1
|
Wu Y, Zhou J, Zhang J, Tang Z, Chen X, Huang L, Liu S, Chen H, Wang Y. Pertinence of glioma and single nucleotide polymorphism of TERT, CCDC26, CDKN2A/B and RTEL1 genes in glioma: a meta-analysis. Front Oncol 2023; 13:1180099. [PMID: 37746290 PMCID: PMC10512948 DOI: 10.3389/fonc.2023.1180099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
Background Previous genetic-epidemiological studies considered TERT (rs2736100), CCDC26 (rs4295627), CDKN2A/B (rs4977756) and RTEL1 (rs6010620) gene polymorphisms as the risk factors specific to glioma. However, the data samples of previous genetic-epidemiological studies are modest to determine whether they have definite association with glioma. Method The study paid attention to systematically searching databases of PubMed, Embase, Web of Science (WoS), Scopus, Cochrane Library and Google Scholars. Meta-analysis under 5 genetic models, namely recessive model (RM), over-dominant model (O-DM), allele model (AM), co-dominant model (C-DM) and dominant model (DM) was conducted for generating odds ratios (ORs) and 95% confidence intervals (CIs). That was accompanied by subgroup analyses according to various racial groups. The software STATA 17.0 MP was implemented in the study. Result 21 articles were collected. According to data analysis results, in four genetic models (AM, RM, DM and C-DM) TERT gene rs2736100 polymorphism, CCDC26 gene rs4295627 polymorphism, CDKN2A/B gene rs4977756 polymorphism and RTEL1 gene rs6010620 polymorphisms increased the risk of glioma in Caucasians to different degrees. In Asian populations, the CCDC26 gene rs4295627 polymorphism and CDKN2A/B gene rs4977756 polymorphism did not exhibit a relevance to the risk of glioma. It is suggested to cautiously explain these results as the sample size is small. Conclusion The current meta-analysis suggested that the SNP of TERT (rs2736100), CCDC26 (rs4295627), CDKN2A/B (rs4977756) and RTEL1 (rs6010620) genes in glioma might increase risk of glioma, but there are ethnic differences. Further studies evaluating these polymorphisms and glioma risk are warranted.
Collapse
Affiliation(s)
- Yaqi Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijian Tang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Chen
- School of Health, Brooks College, Sunnyvale, CA, United States
- Department of Epidemiology and Statistics, School of Public Health, Medical College, Zhejiang University, Hangzhou, China
| | - Lulu Huang
- Medical Affairs, the Department of ICON Pharma Development Solutions (IPD), ICON Public Limited Company (ICON Plc), Beijing, China
| | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Dediatric Department, School of Clinical Medicine for Women and Children, China Three Gorges University, Yichang Maternal and Child Health Hospital, Yichang, China
| | - Yu Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Foss-Skiftesvik J, Li S, Rosenbaum A, Hagen CM, Stoltze UK, Ljungqvist S, Hjalmars U, Schmiegelow K, Morimoto L, de Smith AJ, Mathiasen R, Metayer C, Hougaard D, Melin B, Walsh KM, Bybjerg-Grauholm J, Dahlin AM, Wiemels JL. Multi-ancestry genome-wide association study of 4069 children with glioma identifies 9p21.3 risk locus. Neuro Oncol 2023; 25:1709-1720. [PMID: 36810956 PMCID: PMC10484172 DOI: 10.1093/neuonc/noad042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Although recent sequencing studies have revealed that 10% of childhood gliomas are caused by rare germline mutations, the role of common variants is undetermined and no genome-wide significant risk loci for pediatric central nervous system tumors have been identified to date. METHODS Meta-analysis of 3 population-based genome-wide association studies comprising 4069 children with glioma and 8778 controls of multiple genetic ancestries. Replication was performed in a separate case-control cohort. Quantitative trait loci analyses and a transcriptome-wide association study were conducted to assess possible links with brain tissue expression across 18 628 genes. RESULTS Common variants in CDKN2B-AS1 at 9p21.3 were significantly associated with astrocytoma, the most common subtype of glioma in children (rs573687, P-value of 6.974e-10, OR 1.273, 95% CI 1.179-1.374). The association was driven by low-grade astrocytoma (P-value of 3.815e-9) and exhibited unidirectional effects across all 6 genetic ancestries. For glioma overall, the association approached genome-wide significance (rs3731239, P-value of 5.411e-8), while no significant association was observed for high-grade tumors. Predicted decreased brain tissue expression of CDKN2B was significantly associated with astrocytoma (P-value of 8.090e-8). CONCLUSIONS In this population-based genome-wide association study meta-analysis, we identify and replicate 9p21.3 (CDKN2B-AS1) as a risk locus for childhood astrocytoma, thereby establishing the first genome-wide significant evidence of common variant predisposition in pediatric neuro-oncology. We furthermore provide a functional basis for the association by showing a possible link to decreased brain tissue CDKN2B expression and substantiate that genetic susceptibility differs between low- and high-grade astrocytoma.
Collapse
Affiliation(s)
- Jon Foss-Skiftesvik
- Department of Neurosurgery, Rigshospitalet University Hospital, Copenhagen, Denmark
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
- Section for Neonatal Genetics, Statens Serum Institute, Copenhagen, Denmark
| | - Shaobo Li
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Adam Rosenbaum
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | | | - Ulrik Kristoffer Stoltze
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
- Department of Clinical Genetics, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Sally Ljungqvist
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Ulf Hjalmars
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Libby Morimoto
- Center for Personalized Medicine, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - René Mathiasen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - David Hougaard
- Section for Neonatal Genetics, Statens Serum Institute, Copenhagen, Denmark
| | - Beatrice Melin
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Kyle M Walsh
- Division of Neuro-Epidemiology, Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | | | - Anna M Dahlin
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Sanchez A, Lhuillier J, Grosjean G, Ayadi L, Maenner S. The Long Non-Coding RNA ANRIL in Cancers. Cancers (Basel) 2023; 15:4160. [PMID: 37627188 PMCID: PMC10453084 DOI: 10.3390/cancers15164160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
ANRIL (Antisense Noncoding RNA in the INK4 Locus), a long non-coding RNA encoded in the human chromosome 9p21 region, is a critical factor for regulating gene expression by interacting with multiple proteins and miRNAs. It has been found to play important roles in various cellular processes, including cell cycle control and proliferation. Dysregulation of ANRIL has been associated with several diseases like cancers and cardiovascular diseases, for instance. Understanding the oncogenic role of ANRIL and its potential as a diagnostic and prognostic biomarker in cancer is crucial. This review provides insights into the regulatory mechanisms and oncogenic significance of the 9p21 locus and ANRIL in cancer.
Collapse
Affiliation(s)
| | | | | | - Lilia Ayadi
- CNRS, Université de Lorraine, IMoPA, F-54000 Nancy, France
| | | |
Collapse
|
4
|
Youn BJ, Cheong HS, Namgoong S, Kim LH, Baek IK, Kim JH, Yoon SJ, Kim EH, Kim SH, Chang JH, Kim SH, Shin HD. Asian-specific 3'UTR variant in CDKN2B associated with risk of pituitary adenoma. Mol Biol Rep 2022; 49:10339-10346. [PMID: 36097105 DOI: 10.1007/s11033-022-07796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/13/2022] [Accepted: 07/13/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Previous genomewide association studies (GWASs), single nucleotide polymorphisms (SNPs) on cyclin-dependent kinase inhibitor 2 A (CDKN2A), cyclin-dependent kinase inhibitor 2B (CDKN2B), and cyclin-dependent kinase inhibitor 2B antisense RNA1 (CDKN2B-AS1) were reported as risk loci for glioma, a subgroup of the brain tumor. To further characterize this association with the risk of brain tumors in a Korean population, we performed a fine-mapping association study of CDKN2A, CDKN2B, and CDKN2B-AS1. METHODS AND RESULTS A total of 17 SNPs were selected and genotyped in 1,439 subjects which were comprised of 959 patients (pituitary adenoma 335; glioma 324; meningioma 300) and 480 population controls (PCs). We discovered that a 3'untranslated region (3'UTR) variant, rs181031884 of CDKN2B (Asian-specific variant), had significant association with the risk of pituitary adenoma (PA) (Odds ratio = 0.58, P = 0.00003). Also, rs181031884 appeared as an independent causal variant among the significant variants in CDKN2A and CDKN2B, and showed dose-dependent effects on PA. CONCLUSIONS Although further studies are needed to verify the impact of this variant on PA susceptibility, our results may help to understand CDKN2B polymorphism and the risk of PA.
