1
|
Rahman M, Khatun A, Liu L, Barkla BJ. Brassicaceae Mustards: Phytochemical Constituents, Pharmacological Effects, and Mechanisms of Action against Human Disease. Int J Mol Sci 2024; 25:9039. [PMID: 39201724 PMCID: PMC11354652 DOI: 10.3390/ijms25169039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
The Brassicaceae genus consists of many economically important mustards of value for food and medicinal purposes, namely Asian mustard (Brassica juncea), ball mustard (Neslia paniculata), black mustard (B. nigra), garlic mustard (Alliaria petiolata), hedge mustard (Sisymbrium officinale), Asian hedge mustard (S. orientale), oilseed rape (B. napus), rapeseed (B. rapa), treacle mustard (Erysimum repandum), smooth mustard (S. erysimoides), white ball mustard (Calepina irregularis), white mustard (Sinapis alba), and Canola. Some of these are commercially cultivated as oilseeds to meet the global demand for a healthy plant-derived oil, high in polyunsaturated fats, i.e., B. napus and B. juncea. Other species are foraged from the wild where they grow on roadsides and as a weed of arable land, i.e., E. repandum and S. erysimoides, and harvested for medicinal uses. These plants contain a diverse range of bioactive natural products including sulfur-containing glucosinolates and other potentially valuable compounds, namely omega-3-fatty acids, terpenoids, phenylpropanoids, flavonoids, tannins, S-methyl cysteine sulfoxide, and trace-elements. Various parts of these plants and many of the molecules that are produced throughout the plant have been used in traditional medicines and more recently in the mainstream pharmaceutical and food industries. This study relates the uses of mustards in traditional medicines with their bioactive molecules and possible mechanisms of action and provides an overview of the current knowledge of Brassicaceae oilseeds and mustards, their phytochemicals, and their biological activities.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Southern Cross Analytical Services, Southern Cross University, Lismore, NSW 2480, Australia; (M.R.); (A.K.)
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Amina Khatun
- Southern Cross Analytical Services, Southern Cross University, Lismore, NSW 2480, Australia; (M.R.); (A.K.)
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Bronwyn J. Barkla
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| |
Collapse
|
2
|
Wang ZQ, Qu TR, Zhang ZS, Zeng FS, Song HJ, Zhang K, Guo P, Tong Z, Hou DY, Liu X, Wang L, Wang H, Xu W. A Transformable Specific-Responsive Peptide for One-Step Synergistic Therapy of Bladder Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310416. [PMID: 38660815 DOI: 10.1002/smll.202310416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/07/2024] [Indexed: 04/26/2024]
Abstract
Synergistic therapy has shown greater advantages compared with monotherapy. However, the complex multiple-administration plan and potential side effects limit its clinical application. A transformable specific-responsive peptide (TSRP) is utilized to one-step achieve synergistic therapy integrating anti-tumor, anti-angiogenesis and immune response. The TSRP is composed of: i) Recognition unit could specifically target and inhibit the biological function of FGFR-1; ii) Transformable unit could self-assembly and trigger nanofibers formation; iii) Reactive unit could specifically cleaved by MMP-2/9 in tumor micro-environment; iv) Immune unit, stimulate the release of immune cells when LTX-315 (Immune-associated oncolytic peptide) exposed. Once its binding to FGFR-1, the TSRP could cleaved by MMP-2/9 to form the nanofibers on the cell membrane, with a retention time of up to 12 h. Through suppressing the phosphorylation levels of ERK 1/2 and PI3K/AKT signaling pathways downstream of FGFR-1, the TSRP significant inhibit the growth of tumor cells and the formation of angioginesis. Furthermore, LTX-315 is exposed after TSRP cleavage, resulting in Calreticulin activation and CD8+ T cells infiltration. All above processes together contribute to the increasing survival rate of tumor-bearing mice by nearly 4-folds. This work presented a unique design for the biological application of one-step synergistic therapy of bladder cancer.
Collapse
Affiliation(s)
- Zi-Qi Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Tian-Rui Qu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhi-Shuai Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Fan-Shu Zeng
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hong-Jian Song
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Kuo Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Pengyu Guo
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhichao Tong
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, 150001, China
| | - Da-Yong Hou
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xiao Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Lu Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hao Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| |
Collapse
|
3
|
Nazareth TDM, Soriano Pérez E, Luz C, Meca G, Quiles JM. Comprehensive Review of Aflatoxin and Ochratoxin A Dynamics: Emergence, Toxicological Impact, and Advanced Control Strategies. Foods 2024; 13:1920. [PMID: 38928866 PMCID: PMC11203094 DOI: 10.3390/foods13121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Filamentous fungi exhibit remarkable adaptability to diverse substrates and can synthesize a plethora of secondary metabolites. These metabolites, produced in response to environmental stimuli, not only confer selective advantages but also encompass potentially deleterious mycotoxins. Mycotoxins, exemplified by those originating from Alternaria, Aspergillus, Penicillium, and Fusarium species, represent challenging hazards to both human and animal health, thus warranting stringent regulatory control. Despite regulatory frameworks, mycotoxin contamination remains a pressing global challenge, particularly within cereal-based matrices and their derived by-products, integral components of animal diets. Strategies aimed at mitigating mycotoxin contamination encompass multifaceted approaches, including biological control modalities, detoxification procedures, and innovative interventions like essential oils. However, hurdles persist, underscoring the imperative for innovative interventions. This review elucidated the prevalence, health ramifications, regulatory paradigms, and evolving preventive strategies about two prominent mycotoxins, aflatoxins and ochratoxin A. Furthermore, it explored the emergence of new fungal species, and biocontrol methods using lactic acid bacteria and essential mustard oil, emphasizing their efficacy in mitigating fungal spoilage and mycotoxin production. Through an integrative examination of these facets, this review endeavored to furnish a comprehensive understanding of the multifaceted challenges posed by mycotoxin contamination and the emergent strategies poised to ameliorate its impact on food and feed safety.
