/2022]
Abstract
Myxofibrosarcoma (MFS) is a rare subtype of sarcoma, whose genetic basis is poorly understood. We analyzed 69 MFS cases using whole-genome (WGS), whole-exome (WES), and/or targeted-sequencing (TS). Newly sequenced genomic data were combined with additional deposited 116 MFS samples. WGS identified a high number of structural variations (SVs) per tumor most frequently affecting the TP53 and RB1 loci, 40% of tumors showed a BRCAness-associated mutation signature, and evidence of chromothripsis was found in all cases. Most frequently mutated /copy number altered genes affected known disease drivers such as TP53 (56.2%), CDKN2A/B (29.7%), RB1 (27.0%), ATRX (19.5%), and HDLBP (18.9%). Several previously unappreciated genetic aberrations including MUC17, FLG, and ZNF780A were identified in more than 20% of patients. Longitudinal analysis of paired diagnosis and relapse time points revealed a 1.2-fold mutation number increase accompanied with substantial changes in clonal composition over time. This study highlights the genetic complexity underlying sarcomagenesis of MFS. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yasuhide Takeuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.,Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan.,Research Fellowships of Japan Society for the Promotion of Science for Young Scientists
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Adriane Halik
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Annegret Kunitz
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hiromichi Suzuki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Yokoyama
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshikage Inoue
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Tomonori Hirano
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Tetsuichi Yoshizato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosuke Aoki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoichi Fujii
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Hideki Makishima
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | | | - Lars Bullinger
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), partner site Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Keita Jinnouchi
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Yuichi Shiraishi
- Center for Cancer Genomic and Advanced Therapeutics, National Cancer Center, Tokyo, Japan
| | - Kenichi Chiba
- Center for Cancer Genomic and Advanced Therapeutics, National Cancer Center, Tokyo, Japan
| | - Hiroko Tanaka
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Okamoto
- Department of Orthopaedic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.,Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Frederik Damm
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), partner site Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Wong KCW, Hui EP, Lo KW, Lam WKJ, Johnson D, Li L, Tao Q, Chan KCA, To KF, King AD, Ma BBY, Chan ATC. Nasopharyngeal carcinoma: an evolving paradigm. Nat Rev Clin Oncol 2021; 18:679-695. [PMID: 34194007 DOI: 10.1038/s41571-021-00524-x] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
The past three decades have borne witness to many advances in the understanding of the molecular biology and treatment of nasopharyngeal carcinoma (NPC), an Epstein-Barr virus (EBV)-associated cancer endemic to southern China, southeast Asia and north Africa. In this Review, we provide a comprehensive, interdisciplinary overview of key research findings regarding NPC pathogenesis, treatment, screening and biomarker development. We describe how technological advances have led to the advent of proton therapy and other contemporary radiotherapy approaches, and emphasize the relentless efforts to identify the optimal sequencing of chemotherapy with radiotherapy through decades of clinical trials. Basic research into the pathogenic role of EBV and the genomic, epigenomic and immune landscape of NPC has laid the foundations of translational research. The latter, in turn, has led to the development of new biomarkers and therapeutic targets and of improved approaches for individualizing immunotherapy and targeted therapies for patients with NPC. We provide historical context to illustrate the effect of these advances on treatment outcomes at present. We describe current preclinical and clinical challenges and controversies in the hope of providing insights for future investigation.
Collapse
Affiliation(s)
- Kenneth C W Wong
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Edwin P Hui
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Wai Kei Jacky Lam
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - David Johnson
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Lili Li
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Qian Tao
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kwan Chee Allen Chan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ann D King
- Department of Diagnostic Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Brigette B Y Ma
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR.
| | - Anthony T C Chan
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR.
| |
Collapse
|
7
|
Zhang X, Zhao D, Yin Y, Yang T, You Z, Li D, Chen Y, Jiang Y, Xu S, Geng J, Zhao Y, Wang J, Li H, Tao J, Lei S, Jiang Z, Chen Z, Yu S, Fan JB, Pang D. Circulating cell-free DNA-based methylation patterns for breast cancer diagnosis. NPJ Breast Cancer 2021; 7:106. [PMID: 34400642 PMCID: PMC8367945 DOI: 10.1038/s41523-021-00316-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/26/2021] [Indexed: 01/02/2023] Open
Abstract
Mammography is used to detect breast cancer (BC), but its sensitivity is limited, especially for dense breasts. Circulating cell-free DNA (cfDNA) methylation tests is expected to compensate for the deficiency of mammography. We derived a specific panel of markers based on computational analysis of the DNA methylation profiles from The Cancer Genome Atlas (TCGA). Through training (n = 160) and validation set (n = 69), we developed a diagnostic prediction model with 26 markers, which yielded a sensitivity of 89.37% and a specificity of 100% for differentiating malignant disease from normal lesions [AUROC = 0.9816 (95% CI: 96.09-100%), and AUPRC = 0.9704 (95% CI: 94.54–99.46%)]. A simplified 4-marker model including cg23035715, cg16304215, cg20072171, and cg21501525 had a similar diagnostic power [AUROC = 0.9796 (95% CI: 95.56–100%), and AUPRC = 0.9220 (95% CI: 91.02–94.37%)]. We found that a single cfDNA methylation marker, cg23035715, has a high diagnostic power [AUROC = 0.9395 (95% CI: 89.72–99.27%), and AUPRC = 0.9111 (95% CI: 88.45–93.76%)], with a sensitivity of 84.90% and a specificity of 93.88%. In an independent testing dataset (n = 104), the obtained diagnostic prediction model discriminated BC patients from normal controls with high accuracy [AUROC = 0.9449 (95% CI: 90.07–98.91%), and AUPRC = 0.8640 (95% CI: 82.82–89.98%)]. We compared the diagnostic power of cfDNA methylation and mammography. Our model yielded a sensitivity of 94.79% (95% CI: 78.72–97.87%) and a specificity of 98.70% (95% CI: 86.36–100%) for differentiating malignant disease from normal lesions [AUROC = 0.9815 (95% CI: 96.75–99.55%), and AUPRC = 0.9800 (95% CI: 96.6–99.4%)], with better diagnostic power and had better diagnostic power than that of using mammography [AUROC = 0.9315 (95% CI: 89.95–96.34%), and AUPRC = 0.9490 (95% CI: 91.7–98.1%)]. In addition, hypermethylation profiling provided insights into lymph node metastasis stratifications (p < 0.05). In conclusion, we developed and tested a cfDNA methylation model for BC diagnosis with better performance than mammography.
Collapse
Affiliation(s)
- Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dezhi Zhao
- Department of Research and Development, AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ting Yang
- Department of Research and Development, AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Zilong You
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dalin Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanbo Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yongdong Jiang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingshu Geng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yashuang Zhao
- Department of Epidemiology, Harbin Medical University, Harbin, China
| | - Jun Wang
- Department of Research and Development, AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Hui Li
- Department of Research and Development, AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Jinsheng Tao
- Department of Research and Development, AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Shan Lei
- Department of Research and Development, AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Zeyu Jiang
- Department of Research and Development, AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Zhiwei Chen
- Department of Research and Development, AnchorDx Medical Co., Ltd., Guangzhou, China.,AnchorDx, Inc., Fremont, California, USA
| | - Shihui Yu
- Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| | - Jian-Bing Fan
- Department of Research and Development, AnchorDx Medical Co., Ltd., Guangzhou, China. .,Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
8
|
Halouani A, Michaux H, Jmii H, Trussart C, Chahbi A, Martens H, Renard C, Aouni M, Hober D, Geenen V, Jaïdane H. Coxsackievirus B4 Transplacental Infection Severely Disturbs Central Tolerogenic Mechanisms in the Fetal Thymus. Microorganisms 2021; 9:microorganisms9071537. [PMID: 34361972 PMCID: PMC8303261 DOI: 10.3390/microorganisms9071537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 01/09/2023] Open
Abstract
Thymus plays a fundamental role in central tolerance establishment, especially during fetal life, through the generation of self-tolerant T cells. This process consists in T cells education by presenting them tissue-restricted autoantigens promiscuously expressed by thymic epithelial cells (TECs), thus preventing autoimmunity. Thymus infection by Coxsackievirus B (CV-B) during fetal life is supposed to disturb thymic functions and, hence, to be an inducing or accelerating factor in the genesis of autoimmunity. To further investigate this hypothesis, in our current study, we analyzed thymic expression of autoantigens, at the transcriptional and protein level, following in utero infection by CV-B4. mRNA expression levels of Igf2 and Myo7, major autoantigens of pancreas and heart, respectively, were analyzed in whole thymus and in enriched TECs together along with both transcription factors, Aire and Fezf2, involved in autoantigens expression in the thymus. Results show that in utero infection by CV-B4 induces a significant decrease in Igf2 and Myo7 expression at both mRNA and protein level in whole thymus and in enriched TECs as well. Moreover, a correlation between viral load and autoantigens expression can be observed in the whole thymus, indicating a direct effect of in utero infection by CV-B4 on autoantigens expression. Together, these results indicate that an in utero infection of the thymus by CV-B4 may interfere with self-tolerance establishment in TECs by decreasing autoantigen expression at both mRNA and protein level and thereby increase the risk of autoimmunity onset.