Collapse
Affiliation(s)
- Byeong Ju Youn
- Department of Life Science, Sogang University, 04107, Seoul, Republic of Korea.,Forensic DNA Division, National Forensic Service, 26460, Wonju, Republic of Korea
| | - Hyun Sub Cheong
- Department of Genetic Epidemiology, SNP Genetics Inc, Seoul, Republic of Korea
| | - Suhg Namgoong
- Department of Genetic Epidemiology, SNP Genetics Inc, Seoul, Republic of Korea
| | - Lyoung Hyo Kim
- Department of Genetic Epidemiology, SNP Genetics Inc, Seoul, Republic of Korea
| | - In Ki Baek
- Department of Life Science, Sogang University, 04107, Seoul, Republic of Korea
| | - Jeong-Hyun Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seon-Jin Yoon
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Ho Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyoung Doo Shin
- Department of Life Science, Sogang University, 04107, Seoul, Republic of Korea. .,Department of Genetic Epidemiology, SNP Genetics Inc, Seoul, Republic of Korea. .,Research Institute for Basic Science, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Lyu Y, Yang S, Lyu X, Wang YL, Ji S, Kang S, Jiang Y, Xiang J, He C, Li P, Liu B, Wu C. lncRNA polymorphism affects the prognosis of gastric cancer. World J Surg Oncol 2022; 20:273. [PMID: 36045445 PMCID: PMC9429416 DOI: 10.1186/s12957-022-02723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/06/2022] [Indexed: 11/20/2022] Open
Abstract
Background Previous studies have found that lncRNA polymorphisms are associated with the prognosis of gastric cancer (GC), but the specific roles of many lncRNA polymorphism sites in gastric cancer are still unclear. Our study aims to deeply explore the relationship between genetic polymorphism of lncRNA and the prognosis of GC. Methods The genotypes of candidate SNP locus were detected by Sequenom Mass ARRAY SNP. We deeply analyzed the association of lncRNA polymorphisms with GC prognosis by univariate and multivariate Cox regression, stratified analysis, conjoint analysis, and log-rank test. Results We found that mutations at rs2579878 and rs10036719 loci reduced the risk of poor prognosis of GC. Stratified analysis showed that rs2795025, rs10036719, and rs12516079 polymorphisms were all associated with tumor prognosis. In addition, conjoint analyses showed that the interaction between these two polymorphic sites (rs2795025 and rs12516079) could increase the risk of poor prognosis. Multivariate analysis also found that the AG/AA genotype of rs10036719 and AG genotype of rs12516079 were independent prognostic factors. Moreover, the high expression of both CCDC26 and LINC02122 were shown to be associated with the poor survival status of GC patients. Conclusions We find that the genetic polymorphism of lncRNA plays a role in the development of GC and is closely related to the survival time of patients. It could serve as a predictor of the prognosis of GC.
Collapse
Affiliation(s)
- Yanping Lyu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Shuangfeng Yang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xuejie Lyu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yuan-Liang Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Shumi Ji
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Shuling Kang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.,Fuzhou Center for Disease Control and Prevention, Fuzhou, China
| | - Yu Jiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jianjun Xiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chenzhou He
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Peixin Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Baoying Liu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China. .,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.
| | - Chuancheng Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China. .,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
6
|
Alamdari-Palangi V, Jaberi KR, Jaberi AR, Gheibihayat SM, Akbarzadeh M, Tajbakhsh A, Savardashtaki A. The role of miR-153 and related upstream/downstream pathways in cancers: from a potential biomarker to treatment of tumor resistance and a therapeutic target. Med Oncol 2022; 39:62. [PMID: 35477802 DOI: 10.1007/s12032-022-01653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Abstract
MicroRNAs (miRNAs/miRs) are small non-coding RNAs that have a multifunction and play essential roles in gene regulation. Their dysregulation is associated with several human cancers. MiR-153 has a critical role in many biological processes, such as suppressing tumor growth (mostly), responses to treatment, and drug resistance. However, miR-153 in some cancers shows a different role as an oncogene, such as prostate. The miR-153 expression can be regulated by several regulators, such as lncRNAs and circular RNAs. By discovering the target factors for miR-153, it may be possible to approach early diagnosis, reversing drug resistance, and treatment of cancers. This will help choose the precise treatment for the patient and not incur additional costs in treatment. Thus, we attempt to summarize the current situation and potential development prospects about the role of miR-153 in cancers. The miR-153 paly an important role in cancers and can be used for diagnosis and prognosis.
Collapse
Affiliation(s)
- Vahab Alamdari-Palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khojaste Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Akbarzadeh
- Department of Internal Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, P.O. Box 71345-1583, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 71362 81407, Iran. .,Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Xu S, Wang Z, Ye J, Mei S, Zhang J. Identification of Iron Metabolism-Related Genes as Prognostic Indicators for Lower-Grade Glioma. Front Oncol 2021; 11:729103. [PMID: 34568059 PMCID: PMC8458946 DOI: 10.3389/fonc.2021.729103] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Lower-grade glioma (LGG) is characterized by genetic and transcriptional heterogeneity, and a dismal prognosis. Iron metabolism is considered central for glioma tumorigenesis, tumor progression and tumor microenvironment, although key iron metabolism-related genes are unclear. Here we developed and validated an iron metabolism-related gene signature LGG prognosis. RNA-sequence and clinicopathological data from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) were downloaded. Prognostic iron metabolism-related genes were screened and used to construct a risk-score model via differential gene expression analysis, univariate Cox analysis, and the Least Absolute Shrinkage and Selection Operator (LASSO)-regression algorithm. All LGG patients were stratified into high- and low-risk groups, based on the risk score. The prognostic significance of the risk-score model in the TCGA and CGGA cohorts was evaluated with Kaplan-Meier (KM) survival and receiver operating characteristic (ROC) curve analysis. Risk- score distributions in subgroups were stratified by age, gender, the World Health Organization (WHO) grade, isocitrate dehydrogenase 1 (IDH1) mutation status, the O6-methylguanine-DNA methyl-transferase (MGMT) promoter-methylation status, and the 1p/19q co-deletion status. Furthermore, a nomogram model with a risk score was developed, and its predictive performance was validated with the TCGA and CGGA cohorts. Additionally, the gene set enrichment analysis (GSEA) identified signaling pathways and pathological processes enriched in the high-risk group. Finally, immune infiltration and immune checkpoint analysis were utilized to investigate the tumor microenvironment characteristics related to the risk score. We identified a prognostic 15-gene iron metabolism-related signature and constructed a risk-score model. High risk scores were associated with an age of > 40, wild-type IDH1, a WHO grade of III, an unmethylated MGMT promoter, and 1p/19q non-codeletion. ROC analysis indicated that the risk-score model accurately predicted 1-, 3-, and 5-year overall survival rates of LGG patients in the both TCGA and CGGA cohorts. KM analysis showed that the high-risk group had a much lower overall survival than the low-risk group (P < 0.0001). The nomogram model showed a strong ability to predict the overall survival of LGG patients in the TCGA and CGGA cohorts. GSEA analysis indicated that inflammatory responses, tumor-associated pathways, and pathological processes were enriched in high-risk group. Moreover, a high risk score correlated with the infiltration immune cells (dendritic cells, macrophages, CD4+ T cells, and B cells) and expression of immune checkpoint (PD1, PDL1, TIM3, and CD48). Our prognostic model was based on iron metabolism-related genes in LGG, can potentially aid in LGG prognosis, and provides potential targets against gliomas.
Collapse
Affiliation(s)
- Shenbin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Gastroenterology Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zefeng Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Ye
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shuhao Mei
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
TERT Gene rs2736100 and rs2736098 Polymorphisms are Associated with Increased Cancer Risk: A Meta-Analysis. Biochem Genet 2021; 60:241-266. [PMID: 34181135 DOI: 10.1007/s10528-021-10097-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Abnormal telomerase activity plays a key role in the development of carcinogenesis. The variants rs2736100 and rs2736098 of the telomerase reverse transcriptase (TERT) gene, which encodes the telomerase catalytic subunit, are associated with the risk of different types of cancers. However, the results remain controversy. We conducted a meta-analysis to more precisely assess this association. We comprehensively searched the PubMed and Web of Science databases up to June 1, 2020, and retrieved a total of 103 studies in 82 articles, including 89,320 cases and 121,654 controls. Among these studies, 69 published studies including 75,274 cases and 10,3248 controls were focused on rs2736100, and 34 published studies including 14,046 cases and 18,362 controls were focused on rs2736098. The results showed a strong association between variant rs2736100 and cancer risk in all populations. (G vs. T: OR 1.18, 95% CI 1.12-1.24; TG+GG vs. TT: OR 1.23, 95% CI 1.15-1.31; GG vs. TG+TT: OR 1.25, 95% CI 1.16-1.36); the variant rs2736098 was associated with cancer risk in all populations as well (A vs. G: OR 1.13, 95% CI 1.05-1.22; GA+AA vs. GG: OR 1.15, 95% CI 1.04-1.27; AA vs. GA+GG: OR 1.22, 95% CI 1.10-1.38). Stratified analysis based on the cancer type indicated that rs2736100 was associated with an increased risk of thyroid cancer, bladder cancer, lung cancer, glioma, and myeloproliferative neoplasms. rs2736098 only increased the risk of bladder cancer and lung cancer. Moreover, the TERT variants rs2736100 and rs2736098 were associated with a decreased risk of breast cancer and colorectal cancer. The variants rs2736098 and rs2736100 located in 5p15.33 around TERT were associated with increased cancer risk in all populations. These two variants had bidirectional effects in different tumors.
