1
|
Schmidt M, Maié T, Cramer T, Costa IG, Wagner W. Cancer-associated fibroblasts reveal aberrant DNA methylation across different types of cancer. Clin Epigenetics 2024; 16:164. [PMID: 39567960 PMCID: PMC11580436 DOI: 10.1186/s13148-024-01783-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are essential components of the tumor microenvironment and play a critical role in cancer progression. Numerous studies have identified significant molecular differences between CAFs and normal tissue-associated fibroblasts (NAFs). In this study, we isolated CAFs and NAFs from liver tumors and conducted a comprehensive analysis of their DNA methylation profiles, integrating our finding with data from studies on other cancer types. RESULTS Our analysis revealed that several CAF samples exhibited aberrant DNA methylation patterns, which corresponded with altered gene expression levels. Notably, DNA methylation at liver CAF-specific CpG sites was linked to survival outcomes in liver cancer datasets. An integrative analysis using publicly available datasets from various cancer types, including lung, prostate, esophageal, and gastric cancers, uncovered common epigenetic abnormalities across these cancers. Among the consistently altered CpGs were cg09809672 (EDARADD), cg07134930 (HDAC4), and cg05935904 (intergenic). These methylation changes were associated with prognosis across multiple cancer types. CONCLUSION The activation of CAFs by the tumor microenvironment seems to be associated with distinct epigenetic modifications. Remarkably, similar genomic regions tend to undergo hypomethylation in CAFs across different studies and cancer types. Our findings suggest that CAF-associated DNA methylation changes hold potential as prognostic biomarkers. However, further research and validation are necessary to develop and apply such signatures in a clinical setting.
Collapse
Affiliation(s)
- Marco Schmidt
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, 52074, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Tiago Maié
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Thorsten Cramer
- Department of General, Visceral, Children and Transplantation Surgery, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Wolfgang Wagner
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, 52074, Aachen, Germany.
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, 52074, Aachen, Germany.
- Center for Integrated Oncology, Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany.
| |
Collapse
|
2
|
Miao R, Xu Z, Han T, Liu Y, Zhou J, Guo J, Xing Y, Bai Y, He Z, Wu J, Wang W, Hu D. Based on machine learning, CDC20 has been identified as a biomarker for postoperative recurrence and progression in stage I & II lung adenocarcinoma patients. Front Oncol 2024; 14:1351393. [PMID: 39114311 PMCID: PMC11303833 DOI: 10.3389/fonc.2024.1351393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
Objective By utilizing machine learning, we can identify genes that are associated with recurrence, invasion, and tumor stemness, thus uncovering new therapeutic targets. Methods To begin, we obtained a gene set related to recurrence and invasion from the GEO database, a comprehensive gene expression database. We then employed the Weighted Gene Co-expression Network Analysis (WGCNA) to identify core gene modules and perform functional enrichment analysis on them. Next, we utilized the random forest and random survival forest algorithms to calculate the genes within the key modules, resulting in the identification of three crucial genes. Subsequently, one of these key genes was selected for prognosis analysis and potential drug screening using the Kaplan-Meier tool. Finally, in order to examine the role of CDC20 in lung adenocarcinoma (LUAD), we conducted a variety of in vitro and in vivo experiments, including wound healing assay, colony formation assays, Transwell migration assays, flow cytometric cell cycle analysis, western blotting, and a mouse tumor model experiment. Results First, we collected a total of 279 samples from two datasets, GSE166722 and GSE31210, to identify 91 differentially expressed genes associated with recurrence, invasion, and stemness in lung adenocarcinoma. Functional enrichment analysis revealed that these key gene clusters were primarily involved in microtubule binding, spindle, chromosomal region, organelle fission, and nuclear division. Next, using machine learning, we identified and validated three hub genes (CDC45, CDC20, TPX2), with CDC20 showing the highest correlation with tumor stemness and limited previous research. Furthermore, we found a close association between CDC20 and clinical pathological features, poor overall survival (OS), progression-free interval (PFI), progression-free survival (PFS), and adverse prognosis in lung adenocarcinoma patients. Lastly, our functional research demonstrated that knocking down CDC20 could inhibit cancer cell migration, invasion, proliferation, cell cycle progression, and tumor growth possibly through the MAPK signaling pathway. Conclusion CDC20 has emerged as a novel biomarker for monitoring treatment response, recurrence, and disease progression in patients with lung adenocarcinoma. Due to its significance, further research studying CDC20 as a potential therapeutic target is warranted. Investigating the role of CDC20 could lead to valuable insights for developing new treatments and improving patient outcomes.
Collapse
Affiliation(s)
- Rui Miao
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
- Institute of Precision Medicine (AUST-IPM), Anhui University of Science and Technology, Huainan, China
| | - Zhi Xu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Tao Han
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Yingru Xing
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Zhonglei He
- Institute of Precision Medicine (AUST-IPM), Anhui University of Science and Technology, Huainan, China
- School of Public Health, Anhui University of Science and Technology, Huainan, China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Wenxin Wang
- Institute of Precision Medicine (AUST-IPM), Anhui University of Science and Technology, Huainan, China
- School of Public Health, Anhui University of Science and Technology, Huainan, China
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
3
|
Xie B, Dong W, He F, Peng F, Zhang H, Wang W. The Combination of SHOX2 and RASSF1A DNA Methylation Had a Diagnostic Value in Pulmonary Nodules and Early Lung Cancer. Oncology 2024; 102:759-774. [PMID: 38262380 DOI: 10.1159/000534275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/19/2023] [Indexed: 01/25/2024]
Abstract
INTRODUCTION The study explored the effects of SHOX2 and RASSF1A DNA methylation in lung cancer (LC). METHOD Bronchoalveolar lavage fluid (BALF) samples as well as LC and normal adjacent tissues were collected from 72 LC patients and 35 patients with benign pulmonary nodules. Quantitative analysis of SHOX2 and RASSF1A DNA methylation was performed in benign pulmonary nodules and different stages of LC. The diagnostic value of SHOX2 and RASSF1A DNA methylation in LC and benign pulmonary nodules was determined by receiver operating characteristics analysis. Gain/loss-of-function experiments were constructed in LC cells and mouse models of xenograft and pulmonary nodule metastasis. The levels of SHOX2 and transfer-associated genes were tested through quantitative reverse transcription polymerase chain reaction and Western blot. Malignant phenotype of LC cells was assessed by functional experiment. The tumor volume and weight of mice in xenograft models were measured. Pulmonary nodule metastasis was determined through HE staining assay. 5-azacytidine appeared as a positive control drug. RESULT SHOX2 DNA methylation or RASSF1A DNA methylation had diagnostic efficiency in pulmonary nodules and early LC, with the two combined having better diagnostic value. SHOX2 expression was upregulated in LC. Similar to 5-azacytidine, SHOX2 knockdown inhibited LC cell viability, migration, and invasion in vitro as well as restrained LC tumorigenesis and pulmonary nodule metastasis in vivo, whereas overexpressed SHOX2 had the opposite effects. CONCLUSION The combination of SHOX2 and RASSF1A DNA methylation had a diagnostic value in pulmonary nodules and early LC. SHOX2 positively modulated the tumorigenesis and metastasis of LC by regulating DNA methylation processes.