Collapse
Affiliation(s)
- Aymen Halouani
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Monastir 5000, Tunisia; (A.H.); (H.J.); (M.A.)
- Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia
- GIGA-I3 Immunoendocrinologie, Faculté de Médicine, Université de Liège, CHU-B34, Sart Tilman, 4000 Liège, Belgium; (H.M.); (C.T.); (H.M.); (C.R.); (V.G.)
| | - Hélène Michaux
- GIGA-I3 Immunoendocrinologie, Faculté de Médicine, Université de Liège, CHU-B34, Sart Tilman, 4000 Liège, Belgium; (H.M.); (C.T.); (H.M.); (C.R.); (V.G.)
| | - Habib Jmii
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Monastir 5000, Tunisia; (A.H.); (H.J.); (M.A.)
- Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia
| | - Charlotte Trussart
- GIGA-I3 Immunoendocrinologie, Faculté de Médicine, Université de Liège, CHU-B34, Sart Tilman, 4000 Liège, Belgium; (H.M.); (C.T.); (H.M.); (C.R.); (V.G.)
| | - Ahlem Chahbi
- Laboratoire d’Hématologie, Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis 1007, Tunisia;
| | - Henri Martens
- GIGA-I3 Immunoendocrinologie, Faculté de Médicine, Université de Liège, CHU-B34, Sart Tilman, 4000 Liège, Belgium; (H.M.); (C.T.); (H.M.); (C.R.); (V.G.)
| | - Chantal Renard
- GIGA-I3 Immunoendocrinologie, Faculté de Médicine, Université de Liège, CHU-B34, Sart Tilman, 4000 Liège, Belgium; (H.M.); (C.T.); (H.M.); (C.R.); (V.G.)
| | - Mahjoub Aouni
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Monastir 5000, Tunisia; (A.H.); (H.J.); (M.A.)
| | - Didier Hober
- Laboratoire de Virologie EA3610, Faculté de Médecine, Université de Lille, CHU Lille, 59000 Lille, France;
| | - Vincent Geenen
- GIGA-I3 Immunoendocrinologie, Faculté de Médicine, Université de Liège, CHU-B34, Sart Tilman, 4000 Liège, Belgium; (H.M.); (C.T.); (H.M.); (C.R.); (V.G.)
| | - Hela Jaïdane
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Monastir 5000, Tunisia; (A.H.); (H.J.); (M.A.)
- Correspondence: ; Tel.: +216-98-677-174
| |
Collapse
|
9
|
Lee HM, Sia APE, Li L, Sathasivam HP, Chan MSA, Rajadurai P, Tsang CM, Tsao SW, Murray PG, Tao Q, Paterson IC, Yap LF. Monoamine oxidase A is down-regulated in EBV-associated nasopharyngeal carcinoma. Sci Rep 2020; 10:6115. [PMID: 32273550 PMCID: PMC7145851 DOI: 10.1038/s41598-020-63150-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a highly metastatic cancer that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we identify for the first time a role for monoamine oxidase A (MAOA) in NPC. MAOA is a mitochondrial enzyme that catalyzes oxidative deamination of neurotransmitters and dietary amines. Depending on the cancer type, MAOA can either have a tumour-promoting or tumour-suppressive role. We show that MAOA is down-regulated in primary NPC tissues and its down-regulation enhances the migration of NPC cells. In addition, we found that EBV infection can down-regulate MAOA expression in both pre-malignant and malignant nasopharyngeal epithelial (NPE) cells. We further demonstrate that MAOA is down-regulated as a result of IL-6/IL-6R/STAT3 signalling and epigenetic mechanisms, effects that might be attributed to EBV infection in NPE cells. Taken together, our data point to a central role for EBV in mediating the tumour suppressive effects of MAOA and that loss of MAOA could be an important step in the pathogenesis of NPC.
Collapse
Affiliation(s)
- Hui Min Lee
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Alice Pei Eal Sia
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Melissa Sue Ann Chan
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Chi Man Tsang
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Shatin, Hong Kong.,Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Pokfulam, Hong Kong
| | - Sai Wah Tsao
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Shatin, Hong Kong
| | - Paul G Murray
- Health Research Institute, University of Limerick, Limerick, Ireland.,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ian C Paterson
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Sun R, Xiang T, Tang J, Peng W, Luo J, Li L, Qiu Z, Tan Y, Ye L, Zhang M, Ren G, Tao Q. 19q13 KRAB zinc-finger protein ZNF471 activates MAPK10/JNK3 signaling but is frequently silenced by promoter CpG methylation in esophageal cancer. Theranostics 2020; 10:2243-2259. [PMID: 32089740 PMCID: PMC7019175 DOI: 10.7150/thno.35861] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Zinc-finger proteins (ZFPs) are the largest transcription factor family in mammals, involved in the regulation of multiple physiologic processes including cell differentiation, proliferation, apoptosis and neoplastic transformation. Approximately one-third of ZFPs are Krüppel-associated box domain (KRAB)-ZFPs. Methods: ZNF471 expression and methylation were detected by reverse-transcription PCR and methylation-specific PCR. The impact and mechanism of ectopic ZNF471 expression in esophageal squamous cell carcinoma (ESCC) cells was evaluated in vitro and in vivo. Results: We identified a 19q13 KRAB-ZFP, ZNF471, as a methylated target in ESCC. We further found that ZNF471 is significantly downregulated in ESCC tissues compared with adjacent non-cancer tissues, due to its aberrant promoter CpG methylation, and further confirmed by methylation analysis and treatment with demethylation agent. Restoration of ZNF471 expression in silenced ESCC cells significantly altered cell morphology, induced apoptosis and G0/G1 arrest, and inhibited tumor cell colony formation, viability, migration and invasion. Importantly, ZNF471 was found to activate the expression of MAPK10/JNK3 and PCDH family genes, and further enhance MAPK10 signaling and downstream gene expression through binding to the MAPK10/JNK3 promoter. Conclusion: Our results demonstrate that ZNF471 is an important tumor suppressor and loss of ZNF471 functions hampers MAPK10/JNK3 signaling during esophageal carcinogenesis.