Collapse
|
9
|
Adel Fahmideh M, Scheurer ME. Pediatric Brain Tumors: Descriptive Epidemiology, Risk Factors, and Future Directions. Cancer Epidemiol Biomarkers Prev 2021; 30:813-821. [PMID: 33653816 DOI: 10.1158/1055-9965.epi-20-1443] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/23/2020] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Brain tumors are the most common solid tumors in children and remain a significant contributor to death by disease in this population. Pediatric brain tumors (PBT) are broadly classified into two major categories: glial and neuronal tumors. Various factors, including tumor histology, tumor location, and demographics, influence the incidence and prognosis of this heterogeneous group of neoplasms. Numerous epidemiologic studies have been conducted to identify genetic and environmental risk factors for these malignancies. Thus far, the only established risk factors for PBTs are exposure to ionizing radiation and some rare genetic syndromes. However, relatively consistent evidence of positive associations for birth defects, markers of fetal growth, advanced parental age, maternal dietary N-nitroso compounds, and exposure to pesticides have been reported. The genetic variants associated with susceptibility to PBTs were predominantly identified by a candidate-gene approach. The identified genetic variants belong to four main pathways, including xenobiotic detoxification, inflammation, DNA repair, and cell-cycle regulation. Conducting large and multi-institutional studies is warranted to systematically detect genetic and environmental risk factors for different histologic subtypes of PBTs. This, in turn, might lead to a better understanding of etiology of PBTs and eventually developing risk prediction models to prevent these clinically significate malignancies.
Collapse
Affiliation(s)
- Maral Adel Fahmideh
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, Texas. .,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Center for Epidemiology and Population Health, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Michael E Scheurer
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Center for Epidemiology and Population Health, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
10
|
Li C, Mu J, Shi Y, Xin H. LncRNA CCDC26 Interacts with CELF2 Protein to Enhance Myeloid Leukemia Cell Proliferation and Invasion via the circRNA_ANKIB1/miR-195-5p/PRR11 Axis. Cell Transplant 2021; 30:963689720986080. [PMID: 33439746 PMCID: PMC7809300 DOI: 10.1177/0963689720986080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
LncRNA CCDC26 is aberrantly expressed in myeloid leukemia (ML) and promotes myeloid leukemia progression, but the potential mechanism of CCDC26 in regulating ML progression is unclear. In this study, we observed that lncRNA CCDC26 was upregulated in both chronic and acute ML cell lines. LncRNA CCDC26 promoted the proliferation and invasion of K562 and HL-60 cells, which was determined by cell counting kit-8 test and Transwell invasion assay. Flow cytometry showed that lncRNA CCDC26 inhibited cell apoptosis. Bioinformatics and expression correlation analyses revealed that there was a potential interaction between CCDC26 and CUGBP Elav-like family member 2 (CELF2) protein, an RNA bind protein (RBP). Then the relationship between CCDC26 and the RBP CELF2 was identified by using RNA pull-down and RNA immunoprecipitation (RNA-IP) assays. Further analysis showed that overexpression of CCDC26 could noticeably upregulate circRNA_ANKIB1 expression via sponging CELF2. Subsequently, we found that overexpressed circRNA_ANKIB1 could significantly promote proline rich 11 (PRR11) protein expression by sponging miR-195a-5p. Moreover, PRR11 was also upregulated by CCDC26 and downregulated by CELF2. Mechanically, we uncovered that the miR-195a-5p inhibitor activated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways through upregulating PRR11 protein expression. Furthermore, the inhibitors of AKT, p65-NF-κB, or Bcl-2 could inhibit the effect of the miR-195a-5p inhibitor on ML cell behaviors. In conclusion, lncRNA CCDC26 could upregulate PRR11 protein expression by sponging miR-195a-5p, thereby activating the PI3K/AKT and NF-κB pathways to enhance ML cell proliferation and invasion and suppress cell apoptosis.
Collapse
Affiliation(s)
- Chengliang Li
- Department of General Practice, the First Affiliated Hospital of Xi’an Medical University, Xi’an, P. R. China,Both the authors contributed equally to this article
| | - Jianjun Mu
- Department of Cardiology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P. R. China,Both the authors contributed equally to this article
| | - Yingpeng Shi
- Department of General Practice, the First Affiliated Hospital of Xi’an Medical University, Xi’an, P. R. China
| | - Hong Xin
- Department of Cardiovasology, the First Affiliated Hospital of Xi’an Medical University, Xi’an, P. R. China,Hong Xin, Department of Cardiovasology, The First Affiliated Hospital of Xi’an Medical University, No. 48 Fenghao West Road, Xi’an 710077, P. R. China.
| |
Collapse
|
11
|
Muskens IS, Zhang C, de Smith AJ, Biegel JA, Walsh KM, Wiemels JL. Germline genetic landscape of pediatric central nervous system tumors. Neuro Oncol 2020; 21:1376-1388. [PMID: 31247102 PMCID: PMC6827836 DOI: 10.1093/neuonc/noz108] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Central nervous system (CNS) tumors are the second most common type of cancer among children. Depending on histopathology, anatomic location, and genomic factors, specific subgroups of brain tumors have some of the highest cancer-related mortality rates or result in considerable lifelong morbidity. Pediatric CNS tumors often occur in patients with genetic predisposition, at times revealing underlying cancer predisposition syndromes. Advances in next-generation sequencing (NGS) have resulted in the identification of an increasing number of cancer predisposition genes. In this review, the literature on genetic predisposition to pediatric CNS tumors is evaluated with a discussion of potential future targets for NGS and clinical implications. Furthermore, we explore potential strategies for enhancing the understanding of genetic predisposition of pediatric CNS tumors, including evaluation of non-European populations, pan-genomic approaches, and large collaborative studies.
Collapse
Affiliation(s)
- Ivo S Muskens
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chenan Zhang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Adam J de Smith
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jaclyn A Biegel
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Kyle M Walsh
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California.,Department of Neurosurgery, Duke University, Durham, North Carolina
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| |
Collapse
|
12
|
Tavares CB, Gomes-Braga FDCSA, Sousa EB, Brito JNPDO, Melo MDA, Campelo V, Neto FM, de Araújo RML, Kessler IM, Sousa Júnior LDM, Filho LCC, Aguiar YQ, Lopes Costa PV, da Silva BB. Association between Single Nucleotide Polymorphisms and Glioma Risk: A Systematic Literature Review. Cancer Invest 2020; 38:169-183. [PMID: 31957502 DOI: 10.1080/07357907.2020.1719502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study aimed to determine the main single nucleotide polymorphisms (SNPs) that are associated with an increased or decreased risk of glioma development in healthy individuals. We conducted a systematic review of the articles published in English on the PUBMED database between January 2008 and December 2017. Our search resulted in a total of 743 articles; however, only 56 were included in this review. A total of 148 polymorphisms were found, which involved 64 different genes. The polymorphisms that were most associated with an increased risk of glioma development were polymorphic variants rs179782, rs13181, and rs3791679 of the genes XRCC1, ERCC2, and EFEMP1, respectively.