Collapse
Affiliation(s)
- Bin Xie
- Department of Respiratory Medicine, Yue Bei People's Hospital, Shaoguan, China
| | - Wenyan Dong
- Department of Geriatric Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengping He
- Central Laboratory, Yue Bei People's Hospital, Shaoguan, China
| | - Feng Peng
- Department of Respiratory Medicine, Yue Bei People's Hospital, Shaoguan, China
| | - Honghua Zhang
- Department of Respiratory Medicine, Yue Bei People's Hospital, Shaoguan, China
| | - Wei Wang
- Medical Integration and Practice Center of Shandong University, Jinan, China
| |
Collapse
|
4
|
Saxena N, Chakraborty S, Dutta S, Bhardwaj G, Karnik N, Shetty O, Jadhav S, Zafar H, Sen S. Stiffness-dependent MSC homing and differentiation into CAFs - implications for breast cancer invasion. J Cell Sci 2024; 137:jcs261145. [PMID: 38108421 DOI: 10.1242/jcs.261145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023] Open
Abstract
Cellular heterogeneity and extracellular matrix (ECM) stiffening have been shown to be drivers of breast cancer invasiveness. Here, we examine how stiffness-dependent crosstalk between cancer cells and mesenchymal stem cells (MSCs) within an evolving tumor microenvironment regulates cancer invasion. By analyzing previously published single-cell RNA sequencing datasets, we establish the existence of a subpopulation of cells in primary tumors, secondary sites and circulatory tumor cell clusters of highly aggressive triple-negative breast cancer (TNBC) that co-express MSC and cancer-associated fibroblast (CAF) markers. By using hydrogels with stiffnesses of 0.5, 2 and 5 kPa to mimic different stages of ECM stiffening, we show that conditioned medium from MDA-MB-231 TNBC cells cultured on 2 kPa gels, which mimic the pre-metastatic stroma, drives efficient MSC chemotaxis and induces stable differentiation of MSC-derived CAFs in a TGFβ (TGFB1)- and contractility-dependent manner. In addition to enhancing cancer cell proliferation, MSC-derived CAFs on 2 kPa gels maximally boost local invasion and confer resistance to flow-induced shear stresses. Collectively, our results suggest that homing of MSCs at the pre-metastatic stage and their differentiation into CAFs actively drives breast cancer invasion and metastasis in TNBC.
Collapse
Affiliation(s)
- Neha Saxena
- Department of Chemical Engineering, IIT Bombay,Mumbai 400076, India
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Soura Chakraborty
- Department of Biological Sciences and Bioengineering, IIT Kanpur, Kanpur 208016, India
| | - Sarbajeet Dutta
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Garvit Bhardwaj
- Department of Electrical Engineering, IIT Kanpur, Kanpur 208016, India
| | - Nupur Karnik
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai 400012, India
| | - Omshree Shetty
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai 400012, India
| | - Sameer Jadhav
- Department of Chemical Engineering, IIT Bombay,Mumbai 400076, India
| | - Hamim Zafar
- Department of Biological Sciences and Bioengineering, IIT Kanpur, Kanpur 208016, India
- Department of Computer Science and Engineering, IIT Kanpur, Kanpur 208016, India
- Mehta Family Centre for Engineering in Medicine , IIT Kanpur, Kanpur 208016, India
| | - Shamik Sen
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| |
Collapse
|
5
|
Cheng K, Li W, Wu H, Li C. Mapping knowledge structure and themes trends of cancer-associated fibroblasts: a text-mining study. Front Mol Biosci 2023; 10:1302016. [PMID: 38111465 PMCID: PMC10725992 DOI: 10.3389/fmolb.2023.1302016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction: Cancer-associated fibroblasts (CAFs) constitute an important component of the tumor microenvironment, participating in various facets of cancer advancement and being recognized as contributors to tumor immune evasion. The role of CAFs in various tumor types has attracted increasing attention recently. In this work, we conducted a comprehensive bibliometric analysis to uncover research trajectories and highlight emerging areas in the field of CAFs. Methods: A systematic search was performed within the Web of Science Core Collection to identify articles/reviews on CAFs published between 2000 and 2023. Leveraging advanced bibliometric tools such as VOSviewer, CiteSpace, and online website, we examined and visualized publication trends, geographic contributions, institutional affiliations, journal prominence, author collaborations, and noteworthy references, keywords, and genes. Results: Our analysis included 5,190 publications, indicating a rapid growth trend in both annual publications and citations related to CAFs. China and the United States emerged as the foremost contributors in terms of publications, funding agencies, and international collaborations. Breast cancer was the most studied tumor, followed by colorectal cancer, pancreatic cancer, prostate cancer, and gastric cancer. Based on co-occurrence and bursting keywords, we identified the following research topics including immune cells (T cells, B-cells, tumor-associated macrophages), tumor immune microenvironment (antitumor immunity, immune infiltration, immunosuppression), immunotherapy (PD-L1), microRNAs (miRNA), extracellular vesicles (exosome), multiple tumors (pancreatic ductal adenocarcinoma, bladder cancer, head and neck squamous cell carcinoma), antitumor agents (gemcitabine, cisplatin resistance), bioinformatics (pan-cancer), epithelial-mesenchymal transition (stemness), FAPI PET/CT, DNA methylation, etc., may receive sustained attention in the future. Furthermore, TGFB1, IL-6, TNF, TP53, and VEGFA emerged as the top 5 genes that have garnered the greatest research attention in the field of CAFs. The KEGG enrichment analysis highlighted that the top 20 most studied genes were mainly associated with HIF-1 and Toll-like receptor signaling pathways. Discussion: In sum, our bibliometric analysis offers a comprehensive overview of the research landscape in the field of CAFs. It encompasses the current state, evolving patterns, and prospective avenues of exploration, with special attention to the potential advancements in tumor immune microenvironment.