Collapse
|
11
|
Loss of Fezf2 promotes malignant progression of bladder cancer by regulating the NF-κB signaling pathway. J Transl Med 2018; 98:1225-1236. [PMID: 29925938 DOI: 10.1038/s41374-018-0077-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
Forebrain embryonic zinc finger 2 (Fezf2) is an evolutionarily conserved zinc finger transcription repressor. It has been reported to be a tumor suppressor; however, neither the role that Fezf2 plays in bladder cancer nor the mechanisms involved have been investigated. In this study, we showed that Fezf2 expression is downregulated in bladder cancer tissues and cell lines compared to adjacent non-tumor tissues and normal urothelial cells. We also retrospectively analyzed the association between Fezf2 and various clinicopathologic characteristics in 196 bladder cancer patients, and showed that low expression of Fezf2 is correlated with larger tumor size, advanced tumor stage, and poor clinical prognosis. Moreover, we found that overexpression of Fezf2 significantly inhibited the proliferation, growth, migration, and invasion of bladder cancer cells, and attenuated angiogenesis, while knockdown of Fezf2 had the opposite effect. Fezf2 suppressed bladder cancer aggressiveness by activating the NF-κB signaling pathway. These findings suggest that Fezf2 holds promise as a prognostic biomarker, and provide a putative mechanism for bladder cancer progression.
Collapse
|
12
|
Overexpression of a novel candidate oncogene KIF14 correlates with tumor progression and poor prognosis in prostate cancer. Oncotarget 2018; 8:45459-45469. [PMID: 28525372 PMCID: PMC5542200 DOI: 10.18632/oncotarget.17564] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/18/2017] [Indexed: 11/25/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of death from cancer in men. The mechanism underlying tumorigenesis and development of PCa is largely unknown. Here, we identified Kinesin family member 14 (KIF14) as a novel candidate oncogene in PCa. We found that KIF14 was overexpressed in multiple PCa cell lines and primary PCa tissues. Knockdown of KIF14 in DU145 and PC3 prostate cancer cells suppressed cell proliferation, induced cell cycle arrest and apoptosis. Transcriptome analysis by RNA-sequencing demonstrated that KIF4 suppression led to transcriptional changes of genes involved in p53 and TGF-beta signaling pathway. In addition, upregulated expression of GADD45A, GADD45B, p21, PIDD and Shisa5, which contribute to growth arrest and apoptosis induction, and downregulated CCNB1 that promotes cell cycle progression were confirmed by quantitative real-time PCR after KIF4 knockdown. We further found that KIF14 protein level was positively correlated with T stage and Gleason Score. Patients with higher KIF14 expression had shorter overall survival time than those with lower KIF14 expression. Thus, our data indicate that KIF14 could act as a potential oncogene that contributes to tumor progression and poor prognosis in PCa, which may represent a novel and useful prognostic biomarker for PCa.
Collapse
|
13
|
OSR1 is a novel epigenetic silenced tumor suppressor regulating invasion and proliferation in renal cell carcinoma. Oncotarget 2018; 8:30008-30018. [PMID: 28404905 PMCID: PMC5444721 DOI: 10.18632/oncotarget.15611] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/24/2017] [Indexed: 12/31/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most malignant tumors in human. Here, we found that odd-skipped related transcription factor 1 (OSR1) was downregulated in 769-P and 786-O cells due to promoter CpG methylation. OSR1 expression could be restored by pharmacological demethylation treatment in silenced cell lines. Knockdown of OSR1 in two normal expressed cell lines- A498 and ACHN promoted cell invasion and cellular proliferation. RNA-Sequencing analysis showed that expression profile of genes involved in multiple cancer-related pathways was changed when OSR1 was downregulated. By quantitative real-time PCR, we confirmed that depletion of OSR1 repressed the expression of several tumor suppresor genes involved in p53 pathway, such as p53, p21, p27, p57 and RB in A498 and ACHN. Moreover, knockdown of OSR1 suppressed the transcriptional activity of p53. Of note, OSR1 depletion also led to increased expression of a few oncogenic genes. We further evaluated the clinical significance of OSR1 in primary human RCC specimens by immunohistochemical staining and found that OSR1 expression was downregulated in primary RCC and negatively correlated with histological grade. Thus, our data indicate that OSR1 is a novel tumor suppressor gene in RCC. Downregulation of OSR1 might represent a potentially prognostic marker and therapeutic target for RCC.
Collapse
|
14
|
Frequent silencing of the candidate tumor suppressor TRIM58 by promoter methylation in early-stage lung adenocarcinoma. Oncotarget 2018; 8:2890-2905. [PMID: 27926516 PMCID: PMC5356850 DOI: 10.18632/oncotarget.13761] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/22/2016] [Indexed: 01/15/2023] Open
Abstract
In this study, we aimed to identify novel drivers that would be epigenetically altered through aberrant methylation in early-stage lung adenocarcinoma (LADC), regardless of the presence or absence of tobacco smoking-induced epigenetic field defects. Through genome-wide screening for aberrantly methylated CpG islands (CGIs) in 12 clinically uniform, stage-I LADC cases affecting six non-smokers and six smokers, we identified candidate tumor-suppressor genes (TSGs) inactivated by hypermethylation. Through systematic expression analyses of those candidates in panels of additional tumor samples and cell lines treated or not treated with 5-aza-deoxycitidine followed by validation analyses of cancer-specific silencing by CGI hypermethylation using a public database, we identified TRIM58 as the most prominent candidate for TSG. TRIM58 was robustly silenced by hypermethylation even in early-stage primary LADC, and the restoration of TRIM58 expression in LADC cell lines inhibited cell growth in vitro and in vivo in anchorage-dependent and -independent manners. Our findings suggest that aberrant inactivation of TRIM58 consequent to CGI hypermethylation might stimulate the early carcinogenesis of LADC regardless of smoking status; furthermore, TRIM58 methylation might be a possible early diagnostic and epigenetic therapeutic target in LADC.
Collapse
|
15
|
Berrih-Aknin S, Panse RL, Dragin N. AIRE: a missing link to explain female susceptibility to autoimmune diseases. Ann N Y Acad Sci 2018; 1412:21-32. [PMID: 29291257 DOI: 10.1111/nyas.13529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
Women are more susceptible to autoimmune diseases than men. Autoimmunity results from tolerance breakdown toward self-components. Recently, three transcription modulators were identified in medullary thymic epithelial cells that orchestrate immune central tolerance processes: the autoimmune regulator (AIRE), FEZ family zinc finger 2 (FEZF2 or FEZ1), and PR domain zinc finger protein 1 (PRDM1). Interestingly, these three transcription modulators regulate nonredundant tissue-specific antigen subsets and thus cover broad antigen diversity. Recent data from different groups demonstrated that sex hormones (estrogen and testosterone) are involved in the regulation of thymic AIRE expression in humans and mice through direct transcriptional modulation and epigenetic changes. As a consequence, AIRE displays gender-biased thymic expression, with females showing a lower expression compared with males, a finding that could explain the female susceptibility to autoimmune diseases. So far, FEZF2 has not been related to an increased gender bias in autoimmune disease. PRDM1 expression has not been shown to display gender-differential thymic expression, but its expression level and its gene polymorphisms are associated with female-dependent autoimmune disease risk. Altogether, various studies have demonstrated that increased female susceptibility to autoimmune diseases is in part a consequence of hormone-driven reduced thymic AIRE expression.