Collapse
Affiliation(s)
- Cléciton Braga Tavares
- Postgraduate Program of the Northeast Network of Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | | | | | | | | | - Viriato Campelo
- Postgraduate Program in Health Sciences, Federal University of Piauí, Teresina, Brazil
| | | | | | | | | | | | | | | | - Benedito Borges da Silva
- Postgraduate Program of the Northeast Network of Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
13
|
Chen J, Huang X, Wang W, Xie H, Li J, Hu Z, Zheng Z, Li H, Teng L. LncRNA CDKN2BAS predicts poor prognosis in patients with hepatocellular carcinoma and promotes metastasis via the miR-153-5p/ARHGAP18 signaling axis. Aging (Albany NY) 2019; 10:3371-3381. [PMID: 30510148 PMCID: PMC6286843 DOI: 10.18632/aging.101645] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/04/2018] [Indexed: 01/25/2023]
Abstract
Background: Growing evidence shows that long noncoding RNAs (lncRNAs) play a crucial role in cancer progression. However, whether lncRNA CDKN2BAS is involved in human hepatocellular carcinoma (HCC) metastasis remains unclear. Methods: Human lncRNA microarray analysis was performed to detect differential expression levels of lncRNAs in metastatic HCC tissues. Effects of CDKN2BAS on cell proliferation, migration, and apoptosis were determined by MTT assay, colony formation assay, migration assay, scratch assay, and flow cytometry. The xenograft experiment was used to confirm the effect of CDKN2BAS on HCC in vivo. qRT-PCR and Western blot were performed to determine the expression levels of mRNAs and proteins. Luciferase reporter assay was used to identify the specific target relationships. Results: CDKN2BAS was remarkably up-regulated in metastatic HCC tissues compared with the adjacent non-tumor tissues. CDKN2BAS promotes HCC cell growth and migration in vitro and in vivo. Additionally, CDKN2BAS upregulated the expression of Rho GTPase activating protein 18 (ARHGAP18) by sponging microRNA-153-5p (miR-153-5p), and thus promoted HCC cell migration. Besides, CDKN2BAS downregulated the expression of Krüppel-like factor 13 (KLF13) and activated MEK-ERK1/2 signaling, thus reducing apoptosis in HCC cells. Conclusions: Our study revealed that lncRNA CDKN2BAS promotes HCC metastasis by regulating the miR-153-5p/ARHGAP18 signaling.
Collapse
Affiliation(s)
- Junzheng Chen
- Surgical Center, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Xitian Huang
- Department of Hepatology, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Weijun Wang
- Department of Hepatobiliary Surgery, Sanxinmeide Geriatrics Hospital of Wenling, Wenling 317500, Zhejiang Province, China
| | - Hongcheng Xie
- Department of Hepatology, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Jianfeng Li
- Surgical Center, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Zhenfen Hu
- Surgical Center, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Zhijian Zheng
- Surgical Center, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Huiyong Li
- Surgical Center, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Lingfang Teng
- Surgical Center, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| |
Collapse
|
14
|
Adel Fahmideh M, Lavebratt C, Tettamanti G, Schüz J, Röösli M, Kjaerheim K, Grotzer MA, Johansen C, Kuehni CE, Lannering B, Schmidt LS, Darabi H, Feychting M. A Weighted Genetic Risk Score of Adult Glioma Susceptibility Loci Associated with Pediatric Brain Tumor Risk. Sci Rep 2019; 9:18142. [PMID: 31792337 PMCID: PMC6889151 DOI: 10.1038/s41598-019-54701-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/12/2019] [Indexed: 11/09/2022] Open
Abstract
Genetic risk score (GRS) is used to demonstrate the genetic variants contributing to the polygenic architecture of complex diseases. By using a GRS, we have investigated the additive impact of the known adult glioma susceptibility loci on the pediatric brain tumor (PBT) risk and assessed the proportion of PBT heritability attributable to these susceptibility loci. A GRS was generated for PBTs based on the alleles and associated effect sizes derived from a previously published genome-wide association study on adult glioma. The GRS was calculated in CEFALO, a population-based case-control study of brain tumors in children and adolescents including saliva DNA of 245 cases and 489 controls. The unconditional logistic regression model was used to investigate the association between standardized GRS and risk of PBTs. To measure the variance explained by the effect of GRS, Nagelkerke pseudo-R2 was calculated. The GRS for adult brain tumors was associated with an increased risk of PBTs (OR 1.25 [95% CI 1.06-1.49], p = 0.009) and 0.3% of the variance in PBTs could be explained by the effect of GRS on the liability scale. This study provides evidence that heritable risks of PBTs are in-part attributable to some common genetic variants associated with adult glioma.
Collapse
Affiliation(s)
- Maral Adel Fahmideh
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, SE-171 77, Stockholm, Sweden.
| | - Catharina Lavebratt
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, and Center for Molecular Medicine, Karolinska University Hospital, L8:00, SE-171 76, Stockholm, Sweden
| | - Giorgio Tettamanti
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, SE-171 77, Stockholm, Sweden
| | - Joachim Schüz
- Section of Environment and Radiation, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon CEDEX 08, Lyon, France
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland
- University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Kristina Kjaerheim
- The Cancer Registry of Norway, Ullernchausseen 64, NO-0379, Oslo, Norway
| | - Michael A Grotzer
- Department of Oncology, University Children's Hospital of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Christoffer Johansen
- Unit of Survivorship, The Danish Cancer Society Research Centre, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
- Oncology Department, Finsen Centre, 5073 Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Claudia E Kuehni
- Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine, University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
- Children's University Hospital of Bern, University of Bern, Freiburgstrasse 31, 3010, Bern, Switzerland
| | - Birgitta Lannering
- Department of Pediatrics, University of Gothenburg, Smörslottsgatan 1, SE-416 85, Gothenburg, Sweden
| | - Lisbeth S Schmidt
- Department of Pediatrics, University Hospital Herlev, Herlev Ringvej 75, DK-2730, Copenhagen, Denmark
| | - Hatef Darabi
- Quantify, Hantverkargatan 8, SE-112 21, Stockholm, Sweden
| | - Maria Feychting
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, SE-171 77, Stockholm, Sweden
| |
Collapse
|
15
|
Ostrom QT, Fahmideh MA, Cote DJ, Muskens IS, Schraw JM, Scheurer ME, Bondy ML. Risk factors for childhood and adult primary brain tumors. Neuro Oncol 2019; 21:1357-1375. [PMID: 31301133 PMCID: PMC6827837 DOI: 10.1093/neuonc/noz123] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Primary brain tumors account for ~1% of new cancer cases and ~2% of cancer deaths in the United States; however, they are the most commonly occurring solid tumors in children. These tumors are very heterogeneous and can be broadly classified into malignant and benign (or non-malignant), and specific histologies vary in frequency by age, sex, and race/ethnicity. Epidemiological studies have explored numerous potential risk factors, and thus far the only validated associations for brain tumors are ionizing radiation (which increases risk in both adults and children) and history of allergies (which decreases risk in adults). Studies of genetic risk factors have identified 32 germline variants associated with increased risk for these tumors in adults (25 in glioma, 2 in meningioma, 3 in pituitary adenoma, and 2 in primary CNS lymphoma), and further studies are currently under way for other histologic subtypes, as well as for various childhood brain tumors. While identifying risk factors for these tumors is difficult due to their rarity, many existing datasets can be leveraged for future discoveries in multi-institutional collaborations. Many institutions are continuing to develop large clinical databases including pre-diagnostic risk factor data, and developments in molecular characterization of tumor subtypes continue to allow for investigation of more refined phenotypes. Key Point 1. Brain tumors are a heterogeneous group of tumors that vary significantly in incidence by age, sex, and race/ethnicity.2. The only well-validated risk factors for brain tumors are ionizing radiation (which increases risk in adults and children) and history of allergies (which decreases risk).3. Genome-wide association studies have identified 32 histology-specific inherited genetic variants associated with increased risk of these tumors.
Collapse
Affiliation(s)
- Quinn T Ostrom
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Maral Adel Fahmideh
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Solna, Karolinska Institutet, and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - David J Cote
- Channing Division of Network Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Computational Neuroscience Outcomes Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ivo S Muskens
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeremy M Schraw
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Michael E Scheurer
- Department of Pediatrics, Section of Hematology-Oncology, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Melissa L Bondy
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
16
|
Dahlin AM, Wibom C, Andersson U, Hougaard DM, Bybjerg-Grauholm J, Deltour I, Hultman CM, Kähler AK, Karlsson R, Hjalmars U, Melin B. Genetic Variants in the 9p21.3 Locus Associated with Glioma Risk in Children, Adolescents, and Young Adults: A Case-Control Study. Cancer Epidemiol Biomarkers Prev 2019; 28:1252-1258. [PMID: 31040135 DOI: 10.1158/1055-9965.epi-18-1026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/07/2019] [Accepted: 04/26/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Genome-wide association studies have identified germline genetic variants in 25 genetic loci that increase the risk of developing glioma in adulthood. It is not known if these variants increase the risk of developing glioma in children and adolescents and young adults (AYA). To date, no studies have performed genome-wide analyses to find novel genetic variants associated with glioma risk in children and AYA. METHODS We investigated the association between 8,831,628 genetic variants and risk of glioma in 854 patients diagnosed up to the age of 29 years and 3,689 controls from Sweden and Denmark. Recruitment of patients and controls was population based. Genotyping was performed using Illumina BeadChips, and untyped variants were imputed with IMPUTE2. We selected 41 established adult glioma risk variants for detailed investigation. RESULTS Three adult glioma risk variants, rs634537, rs2157719, and rs145929329, all mapping to the 9p21.3 (CDKN2B-AS1) locus, were associated with glioma risk in children and AYA. The strongest association was seen for rs634537 (odds ratioG = 1.21; 95% confidence interval = 1.09-1.35; P = 5.8 × 10-4). In genome-wide analysis, an association with risk was suggested for 129 genetic variants (P <1 × 10-5). CONCLUSIONS Carriers of risk alleles in the 9p21.3 locus have an increased risk of glioma throughout life. The results from genome-wide association analyses require validation in independent cohorts. IMPACT Our findings line up with existing evidence that some, although not all, established adult glioma risk variants are associated with risk of glioma in children and AYA. Validation of results from genome-wide analyses may reveal novel susceptibility loci for glioma in children and AYA.