Collapse
Affiliation(s)
- Kunming Cheng
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wanqing Li
- Department of Operating Room, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Haiyang Wu
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Cheng Li
- Department of Orthopaedic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Center for Musculoskeletal Surgery (CMSC), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt University of Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
6
|
Zhang J, Yao H, Lai C, Sun X, Yang X, Li S, Guo Y, Luo J, Wen Z, Tang K. A novel multimodal prediction model based on DNA methylation biomarkers and low-dose computed tomography images for identifying early-stage lung cancer. Chin J Cancer Res 2023; 35:511-525. [PMID: 37969955 PMCID: PMC10643339 DOI: 10.21147/j.issn.1000-9604.2023.05.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023] Open
Abstract
Objective DNA methylation alterations are early events in carcinogenesis and immune signalling in lung cancer. This study aimed to develop a model based on short stature homeobox 2 gene (SHOX2)/prostaglandin E receptor 4 gene (PTGER4) DNA methylation in plasma, appearance subtype of pulmonary nodules (PNs) and low-dose computed tomography (LDCT) images to distinguish early-stage lung cancers. Methods We developed a multimodal prediction model with a training set of 257 individuals. The performance of the multimodal prediction model was further validated in an independent validation set of 42 subjects. In addition, we explored the association between SHOX2/PTGER4 DNA methylation and driver gene mutations in lung cancer based on data from The Cancer Genome Atlas (TCGA) portal. Results There were significant differences between the early-stage lung cancers and benign groups in the methylation levels. The area under a receiver operator characteristic curve (AUC) of SHOX2 in patients with solid nodules, mixed ground-glass opacity nodules and pure ground-glass opacity nodules were 0.693, 0.497 and 0.864, respectively, while the AUCs of PTGER4 were 0.559, 0.739 and 0.619, respectively. With the highest AUC of 0.894, the novel multimodal prediction model outperformed the Mayo Clinic model (0.519) and LDCT-based deep learning model (0.842) in the independent validation set. Database analysis demonstrated that patients with SHOX2/PTGER4 DNA hypermethylation were enriched in TP53 mutations. Conclusions The present multimodal prediction model could more efficiently distinguish early-stage lung cancer from benign PNs. A prognostic index based on DNA methylation and lung cancer driver gene alterations may separate the patients into groups with good or poor prognosis.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Haohua Yao
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Chunliu Lai
- Division of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xue Sun
- Department of Respiratory and Critical Care Medicine, the Fourth People’s Hospital of Shenyang, Shenyang 110031, China
| | - Xiujuan Yang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shurong Li
- Department of Radiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yubiao Guo
- Division of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Junhang Luo
- Department of Urology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihua Wen
- Department of Radiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Kejing Tang
- Division of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Department of Pharmacy, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
7
|
Ji XY, Li H, Chen HH, Lin J. Diagnostic performance of RASSF1A and SHOX2 methylation combined with EGFR mutations for differentiation between small pulmonary nodules. J Cancer Res Clin Oncol 2023; 149:8557-8571. [PMID: 37097393 DOI: 10.1007/s00432-023-04745-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND AND AIM Aberrant methylation of Ras association domain family 1, isoform A (RASSF1A), and short-stature homeobox gene 2 (SHOX2) promoters has been validated as a pair of valuable biomarkers for diagnosing early lung adenocarcinomas (LUADs). Epidermal growth factor receptor (EGFR) is the key driver mutation in lung carcinogenesis. This study aimed to investigate the aberrant promoter methylation of RASSF1A and SHOX2, and the genetic mutation of EGFR in 258 specimens of early LUADs. METHODS We retrospectively selected 258 paraffin-embedded samples of pulmonary nodules measuring 2 cm or less in diameter and evaluated the diagnostic performance of individual biomarker assays and multiple panels between noninvasive (group 1) and invasive lesions (groups 2A and 2B). Then, we investigated the interaction between genetic and epigenetic alterations. RESULTS The degree of RASSF1A and SHOX2 promoter methylation and EGFR mutation was significantly higher in invasive lesions than in noninvasive lesions. The three biomarkers distinguished between noninvasive and invasive lesions with reliable sensitivity and specificity: 60.9% sensitivity [95% confidence interval (CI) 52.41-68.78] and 80.0% specificity (95% CI 72.14-86.07). The novel panel biomarkers could further discriminate among three invasive pathological subtypes (area under the curve value > 0.6). The distribution of RASSF1A methylation and EGFR mutation was considerably exclusive in early LUAD (P = 0.002). CONCLUSION DNA methylation of RASSF1A and SHOX2 is a pair of promising biomarkers, which may be used in combination with other driver alterations, such as EGFR mutation, to support the differential diagnosis of LUADs, especially for stage I.
Collapse
Affiliation(s)
- Xiang-Yu Ji
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Hong Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hui-Hui Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jie Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China.
- National Virtual and Reality Experimental Education Center for Medical Morphology, Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
8
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
9
|
Xie Z, Zhou Z, Yang S, Zhang S, Shao B. Epigenetic regulation and therapeutic targets in the tumor microenvironment. MOLECULAR BIOMEDICINE 2023; 4:17. [PMID: 37273004 DOI: 10.1186/s43556-023-00126-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/02/2023] [Indexed: 06/06/2023] Open
Abstract
The tumor microenvironment (TME) is crucial to neoplastic processes, fostering proliferation, angiogenesis and metastasis. Epigenetic regulations, primarily including DNA and RNA methylation, histone modification and non-coding RNA, have been generally recognized as an essential feature of tumor malignancy, exceedingly contributing to the dysregulation of the core gene expression in neoplastic cells, bringing about the evasion of immunosurveillance by influencing the immune cells in TME. Recently, compelling evidence have highlighted that clinical therapeutic approaches based on epigenetic machinery modulate carcinogenesis through targeting TME components, including normalizing cells' phenotype, suppressing cells' neovascularization and repressing the immunosuppressive components in TME. Therefore, TME components have been nominated as a promising target for epigenetic drugs in clinical cancer management. This review focuses on the mechanisms of epigenetic modifications occurring to the pivotal TME components including the stroma, immune and myeloid cells in various tumors reported in the last five years, concludes the tight correlation between TME reprogramming and tumor progression and immunosuppression, summarizes the current advances in cancer clinical treatments and potential therapeutic targets with reference to epigenetic drugs. Finally, we summarize some of the restrictions in the field of cancer research at the moment, further discuss several interesting epigenetic gene targets with potential strategies to boost antitumor immunity.