Collapse
Affiliation(s)
- Sonia Berrih-Aknin
- UPMC Sorbonne Universities, Paris, France
- INSERM U974, Paris, France
- AIM, Institute of Myology, Paris, France
| | - Rozen Le Panse
- UPMC Sorbonne Universities, Paris, France
- INSERM U974, Paris, France
- AIM, Institute of Myology, Paris, France
| | - Nadine Dragin
- UPMC Sorbonne Universities, Paris, France
- INSERM U974, Paris, France
- AIM, Institute of Myology, Paris, France
- Inovarion, Paris, France
| |
Collapse
|
16
|
Shu XS, Zhao Y, Sun Y, Zhong L, Cheng Y, Zhang Y, Ning K, Tao Q, Wang Y, Ying Y. The epigenetic modifier PBRM1 restricts the basal activity of the innate immune system by repressing retinoic acid-inducible gene-I-like receptor signalling and is a potential prognostic biomarker for colon cancer. J Pathol 2018; 244:36-48. [PMID: 28940253 DOI: 10.1002/path.4986] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/02/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022]
Abstract
It has long been known that patients suffering from inflammatory bowel disease (IBD) have an increased risk of developing colorectal cancer (CRC). The innate immune system of host cells provides a first-line defence against pathogenic infection, whereas an uncontrolled inflammatory response under homeostatic conditions usually leads to pathological consequences, as exemplified by the chronic inflammation of IBD. The key molecules and pathways keeping innate immunity in check are still poorly defined. Here, we report that the chromatin remodeller polybromo-1 (PBRM1) is a repressor of innate immune signalling mediated by retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs). Knockdown of PBRM1 in colon cancer cells increased the expression of two receptor genes (RIG-I and MDA5) and upregulated interferon (IFN)-related and inflammation-related gene signatures. The innate immune signal stimulated by a double-stranded RNA viral mimic was exaggerated by PBRM1 suppression. PBRM1 cooperated with polycomb protein EZH2 to directly bind the cis-regulatory elements of RIG-I and MDA5, thereby suppressing their transcription. Moreover, upregulation of RIG-I and MDA5 is required for IFN response activation induced by PBRM1 silencing. TRIM25, a protein stimulated by the RLR pathway and IFN production, physically interacted with PBRM1 and induced PBRM1 protein destabilization by promoting its ubiquitination. These findings reveal a PBRM1-RLR regulatory circuit that can keep innate immune activity at a minimal level in resting cells, and also ensure a robust inflammatory response in the case of pathogen invasion. PBRM1 was found to be downregulated in primary tissues from patients with CRC or IBD, and its expression correlated negatively with that of RLR genes and interferon-stimulated genes in CRC samples. Lower PBRM1 expression was associated with advanced pathological grade and poorer survival of CRC patients, indicating that PBRM1 could serve as a potential prognostic biomarker for CRC. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xing-Sheng Shu
- School of Medicine, Health Science Centre, Shenzhen University, Shenzhen, PR China
- Institute of Molecular Medicine, Shenzhen University, Shenzhen, PR China
| | - Yingying Zhao
- School of Medicine, Health Science Centre, Shenzhen University, Shenzhen, PR China
| | - Yanmei Sun
- School of Medicine, Health Science Centre, Shenzhen University, Shenzhen, PR China
| | - Lan Zhong
- Department of Gynaecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, PR China
| | - Yingduan Cheng
- Department of Urology, The Second Affiliated Hospital of Jinan University, Shenzhen People's Hospital, Shenzhen, PR China
| | - Yixiang Zhang
- Department of Urology, The Second Affiliated Hospital of Jinan University, Shenzhen People's Hospital, Shenzhen, PR China
| | - Kaile Ning
- School of Medicine, Health Science Centre, Shenzhen University, Shenzhen, PR China
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Yejun Wang
- School of Medicine, Health Science Centre, Shenzhen University, Shenzhen, PR China
| | - Ying Ying
- School of Medicine, Health Science Centre, Shenzhen University, Shenzhen, PR China
| |
Collapse
|
17
|
Takaba H, Takayanagi H. The Mechanisms of T Cell Selection in the Thymus. Trends Immunol 2017; 38:805-816. [PMID: 28830733 DOI: 10.1016/j.it.2017.07.010] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022]
Abstract
T cells undergo positive and negative selection in the thymic cortex and medulla, respectively. A promiscuous expression of a wide array of self-antigens in the thymus is essential for the negative selection of self-reactive T cells and the establishment of central tolerance. Aire was originally thought to be the exclusive factor regulating the expression of tissue-restricted antigens, but Fezf2 recently emerged as a critical transcription factor in this regulatory activity. Fezf2 is selectively expressed in thymic medullary epithelial cells, regulates a large number of tissue-restricted antigens and suppresses the onset of autoimmune responses. Here, we discuss novel findings on the transcriptional mechanisms of tissue restricted-antigen expression in the medullary thymic epithelial cells and its effects on T cell selection.
Collapse
Affiliation(s)
- Hiroyuki Takaba
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
18
|
Hui L, Zhang J, Ding X, Guo X, Jang X. Identification of potentially critical differentially methylated genes in nasopharyngeal carcinoma: A comprehensive analysis of methylation profiling and gene expression profiling. Oncol Lett 2017; 14:7171-7178. [PMID: 29344148 PMCID: PMC5754830 DOI: 10.3892/ol.2017.7083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/17/2017] [Indexed: 12/21/2022] Open
Abstract
The present study aimed to identify potentially critical differentially methylated genes associated with the progression of nasopharyngeal carcinoma (NPC). Methylation profiling data of GSE62336 deposited in the Gene Expression Omnibus database were used to identify differentially methylated regions (DMRs) and differentially methylated CpG islands (DMIs). Concurrently, differentially expressed genes (DEGs) were identified using a meta-analysis of three gene expression datasets (GSE53819, GSE13597 and GSE12452). Subsequently, methylated DEGs were identified by comparing DMRs and DEGs. Furthermore, functional associations of these methylated DEGs were analyzed via constructing a functional network using GeneMANIA prediction server. In total, 1,676 hypermethylated genes, 28 hypomethylated genes, 17 DMIs and 2,983 DEGs (1,655 upregulated and 1,328 downregulated) were identified. Among these DEGs, 135 downregulated genes were hypermethylated; of these, dual specificity phosphatase 6 (DUSP6) and tenascin XB (TNXB) contained DMIs. In the functional network, 154 genes and 1,651 association pairs were included. DUSP6 was predicted to exhibit genetic interactions with other hypermethylated DEGs such as malic enzyme 3 and ST3 β-galactoside α-2,3-sialyltransferase 5; TNXB was predicted to be co-expressed with a set of hypermethylated DEGs, including EPH receptor B6, aldehyde dehydrogenase 1 family, member L1 and glutathione peroxidase 3. The hypermethylated DEGs may be involved in the progression of NPC, and they may become novel therapeutic targets for NPC.
Collapse
Affiliation(s)
- Lian Hui
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jingru Zhang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaoxu Ding
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xing Guo
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuejun Jang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
19
|
Clare AJ, Wicky HE, Empson RM, Hughes SM. RNA-Sequencing Analysis Reveals a Regulatory Role for Transcription Factor Fezf2 in the Mature Motor Cortex. Front Mol Neurosci 2017; 10:283. [PMID: 28936162 PMCID: PMC5594072 DOI: 10.3389/fnmol.2017.00283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
Forebrain embryonic zinc finger (Fezf2) encodes a transcription factor essential for the specification of layer 5 projection neurons (PNs) in the developing cerebral cortex. As with many developmental transcription factors, Fezf2 continues to be expressed into adulthood, suggesting it remains crucial to the maintenance of neuronal phenotypes. Despite the continued expression, a function has yet to be explored for Fezf2 in the PNs of the developed cortex. Here, we investigated the role of Fezf2 in mature neurons, using lentiviral-mediated delivery of a shRNA to conditionally knockdown the expression of Fezf2 in the mouse primary motor cortex (M1). RNA-sequencing analysis of Fezf2-reduced M1 revealed significant changes to the transcriptome, identifying a regulatory role for Fezf2 in the mature M1. Kyoto Encyclopedia Genes and Genomes (KEGG) pathway analyses of Fezf2-regulated genes indicated a role in neuronal signaling and plasticity, with significant enrichment of neuroactive ligand-receptor interaction, cell adhesion molecules and calcium signaling pathways. Gene Ontology analysis supported a functional role for Fezf2-regulated genes in neuronal transmission and additionally indicated an importance in the regulation of behavior. Using the mammalian phenotype ontology database, we identified a significant overrepresentation of Fezf2-regulated genes associated with specific behavior phenotypes, including associative learning, social interaction, locomotor activation and hyperactivity. These roles were distinct from that of Fezf2-regulated genes identified in development, indicating a dynamic transition in Fezf2 function. Together our findings demonstrate a regulatory role for Fezf2 in the mature brain, with Fezf2-regulated genes having functional roles in sustaining normal neuronal and behavioral phenotypes. These results support the hypothesis that developmental transcription factors are important for maintaining neuron transcriptomes and that disruption of their expression could contribute to the progression of disease phenotypes.