Collapse
Affiliation(s)
- Anna M Dahlin
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden.
| | - Carl Wibom
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Ulrika Andersson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - David M Hougaard
- Department of Congenital Disorders, Danish Centre for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | - Jonas Bybjerg-Grauholm
- Department of Congenital Disorders, Danish Centre for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | - Isabelle Deltour
- Section of Environment and Radiation, International Agency for Research on Cancer, Lyon, France
- Unit of Statistics, Bioinformatics and Registry, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anna K Kähler
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hjalmars
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Beatrice Melin
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| |
Collapse
|
17
|
Tong Y, Ye L, Li S, Zhao F, Ying J, Qu Y, Li J, Mu D. The association of 6 variants of 8q24 and the risk of glioma: A meta-analysis. Medicine (Baltimore) 2019; 98:e16205. [PMID: 31277128 PMCID: PMC6635291 DOI: 10.1097/md.0000000000016205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
With the advances in sequencing technologies and genome-wide association studies (GWAS), several inherited variants that increase glioma risk have been identified. Ten studies including 8818 cases and 17,551 controls were collected to conduct a meta-analysis to evaluate the associations between 6 variants in 8q24 and glioma risk. Of the 6 variants located in 8q24, 2 have strong significant associations with the risk of glioma, including rs4295627 (P = .003, odds ratio [OR] = 1.21), rs55705857 (P = 2.31 × 10, OR = 3.54). In particular, both homozygous GG (P = 1.91 × 10, OR1 = 2.01) and heterozygous GT (P = 7.75 × 10, OR2 = 1.35) genotypes of rs4295627 were associated with glioma risk. Further studies are needed to explore the role of the 8q24 variants involved in the etiology of glioma.
Collapse
Affiliation(s)
- Yu Tong
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province
| | - Lv Ye
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province
| | - Shiping Li
- Chendu Gaoxin-Daan Medical Laboratory Co Ltd Pathology Lab, China
| | - Fengyan Zhao
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province
| | - Junjie Ying
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province
| | - Yi Qu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province
| | - Jinhui Li
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province
| | - Dezhi Mu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province
| |
Collapse
|
18
|
Ponti G, Manfredini M, Tomasi A. Non-blood sources of cell-free DNA for cancer molecular profiling in clinical pathology and oncology. Crit Rev Oncol Hematol 2019; 141:36-42. [PMID: 31212145 DOI: 10.1016/j.critrevonc.2019.06.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/19/2018] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Liquid biopsy can quantify and qualify cell-free (cfDNA) and tumour-derived (ctDNA) DNA fragments in the bloodstream. CfDNA quantification and mutation analysis can be applied to diagnosis, follow-up and therapeutic management as novel oncologic biomarkers. However, some tumor-types release a low amount of DNA into the bloodstream, hampering diagnosis through standard liquid biopsy procedures. Several tumors, as such as brain, kidney, prostate, and thyroid cancer, are in direct contact with other body fluids and may be alternative sources for cfDNA and ctDNA. Non-blood sources of cfDNA/ctDNA useful as novel oncologic biomarkers include cerebrospinal fluids, urine, sputum, saliva, pleural effusion, stool and seminal fluid. Seminal plasma cfDNA, which can be analyzed with cost-effective procedures, may provide powerful information capable to revolutionize prostate cancer (PCa) patient diagnosis and management. In the near future, cfDNA analysis from non-blood biological liquids will become routine clinical practice for cancer patient diagnosis and management.
Collapse
Affiliation(s)
- Giovanni Ponti
- Department of Surgical, Medical, Dental & Morphological Sciences with Interest Transplant, Oncological & Regenerative Medicine, Division of Clinical Pathology, University of Modena & Reggio Emilia, Modena, Italy.
| | - Marco Manfredini
- Department of Surgical, Medical, Dental & Morphological Sciences with Interest Transplant, Oncological & Regenerative Medicine, Dermatology Unit, University of Modena & Reggio Emilia, Modena, Italy
| | - Aldo Tomasi
- Department of Surgical, Medical, Dental & Morphological Sciences with Interest Transplant, Oncological & Regenerative Medicine, Division of Clinical Pathology, University of Modena & Reggio Emilia, Modena, Italy
| |
Collapse
|
19
|
González-Castro TB, Juárez-Rojop IE, López-Narváez ML, Tovilla-Zárate CA, Genis-Mendoza AD, Pérez-Hernández N, Martínez-Magaña JJ, Rodríguez-Pérez JM. Genetic Polymorphisms of CCDC26 rs891835, rs6470745, and rs55705857 in Glioma Risk: A Systematic Review and Meta-analysis. Biochem Genet 2019; 57:583-605. [DOI: 10.1007/s10528-019-09911-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/07/2019] [Indexed: 01/03/2023]
|
20
|
Characteristics, properties, and potential applications of circulating cell-free dna in clinical diagnostics: a focus on transplantation. J Immunol Methods 2018; 463:27-38. [DOI: 10.1016/j.jim.2018.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022]
|
21
|
Damasceno S, Menezes NBD, Rocha CDS, Matos AHBD, Vieira AS, Moraes MFD, Martins AS, Lopes-Cendes I, Godard ALB. Transcriptome of the Wistar audiogenic rat (WAR) strain following audiogenic seizures. Epilepsy Res 2018; 147:22-31. [DOI: 10.1016/j.eplepsyres.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022]
|
22
|
Huang Y, Xiang B, Liu Y, Wang Y, Kan H. LncRNA CDKN2B-AS1 promotes tumor growth and metastasis of human hepatocellular carcinoma by targeting let-7c-5p/NAP1L1 axis. Cancer Lett 2018; 437:56-66. [PMID: 30165194 DOI: 10.1016/j.canlet.2018.08.024] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) show great potential as therapeutic targets in many diseases including hepatocellular carcinoma (HCC). Here, we aimed to investigate the clinical significance and function of lncRNA CDKN2B antisense RNA 1 (CDKN2B-AS1) in HCC. Here, we identified a novel oncogenic lncRNA CDKN2B-AS1, which was highly expressed in HCC and positively associated with large tumor size, microvascular invasion, high tumor grade, advanced tumor stage and reduced survival of HCC patients. CDKN2B-AS1 knockdown inhibited cell proliferation, migration and invasion, and induced G1 arrest and apoptosis of HCC cells in vitro, and CDKN2B-AS1 silencing suppressed tumor growth and metastasis of HCC in vivo. In accordance, CDKN2B-AS1 overexpression accelerated HCC cell growth and metastasis. Mechanistically, CDKN2B-AS1 promoted nucleosome assembly protein 1 like 1 (NAP1L1) expression by sponging let-7c-5p, thereby activated PI3K/AKT/mTOR signaling in HCC cells. Notably, NAP1L1 restoration abolished the effects of CDKN2B-AS1 silencing on HCC cell growth and metastasis. CDKN2B-AS1, an oncogenic lncRNA of HCC, promoted NAP1L1-mediated PI3K/AKT/mTOR signaling by acting as a molecular sponge of let-7c-5p. Our findings indicate that CDKN2B-AS1 may be a potential prognostic biomarker and a candidate target for HCC therapy.