Collapse
Affiliation(s)
- Zhuojun Xie
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Sichuan, 610041, Chengdu, China
| | - Zirui Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Sichuan, 610041, Chengdu, China
| | - Shuxian Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Sichuan, 610041, Chengdu, China
| | - Shiwen Zhang
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Sichuan, 610041, Chengdu, China.
| | - Bin Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Sichuan, 610041, Chengdu, China.
| |
Collapse
|
10
|
Zhang J, Huang H, Yu F, Bian Y, Wang R, Liu H, Kang S, She B, Shi Z. A comprehensive diagnostic scheme of morphological combined molecular methylation under bronchoscopy. Front Oncol 2023; 13:1133675. [PMID: 37182143 PMCID: PMC10174301 DOI: 10.3389/fonc.2023.1133675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Methylated SHOX2 and RASSF1A genes are potential biomarkers for lung cancer diagnosis. Therefore, we explored the role of methylation detection combined with morphological bronchoscopic evaluation for lung cancer diagnosis. Bronchoscopy, methylation outcome, and pathological data were collected from 585 patients with lung cancer and 101 controls. The methylation status of the SHOX2 and RASSF1A genes were detected using real-time polymerase chain reaction quantification. Further, the sensitivity and area under the receiver operating characteristic curve of the three methods were analyzed. Among 686 patients, 57.1% had new lesions detected through bronchoscopy and 93.1% of these patients were diagnosed with malignant tumors. Besides, 42.9% of patients had no visible changes under bronchoscopy but there were still 74.8% of them diagnosed with malignant tumors. Bronchoscopy revealed that lung adenocarcinoma, lung squamous cell carcinoma, and small cell lung cancer mainly occurred in the upper and middle lobes. The sensitivity and specificity of methylation detection were 72.8% and 87.1% (vs. cytology 10.4% & 100%), respectively. Therefore, methylated SHOX2 and RASSF1A genes may be promising tumor markers in lung cancer diagnosis. Methylation detection can be an excellent supplementary tool for cytological diagnosis and, combined with bronchoscopy, could form a more effective diagnostic process.
Collapse
Affiliation(s)
- Jinze Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haoran Huang
- Department of Academic Development, Tellgen Corporation, Shanghai, China
| | - Fan Yu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanyuan Bian
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Wang
- The Cancer Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Saisai Kang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin She
- Department of Academic Development, Tellgen Corporation, Shanghai, China
| | - Zhihua Shi
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
Gorini F, Miceli M, de Antonellis P, Amente S, Zollo M, Ferrucci V. Epigenetics and immune cells in medulloblastoma. Front Genet 2023; 14:1135404. [PMID: 36968588 PMCID: PMC10036437 DOI: 10.3389/fgene.2023.1135404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Medulloblastoma (MB) is a highly malignant childhood tumor of the cerebellum. Transcriptional and epigenetic signatures have classified MB into four molecular subgroups, further stratified into biologically different subtypes with distinct somatic copy-number aberrations, driver genes, epigenetic alterations, activated pathways, and clinical outcomes. The brain tumor microenvironment (BTME) is of importance to regulate a complex network of cells, including immune cells, involved in cancer progression in brain malignancies. MB was considered with a “cold” immunophenotype due to the low influx of immune cells across the blood brain barrier (BBB). Recently, this assumption has been reconsidered because of the identification of infiltrating immune cells showing immunosuppressive phenotypes in the BTME of MB tumors. Here, we are providing a comprehensive overview of the current status of epigenetics alterations occurring during cancer progression with a description of the genomic landscape of MB by focusing on immune cells within the BTME. We further describe how new immunotherapeutic approaches could influence concurring epigenetic mechanisms of the immunosuppressive cells in BTME. In conclusion, the modulation of these molecular genetic complexes in BTME during cancer progression might enhance the therapeutic benefit, thus firing new weapons to fight MB.
Collapse
Affiliation(s)
- Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
| | - Marco Miceli
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Pasqualino de Antonellis
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- DAI Medicina di Laboratorio e Trasfusionale, ‘AOU Federico II Policlinico, Naples, Italy
| | - Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- *Correspondence: Veronica Ferrucci,
| |
Collapse
|
12
|
DNA Methylation Analysis of the SHOX2 and RASSF1A Panel Using Cell-Free DNA in the Diagnosis of Malignant Pleural Effusion. JOURNAL OF ONCOLOGY 2023; 2023:5888844. [PMID: 36691467 PMCID: PMC9867579 DOI: 10.1155/2023/5888844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/16/2023]
Abstract
Objectives The differential diagnosis of pleural effusion (PE) is a common but major challenge in clinical practice. This study aimed to establish a strategy based on a PE-cell-free DNA (cfDNA) methylation detection system for the differential diagnosis of malignant pleural effusion (MPE) and benign pleural effusion (BPE). Methods A total of 104 patients with PE were enrolled in this study, among which 50 patients had MPE, 9 malignant tumor patients had PE of indefinite causes, and the other 45 patients were classified as benign controls. The methylation status of short stature homeobox 2 (SHOX2) and RAS association domain family 1, isoform A (RASSF1A) was detected using PE-cfDNA specimens by real-time fluorescence quantitative PCR. Total methylation (TM) was defined as the combination of the methylation levels of SHOX2 and RASSF1A. The electrochemiluminescence immunoassay was applied to evaluate the levels of multiple serum tumor markers. Results The PE-cfDNA methylation status of either SHOX2 or RASSF1A was much higher in MPE samples than in benign controls. The combination of SHOX2 and RASSF1A methylation in PE yielded a diagnostic sensitivity of 96% and a specificity of 100%, respectively. When compared with the corresponding serum tumor marker detection results, TM showed the highest diagnostic efficiency (AUC = 0.985). Furthermore, the combination of the SHOX2 and RASSF1A methylation panels using PE-cfDNA could apparently improve the differential diagnostic efficacy of BPE and MPE and could help compensate for the deficiency of cytology. Conclusions Our results indicated that SHOX2 and RASSF1A methylation panel detection could accurately classify BPE and MPE diseases and showed better diagnostic performance than traditional serum parameters. The SHOX2 and RASSF1A methylation detection of PE-cfDNA could be a potentially effective complementary tool for cytology in the process of differential diagnosis. In summary, PE-cfDNA could be used as a promising non-invasive analyte for the auxiliary diagnosis of MPE.