Collapse
Affiliation(s)
- Alison J Clare
- Department of Biochemistry, School of Biomedical Sciences, University of OtagoDunedin, New Zealand.,Brain Health Research Centre, University of OtagoDunedin, New Zealand.,Genetics Otago, University of OtagoDunedin, New Zealand
| | - Hollie E Wicky
- Department of Biochemistry, School of Biomedical Sciences, University of OtagoDunedin, New Zealand.,Brain Health Research Centre, University of OtagoDunedin, New Zealand.,Genetics Otago, University of OtagoDunedin, New Zealand
| | - Ruth M Empson
- Brain Health Research Centre, University of OtagoDunedin, New Zealand.,Department of Physiology, School of Biomedical Sciences, University of OtagoDunedin, New Zealand
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, University of OtagoDunedin, New Zealand.,Brain Health Research Centre, University of OtagoDunedin, New Zealand.,Genetics Otago, University of OtagoDunedin, New Zealand
| |
Collapse
|
20
|
Jiang T, Jiang CY, Shu JH, Xu YJ. Excavation of attractor modules for nasopharyngeal carcinoma via integrating systemic module inference with attract method. ACTA ACUST UNITED AC 2017; 50:e6416. [PMID: 28700035 PMCID: PMC5505523 DOI: 10.1590/1414-431x20176416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/22/2017] [Indexed: 11/25/2022]
Abstract
The molecular mechanism of nasopharyngeal carcinoma (NPC) is poorly understood and effective therapeutic approaches are needed. This research aimed to excavate the attractor modules involved in the progression of NPC and provide further understanding of the underlying mechanism of NPC. Based on the gene expression data of NPC, two specific protein-protein interaction networks for NPC and control conditions were re-weighted using Pearson correlation coefficient. Then, a systematic tracking of candidate modules was conducted on the re-weighted networks via cliques algorithm, and a total of 19 and 38 modules were separately identified from NPC and control networks, respectively. Among them, 8 pairs of modules with similar gene composition were selected, and 2 attractor modules were identified via the attract method. Functional analysis indicated that these two attractor modules participate in one common bioprocess of cell division. Based on the strategy of integrating systemic module inference with the attract method, we successfully identified 2 attractor modules. These attractor modules might play important roles in the molecular pathogenesis of NPC via affecting the bioprocess of cell division in a conjunct way. Further research is needed to explore the correlations between cell division and NPC.
Collapse
Affiliation(s)
- T Jiang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - C-Y Jiang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - J-H Shu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Y-J Xu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| |
Collapse
|
21
|
Andrews JL, Goodfellow FJ, Matosin N, Snelling MK, Newell KA, Huang XF, Fernandez-Enright F. Alterations of ubiquitin related proteins in the pathology and development of schizophrenia: Evidence from human and animal studies. J Psychiatr Res 2017; 90:31-39. [PMID: 28226265 DOI: 10.1016/j.jpsychires.2017.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/22/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
Gene expression analyses in post-mortem schizophrenia brains suggest that a number of ubiquitin proteasome system (UPS) genes are associated with schizophrenia; however the status of UPS proteins in the schizophrenia brain is largely unknown. Ubiquitin related proteins are inherently involved in memory, neuronal survival and morphology, which are processes implicated in neurodevelopmental disorders such as schizophrenia. We examined levels of five UPS proteins (Protein Inhibitor of Activated STAT2 [PIAS2], F-Box and Leucine rich repeat protein 21 [FBXL21], Mouse Double Minute 2 homolog [MDM2], Ubiquitin Carboxyl-Terminal Hydrolase-L1 [UCHL1] and Ubiquitin Conjugating Enzyme E2D1 [UBE2D1]) involved in these neuronal processes, within the dorsolateral prefrontal cortex of post-mortem schizophrenia subjects and matched controls (n = 30/group), in addition to across neurodevelopmental time-points (juvenile, adolescent and adult stages of life), utilizing a well-established neurodevelopmental phencyclidine (PCP) animal model of schizophrenia. We observed significant reductions in PIAS2, FBXL21 and MDM2 in schizophrenia subjects compared to controls (p-values ranging from 0.002 to 0.004). In our developmental PCP model, MDM2 protein was significantly reduced in adult PCP-treated rats compared to controls (p = 0.034). Additionally, FBXL21 (p = 0.022) and UCHL1 (p = 0.022) were significantly decreased, whilst UBE2D1 was increased (p = 0.022), in juvenile phencyclidine-treated rats compared to controls. This is the first study reporting alterations of UPS proteins in post-mortem human schizophrenia subjects and in a neurodevelopmental model of schizophrenia. The findings from this study provide strong support for a role of these UPS proteins in the pathology and development of schizophrenia.
Collapse
Affiliation(s)
- Jessica L Andrews
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; Schizophrenia Research Institute, Sydney, NSW 2010, Australia.
| | - Frederic J Goodfellow
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Natalie Matosin
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; Schizophrenia Research Institute, Sydney, NSW 2010, Australia.
| | - Mollie K Snelling
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Kelly A Newell
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; Schizophrenia Research Institute, Sydney, NSW 2010, Australia.
| | - Xu-Feng Huang
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; Schizophrenia Research Institute, Sydney, NSW 2010, Australia.
| | - Francesca Fernandez-Enright
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; Schizophrenia Research Institute, Sydney, NSW 2010, Australia; Faculty of Social Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
22
|
Wu J, Tang Q, Yang L, Chen Y, Zheng F, Hann SS. Interplay of DNA methyltransferase 1 and EZH2 through inactivation of Stat3 contributes to β-elemene-inhibited growth of nasopharyngeal carcinoma cells. Sci Rep 2017; 7:509. [PMID: 28360411 PMCID: PMC5428779 DOI: 10.1038/s41598-017-00626-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/07/2017] [Indexed: 12/22/2022] Open
Abstract
β-elemene, a compound extracted from Curcuma wenyujin plant, exhibits anticancer activity in many cancer types. However, the detailed mechanism by which β-elemene inhibits growth of nasopharyngeal carcinoma (NPC) cells remains unknown. We showed that β-elemene reduced phosphorylation of signal transducer and activator of transcription 3 (Stat3), and protein expressions of DNA methyltransferase 1 (DNMT1) and enhancer of zeste homolog 2 (EZH2). Exogenously expressed Stat3 antagonized the effect of β-elemene on DNMT1 and EZH2 expressions. Furthermore, overexpressions of DNMT1 and EZH2 reversed the effect of β-elemene on phosphorylation of Stat3 and cell growth inhibition. Intriguingly, exogenously expressed DNMT1 overcame β-elemene-inhibited EZH2 protein expression and promoter activity. On the contrary, silencing of EZH2 and DNMT1 genes feedback strengthened the effect of β-elemene on phosphorylation of Stat3. Consistent with this, β-elemene inhibited tumor growth, phosphorylation of Stat3, expressions of DNMT1 and EZH2 in a mouse xenograft model. Collectively, this study shows that β-elemene inhibits NPC cell growth via inactivation of Stat3, and reduces DNMT1 and EZH2 expressions. The interplay of DNMT1 and EZH2, and the mutual regulations among Stat3, EZH2 and DNMT1 contribute to the overall responses of β-elemene. This study uncovers a novel mechanism by which β-elemene inhibits growth of NPC cells.