Collapse
Affiliation(s)
- Tiago de Melo Nazareth
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (E.S.P.); (C.L.); (G.M.); (J.M.Q.)
| | | | | | | | | |
Collapse
|
4
|
Hu X, Sun C, Ren X, Ge S, Xie C, Li X, Zhu Y, Ding H. Contrast-enhanced Ultrasound Combined With Elastography for the Evaluation of Muscle-invasive Bladder Cancer in Rats. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:1999-2011. [PMID: 36896871 DOI: 10.1002/jum.16216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES By comparing with the control group, we evaluated the usefulness of contrast-enhanced ultrasound (CEUS) combined with elastography for the assessment of muscle invasion by bladder cancer (MIBC) in a Sprague-Dawley (SD) rat model. METHODS In the experimental group, 40 SD rats developed in situ bladder cancer (BLCA) in response to N-methyl-N-nitrosourea treatment, whereas 40 SD rats were included in the control group for comparison. We compared PI, Emean , microvessel density (MVD), and collagen fiber content (CFC) between the two groups. In the experimental group, Bland-Altman test was used to assess the relationships between various parameters. The largest Youden value was used as the cut-off point, and binomial logistic regression analysis was performed to analyze the PI and Emean . Receiver operating characteristic (ROC) curve analysis was performed to determine the diagnostic power of parameters, individually and in combination. RESULTS The PI, Emean , MVD, and CFC were significantly lower in the control group than in the experimental group (P < .05). The PI, Emean , MVD, and CFC were significantly higher for MIBC than for non-muscle-invasive bladder cancer (P < .05). There were significant correlations between PI and MVD, and between Emean and CFC. The diagnostic efficiency analysis showed PI had the highest sensitivity, CFC had the highest specificity, and PI + Emean had the highest diagnostic efficacy. CONCLUSION CEUS and elastography can distinguish lesions from normal tissue. PI, MVD, Emean , and CFC were useful for the detection of BLCA myometrial invasion. The comprehensive utilization of PI and Emean improved diagnostic accuracy and have clinical application.
Collapse
Affiliation(s)
- Xing Hu
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuanyu Sun
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinping Ren
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shengyang Ge
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chunmei Xie
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiangyu Li
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingfeng Zhu
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Seed Meals from Brassica nigra and Eruca sativa Control Artificial Nosema ceranae Infections in Apis mellifera. Microorganisms 2021; 9:microorganisms9050949. [PMID: 33924845 PMCID: PMC8146933 DOI: 10.3390/microorganisms9050949] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/29/2022] Open
Abstract
Nosema ceranae is a widespread parasite responsible for nosemosis Type C in Apis mellifera honey bees, reducing colony survival. The antibiotic fumagillin is the only commercial treatment available, but concerns are emerging about its persistence, safety, and pathogen resistance. The use of natural substances from Brassicaceae defatted seed meals (DSMs) with known antimicrobial and antioxidant properties was explored. Artificially infected bees were fed for 8 days with candies enriched with two concentrations, 2% and 4%, of two DSMs from Brassica nigra and Eruca sativa, containing a known amount of different glucosinolates (GSLs). The food palatability, GSL intake, bee survival, and treatment effects on N. ceranae spore counts were evaluated. Food consumption was higher for the two 2% DSM patties, for both B. nigra and E. sativa, but the GSL intake did not increase by increasing DSM to 4%, due to the resulting lower palatability. The 2% B. nigra patty decreased the bee mortality, while the higher concentration had a toxic effect. The N. ceranae control was significant for all formulates with respect to the untreated control (312,192.6 +/- 14,443.4 s.e.), and was higher for 4% B. nigra (120,366.3 +/- 13,307.1 s.e.). GSL hydrolysis products, the isothiocyanates, were detected and quantified in bee gut tissues. Brassicaceae DSMs showed promising results for their nutraceutical and protective effects on bees artificially infected with N. ceranae spores at the laboratory level. Trials in the field should confirm these results.