Collapse
|
13
|
Mahadevan S, Kwong K, Lu M, Kelly E, Chami B, Romin Y, Fujisawa S, Manova K, Moore MAS, Zoellner H. A Novel Cartesian Plot Analysis for Fixed Monolayers That Relates Cell Phenotype to Transfer of Contents between Fibroblasts and Cancer Cells by Cell-Projection Pumping. Int J Mol Sci 2022; 23:ijms23147949. [PMID: 35887295 PMCID: PMC9316567 DOI: 10.3390/ijms23147949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/27/2023] Open
Abstract
We recently described cell-projection pumping as a mechanism transferring cytoplasm between cells. The uptake of fibroblast cytoplasm by co-cultured SAOS-2 osteosarcoma cells changes SAOS-2 morphology and increases cell migration and proliferation, as seen by single-cell tracking and in FACS separated SAOS-2 from co-cultures. Morphological changes in SAOS-2 seen by single cell tracking are consistent with previous observations in fixed monolayers of SAOS-2 co-cultures. Notably, earlier studies with fixed co-cultures were limited by the absence of a quantitative method for identifying sub-populations of co-cultured cells, or for quantitating transfer relative to control populations of SAOS-2 or fibroblasts cultured alone. We now overcome that limitation by a novel Cartesian plot analysis that identifies individual co-cultured cells as belonging to one of five distinct cell populations, and also gives numerical measure of similarity to control cell populations. We verified the utility of the method by first confirming the previously established relationship between SAOS-2 morphology and uptake of fibroblast contents, and also demonstrated similar effects in other cancer cell lines including from melanomas, and cancers of the ovary and colon. The method was extended to examine global DNA methylation, and while there was no clear effect on SAOS-2 DNA methylation, co-cultured fibroblasts had greatly reduced DNA methylation, similar to cancer associated fibroblasts.
Collapse
Affiliation(s)
- Swarna Mahadevan
- The Cellular and Molecular Pathology Research Unit, Oral Pathology and Oral Medicine, School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia; (S.M.); (K.K.); (M.L.); (E.K.); (B.C.)
| | - Kenelm Kwong
- The Cellular and Molecular Pathology Research Unit, Oral Pathology and Oral Medicine, School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia; (S.M.); (K.K.); (M.L.); (E.K.); (B.C.)
| | - Mingjie Lu
- The Cellular and Molecular Pathology Research Unit, Oral Pathology and Oral Medicine, School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia; (S.M.); (K.K.); (M.L.); (E.K.); (B.C.)
| | - Elizabeth Kelly
- The Cellular and Molecular Pathology Research Unit, Oral Pathology and Oral Medicine, School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia; (S.M.); (K.K.); (M.L.); (E.K.); (B.C.)
| | - Belal Chami
- The Cellular and Molecular Pathology Research Unit, Oral Pathology and Oral Medicine, School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia; (S.M.); (K.K.); (M.L.); (E.K.); (B.C.)
- The School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yevgeniy Romin
- Molecular Cytology, The Memorial Sloan Kettering Cancer Center, 415-417 E 68 Street, ZRC 1962, New York, NY 10065, USA; (Y.R.); (S.F.); (K.M.)
| | - Sho Fujisawa
- Molecular Cytology, The Memorial Sloan Kettering Cancer Center, 415-417 E 68 Street, ZRC 1962, New York, NY 10065, USA; (Y.R.); (S.F.); (K.M.)
| | - Katia Manova
- Molecular Cytology, The Memorial Sloan Kettering Cancer Center, 415-417 E 68 Street, ZRC 1962, New York, NY 10065, USA; (Y.R.); (S.F.); (K.M.)
| | - Malcolm A. S. Moore
- Cell Biology, The Memorial Sloan Kettering Cancer Center, 430 E 67th St, RRL 717, New York, NY 10065, USA;
| | - Hans Zoellner
- The Cellular and Molecular Pathology Research Unit, Oral Pathology and Oral Medicine, School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia; (S.M.); (K.K.); (M.L.); (E.K.); (B.C.)
- Cell Biology, The Memorial Sloan Kettering Cancer Center, 430 E 67th St, RRL 717, New York, NY 10065, USA;
- Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Graduate School of Biomedical Engineering, University of NSW, Kensington, NSW 2052, Australia
- Strongarch Pty Ltd., Pennant Hills, NSW 2120, Australia
- Correspondence: ; Tel.: +61-466400028
| |
Collapse
|
14
|
Duan J, Zhong B, Fan Z, Zhang H, Xu M, Zhang X, Sanders YY. DNA methylation in pulmonary fibrosis and lung cancer. Expert Rev Respir Med 2022; 16:519-528. [PMID: 35673969 DOI: 10.1080/17476348.2022.2085091] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Juan Duan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhihua Fan
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Mengmeng Xu
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 901 19 Street South, BMRII Room 408, Birmingham, AL 35294, USA
| |
Collapse
|
15
|
Adhikari S, Guha D, Mohan C, Mukherjee S, Tyler JK, Das C. Reprogramming Carbohydrate Metabolism in Cancer and Its Role in Regulating the Tumor Microenvironment. Subcell Biochem 2022; 100:3-65. [PMID: 36301490 PMCID: PMC10760510 DOI: 10.1007/978-3-031-07634-3_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Altered metabolism has become an emerging feature of cancer cells impacting their proliferation and metastatic potential in myriad ways. Proliferating heterogeneous tumor cells are surrounded by other resident or infiltrating cells, along with extracellular matrix proteins, and other secretory factors constituting the tumor microenvironment. The diverse cell types of the tumor microenvironment exhibit different molecular signatures that are regulated at their genetic and epigenetic levels. The cancer cells elicit intricate crosstalks with these supporting cells, exchanging essential metabolites which support their anabolic processes and can promote their survival, proliferation, EMT, angiogenesis, metastasis and even therapeutic resistance. In this context, carbohydrate metabolism ensures constant energy supply being a central axis from which other metabolic and biosynthetic pathways including amino acid and lipid metabolism and pentose phosphate pathway are diverged. In contrast to normal cells, increased glycolytic flux is a distinguishing feature of the highly proliferative cancer cells, which supports them to adapt to a hypoxic environment and also protects them from oxidative stress. Such rewired metabolic properties are often a result of epigenetic alterations in the cancer cells, which are mediated by several factors including, DNA, histone and non-histone protein modifications and non-coding RNAs. Conversely, epigenetic landscapes of the cancer cells are also dictated by their diverse metabolomes. Altogether, this metabolic and epigenetic interplay has immense potential for the development of efficient anti-cancer therapeutic strategies. In this book chapter we emphasize upon the significance of reprogrammed carbohydrate metabolism in regulating the tumor microenvironment and cancer progression, with an aim to explore the different metabolic and epigenetic targets for better cancer treatment.
Collapse
Affiliation(s)
- Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Deblina Guha
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chitra Mohan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.
- Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
16
|
Fibroblasts as immune regulators in infection, inflammation and cancer. Nat Rev Immunol 2021; 21:704-717. [PMID: 33911232 DOI: 10.1038/s41577-021-00540-z] [Citation(s) in RCA: 260] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
In chronic infection, inflammation and cancer, the tissue microenvironment controls how local immune cells behave, with tissue-resident fibroblasts emerging as a key cell type in regulating activation or suppression of an immune response. Fibroblasts are heterogeneous cells, encompassing functionally distinct populations, the phenotypes of which differ according to their tissue of origin and type of inciting disease. Their immunological properties are also diverse, ranging from the maintenance of a potent inflammatory environment in chronic inflammation to promoting immunosuppression in malignancy, and encapsulating and incarcerating infectious agents within tissues. In this Review, we compare the mechanisms by which fibroblasts control local immune responses, as well as the factors regulating their inflammatory and suppressive profiles, in different tissues and pathological settings. This cross-disease perspective highlights the importance of tissue context in determining fibroblast-immune cell interactions, as well as potential therapeutic avenues to exploit this knowledge for the benefit of patients with chronic infection, inflammation and cancer.
Collapse
|
17
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
18
|
Su SF, Ho H, Li JH, Wu MF, Wang HC, Yeh HY, Kuo SW, Chen HW, Ho CC, Li KC. DNA methylome and transcriptome landscapes of cancer-associated fibroblasts reveal a smoking-associated malignancy index. J Clin Invest 2021; 131:e139552. [PMID: 34228648 DOI: 10.1172/jci139552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Unlike the better-studied aberrant epigenome in the tumor, the clinicopathologic impact of DNA methylation in the tumor microenvironment (TME), especially the contribution from cancer-associated fibroblasts (CAFs), remains elusive. CAFs exhibit profound patient-to-patient tumorigenic heterogeneity. We asked whether such heterogeneity may be exploited to quantify the level of TME malignancy. We developed a robust and efficient methylome/transcriptome co-analytical system for CAFs and paired normal fibroblasts (NFs) from non-small-cell lung cancer patients. We found 14,781 CpG sites of CAF/NF differential methylation, of which 3,707 sites showed higher methylation changes in ever-smokers than in nonsmokers. Concomitant CAF/NF differential gene expression analysis pointed to a subset of 54 smoking-associated CpG sites with strong methylation-regulated gene expression. A methylation index that summarizes the β values of these CpGs was built for NF/CAF discrimination (MIND) with high sensitivity and specificity. The potential of MIND in detecting premalignancy across individual patients was shown. MIND succeeded in predicting tumor recurrence in multiple lung cancer cohorts without reliance on patient survival data, suggesting that the malignancy level of TME may be effectively graded by this index. Precision TME grading may provide additional pathological information to guide cancer prognosis and open up more options in personalized medicine.
Collapse
Affiliation(s)
- Sheng-Fang Su
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University, College of Medicine, Taipei, Taiwan.,YongLin Institute of Health, National Taiwan University, Taipei, Taiwan
| | - Hao Ho
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Jia-Hua Li
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ming-Fang Wu
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Toxicology, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Hsu-Chieh Wang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Hsiang-Yuan Yeh
- School of Big Data Management, Soochow University, Taipei, Taiwan
| | - Shuenn-Wen Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Ker-Chau Li
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Department of Statistics, UCLA, Los Angeles, California, USA
| |
Collapse
|
19
|
Alcaraz J, Ikemori R, Llorente A, Díaz-Valdivia N, Reguart N, Vizoso M. Epigenetic Reprogramming of Tumor-Associated Fibroblasts in Lung Cancer: Therapeutic Opportunities. Cancers (Basel) 2021; 13:cancers13153782. [PMID: 34359678 PMCID: PMC8345093 DOI: 10.3390/cancers13153782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Lung cancer is the leading cause of cancer death among both men and women, partly due to limited therapy responses. New avenues of knowledge are indicating that lung cancer cells do not form a tumor in isolation but rather obtain essential support from their surrounding host tissue rich in altered fibroblasts. Notably, there is growing evidence that tumor progression and even the current limited responses to therapies could be prevented by rescuing the normal behavior of fibroblasts, which are critical housekeepers of normal tissue function. For this purpose, it is key to improve our understanding of the molecular mechanisms driving the pathologic alterations of fibroblasts in cancer. This work provides a comprehensive review of the main molecular mechanisms involved in fibroblast transformation based on epigenetic reprogramming, and summarizes emerging therapeutic approaches to prevent or overcome the pathologic effects of tumor-associated fibroblasts. Abstract Lung cancer is the leading cause of cancer-related death worldwide. The desmoplastic stroma of lung cancer and other solid tumors is rich in tumor-associated fibroblasts (TAFs) exhibiting an activated/myofibroblast-like phenotype. There is growing awareness that TAFs support key steps of tumor progression and are epigenetically reprogrammed compared to healthy fibroblasts. Although the mechanisms underlying such epigenetic reprogramming are incompletely understood, there is increasing evidence that they involve interactions with either cancer cells, pro-fibrotic cytokines such as TGF-β, the stiffening of the surrounding extracellular matrix, smoking cigarette particles and other environmental cues. These aberrant interactions elicit a global DNA hypomethylation and a selective transcriptional repression through hypermethylation of the TGF-β transcription factor SMAD3 in lung TAFs. Likewise, similar DNA methylation changes have been reported in TAFs from other cancer types, as well as histone core modifications and altered microRNA expression. In this review we summarize the evidence of the epigenetic reprogramming of TAFs, how this reprogramming contributes to the acquisition and maintenance of a tumor-promoting phenotype, and how it provides novel venues for therapeutic intervention, with a special focus on lung TAFs.
Collapse
Affiliation(s)
- Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain;
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
- Correspondence: (J.A.); (M.V.)
| | - Rafael Ikemori
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
| | - Alejandro Llorente
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
| | - Natalia Díaz-Valdivia
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
| | - Noemí Reguart
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain;
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Miguel Vizoso
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Correspondence: (J.A.); (M.V.)
| |
Collapse
|
20
|
Lolo FN, Jiménez-Jiménez V, Sánchez-Álvarez M, Del Pozo MÁ. Tumor-stroma biomechanical crosstalk: a perspective on the role of caveolin-1 in tumor progression. Cancer Metastasis Rev 2021; 39:485-503. [PMID: 32514892 DOI: 10.1007/s10555-020-09900-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumor stiffening is a hallmark of malignancy that actively drives tumor progression and aggressiveness. Recent research has shed light onto several molecular underpinnings of this biomechanical process, which has a reciprocal crosstalk between tumor cells, stromal fibroblasts, and extracellular matrix remodeling at its core. This dynamic communication shapes the tumor microenvironment; significantly determines disease features including therapeutic resistance, relapse, or metastasis; and potentially holds the key for novel antitumor strategies. Caveolae and their components emerge as integrators of different aspects of cell function, mechanotransduction, and ECM-cell interaction. Here, we review our current knowledge on the several pivotal roles of the essential caveolar component caveolin-1 in this multidirectional biomechanical crosstalk and highlight standing questions in the field.