Collapse
Affiliation(s)
- JingJing Wu
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Qing Tang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - LiJuan Yang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - YuQing Chen
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Fang Zheng
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
23
|
Huang RL, Su PH, Liao YP, Wu TI, Hsu YT, Lin WY, Wang HC, Weng YC, Ou YC, Huang THM, Lai HC. Integrated Epigenomics Analysis Reveals a DNA Methylation Panel for Endometrial Cancer Detection Using Cervical Scrapings. Clin Cancer Res 2016; 23:263-272. [DOI: 10.1158/1078-0432.ccr-16-0863] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/27/2016] [Accepted: 07/19/2016] [Indexed: 11/16/2022]
|
24
|
Li L, Wu J, Zheng F, Tang Q, Wu W, Hann SS. Inhibition of EZH2 via activation of SAPK/JNK and reduction of p65 and DNMT1 as a novel mechanism in inhibition of human lung cancer cells by polyphyllin I. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:112. [PMID: 27421653 PMCID: PMC4947306 DOI: 10.1186/s13046-016-0388-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023]
Abstract
Background Polyphyllin I (PPI), a bioactive phytochemical extracted from the Rhizoma of Paris polyphylla, has been reported to exhibit anti-cancer activity. However, the detailed mechanism underlying this remains to be elucidated. Methods Cell viability and cell cycle distribution were measured using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. The expression of enhancer of zeste homolog 2 (EZH2) mRNA was measured by quantitative real time PCR (qRT-PCR). Western blot analysis was performed to examine the phosphorylation and protein expression of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), p65, DNA methyltransferase 1 (DNMT1) and EZH2. Exogenous expression of p65, DNMT1, and EZH2 were carried out by transient transfection assays. Promoter activity of EZH2 gene was determined using Secrete-Pair Dual Luminescence Assay Kit. A xenografted tumor model in nude mice and bioluminescent imaging system were used to further test the effect of PPI in vivo. Results We showed that PPI significantly inhibited growth and induced cell cycle arrest of non-small cell lung cancer (NSCLC) cells in a dose-dependent manner. Mechanistically, we found that PPI increased the phosphorylation of SAPK/JNK, reduced protein expression of p65 and DNMT1. The inhibitor of SAPK/JNK (SP600125) blocked the PPI-inhibited p65 and DNMT1 protein expression. Interestingly, exogenously expressed p65 overcame PPI-inhibited protein expression of DNMT1. Moreover, PPI reduced EZH2 protein, mRNA, and promoter activity; overexpression of EZH2 resisted the PPI-inhibited cell growth, and intriguingly, negative feedback regulation of SAPK/JNK signaling. Finally, exogenous expression of DNMT1 antagonized the PPI-suppressed EZH2 protein expression. Consistent with this, PPI inhibited tumor growth, protein expression levels of p65, DNMT1 and EZH2, and increased phosphorylation of SAPK/JNK in vivo. Conclusion Our results show that PPI inhibits growth of NSCLC cells through SAPK/JNK-mediated inhibition of p65 and DNMT1 protein levels, subsequently; this results in the reduction of EZH2 gene expression. The interactions among p65, DNMT1 and EZH2, and feedback regulation of SAPK/JNK by EZH2 converge on the overall responses of PPI. This study reveals a novel mechanism for regulating EZH2 gene in response to PPI and suggests a new strategy for NSCLC associated therapy.
Collapse
Affiliation(s)
- Longmei Li
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong Province, 510120, China.,Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - JingJing Wu
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong Province, 510120, China
| | - Fang Zheng
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong Province, 510120, China
| | - Qing Tang
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong Province, 510120, China
| | - WanYin Wu
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Swei Sunny Hann
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong Province, 510120, China. .,Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
25
|
Du Z, Li L, Huang X, Jin J, Huang S, Zhang Q, Tao Q. The epigenetic modifier CHD5 functions as a novel tumor suppressor for renal cell carcinoma and is predominantly inactivated by promoter CpG methylation. Oncotarget 2016; 7:21618-30. [PMID: 26943038 PMCID: PMC5008310 DOI: 10.18632/oncotarget.7822] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/29/2016] [Indexed: 12/31/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common urological cancer with steadily increasing incidence. A series of tumor suppressor genes (TSGs) have been identified methylated in RCC as potential epigenetic biomarkers. We identified a 1p36.3 TSG candidate CHD5 as a methylated target in RCC through epigenome study. As the role of CHD5 in RCC pathogenesis remains elusive, we further studied its expression and molecular functions in RCC cells. We found that CHD5 was broadly expressed in most normal genitourinary tissues including kidney, but frequently silenced or downregulated by promoter CpG methylation in 78% of RCC cell lines and 44% (24/55) of primary tumors. In addition, CHD5 mutations appear to be rare in RCC tumors through genome database mining. In methylated/silenced RCC cell lines, CHD5 expression could be restored with azacytidine demethylation treatment. Ectopic expression of CHD5 in RCC cells significantly inhibited their clonogenicity, migration and invasion. Moreover, we found that CHD5, as a chromatin remodeling factor, suppressed the expression of multiple targets including oncogenes (MYC, MDM2, STAT3, CCND1, YAP1), epigenetic master genes (Bmi-1, EZH2, JMJD2C), as well as epithelial-mesenchymal transition and stem cell markers (SNAI1, FN1, OCT4). Further chromatin immunoprecipitation (ChIP) assays confirmed the binding of CHD5 to target gene promoters. Thus, we demonstrate that CHD5 functions as a novel TSG for RCC, but is predominantly inactivated by promoter methylation in primary tumors.
Collapse
Affiliation(s)
- Zhenfang Du
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK-Shenzhen Research Institute, Shatin, Hong Kong
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK-Shenzhen Research Institute, Shatin, Hong Kong
| | - Xin Huang
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK-Shenzhen Research Institute, Shatin, Hong Kong
| | - Jie Jin
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing, China
| | - Suming Huang
- Departments of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Qian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing, China
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK-Shenzhen Research Institute, Shatin, Hong Kong
| |
Collapse
|
26
|
Qu C, Bian D, Li X, Xiao J, Wu C, Li Y, Jiang T, Zhou X, Qu J, Chen JG. Transient Expression of Fez Family Zinc Finger 2 Protein Regulates the Brn3b Gene in Developing Retinal Ganglion Cells. J Biol Chem 2016; 291:7661-8. [PMID: 26861874 DOI: 10.1074/jbc.m115.689448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 11/06/2022] Open
Abstract
Retinal ganglion cells (RGCs) are projection neurons in the neural retina that relay visual information from the environment to the central nervous system. The early expression of MATH5 endows the post-mitotic precursors with RGC competence and leads to the activation ofBrn3bthat marks committed RGCs. Nevertheless, this fate commitment process and, specifically, regulation ofBrn3bremain elusive. To explore the molecular mechanisms underlying RGC generation in the mouse retina, we analyzed the expression and function of Fez family zinc finger 2 (FEZF2), a transcription factor critical for the development of projection neurons in the cerebral cortex.Fezf2mRNA and protein were transiently expressed at embryonic day 16.5 in the inner neuroblast layer and the prospective ganglion cell layer of the retina, respectively. Knockout ofFezf2in the developing retina reduced BRN3B+ cells and increased apoptotic cell markers.Fezf2knockdown by retinalin uteroelectroporation diminished BRN3B but not the coexpressed ISLET1 and BRN3A, indicating that the BRN3B decrease was the cause, not the result, of the overall reduction of BRN3B+ RGCs in theFezf2knockout retina. Moreover, the mRNA and promoter activity ofBrn3bwere increasedin vitroby FEZF2, which bound to a 5' regulatory fragment in theBrn3bgenomic locus. These results indicate that transient expression ofFezf2in the retina modulates the transcription ofBrn3band the survival of RGCs. This study improves our understanding of the transcriptional cascade required for the specification of RGCs and provides novel insights into the molecular basis of retinal development.