Collapse
|
6
|
Natural Products Targeting the Mitochondria in Cancers. Molecules 2020; 26:molecules26010092. [PMID: 33379233 PMCID: PMC7795732 DOI: 10.3390/molecules26010092] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022] Open
Abstract
There are abundant sources of anticancer drugs in nature that have a broad prospect in anticancer drug discovery. Natural compounds, with biological activities extracted from plants and marine and microbial metabolites, have significant antitumor effects, but their mechanisms are various. In addition to providing energy to cells, mitochondria are involved in processes, such as cell differentiation, cell signaling, and cell apoptosis, and they have the ability to regulate cell growth and cell cycle. Summing up recent data on how natural products regulate mitochondria is valuable for the development of anticancer drugs. This review focuses on natural products that have shown antitumor effects via regulating mitochondria. The search was done in PubMed, Web of Science, and Google Scholar databases, over a 5-year period, between 2015 and 2020, with a keyword search that focused on natural products, natural compounds, phytomedicine, Chinese medicine, antitumor, and mitochondria. Many natural products have been studied to have antitumor effects on different cells and can be further processed into useful drugs to treat cancer. In the process of searching for valuable new drugs, natural products such as terpenoids, flavonoids, saponins, alkaloids, coumarins, and quinones cover the broad space.
Collapse
|
7
|
Mastuo T, Miyata Y, Yuno T, Mukae Y, Otsubo A, Mitsunari K, Ohba K, Sakai H. Molecular Mechanisms of the Anti-Cancer Effects of Isothiocyanates from Cruciferous Vegetables in Bladder Cancer. Molecules 2020; 25:molecules25030575. [PMID: 32013065 PMCID: PMC7037050 DOI: 10.3390/molecules25030575] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
Bladder cancer (BC) is a representative of urological cancer with a high recurrence and metastasis potential. Currently, cisplatin-based chemotherapy and immune checkpoint inhibitors are used as standard therapy in patients with advanced/metastatic BC. However, these therapies often show severe adverse events, and prolongation of survival is unsatisfactory. Therefore, a treatment strategy using natural compounds is of great interest. In this review, we focused on the anti-cancer effects of isothiocyanates (ITCs) derived from cruciferous vegetables, which are widely cultivated and consumed in many regions worldwide. Specifically, we discuss the anti-cancer effects of four ITC compounds—allyl isothiocyanate, benzyl isothiocyanate, sulforaphane, and phenethyl isothiocyanate—in BC; the molecular mechanisms underlying their anti-cancer effects; current trends and future direction of ITC-based treatment strategies; and the carcinogenic potential of ITCs. We also discuss the advantages and limitations of each ITC in BC treatment, furthering the consideration of ITCs in treatment strategies and for improving the prognosis of patients with BC.
Collapse
|
8
|
Effect of allyl isothiocyanate on transcriptional profile, aflatoxin synthesis, and Aspergillus flavus growth. Food Res Int 2019; 128:108786. [PMID: 31955757 DOI: 10.1016/j.foodres.2019.108786] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
The goals of this study were to determine the efficacy of allyl isothiocyanate (AITC) against the growth of A. flavus and Aflatoxin B1 (AFB1) production as well as to evaluate changes in the transcriptome profile when colonizing maize. A. flavus was inoculated in potato dextrose agar (PDA), the plates were placed inside glass jars and the mycelial growth (MG) was monitored for 7 d. Likewise, maize grains were contaminated with A. flavus in glass jars of 1 L and treated with 0.125, 0.25, 0.5, 1 and 5 µL of AITC. The moisture content (MC) of grains was 15 and 21%. After 7 days of storage, the MG was significantly reduced in doses higher than 0.125 µL/L of AITC. All doses of AITC reduced significantly the fungal growth and AFB1 production in maize after 30 d, regardless of MC. The transcriptional changes caused by AITC treatment showed significant overexpression for environmental and global transcription factors. These results suggest that AITC could be used as a fumigant to avoid the growth of A. flavus and the production of AFB1, moreover, confirm transcriptional alteration of genes involved in AFB1 and other processes key for normal fungal growth and development.