Collapse
Affiliation(s)
- Fidel Nicolás Lolo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Víctor Jiménez-Jiménez
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Ángel Del Pozo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
21
|
Gao C, Zhuang J, Li H, Liu C, Zhou C, Liu L, Feng F, Sun C. Gene signatures of 6-methyladenine regulators in women with lung adenocarcinoma and development of a risk scoring system: a retrospective study using the cancer genome atlas database. Aging (Albany NY) 2021; 13:3957-3968. [PMID: 33428597 PMCID: PMC7906130 DOI: 10.18632/aging.202364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/23/2020] [Indexed: 01/22/2023]
Abstract
Although the emergence of new treatments has improved the prognosis of women with lung adenocarcinoma (LUAD), the emergence of drug resistance limits their clinical efficacy. Therefore, there is an urgent need to identify new targets and develop a risk scoring system to evaluate the prognosis of patients. 6-methyladenine (M6A), as the most common methyl modification in RNA modification, its clinicopathological features, diagnosis and prognostic value in lung cancer, especially in LUAD remain to be discussed. We analyzed the clinical and sequencing data of the female LUAD cohort from The Cancer Genome Atlas (TCGA), evaluated the expression profiles of 16 M6A regulation-related genes in the cohort and the relationships between genetic changes and clinical characteristics, developed an M6A-related risk scoring system using Cox analysis. Finally, the copy number variations (CNVs) of the related genes in the samples were analyzed and verified using the cBioPortal platform. Compared with other clinical factors, this risk scoring system showed a higher predictive sensitivity and specificity. The M6A-related risk scoring system developed in this study may help to improve the screening of female patients at high risk of LUAD and provides important theoretical bioinformatics support for evaluating the prognosis of such patients.
Collapse
Affiliation(s)
- Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, PR China
| | - Jing Zhuang
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, PR China
| | - Huayao Li
- College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, PR China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, PR China
| | - Chao Zhou
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, PR China
| | - Lijuan Liu
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, PR China
| | - Fubin Feng
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, PR China
| | - Changgang Sun
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, PR China.,Cancer and Immunology Institute, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| |
Collapse
|
22
|
Zhang L, Tian S, Zhao M, Yang T, Quan S, Song L, Yang X. SUV39H1-Mediated DNMT1 is Involved in the Epigenetic Regulation of Smad3 in Cervical Cancer. Anticancer Agents Med Chem 2021; 21:756-765. [PMID: 32698743 DOI: 10.2174/1871520620666200721110016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND SMAD3 is a pivotal intracellular mediator for participating in the activation of multiple immune signal pathways. OBJECTIVE The epigenetic regulation mechanism of the positive immune factor SMAD3 in cervical cancer remains unknown. Therefore, the epigenetic regulation on SMAD3 is investigated in this study. METHODS The methylation status of SMAD3 was detected by Methylation-Specific PCR (MS-PCR) and Quantitative Methylation-Specific PCR (MS-qPCR) in cervical cancer tissues and cell lines. The underlying molecular mechanisms of SUV39H1-DNMT1-SMAD3 regulation were elucidated using cervical cancer cell lines containing siRNA or/and over-expression systems. The regulation of DNMT1 by SUV39H1 was confirmed using Chromatin Immunoprecipitation-qPCR (ChIP-qPCR). The statistical methods used for comparing samples between groups were paired t-tests and one-way ANOVAs. RESULTS H3K9me3 protein regulated by SUV39H1 directly interacts with the DNMT1 promoter region to regulate its expression in cervical cancer cells, resulting in the reduced expression of the downstream target gene DNMT1. In addition, DNMT1 mediates the epigenetic modulation of the SMAD3 gene by directly binding to its promoter region. The depletion of DNMT1 effectively restores the expression of SMAD3 in vitro. Moreover, in an in vivo assay, the expression profile of SUV39H1-DNMT1 was found to correlate with SMAD3 expression in accordance with the expression at the cellular level. Notably, the promoter region of SMAD3 was hypermethylated in cervical cancer tissues, and this hypermethylation inhibited the subsequent gene expression. CONCLUSION These results indicate that SUV39H1-DNMT1 is a crucial SMAD3 regulatory axis in cervical cancer. SUV39H1-DNMT1 axis may provide a potential therapeutic target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sijuan Tian
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minyi Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ting Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shimin Quan
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lihua Song
- Research Center for Food Safety and Nutrition, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
23
|
Shi J, Chen X, Zhang L, Fang X, Liu Y, Zhu X, Zhang H, Fan L, Gu J, Zhang S, She B, Han H, Yi X. Performance Evaluation of SHOX2 and RASSF1A Methylation for the Aid in Diagnosis of Lung Cancer Based on the Analysis of FFPE Specimen. Front Oncol 2020; 10:565780. [PMID: 33425721 PMCID: PMC7793934 DOI: 10.3389/fonc.2020.565780] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
Emerging molecular diagnostic methods are more sensitive and objective, which can overcome the intrinsic failings of morphological diagnosis. Here, a RT-PCR-based in vitro diagnostic test kit (LungMe®) was developed and characterized to simultaneously quantify the DNA methylation of SHOX2 and RASSF1A in FFPE tissue specimens. The clinical manifestations were evaluated in 251 FFPE samples with specificity and sensitivity of 90.4 and 89.8%, respectively. Furthermore, the quantitative analysis shows that the degree of SHOX2 methylation was correlated with the stages of lung cancer, but not in the case of RASSF1A. Our observation indicated that the DNA methylation of SHOX2 and RASSF1A may play different roles in cancer development. Comparison of the methylation levels of SHOX2 and RASSF1A between cancer and cancer-adjacent specimens (n = 30), showed they have “epigenetic field defect”. As additional clinical validation, the hypermethylation of SHOX2 and RASSF1A was detected not only in surgical operative specimens, but also in histopathological negative puncture biopsies. SHOX2 and RASSF1A methylation detection can be used to increase sensitivity and NPV, which provide us with a more accurate method of differential diagnosis and are likely to be rapidly applied in clinical examinations.