Collapse
Affiliation(s)
- Chunsheng Qu
- From the School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China, the China State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health of China, Wenzhou, Zhejiang 325000, China, the Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325000, China, the Clinical Laboratory of LiShui People's Hospital, Sixth Affiliated Hospital, Wenzhou Medical University, LiShui, Zhejiang 323000, China
| | - Dandan Bian
- From the School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China, the China State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health of China, Wenzhou, Zhejiang 325000, China, the Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325000, China
| | - Xue Li
- From the School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China, the China State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health of China, Wenzhou, Zhejiang 325000, China, the Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325000, China
| | - Jian Xiao
- From the School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China, the China State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health of China, Wenzhou, Zhejiang 325000, China, the Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325000, China
| | - Chunping Wu
- From the School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China, the China State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health of China, Wenzhou, Zhejiang 325000, China, the Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325000, China
| | - Yue Li
- the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Tian Jiang
- From the School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China, the China State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health of China, Wenzhou, Zhejiang 325000, China, the Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325000, China
| | - Xiangtian Zhou
- From the School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China, the China State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health of China, Wenzhou, Zhejiang 325000, China, the Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325000, China
| | - Jia Qu
- From the School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China, the China State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health of China, Wenzhou, Zhejiang 325000, China, the Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325000, China
| | - Jie-Guang Chen
- From the School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China, the China State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health of China, Wenzhou, Zhejiang 325000, China, the Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325000, China,
| |
Collapse
|
27
|
Jiang W, Cai R, Chen QQ. DNA Methylation Biomarkers for Nasopharyngeal Carcinoma: Diagnostic and Prognostic Tools. Asian Pac J Cancer Prev 2016; 16:8059-65. [DOI: 10.7314/apjcp.2015.16.18.8059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
28
|
Takaba H, Morishita Y, Tomofuji Y, Danks L, Nitta T, Komatsu N, Kodama T, Takayanagi H. Fezf2 Orchestrates a Thymic Program of Self-Antigen Expression for Immune Tolerance. Cell 2015; 163:975-87. [PMID: 26544942 DOI: 10.1016/j.cell.2015.10.013] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/19/2015] [Accepted: 09/21/2015] [Indexed: 01/02/2023]
Abstract
Self-tolerance to immune reactions is established via promiscuous expression of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs), leading to the elimination of T cells that respond to self-antigens. The transcriptional regulator Aire has been thought to be sufficient for the induction of TRAs, despite some indications that other factors may promote TRA expression in the thymus. Here, we show that the transcription factor Fezf2 directly regulates various TRA genes in mTECs independently of Aire. Mice lacking Fezf2 in mTECs displayed severe autoimmune symptoms, including the production of autoantibodies and inflammatory cell infiltration targeted to peripheral organs. These responses differed from those detected in Aire-deficient mice. Furthermore, Fezf2 expression and Aire expression are regulated by distinct signaling pathways and promote the expression of different classes of proteins. Thus, two independent factors, Fezf2 and Aire, permit the expression of TRAs in the thymus to ensure immune tolerance.
Collapse
Affiliation(s)
- Hiroyuki Takaba
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Takayanagi Osteonetwork Project, Exploratory Research for Advanced Technology Program, Japan Science and Technology Agency (JST), Tokyo 113-0033, Japan
| | - Yasuyuki Morishita
- Department of Molecular Pathology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshihiko Tomofuji
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Lynett Danks
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Takayanagi Osteonetwork Project, Exploratory Research for Advanced Technology Program, Japan Science and Technology Agency (JST), Tokyo 113-0033, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Noriko Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tatsuhiko Kodama
- Research Center for Advanced Science and Technology, Department of Systems Biology and Medicine, The University of Tokyo, Tokyo 153-8904, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Takayanagi Osteonetwork Project, Exploratory Research for Advanced Technology Program, Japan Science and Technology Agency (JST), Tokyo 113-0033, Japan.
| |
Collapse
|
29
|
Ramachandran S, Ient J, Göttgens EL, Krieg AJ, Hammond EM. Epigenetic Therapy for Solid Tumors: Highlighting the Impact of Tumor Hypoxia. Genes (Basel) 2015; 6:935-56. [PMID: 26426056 PMCID: PMC4690023 DOI: 10.3390/genes6040935] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022] Open
Abstract
In the last few decades, epigenetics has emerged as an exciting new field in development and disease, with a more recent focus towards cancer. Epigenetics has classically referred to heritable patterns of gene expression, primarily mediated through DNA methylation patterns. More recently, it has come to include the reversible chemical modification of histones and DNA that dictate gene expression patterns. Both the epigenetic up-regulation of oncogenes and downregulation of tumor suppressors have been shown to drive tumor development. Current clinical trials for cancer therapy include pharmacological inhibition of DNA methylation and histone deacetylation, with the aim of reversing these cancer-promoting epigenetic changes. However, the DNA methyltransferase and histone deacetylase inhibitors have met with less than promising results in the treatment of solid tumors. Regions of hypoxia are a common occurrence in solid tumors. Tumor hypoxia is associated with increased aggressiveness and therapy resistance, and importantly, hypoxic tumor cells have a distinct epigenetic profile. In this review, we provide a summary of the recent clinical trials using epigenetic drugs in solid tumors, discuss the hypoxia-induced epigenetic changes and highlight the importance of testing the epigenetic drugs for efficacy against the most aggressive hypoxic fraction of the tumor in future preclinical testing.
Collapse
Affiliation(s)
- Shaliny Ramachandran
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford OX3 7DQ, UK.
| | - Jonathan Ient
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford OX3 7DQ, UK.
| | - Eva-Leonne Göttgens
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford OX3 7DQ, UK.
| | - Adam J Krieg
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Ester M Hammond
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
30
|
Yuan L, Liu ZH, Lin ZR, Xu LH, Zhong Q, Zeng MS. Recurrent FGFR3-TACC3 fusion gene in nasopharyngeal carcinoma. Cancer Biol Ther 2015; 15:1613-21. [PMID: 25535896 DOI: 10.4161/15384047.2014.961874] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common head and neck malignancies and exhibits regional differences in incidence. Because many fusion genes have been discovered in different types of tumors over the past few years, we aimed to investigate the existence of a fusion gene in primary NPC patients using RNA-seq. In this study, for the first time, we found that fibroblast growth factor receptor 3-transforming acidic coiled-coil-containing protein 3 (FGFR3-TACC3) fusion transcripts are recurrently detected in NPC. The presence of this fusion gene was also detected in head and neck cancer, esophageal squamous cell carcinoma (ESCC), and lung cancer. Furthermore, we found certain new isoforms of the FGFR3-TACC3 fusion transcripts, such as a gene fusion between exon 18 of FGFR3 and exon 6 or exon 14 of TACC3 and agene fusion between exon 19 of FGFR3 and exon 11 of TACC3. In addition, we showed that the FGFR3-TACC3 fusion gene promotes cell proliferation, colony formation, and transforming ability in vitro, whereas the FGFR3-TACC3 K508M mutant or treatment with the FGFR inhibitor PD173074 abrogates these effects, suggesting that FGFR3-TACC3 most likely exerts its effects through activation of FGFR kinase activity. This activation likely leads to the development of NPC. Additionally, FGFR3-TACC3 could trigger activation of the ERK and Akt signaling pathways, whereas FGFR3-TACC3 K508M mutant could not, suggesting that these 2 signaling pathways might be involved in the function of FGFR3-TACC3. Taken together, our data demonstrated the oncogenic role of FGFR3-TACC3 in vitro, indicating that FGFR3-TACC3 may be useful as a diagnostic marker and therapeutic target in cancers.