Collapse
|
9
|
Strasser-Weippl K, Higgins MJ, Chapman JAW, Ingle JN, Sledge GW, Budd GT, Ellis MJ, Pritchard KI, Clemons MJ, Badovinac-Crnjevic T, Han L, Gelmon KA, Rabaglio M, Elliott C, Shepherd LE, Goss PE. Effects of Celecoxib and Low-dose Aspirin on Outcomes in Adjuvant Aromatase Inhibitor-Treated Patients: CCTG MA.27. J Natl Cancer Inst 2019; 110:1003-1008. [PMID: 29554282 DOI: 10.1093/jnci/djy017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Background Celecoxib and low-dose aspirin might decrease risk of breast cancer recurrence. Methods In the Canadian Cancer Trials Group MA.27, postmenopausal hormone receptor-positive breast cancer patients were randomly assigned (2 × 2) to adjuvant exemestane or anastrozole, and celecoxib or placebo. Low-dose aspirin of 81 mg or less was a stratification factor. Due to concerns about cardiac toxicity, celecoxib use was stopped in December 2004, while stratification by aspirin use was removed through protocol amendment. We examined the effects of celecoxib and low-dose aspirin on event-free survival (EFS), defined as time from random assignment to time of locoregional or distant disease recurrence, new primary breast cancer, or death from any cause; distant disease-free survival (DDFS); and overall survival (OS). All statistical tests were two-sided. Results Random assignment to celecoxib (n = 811, 50.0%) or placebo (n = 811, 50.0%) was discontinued after 18 months (n = 1622). At a median of 4.1 years' follow-up, among 1622 patients, 186 (11.5%) patients had an EFS event: 80 (4.9%) had distant relapse, and 125 (7.7%) died from any cause. Celecoxib did not statistically significantly impact EFS, DDFS, or OS in univariate analysis (respectively, P = .92, P = .55, and P = .56) or multivariable analysis (respectively, P = .74, P = .60, and P = .76). Low-dose aspirin use (aspirin users n = 476, 21.5%; non-aspirin users n = 1733, 78.5%) was associated in univariate analyses with worse EFS (hazard ratio [HR] = 1.48, 95% confidence interval [CI] = 1.12 to 1.96, P = 0.006) and worse OS (HR = 1.87, 95% CI = 1.35 to 2.61, P < .001). After adjusting for baseline characteristics and treatment arm, aspirin use showed no statistical association with EFS (P = .08) and DDFS (P = .82), but was associated with statistically worse OS (HR = 1.67, 95% CI = 1.13 to 2.49, P = .01). Conclusion Random assignment to short-term (≤18 months) celecoxib as well as use of low-dose aspirin showed no effect on DDFS and EFS in multivariable analysis. Low-dose aspirin increased "all-cause" mortality, presumably because of higher preexisting cardiovascular risks.
Collapse
Affiliation(s)
| | | | | | - James N Ingle
- Division of Medical Oncology, Mayo Clinic, Rochester, MN
| | | | - George T Budd
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX
| | | | - Mark J Clemons
- Division of Medical Oncology, Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | - Lei Han
- Center for Oncology, Hematology and Palliative Care, Wilhelminen Hospital, Vienna, Austria
| | | | - Manuela Rabaglio
- International Breast Cancer Study Group Coordinating Center, Inselspital, Berne, Switzerland
| | - Catherine Elliott
- Center for Oncology, Hematology and Palliative Care, Wilhelminen Hospital, Vienna, Austria
| | - Lois E Shepherd
- Center for Oncology, Hematology and Palliative Care, Wilhelminen Hospital, Vienna, Austria
| | - Paul E Goss
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Nazareth TDM, Quiles JM, Torrijos R, Luciano FB, Mañes J, Meca G. Antifungal and antimycotoxigenic activity of allyl isothiocyanate on barley under different storage conditions. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Abstract
PURPOSE OF REVIEW There has been an increasing interest in using complementary and alternative medicine (CAM) approaches to treat cancer. It is therefore relevant and timely to determine if CAM biomarkers can be identified and developed to guide cancer diagnosis and treatment. Herein, we review the status of cancer biomarkers in CAM research and treatment to stimulate further research in this area. RECENT FINDINGS Studies on promising anti-cancer natural products, such as PHY906, honokiol, bryostatin-1, and sulforaphane have demonstrated the existence of potential cancer biomarker(s). Additional studies are required to further develop and ultimately validate these biomarkers that can predict clinical activity of the anti-cancer natural products used alone or in combination with chemotherapeutic agents. A systematic approach is needed to identify and develop CAM treatment associated biomarkers and to define their role in facilitating clinical decision-making. The expectation is to use these biomarkers in determining potential options for CAM treatment, examining treatment effects and toxicity and/or clinical efficacy in patients with cancer.
Collapse
Affiliation(s)
- Aniruddha Ganguly
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at the National Institutes of Health, 9609 Medical Center Drive, Rm. 4-W438, Rockville, MD, 20850, USA.
| | - David Frank
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Nagi Kumar
- H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL, 33612, USA
| | - Yung-Chi Cheng
- Department of Pharmacology, Developmental Therapeutics Program, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Edward Chu
- Department of Medicine, Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15232, USA
| |
Collapse
|
12
|
Chen HE, Lin JF, Tsai TF, Lin YC, Chou KY, Hwang TIS. Allyl Isothiocyanate Induces Autophagy through the Up-Regulation of Beclin-1 in Human Prostate Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1-19. [PMID: 30284468 DOI: 10.1142/s0192415x18500830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Allyl isothiocyanate (AITC), one of the most widely studied phytochemicals, inhibits the survival of human prostate cancer cells while minimally affecting normal prostate epithelial cells. Our study demonstrates the mechanism of AITC-induced cell death in prostate cancer cells. AITC induces autophagy in RV1 and PC3 cells, judging from the increased level of LC3-II protein in a dose- and time-dependent manner, but not in the normal prostate epithelial cell (PrEC). Inhibition of autophagy in AITC-treated cells decreased cell viability and enhanced apoptosis, suggesting that the autophagy played a protective role. There are several pathways activated in ATIC-treated cells. We detected the phosphorylation forms of mTOR, ERK, AMPK, JNK and p38, and ERK AMPK and JNK activation were also detected. However, inhibition of AITC-activated ERK, AMPK and JNK by pre-treatment of specific inhibitors did not alter autophagy induction. Finally, increased beclin-1 expression was detected in AITC-treated cells, and inhibition of AITC-induced beclin-1 attanuated autophagy induction, indicating that AITC-induced autophagy occurs through upregulating beclin-1. Overall, our data show for the first time that AITC induces protective autophagy in Rv1 and PC3 cells through upregulation of beclin-1. Our results could potentially contribute to a therapeutic application of AITC in prostate cancer patients.