Collapse
Affiliation(s)
- Yuqi Huang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Ave, Guangzhou, Guangdong Province, 510515, China.
| | - Bo Xiang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Ave, Guangzhou, Guangdong Province, 510515, China.
| | - Yuanhua Liu
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Ave, Guangzhou, Guangdong Province, 510515, China.
| | - Yu Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Ave, Guangzhou, Guangdong Province, 510515, China.
| | - Heping Kan
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Ave, Guangzhou, Guangdong Province, 510515, China.
| |
Collapse
|
23
|
The TERT rs2736100 polymorphism increases cancer risk: A meta-analysis. Oncotarget 2018; 8:38693-38705. [PMID: 28418878 PMCID: PMC5503564 DOI: 10.18632/oncotarget.16309] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/15/2017] [Indexed: 02/07/2023] Open
Abstract
Abnormal telomerase activity is implicated in cancer initiation and development. The rs2736100 T > G polymorphism in the telomerase reverse transcriptase (TERT) gene, which encodes the telomerase catalytic subunit, has been associated with increased cancer risk. We conducted a meta-analysis to more precisely assess this association. After a comprehensive literature search of the PubMed and EMBASE databases up to November 1, 2016, 61 articles with 72 studies comprising 108,248 cases and 161,472 controls were included in our meta-analysis. Studies were conducted on various cancer types. The TERT rs2736100 polymorphism was associated with increased overall cancer risk in five genetic models [homozygous model (GG vs. TT): odds ratio (OR) = 1.39, 95% confidence interval (95% CI) = 1.26-1.54, P < 0.001; heterozygous model (TG vs. TT): OR = 1.16, 95% CI = 1.11-1.23, P < 0.001; dominant model (TG + GG vs. TT): OR = 1.23, 95% CI = 1.15-1.31, P < 0.001; recessive model (GG vs. TG + TT): OR = 1.25, 95% CI = 1.16-1.35, P < 0.001; and allele contrast model (G vs. T): OR = 1.17, 95% CI = 1.12-1.23, P < 0.001]. A stratified analysis based on cancer type associated the polymorphism with elevated risk of thyroid cancer, bladder cancer, lung cancer, glioma, myeloproliferative neoplasms, and acute myeloid leukemia. Our results confirm that the TERT rs2736100 polymorphism confers increased overall cancer risk.
Collapse
|
24
|
Snetselaar R, van Oosterhout MFM, Grutters JC, van Moorsel CHM. Telomerase Reverse Transcriptase Polymorphism rs2736100: A Balancing Act between Cancer and Non-Cancer Disease, a Meta-Analysis. Front Med (Lausanne) 2018. [PMID: 29536006 PMCID: PMC5835035 DOI: 10.3389/fmed.2018.00041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The enzyme telomerase reverse transcriptase (TERT) is essential for telomere maintenance. In replicating cells, maintenance of telomere length is important for the preservation of vital genetic information and prevention of genomic instability. A common genetic variant in TERT, rs2736100 C/A, is associated with both telomere length and multiple diseases. Carriage of the C allele is associated with longer telomere length, while carriage of the A allele is associated with shorter telomere length. Furthermore, some diseases have a positive association with the C and some with the A allele. In this study, meta-analyses were performed for two groups of diseases, cancerous diseases, e.g., lung cancer and non-cancerous diseases, e.g., pulmonary fibrosis, using data from genome-wide association studies and case-control studies. In the meta-analysis it was found that cancer positively associated with the C allele (pooled OR 1.16 [95% CI 1.09–1.23]) and non-cancerous diseases negatively associated with the C allele (pooled OR 0.81 [95% CI 0.65–0.99]). This observation illustrates that the ambiguous role of telomere maintenance in disease hinges, at least in part, on a single locus in telomerase genes. The dual role of this single nucleotide polymorphism also emphasizes that therapeutic agents aimed at influencing telomere maintenance should be used with caution.
Collapse
Affiliation(s)
- Reinier Snetselaar
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, Netherlands
| | - Matthijs F M van Oosterhout
- Interstitial Lung Diseases Center of Excellence, Department of Pathology, St Antonius Hospital, Nieuwegein, Netherlands
| | - Jan C Grutters
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, Netherlands.,Division of Heart and Lung, University Medical Center Utrecht, Utrecht, Netherlands
| | - Coline H M van Moorsel
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, Netherlands.,Division of Heart and Lung, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
25
|
Chen YD, Zhang N, Qiu XG, Yuan J, Yang M. LncRNACDKN2BASrs2157719 genetic variant contributes to medulloblastoma predisposition. J Gene Med 2018; 20. [PMID: 29314442 DOI: 10.1002/jgm.3000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/14/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022] Open
Affiliation(s)
- Yi-Dong Chen
- Department of Radiation Oncology, Beijing Shijitan Hospital; Capital Medical University; Beijing China
| | - Nasha Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital affiliated to Shandong University; Shandong Academy of Medical Sciences; Jinan Shandong Province China
| | - Xiao-Guang Qiu
- Department of Radiation Oncology, Beijing Tiantan Hospital; Capital Medical University; Beijing China
| | - Jupeng Yuan
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital affiliated to Shandong University; Shandong Academy of Medical Sciences; Jinan Shandong Province China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital affiliated to Shandong University; Shandong Academy of Medical Sciences; Jinan Shandong Province China
| |
Collapse
|
26
|
Cai Y, Zeng C, Su Q, Zhou J, Li P, Dai M, Wang D, Long F. Association of RTEL1 gene polymorphisms with stroke risk in a Chinese Han population. Oncotarget 2017; 8:114995-115001. [PMID: 29383136 PMCID: PMC5777748 DOI: 10.18632/oncotarget.22980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/15/2017] [Indexed: 01/14/2023] Open
Abstract
We investigated the associations between single nucleotide polymorphisms (SNPs) in the regulator of telomere elongation helicase 1 (RTEL1) gene and stroke in the Chinese population. A total of 400 stroke patients and 395 healthy participants were included in this study. Five SNPs in RTEL1 were genotyped and the association with stroke risk was analyzed. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated using unconditional logistic regression analysis. Multivariate logistic regression analysis was used to identify SNPs that correlated with stroke. Rs2297441 was associated with an increased risk of stroke in an allele model (odds ratio [OR] = 1.24, 95% confidence interval [95% CI] = 1.01-1.52, p = 0.043). Rs6089953 was associated with an increased risk of stroke under the genotype model ([OR] = 1.862, [CI] = 1.123-3.085, p = 0.016). Rs2297441 was associated with an increased risk of stroke in an additive model (OR = 1.234, 95% CI = 1.005, p = 0.045, Rs6089953, Rs6010620 and Rs6010621 were associated with an increased risk of stroke in the recessive model (Rs6089953:OR = 1.825, 95% CI = 1.121-2.969, p =0.01546; Rs6010620: OR = 1.64, 95% CI = 1.008-2.669, p =0.04656;Rs6010621:OR = 1.661, 95% CI = 1.014-2.722, p =0.04389). Our findings reveal a possible association between SNPs in the RTEL1 gene and stroke risk in Chinese population.
Collapse
Affiliation(s)
- Yi Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical College, Hainan 570311, China
| | - Chaosheng Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical College, Hainan 570311, China
| | - Qingjie Su
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical College, Hainan 570311, China
| | - Jingxia Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical College, Hainan 570311, China
| | - Pengxiang Li
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical College, Hainan 570311, China
| | - Mingming Dai
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical College, Hainan 570311, China
| | - Desheng Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical College, Hainan 570311, China
| | - Faqing Long
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical College, Hainan 570311, China
| |
Collapse
|
27
|
Deleskog A, den Hoed M, Tettamanti G, Carlsson S, Ljung R, Feychting M, Brooke HL. Maternal diabetes and incidence of childhood cancer - a nationwide cohort study and exploratory genetic analysis. Clin Epidemiol 2017; 9:633-642. [PMID: 29238226 PMCID: PMC5716336 DOI: 10.2147/clep.s147188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background The etiology of childhood cancer is not well understood, but may be linked to prenatal and perinatal factors, such as maternal diabetes. However, this association has not been examined in depth. We aimed to determine if maternal diabetes is associated with risk of childhood brain tumor (CBT), leukemia (all types combined and acute lymphoblastic leukemia [ALL] separately), and lymphoma. Methods All children born in Sweden between 1973 and 2014 (n=4,239,965) were followed from birth until first cancer diagnosis, age 15 years, or December 31, 2015. Data on maternal diabetes, childhood cancer, and covariates were obtained from nationwide health registers. Incidence rate ratios (IRRs) and 95% confidence intervals (CIs) were calculated using Cox regression adjusted for potential confounders/mediators. Additionally, we performed an exploratory analysis using results from published genome-wide association studies and functional annotation. Results Maternal diabetes was associated with lower risk of CBT (adjusted IRR [95% CI]: 0.56 [0.35-0.91]) and higher risk of leukemia (adjusted IRR: 1.47 [1.13-1.92] for all leukemia combined and 1.64 [1.23-2.18] for ALL). These associations were similar for both maternal type 1 diabetes and gestational diabetes. Associations of five previously identified genetic loci were compatible with a causal effect of diabetes traits on neuroblastoma and common Hodgkin's lymphoma. Conclusion Children whose mother had diabetes had lower risk of CBT and higher risk of leukemia, compared with children whose mother did not have diabetes. Our results are compatible with a role of prenatal and perinatal glycemic environment in childhood cancer etiology.