Collapse
Key Words
- CCND1, cyclin D1
- DMSO, dimethyl sulfoxide
- DTT, DL-dithiothreitol
- FBS, fetal bovine serum
- FGFR3, fibroblast growth factor receptor 3
- FGFR3-TACC3
- LTBR, lymphotoxin β receptor
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide
- NPC
- NPC, nasopharyngeal carcinoma
- PBS, phosphate-buffered saline
- PI, propidium iodide
- RT-PCR, reverse transcription-PCR
- SDS, sodium dodecyl sulfate
- TACC3, transforming acidic coiled-coil-containing protein 3
- fusion gene
- proliferation
- tumorigenesis
Collapse
Affiliation(s)
- Li Yuan
- a State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine ; Sun Yat-sen University Cancer Center ; Guangzhou , China
| | | | | | | | | | | |
Collapse
|
31
|
Li L, Zhang Y, Fan Y, Sun K, Su X, Du Z, Tsao SW, Loh TKS, Sun H, Chan ATC, Zeng YX, Chan WY, Chan FK, Tao Q. Characterization of the nasopharyngeal carcinoma methylome identifies aberrant disruption of key signaling pathways and methylated tumor suppressor genes. Epigenomics 2014; 7:155-73. [PMID: 25479246 DOI: 10.2217/epi.14.79] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIMS Nasopharyngeal carcinoma (NPC) is a common tumor consistently associated with Epstein-Barr virus infection and prevalent in South China, including Hong Kong, and southeast Asia. Current genomic sequencing studies found only rare mutations in NPC, indicating its critical epigenetic etiology, while no epigenome exists for NPC as yet. MATERIALS & METHODS We profiled the methylomes of NPC cell lines and primary tumors, together with normal nasopharyngeal epithelial cells, using methylated DNA immunoprecipitation (MeDIP). RESULTS We observed extensive, genome-wide methylation of cellular genes. Epigenetic disruption of Wnt, MAPK, TGF-β and Hedgehog signaling pathways was detected. Methylation of Wnt signaling regulators (SFRP1, 2, 4 and 5, DACT2, DKK2 and DKK3) was frequently detected in tumor and nasal swab samples from NPC patients. Functional studies showed that these genes are bona fide tumor-suppressor genes for NPC. CONCLUSION The NPC methylome shows a special high-degree CpG methylation epigenotype, similar to the Epstein-Barr virus-infected gastric cancer, indicating a critical epigenetic etiology for NPC pathogenesis.
Collapse
Affiliation(s)
- Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yuen JWF, Chung GTY, Lun SWM, Cheung CCM, To KF, Lo KW. Epigenetic inactivation of inositol polyphosphate 4-phosphatase B (INPP4B), a regulator of PI3K/AKT signaling pathway in EBV-associated nasopharyngeal carcinoma. PLoS One 2014; 9:e105163. [PMID: 25126743 PMCID: PMC4134277 DOI: 10.1371/journal.pone.0105163] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/21/2014] [Indexed: 12/23/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common viral-associated neoplasm in which multiple signaling cascades are interfered with by Epstein-Bar virus (EBV) latent proteins and various genetic alterations. Aside from the previously reported PIK3CA amplification, we examined the role of INPP4B, a negative regulator of the PI3K/AKT signaling pathway in the development of NPC. By RT-PCR and Western blotting, we revealed that the expression of INPP4B was down-regulated in all five established EBV-positive tumor lines. While INPP4B was consistently expressed in normal nasopharyngeal epithelial cells, downregulation of INPP4B was found in 32/65 (49.2%) of primary tumors by immunohistochemistry. Furthermore, our study also demonstrated the hypermethylation of the 5'CpG island of INPP4B in the tumors in which INPP4B transcription was downregulated. Notably, the re-expression of INPP4B was detected in the NPC cells treated with the demethylation agent (5-aza-2'deoxycytidine). Our study showed that promoter hypermethylation was the major mechanism for transcriptional silencing of INPP4B in NPC. Furthermore, restoration of INPP4B expression significantly suppressed PI3K/AKT downstream signals in the NPC C666-1 cells. In vivo growth inhibition was clearly demonstrated in the tumor cells stably expressing INPP4B. The findings indicate that epigenetic inactivation of INPP4B is one of the key mechanisms in activating PI3K/AKT signaling cascade and playing a role in the tumorigenesis of NPC.
Collapse
Affiliation(s)
- Jessie Wai-Fong Yuen
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Hong Kong SAR
| | - Grace Tin-Yun Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Hong Kong SAR
| | - Samantha Wei-Man Lun
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Hong Kong SAR
| | - Chartia Ching-Mei Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Hong Kong SAR
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Hong Kong SAR
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR
- * E-mail:
| |
Collapse
|
33
|
It takes two to tango, a dance between the cells of origin and cancer stem cells in the Drosophila larval brain. Semin Cell Dev Biol 2014; 28:63-9. [PMID: 24631354 DOI: 10.1016/j.semcdb.2014.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/03/2014] [Indexed: 01/12/2023]
Abstract
During malignant transformation the cells of origin give rise to cancer stem cells which possess the capacity to undergo limitless rounds of self-renewing division, regenerating themselves while producing more tumor cells. Within normal tissues, a limitless self-renewal capacity is unique to the stem cells, which divide asymmetrically to produce more restricted progenitors. Accumulating evidence suggests that misregulation of the self-renewal machinery in stem cell progeny can lead to tumorigenesis, but how it influences the properties of the resulting tumors remains unclear. Studies of the type II neural stem cell (neuroblast) lineages in the Drosophila larval brain have identified a regulatory cascade that promotes commitment to a progenitor cell identity by restricting their response to the self-renewal machinery. Brain tumor (Brat) and Numb initiate this cascade by asymmetrically extinguishing the activity of the self-renewal factors. Subsequently, Earmuff (Erm) and the SWI/SNF complex stably restrict the competence of the progenitor cell to respond to reactivation of self-renewal mechanisms. Together, this cascade programs the progenitor cell to undergo limited rounds of division, generating exclusive differentiated progeny. Here we review how defects in this cascade lead to tumor initiation and how inhibiting the self-renewal mechanisms may be an effective strategy to block CSC expansion.
Collapse
|
34
|
Li J, Gong P, Lyu X, Yao K, Li X, Peng H. Aberrant CpG island methylation of PTEN is an early event in nasopharyngeal carcinoma and a potential diagnostic biomarker. Oncol Rep 2014; 31:2206-12. [PMID: 24604064 DOI: 10.3892/or.2014.3061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/14/2014] [Indexed: 11/06/2022] Open
Abstract
The inactivation of phosphatase and tensin homolog (PTEN) due to its CpG island hypermethylation has been observed in some types of tumors except nasopharyngeal carcinoma (NPC). In the present study, we focused on the aberrant methylation of PTEN CpG islands in NPC. The mRNA expression of PTEN was detected by quantitative PCR in 45 NPC and 22 non-tumor nasopharyngeal epithelial (NP) tissues. The methylation status of PTEN was examined by methylation-specific polymerase chain reaction and sequencing. The mRNA expression of PTEN in three NPC cell lines treated with 5-aza-2'-deoxycytidine (5-aza-dC) was also examined. PTEN was downregulated in both NPC tissues and NPC cell lines and a relatively higher methylation level of PTEN was found in NPC specimens (82.2%) relative to NP tissues (5.3%). The PTEN mRNA expression was restored in NPC cell lines by treatment with 5-aza-dC. These results first reveal an epigenetic alteration, aberrant methylation of PTEN, in NPC, which is probably an early event and may be regarded as a novel candidate biomarker for early stage of NPC detection and prevention.
Collapse
Affiliation(s)
- Jinbang Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Pinggui Gong
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaoming Lyu
- Cancer Research Institute and the Provincial Key Laboratory of Functional Proteomics, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kaitai Yao
- Cancer Research Institute and the Provincial Key Laboratory of Functional Proteomics, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xin Li
- Cancer Research Institute and the Provincial Key Laboratory of Functional Proteomics, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hong Peng
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
35
|
Choi GCG, Li J, Wang Y, Li L, Zhong L, Ma B, Su X, Ying J, Xiang T, Rha SY, Yu J, Sung JJY, Tsao SW, Chan ATC, Tao Q. The Metalloprotease ADAMTS8 Displays Antitumor Properties through Antagonizing EGFR–MEK–ERK Signaling and Is Silenced in Carcinomas by CpG Methylation. Mol Cancer Res 2013; 12:228-38. [PMID: 24184540 DOI: 10.1158/1541-7786.mcr-13-0195] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Gigi C G Choi
- Room 315, Cancer Center, PWH, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|