Collapse
Affiliation(s)
- Hung-En Chen
- * Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| | - Ji-Fan Lin
- † Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| | - Te-Fu Tsai
- * Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
- ‡ Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei 242, Taiwan
| | - Yi-Chia Lin
- * Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
- ‡ Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei 242, Taiwan
| | - Kuang-Yu Chou
- * Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
- ‡ Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei 242, Taiwan
| | - Thomas I-Sheng Hwang
- * Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
- ‡ Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei 242, Taiwan
- § Department of Urology, Taipei Medical University, Taipei 111, Taiwan
| |
Collapse
|
13
|
Burčul F, Generalić Mekinić I, Radan M, Rollin P, Blažević I. Isothiocyanates: cholinesterase inhibiting, antioxidant, and anti-inflammatory activity. J Enzyme Inhib Med Chem 2018. [PMID: 29513045 PMCID: PMC6010089 DOI: 10.1080/14756366.2018.1442832] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Finding a new type of cholinesterase inhibitor that would overcome the brain availability and pharmacokinetic parameters or hepatotoxic liability has been a focus of investigations dealing with the treatment of Alzheimer's disease. Isothiocyanates have not been previously investigated as potential cholinesterase inhibitors. These compounds can be naturally produced from their glucosinolate precursors, secondary metabolites widely distributed in our daily Brassica vegetables. Among 11 tested compounds, phenyl isothiocyanate and its derivatives showed the most promising inhibitory activity. 2-Methoxyphenyl ITC showed best inhibition on acetylcholinesterase with IC50 of 0.57 mM, while 3-methoxyphenyl ITC showed the best inhibition on butyrylcholinesterase having 49.2% at 1.14 mM. Assessment of the antioxidant efficacy using different methods led to a similar conclusion. The anti-inflammatory activity was also tested using human COX-2 enzyme, ranking phenyl isothiocyanate, and 3-methoxyphenyl isothiocyanate as most active, with ∼99% inhibition at 50 μM.
Collapse
Affiliation(s)
- Franko Burčul
- a Department of Analytical Chemistry, Faculty of Chemistry and Technology , University of Split , Split , Croatia
| | - Ivana Generalić Mekinić
- b Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology , University of Split , Split , Croatia
| | - Mila Radan
- c Department of Biochemistry, Faculty of Chemistry and Technology , University of Split , Split , Croatia
| | - Patrick Rollin
- d ICOA, UMR 7311, Université d'Orléans et CNRS , Orléans , France
| | - Ivica Blažević
- e Department of Organic Chemistry, Faculty of Chemistry and Technology , University of Split , Split , Croatia
| |
Collapse
|
14
|
Mangano K, Mazzon E, Basile MS, Di Marco R, Bramanti P, Mammana S, Petralia MC, Fagone P, Nicoletti F. Pathogenic role for macrophage migration inhibitory factor in glioblastoma and its targeting with specific inhibitors as novel tailored therapeutic approach. Oncotarget 2018; 9:17951-17970. [PMID: 29707160 PMCID: PMC5915168 DOI: 10.18632/oncotarget.24885] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/08/2018] [Indexed: 12/21/2022] Open
Abstract
Macrophage Migration Inhibitory Factor (MIF) is a pro-inflammatory cytokine expressed by a variety of cell types. Although MIF has been primarily studied for its role in the pathogenesis of autoimmune diseases, it has also been shown to promote tumorigenesis and it is over expressed in various malignant tumors. MIF is able to induce angiogenesis, cell cycle progression, and to block apoptosis. As tailored therapeutic approaches for the inhibition of endogenous MIF are being developed, it is important to evaluate the role of MIF in individual neoplastic conditions that may benefit from specific MIF inhibitors. Along with this line, in this paper, we have reviewed the evidence of the involvement of MIF in the etiopathogenesis and progression of glioblastoma and the preclinical data suggesting the possible use of specific MIF inhibition as a potential novel therapeutic strategy for brain tumors.