Collapse
Affiliation(s)
- Anna Deleskog
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm
| | - Marcel den Hoed
- Department of Immunology, Genetics and Pathology.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Giorgio Tettamanti
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm
| | - Sofia Carlsson
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm
| | - Rickard Ljung
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm
| | - Maria Feychting
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm
| | - Hannah L Brooke
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm
| |
Collapse
|
28
|
Peng M, Chen C, Hulbert A, Brock MV, Yu F. Non-blood circulating tumor DNA detection in cancer. Oncotarget 2017; 8:69162-69173. [PMID: 28978187 PMCID: PMC5620327 DOI: 10.18632/oncotarget.19942] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023] Open
Abstract
Tumor DNA contains specific somatic alterations that are crucial for the diagnosis and treatment of cancer. Due to the spatial and temporal intra-tumor heterogeneity, multi-sampling is needed to adequately characterize the somatic alterations. Tissue biopsy, however, is limited by the restricted access to sample and the challenges to recapitulate the tumor clonal diversity. Non-blood circulating tumor DNA are tumor DNA fragments presents in non-blood body fluids, such as urine, saliva, sputum, stool, pleural fluid, and cerebrospinal fluid (CSF). Recent studies have demonstrated the presence of tumor DNA in these non-blood body fluids and their application to the diagnosis, screening, and monitoring of cancers. Non-blood circulating tumor DNA has an enormous potential for large-scale screening of local neoplasms because of its non-invasive nature, close proximity to the tumors, easiness and it is an economically viable option. It permits longitudinal assessments and allows sequential monitoring of response and progression. Enrichment of tumor DNA of local cancers in non-blood body fluids may help to archive a higher sensitivity than in plasma ctDNA. The direct contact of cancerous cells and body fluid may facilitate the detection of tumor DNA. Furthermore, normal DNA always dilutes the plasma ctDNA, which may be aggravated by inflammation and injury when very high amounts of normal DNA are released into the circulation. Altogether, our review indicate that non-blood circulating tumor DNA presents an option where the disease can be tracked in a simple and less-invasive manner, allowing for serial sampling informing of the tumor heterogeneity and response to treatment.
Collapse
Affiliation(s)
- Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R China
| | - Chen Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R China
| | - Alicia Hulbert
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Malcolm V Brock
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R China
| |
Collapse
|
29
|
Huang B, Luo A, Durbin EB, Lycan E, Tucker T, Chen Q, Horbinski C, Villano JL. Incidence of CNS tumors in Appalachian children. J Neurooncol 2017; 132:507-512. [PMID: 28285334 PMCID: PMC5481463 DOI: 10.1007/s11060-017-2403-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/27/2017] [Indexed: 01/22/2023]
Abstract
Determine whether the risk of astrocytomas in Appalachian children is higher than the national average. We compared the incidence of pediatric brain tumors in Appalachia versus non-Appalachia regions, covering years 2000-2011. The North American Association of Central Cancer Registries (NAACCR) collects population-based data from 55 cancer registries throughout U.S. and Canada. All invasive primary (i.e. non-metastatic tumors), with age at diagnosis 0-19 years old, were included. Nearly 27,000 and 2200 central nervous system (CNS) tumors from non-Appalachia and Appalachia, respectively comprise the cohorts. Age-adjusted incidence rates of each main brain tumor subtype were compared. The incidence rate of pediatric CNS tumors was 8% higher in Appalachia, 3.31 [95% CI 3.17-3.45] versus non-Appalachia, 3.06, [95% CI 3.02-3.09] for the years 2001-2011, all rates are per 100,000 population. Astrocytomas accounted for the majority of this difference, with the rate being 16% higher in Appalachian children, 1.77, [95% CI 1.67-1.87] versus non-Appalachian children, 1.52, [95% CI 1.50-1.55]. Among astrocytomas, World Health Organization (WHO) grade I astrocytomas were 41% higher in Appalachia, 0.63 [95% CI 0.56-0.70] versus non-Appalachia 0.44 [95% CI 0.43-0.46] for the years 2004-2011. This is the first study to demonstrate that Appalachian children are at greater risk of CNS neoplasms, and that much of this difference is in WHO grade I astrocytomas, 41% more common. The cause of this increased incidence is unknown and we discuss the importance of this in relation to genetic and environmental findings in Appalachia.
Collapse
Affiliation(s)
- Bin Huang
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
- Kentucky Cancer Registry, Lexington, KY, 40504, USA
| | - Alice Luo
- College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Eric B Durbin
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
- Kentucky Cancer Registry, Lexington, KY, 40504, USA
- College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Ellen Lycan
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
- Kentucky Cancer Registry, Lexington, KY, 40504, USA
| | - Thomas Tucker
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
- Kentucky Cancer Registry, Lexington, KY, 40504, USA
| | - Quan Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
- Kentucky Cancer Registry, Lexington, KY, 40504, USA
| | - Craig Horbinski
- Departments of Pathology and Neurosurgery, Northwestern University, Chicago, IL, 60611, USA
| | - John L Villano
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
- Division of Medical Oncology, University of Kentucky, 800 Rose Street, CC447, Lexington, KY, 40536-0093, USA.
| |
Collapse
|
30
|
Ding Y, Xu H, Yao J, Xu D, He P, Yi S, Li Q, Liu Y, Wu C, Tian Z. Association between RTEL1 gene polymorphisms and COPD susceptibility in a Chinese Han population. Int J Chron Obstruct Pulmon Dis 2017; 12:931-936. [PMID: 28360516 PMCID: PMC5364006 DOI: 10.2147/copd.s131246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective We investigated the association between single-nucleotide polymorphisms in regulation of telomere elongation helicase 1 (RTEL1), which has been associated with telomere length in several brain cancers and age-related diseases, and the risk of chronic obstructive pulmonary disease (COPD) in a Chinese Han population. Methods In a case–control study that included 279 COPD cases and 290 healthy controls, five single-nucleotide polymorphisms in RTEL1 were selected and genotyped using the Sequenom MassARRAY platform. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using unconditional logistic regression after adjusting for age and gender. Results In the genotype model analysis, we determined that rs4809324 polymorphism had a decreased effect on the risk of COPD (CC versus TT: OR =0.28; 95% CI =0.10–0.82; P=0.02). In the genetic model analysis, we found that the “C/C” genotype of rs4809324 was associated with a decreased risk of COPD based on the codominant model (OR =0.33; 95% CI =0.13–0.86; P=0.022) and recessive model (OR =0.32; 95% CI =0.12–0.80; P=0.009). Conclusion Our data shed new light on the association between genetic polymorphisms of RTEL1 and COPD susceptibility in the Chinese Han population.
Collapse
Affiliation(s)
- Yipeng Ding
- Department of Emergency, People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China
| | - Heping Xu
- Department of Emergency, People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China
| | - Jinjian Yao
- Department of Emergency, People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China
| | - Dongchuan Xu
- Department of Emergency, People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China
| | - Ping He
- Department of Emergency, People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China
| | - Shengyang Yi
- Department of Emergency, People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China
| | - Quanni Li
- Department of Emergency, People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China
| | - Yuanshui Liu
- Department of Emergency, People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China
| | - Cibing Wu
- Department of Emergency, People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China
| | - Zhongjie Tian
- Department of Emergency, People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China
| |
Collapse
|
31
|
Zhao J, Wu X, Nie S, Gao X, Sun J, Li K, Zhang T, Huang Y. Association of CDKN2B-AS1 rs1333049 with Brain Diseases: A Case-control Study and a Meta-analysis. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2017; 15:53-58. [PMID: 28138111 PMCID: PMC5290720 DOI: 10.9758/cpn.2017.15.1.53] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/19/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022]
Abstract
Objective CDKN2B-AS1 polymorphisms were shown to associate with the risk of stroke in European. The goal of this study was to evaluate the contribution of CDKN2B-AS1 rs1333049 to the risk of hemorrhagic stroke (HS) and brain tumor (BT) in Han Chinese. Methods A total of 142 HSs, 115 BTs, and 494 controls were included in the current association study. The genotyping test was performed using the melting temperature shift method. Results We failed to validate the association of CDKN2B-AS1 rs1333049 with the risk of brain disease. Significantly higher levels of low-density lipoprotein cholesterol (LDL-C) (p=0.027), high-density lipoprotein cholesterol (HDL-C) (p<0.001) and total cholesterol (TC) (p<0.001) were found in HSs in the genotype GG/GC carriers, but not the genotype CC carriers (p>0.05). The meta-analysis of 10 studies among 133,993 individuals concluded that rs1333049 of CDKN2B-AS1 gene was likely to increase a 16% incidence rate of cerebrovascular disease (CD) among various populations (odds ratio 1.16, 95% confidence interval 1.08–1.25; p<0.0001, random-effect method). Conclusion Our case-control study identified rs1333049 genotypes showed different association with the concentration of the LDL-C, HDL-C and TC in the HS patients. Meta-analysis supported the association between rs1333049 and CD risk in various populations, although we were unable to observe association between rs1333049 and the risk of HSs in Han Chinese.