Collapse
Affiliation(s)
- Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Santa Mammana
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | - Maria Cristina Petralia
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Department of Formative Processes, University of Catania, Catania, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
15
|
Leone A, Diorio G, Sexton W, Schell M, Alexandrow M, Fahey JW, Kumar NB. Sulforaphane for the chemoprevention of bladder cancer: molecular mechanism targeted approach. Oncotarget 2018; 8:35412-35424. [PMID: 28423681 PMCID: PMC5471065 DOI: 10.18632/oncotarget.16015] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/22/2017] [Indexed: 12/11/2022] Open
Abstract
The clinical course for both early and late stage Bladder Cancer (BC) continues to be characterized by significant patient burden due to numerous occurrences and recurrences requiring frequent surveillance strategies, intravesical drug therapies, and even more aggressive treatments in patients with locally advanced or metastatic disease. For these reasons, BC is also the most expensive cancer to treat. Fortunately, BC offers an excellent platform for chemoprevention interventions with potential to optimize the systemic and local exposure of promising agents to the bladder mucosa. However, other than smoking cessation, there is a paucity of research that systematically examines agents for chemoprevention of bladder cancers. Adopting a systematic, molecular-mechanism based approach, the goal of this review is to summarize epidemiological, in vitro, and preclinical studies, including data regarding the safety, bioavailability, and efficacy of agents evaluated for bladder cancer chemoprevention. Based on the available studies, phytochemicals, specifically isothiocyanates such as sulforaphane, present in Brassicaceae or “cruciferous” vegetables in the precursor form of glucoraphanin are: (a) available in standardized formulations; (b) bioavailable- both systemically and in the bladder; (c) observed to be potent inhibitors of BC carcinogenesis through multiple mechanisms; and (d) without toxicities at these doses. Based on available evidence from epidemiological, in vitro, preclinical, and early phase trials, phytochemicals, specifically isothiocyanates (ITCs) such as sulforaphane (SFN) represent a promising potential chemopreventitive agent in bladder cancer.
Collapse
Affiliation(s)
- Andrew Leone
- Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Inc., Tampa, FL, USA
| | - Gregory Diorio
- Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Inc., Tampa, FL, USA
| | - Wade Sexton
- Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Inc., Tampa, FL, USA
| | - Michael Schell
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Inc., Tampa, FL, USA
| | - Mark Alexandrow
- Cancer Biology and Evolution, H. Lee Moffitt Cancer Center & Research Institute, Inc., Tampa, FL, USA
| | - Jed W Fahey
- Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nagi B Kumar
- Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Inc., Tampa, FL, USA
| |
Collapse
|
16
|
Zhong J, Yu X, Dong X, Lu H, Zhou W, Li L, Li Z, Sun P, Shi X. Therapeutic role of meloxicam targeting secretory clusterin-mediated invasion in hepatocellular carcinoma cells. Oncol Lett 2018; 15:7191-7199. [PMID: 29731881 PMCID: PMC5920948 DOI: 10.3892/ol.2018.8186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 02/28/2018] [Indexed: 12/23/2022] Open
Abstract
Recurrence and metastasis are the two leading causes of poor prognosis in patients with hepatocellular carcinoma (HCC). Secreted clusterin (sCLU) is a stress-induced chaperone that is overexpressed in HCC. However, the precise molecular mechanisms of sCLU in HCC invasion and migration are largely unknown. In the present study, it was indicated that downregulation of sCLU significantly alleviated invasiveness whereas overexpression of sCLU notably enhanced the number of invasive cells via mediating the expression level of MMP-2 and E-cadherin in Bel-7402 and SMMC-7721 cells. Furthermore, as an important mediator of invasiveness, sCLU may be responsible for proliferation and invasion suppression induced by meloxicam (a selective inhibitor of cyclooxygenase-2) in HCC cells. The combination of meloxicam and CLU shRNA significantly decreased invasion in HCC cells in vitro. Furthermore, it was observed that overexpression of sCLU significantly potentiated expression of p-AKT and MMP-2. However, downregulation of sCLU by CLU shRNA alleviated the extent of p-AKT. These results suggest the targeting of sCLU may be a novel therapeutic strategy against invasion and migration in HCC.
Collapse
Affiliation(s)
- Jingtao Zhong
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong 250117, P.R. China
| | - Xiaoming Yu
- Department of Ophthalmology, Shandong Jiaotong Hospital, Jinan, Shandong 250031, P.R. China
| | - Xiaofeng Dong
- Department of Hepatobiliary Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Hong Lu
- Department of Radiology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, P.R. China
| | - Wuyuan Zhou
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong 250117, P.R. China
| | - Lei Li
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong 250117, P.R. China
| | - Zhongchao Li
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong 250117, P.R. China
| | - Pengfei Sun
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong 250117, P.R. China
| | - Xuetao Shi
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
17
|
In-vitro and in-vivo inhibition of melanoma growth and metastasis by the drug combination of celecoxib and dacarbazine. Melanoma Res 2018; 26:572-579. [PMID: 27540834 DOI: 10.1097/cmr.0000000000000291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Celecoxib has been found to be effective in cancer prevention and treatment. Its combination with other chemotherapeutic agents was reported to produce synergistic/additive effects on various cancers. Dacarbazine (DTIC) is one of the most commonly used drugs in the treatment of metastatic melanoma. This investigation aimed to determine the in-vitro and in-vivo effects of the drug combination of celecoxib and DTIC on melanoma growth and metastasis. Melanoma cells B16-F10 and SK-MEL-28, and female C57BL/6 mice were used for the study. Our in-vitro data showed that significant synergistic effects were obtained when celecoxib was used together with various concentrations of DTIC. A study with B16-F10 cells using flow cytometry analysis showed that the drug combination induced significantly more apoptosis than each drug used individually. Our in-vivo results showed that the drug combination was much more effective than each drug used alone for the inhibition of both melanoma growth and metastasis in the B16-F10+C57BL/6 mouse models. For melanoma growth, the median survival rates for phosphate-buffered saline (PBS) (control), celecoxib (30 mg/kg), DTIC-1 (10 mg/kg), DTIC-2 (positive control, 50 mg/kg), and the drug combination (DTIC 10 mg/kg+celecoxib 30 mg/kg) were 6, 6.5, 7.5, 7.5, and 9 days, respectively. For melanoma metastasis, the average number of metastatic tumors in murine lungs was 53.7±10.7, 31.8±18.6, 21.2±21.7, 7.0±9.0, and 0.8±2.0 for PBS, DTIC-1, celecoxib, the drug combination, and DTIC-2. Our results warrant further investigation of the combination as an effective treatment for melanoma patients.
Collapse
|
18
|
O'Reilly C, Doroudian M, Mawhinney L, Donnelly SC. Targeting MIF in Cancer: Therapeutic Strategies, Current Developments, and Future Opportunities. Med Res Rev 2016; 36:440-60. [PMID: 26777977 DOI: 10.1002/med.21385] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/28/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022]
Abstract
Strong evidence has been presented linking chronic inflammation to the onset and pathogenesis of cancer. The multifunctional pro-inflammatory protein macrophage migration inhibitory factor (MIF) occupies a central role in the inflammatory pathway and has been implicated in the tumorigenesis, angiogenesis, and metastasis of many cancer phenotypes. This review highlights the current state of the art, which presents MIF, and the second member of the MIF structural superfamily, D-DT (MIF2), as significant mediators in the inflammatory-cancer axis. Although the mechanism by which MIF asserts its biological activity has yet to be fully understood, it has become clear in recent years that for certain phenotypes of cancer, MIF represents a valid therapeutic target. Current research efforts have focused on small molecule approaches that target MIF's unique tautomerase active site and neutralization of MIF with anti-MIF antibodies. These approaches have yielded promising results in a number of preclinical murine cancer models and have helped to increase our understanding of MIF biological activity. More recently, MIF's involvement in a number of key protein-protein interactions, such as with CD74 and HSP90, has been highlighted and provides a novel platform for the development of anti-MIF chemotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Ciaran O'Reilly
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Mohammad Doroudian
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Leona Mawhinney
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Seamas C Donnelly
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.,Department of Clinical Medicine, Trinity Centre for Health Sciences, Tallaght Hospital, Tallaght, Dublin 24, Ireland
| |
Collapse
|
19
|
Pastore A, Palleschi G, Fuschi A, Silvestri L, Al Salhi Y, Costantini E, Zucchi A, Petrozza V, de Nunzio C, Carbone A. Can daily intake of aspirin and/or statins influence the behavior of non-muscle invasive bladder cancer? A retrospective study on a cohort of patients undergoing transurethral bladder resection. BMC Cancer 2015; 15:120. [PMID: 25877676 PMCID: PMC4369111 DOI: 10.1186/s12885-015-1152-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/02/2015] [Indexed: 11/10/2022] Open
Abstract
Background This study aimed to evaluate the behavior of non-muscle-invasive bladder cancer (NMIBC) in patients submitted to transurethral bladder resection (TURB) comparing subjects in chronic therapy with aspirin, statins, or both drugs to untreated ones. Methods This retrospective study was conducted on 574 patients diagnosed with NMIBC who underwent TURB between March 2008 and April 2013. The study population was divided into two main groups: treated (aspirin and/or statins) and untreated. The treated group was further divided into three therapeutic subgroups: Group A (100 mg of aspirin, daily for at least two years); Group B (20 mg or more of statins, daily for at least two years); and Group C (100 mg of aspirin and 20 mg of statins together). The mean follow-up of patients was 45.06 months. Results No significant differences were observed among the different groups at baseline. On multivariate analysis, statin treatment, smokers and high stage disease (T1) achieved the level of independent risk factor for the occurrence of a recurrence. When patients were stratified according to the different treatment; patients treated with statins (Group B) presented an higher rate of failure (56/91 patients; 61.5%) when compared to Group A (42/98 patients; 42.9%), Group C (56/98; 57.1%) and (133/287 patients; 46.3%). This difference corresponds to a significant difference in recurrence failure free survival (p = 0.01). Conclusions Our results suggest that long-term treatment with aspirin in patients with NMIBC might play a role on reducing the risk of tumor recurrence. In contrast, in our investigation data from statins and combination treatment groups showed increased recurrence rates. A long-term randomized prospective study could definitively assess the possible role of this widely used drugs in NMIBC.