Collapse
Affiliation(s)
- Jikuang Zhao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Xizheng Wu
- Department of Neurosurgery, Ninghai First Hospital, Ninghai, China
| | - Sheng Nie
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Jie Sun
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Keqin Li
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Tiefeng Zhang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| |
Collapse
|
32
|
Fahmideh MA, Lavebratt C, Schüz J, Röösli M, Tynes T, Grotzer MA, Johansen C, Kuehni CE, Lannering B, Prochazka M, Schmidt LS, Feychting M. Common genetic variations in cell cycle and DNA repair pathways associated with pediatric brain tumor susceptibility. Oncotarget 2016; 7:63640-63650. [PMID: 27613841 PMCID: PMC5325391 DOI: 10.18632/oncotarget.11575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/15/2016] [Indexed: 01/11/2023] Open
Abstract
Knowledge on the role of genetic polymorphisms in the etiology of pediatric brain tumors (PBTs) is limited. Therefore, we investigated the association between single nucleotide polymorphisms (SNPs), identified by candidate gene-association studies on adult brain tumors, and PBT risk.The study is based on the largest series of PBT cases to date. Saliva DNA from 245 cases and 489 controls, aged 7-19 years at diagnosis/reference date, was genotyped for 68 SNPs. Data were analyzed using unconditional logistic regression.The results showed EGFRrs730437 and EGFRrs11506105 may decrease susceptibility to PBTs, whereas ERCC1rs3212986 may increase risk of these tumors. Moreover, stratified analyses indicated CHAF1Ars243341, CHAF1Ars2992, and XRCC1rs25487 were associated with a decreased risk of astrocytoma subtype. Furthermore, an increased risk of non-astrocytoma subtype associated with EGFRrs9642393, EME1rs12450550, ATMrs170548, and GLTSCRrs1035938 as well as a decreased risk of this subtype associated with XRCC4rs7721416 and XRCC4rs2662242 were detected.This study indicates SNPs in EGFR, ERCC1, CHAF1A, XRCC1, EME1, ATM, GLTSCR1, and XRCC4 may be associated with the risk of PBTs. Therefore, cell cycle and DNA repair pathways variations associated with susceptibility to adult brain tumors also seem to be associated with PBT risk, suggesting pediatric and adult brain tumors might share similar etiological pathways.
Collapse
Affiliation(s)
- Maral Adel Fahmideh
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Catharina Lavebratt
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, and Center for Molecular Medicine, Karolinska University Hospital, L8:00, SE-171 76 Stockholm, Sweden
| | - Joachim Schüz
- Section of Environment and Radiation, International Agency for Research on Cancer (IARC), 69372 Lyon, France
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| | - Tore Tynes
- The Cancer Registry of Norway, NO-0379 Oslo, Norway
- National Institute of Occupational Health, NO-0360 Oslo, Norway
| | - Michael A. Grotzer
- Department of Oncology, University Children's Hospital of Zurich, 8032 Zurich, Switzerland
| | - Christoffer Johansen
- Unit of Survivorship, The Danish Cancer Society Research Centre, DK-2100 Copenhagen, Denmark
- Oncology Department, Finsen Centre, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Claudia E Kuehni
- Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| | - Birgitta Lannering
- Childrens Cancer Center, Queen Silvia Childrens Hospital, SE-416 85 Gothenburg, Sweden
| | - Michaela Prochazka
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Lisbeth S Schmidt
- Department of Clinical Genetics, University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Maria Feychting
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
33
|
Abu-Amero KK, Kondkar AA, Mousa A, Almobarak FA, Alawad A, Altuwaijri S, Sultan T, Azad TA, Al-Obeidan SA. Analysis of Cyclin-Dependent Kinase Inhibitor-2B rs1063192 Polymorphism in Saudi Patients with Primary Open-Angle Glaucoma. Genet Test Mol Biomarkers 2016; 20:637-641. [PMID: 27541204 DOI: 10.1089/gtmb.2016.0140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIMS To investigate whether the polymorphism rs1063192 (A>G) in the cyclin-dependent kinase Inhibitor-2B (CDKN2B) gene is a risk factor for primary open-angle glaucoma (POAG). METHOD A case-control study was conducted wherein we genotyped 87 unrelated POAG cases and 94 control subjects from Saudi Arabia using the Taq-Man® assay. RESULTS The minor allele frequency was 0.20 in POAG cases and 0.21 in controls. Both the genotype and allele frequencies were not significantly different between cases and controls. No significant association was found between genotypes and glaucoma clinical indices, except that the mutant homozygous genotype (G/G) was associated with the family history of glaucoma (p = 0.024). CONCLUSION Polymorphism rs1063192 in CDKN2B is not a risk factor for POAG in Saudi cohort.
Collapse
Affiliation(s)
- Khaled K Abu-Amero
- 1 Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University , Riyadh, Saudi Arabia .,2 Department of Ophthalmology, College of Medicine, University of Florida , Jacksonville, Florida
| | - Altaf A Kondkar
- 1 Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University , Riyadh, Saudi Arabia
| | - Ahmed Mousa
- 1 Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University , Riyadh, Saudi Arabia
| | - Faisal A Almobarak
- 1 Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University , Riyadh, Saudi Arabia
| | - Abdullah Alawad
- 3 National Center for Stem Cell Technology (NCSCT), Life Sciences and Environmental Research Institute , King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Saleh Altuwaijri
- 4 Clinical Research Laboratory, SAAD Research and Development Center, SAAD Specialist Hospital , Al Khobar, Saudi Arabia .,5 Veterinary College, Qassim University , Qassim, Saudi Arabia
| | - Tahira Sultan
- 1 Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University , Riyadh, Saudi Arabia
| | - Taif A Azad
- 1 Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University , Riyadh, Saudi Arabia
| | - Saleh A Al-Obeidan
- 1 Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University , Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Zhang C, Lu Y, Zhang X, Yang D, Shang S, Liu D, Jiang K, Huang W. The role of the RTEL1 rs2297440 polymorphism in the risk of glioma development: a meta-analysis. Neurol Sci 2016; 37:1023-31. [PMID: 26939676 DOI: 10.1007/s10072-016-2531-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
Abstract
The regulator of the telomere elongation helicase1 (RTEL1) gene plays a crucial role in the DNA double-stand break-repair pathway by maintaining genomic stability. Recent epidemiological studies showed that the rs2297440 polymorphism in the RTEL1 gene was a potential risk locus for glioma development, but the results were inconclusive. To clarify the association between this polymorphism and the risk of glioma, we performed a comprehensive meta-analysis. The PubMed, EMBASE, Web of Science, and China National Knowledge Infrastructure databases were systematically searched to identify all relevant published studies up to 30 August 2015. Four eligible studies were finally included. The pooled results indicated that the RTEL1 rs2297440 polymorphism moderately increased the risk of glioma in all genetic models. A comparison of the dominant model CT + CC versus TT (OR 1.40; 95 % CI 1.24-1.60; p < 0.001) indicated that having the C allele conferred a 40 % increased risk of developing glioma. In a subgroup analysis based on geographic location (Europe, Asia, and America), there was an association between the rs2297440 polymorphism and the risk of glioma in all three areas. The results of the subgroup analysis based on source of control indicated an elevated risk of glioma in population-based control studies. This meta-analysis demonstrates that the RTEL1 rs2297440 polymorphism plays a moderate, but significant role in the risk of glioma. Further studies with larger sample sizes are necessary to confirm this finding.
Collapse
Affiliation(s)
- Cuiping Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yu Lu
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xiaolian Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Dongmei Yang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Shuxin Shang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Denghe Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Kongmei Jiang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Weiqiang Huang
- Department of Geriatric Cardiology, First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning, 530021, China.
| |
Collapse
|