Collapse
|
20
|
Spencer ES, Dale EJ, Gommans AL, Rutledge MT, Vo CT, Nakatani Y, Gamble AB, Smith RAJ, Wilbanks SM, Hampton MB, Tyndall JDA. Multiple binding modes of isothiocyanates that inhibit macrophage migration inhibitory factor. Eur J Med Chem 2015; 93:501-10. [PMID: 25743213 DOI: 10.1016/j.ejmech.2015.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/08/2015] [Accepted: 02/10/2015] [Indexed: 12/28/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has roles in the innate immune response, and also contributes to inflammatory disease. While the biological properties of MIF are closely linked to protein-protein interactions, MIF also has tautomerase activity. Inhibition of this activity interferes with the interaction of MIF with protein partners e.g. the CD74 receptor, and tautomerase inhibitors show promise in disease models including multiple sclerosis and colitis. Isothiocyanates inhibit MIF tautomerase activity via covalent modification of the N-terminal proline. We systematically explored variants of benzyl and phenethyl isothiocyanates, to define determinants of inhibition. In particular, substitution with hydroxyl, chloro, fluoro and trifluoro moieties at the para and meta positions were evaluated. In assays on treated cells and recombinant protein, the IC50 varied from 250 nM to >100 μM. X-ray crystal structures of selected complexes revealed that two binding modes are accessed by some compounds, perhaps owing to strain in short linkers between the isothiocyanate and aromatic ring. The variety of binding modes confirms the existence of two subsites for inhibitors and establishes a platform for the development of potent inhibitors of MIF that only need to target one of these subsites.
Collapse
Affiliation(s)
- Emma S Spencer
- Centre for Free Radical Research, Department of Pathology, University of Otago, PO Box 4345, Christchurch 8140, New Zealand
| | - Edward J Dale
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Aimée L Gommans
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Malcolm T Rutledge
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Christine T Vo
- National School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Yoshio Nakatani
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Allan B Gamble
- National School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Robin A J Smith
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Sigurd M Wilbanks
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology, University of Otago, PO Box 4345, Christchurch 8140, New Zealand.
| | - Joel D A Tyndall
- National School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
21
|
Veeranki OL, Bhattacharya A, Tang L, Marshall JR, Zhang Y. Cruciferous vegetables, isothiocyanates, and prevention of bladder cancer. ACTA ACUST UNITED AC 2015; 1:272-282. [PMID: 26273545 DOI: 10.1007/s40495-015-0024-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Approximately 80% of human bladder cancers (BC) are non-muscle invasive when first diagnosed and are usually treated by transurethral tumor resection. But 50-80% of patients experience cancer recurrence. Agents for prevention of primary BC have yet to be identified. Existing prophylactics against BC recurrence, e.g., Bacillus Calmette-Guerin (BCG), have limited efficacy and utility; they engender significant side effects and require urethral catheterization. Many cruciferous vegetables, rich sources of isothiocyanates (ITCs), are commonly consumed by humans. Many ITCs possess promising chemopreventive activities against BC and its recurrence. Moreover, orally ingested ITCs are selectively delivered to bladder via urinary excretion. This review is focused on urinary delivery of ITCs to the bladder, their cellular uptake, their chemopreventive activities in preclinical and epidemiological studies that are particularly relevant to prevention of BC recurrence and progression, and their chemopreventive mechanisms in BC cells and tissues.
Collapse
Affiliation(s)
- Omkara L Veeranki
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - Arup Bhattacharya
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - Li Tang
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - James R Marshall
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - Yuesheng Zhang
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
22
|
Williams JR, Rayburn JR, Cline GR, Sauterer R, Friedman M. Effect of allyl isothiocyanate on developmental toxicity in exposed Xenopus laevis embryos. Toxicol Rep 2014; 2:222-227. [PMID: 28962355 PMCID: PMC5598435 DOI: 10.1016/j.toxrep.2014.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 11/24/2022] Open
Abstract
The pungent natural compound allyl isothiocyanate isolated from the seeds of Cruciferous (Brassica) plants such as mustard is reported to exhibit numerous beneficial health-promoting antimicrobial, antifungal, anticarcinogenic, cardioprotective, and neuroprotective properties. Because it is also reported to damage DNA and is toxic to aquatic organisms, the objective of the present study was to determine whether it possesses teratogenic properties. The frog embryo teratogenesis assay-Xenopus (FETAX) was used to determine the following measures of developmental toxicity of the allyl isothiocyanate: (a) 96-h LC50, defined as the median concentration causing 50% embryo lethality; (b) 96-h EC50, defined as the median concentration causing 50% malformations of the surviving embryos; and (c) teratogenic malformation index (TI), equal to 96-h LC50/96-h EC50. The quantitative results and the photographs of embryos before and after exposure suggest that allyl isothiocyanate seems to exhibit moderate teratogenic properties. The results also indicate differences in the toxicity of allyl isothiocyanate toward exposed embryos observed in the present study compared to reported adverse effects of allyl isothiocyanate in fish, rodents, and humans. The significance of the results for food safety and possible approaches to protect against adverse effects of allyl isothiocyanate are discussed.
Collapse
Affiliation(s)
| | - James R. Rayburn
- Biology Department, Jacksonville State University, Jacksonville, AL 36265, USA
| | - George R. Cline
- Biology Department, Jacksonville State University, Jacksonville, AL 36265, USA
| | - Roger Sauterer
- Biology Department, Jacksonville State University, Jacksonville, AL 36265, USA
| | - Mendel Friedman
- Produce Safety and Microbiology Research, Western Regional Research Center, ARS-USDA, Albany, CA 94710, USA
| |
Collapse
|