Collapse
Affiliation(s)
- Juanhong Shi
- Department of Pathology, Tongji Hospital, Tongji University, Shianghai, China
| | - Xue Chen
- Department of Pathology, Tongji Hospital, Tongji University, Shianghai, China
| | - Long Zhang
- Department of Pathology, Tongji Hospital, Tongji University, Shianghai, China
| | - Xia Fang
- Department of Pulmonary and Critical Care Medicine, Dongfang Hospital Affiliated to Tongji University, Shanghai, China
| | - Yuting Liu
- Department of Pathology, Tongji Hospital, Tongji University, Shianghai, China
| | - Xuyou Zhu
- Department of Pathology, Tongji Hospital, Tongji University, Shianghai, China
| | - Haoyang Zhang
- Department of Pathology, Tongji Hospital, Tongji University, Shianghai, China
| | - Lichao Fan
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, China
| | - Jun Gu
- Department of Pathology, Tongji Hospital, Tongji University, Shianghai, China
| | - Suxia Zhang
- Department of Pathology, Tongji Hospital, Tongji University, Shianghai, China
| | - Bin She
- Academic Development, Tellgen Corporation, Shanghai, China
| | - Hongxiu Han
- Department of Pathology, Tongji Hospital, Tongji University, Shianghai, China
| | - Xianghua Yi
- Department of Pathology, Tongji Hospital, Tongji University, Shianghai, China
| |
Collapse
|
24
|
Schmidt M, Maié T, Dahl E, Costa IG, Wagner W. Deconvolution of cellular subsets in human tissue based on targeted DNA methylation analysis at individual CpG sites. BMC Biol 2020; 18:178. [PMID: 33234153 PMCID: PMC7687708 DOI: 10.1186/s12915-020-00910-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background The complex composition of different cell types within a tissue can be estimated by deconvolution of bulk gene expression profiles or with various single-cell sequencing approaches. Alternatively, DNA methylation (DNAm) profiles have been used to establish an atlas for multiple human tissues and cell types. DNAm is particularly suitable for deconvolution of cell types because each CG dinucleotide (CpG site) has only two states per DNA strand—methylated or non-methylated—and these epigenetic modifications are very consistent during cellular differentiation. So far, deconvolution of DNAm profiles implies complex signatures of many CpGs that are often measured by genome-wide analysis with Illumina BeadChip microarrays. In this study, we investigated if the characterization of cell types in tissue is also feasible with individual cell type-specific CpG sites, which can be addressed by targeted analysis, such as pyrosequencing. Results We compiled and curated 579 Illumina 450k BeadChip DNAm profiles of 14 different non-malignant human cell types. A training and validation strategy was applied to identify and test for cell type-specific CpGs. We initially focused on estimating the relative amount of fibroblasts using two CpGs that were either hypermethylated or hypomethylated in fibroblasts. The combination of these two DNAm levels into a “FibroScore” correlated with the state of fibrosis and was associated with overall survival in various types of cancer. Furthermore, we identified hypomethylated CpGs for leukocytes, endothelial cells, epithelial cells, hepatocytes, glia, neurons, fibroblasts, and induced pluripotent stem cells. The accuracy of this eight CpG signature was tested in additional BeadChip datasets of defined cell mixtures and the results were comparable to previously published signatures based on several thousand CpGs. Finally, we established and validated pyrosequencing assays for the relevant CpGs that can be utilized for classification and deconvolution of cell types. Conclusion This proof of concept study demonstrates that DNAm analysis at individual CpGs reflects the cellular composition of cellular mixtures and different tissues. Targeted analysis of these genomic regions facilitates robust methods for application in basic research and clinical settings.
Collapse
Affiliation(s)
- Marco Schmidt
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, 52074, Aachen, Germany
| | - Tiago Maié
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Edgar Dahl
- RWTH centralized Biomaterial Bank (RWTH cBMB), Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074, Aachen, Germany. .,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, 52074, Aachen, Germany.
| |
Collapse
|
25
|
Zhang L, Tian S, Zhao M, Yang T, Quan S, Yang Q, Song L, Yang X. SUV39H1-DNMT3A-mediated epigenetic regulation of Tim-3 and galectin-9 in the cervical cancer. Cancer Cell Int 2020; 20:325. [PMID: 32699524 PMCID: PMC7370487 DOI: 10.1186/s12935-020-01380-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background Methylation of histone 3 at lysine 9 (H3K9) and DNA methylation are epigenetic marks correlated with genes silencing. The tumor microenvironment significantly influences therapeutic responses and clinical outcomes. The epigenetic-regulation mechanism of the costimulatory factors Tim-3 and galectin-9 in cervical cancer remains unknown. Methods The methylation status of HAVCR2 and LGALS9 were detected by MS-PCR in cervical cancer tissues and cell lines. The underlying molecular mechanism of SUV39H1-DNMT3A-Tim-3/galectin-9 regulation was elucidated using cervical cancer cell lines containing siRNA or/and over-expression system. Confirmation of the regulation of DNMT3A by SUV39H1 used ChIP-qPCR. Results SUV39H1 up-regulates H3K9me3 expression at the DNMT3A promoter region, which in turn induced expression of DNMT3A in cervical cancer. In addition, the mechanistic studies indicate that DNMT3A mediates the epigenetic modulation of the HAVCR2 and LGALS9 genes by directly binding to their promoter regions in vitro. Moreover, in an in vivo assay, the expression profile of SUV39H1 up-regulates the level of H3K9me3 at the DNMT3A promoter region was found to correlate with Tim-3 and galectin-9 cellular expression level. Conclusion These results indicate that SUV39H1-DNMT3A is a crucial Tim-3 and galectin-9 regulatory axis in cervical cancer.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Sijuan Tian
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Minyi Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Ting Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Shimin Quan
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Qing Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Lihua Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| |
Collapse
|
26
|
Ma X, Cheng J, Zhao P, Li L, Tao K, Chen H. DNA methylation profiling to predict recurrence risk in stage Ι lung adenocarcinoma: Development and validation of a nomogram to clinical management. J Cell Mol Med 2020; 24:7576-7589. [PMID: 32530136 PMCID: PMC7339160 DOI: 10.1111/jcmm.15393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence suggested DNA methylation may serve as potential prognostic biomarkers; however, few related DNA methylation signatures have been established for prediction of lung cancer prognosis. We aimed at developing DNA methylation signature to improve prognosis prediction of stage I lung adenocarcinoma (LUAD). A total of 268 stage I LUAD patients from the Cancer Genome Atlas (TCGA) database were included. These patients were separated into training and internal validation datasets. GSE39279 was used as an external validation set. A 13‐DNA methylation signature was identified to be crucially relevant to the relapse‐free survival (RFS) of patients with stage I LUAD by the univariate Cox proportional hazard analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis and multivariate Cox proportional hazard analysis in the training dataset. The Kaplan‐Meier analysis indicated that the 13‐DNA methylation signature could significantly distinguish the high‐ and low‐risk patients in entire TCGA dataset, internal validation and external validation datasets. The receiver operating characteristic (ROC) analysis further verified that the 13‐DNA methylation signature had a better value to predict the RFS of stage I LUAD patients in internal validation, external validation and entire TCGA datasets. In addition, a nomogram combining methylomic risk scores with other clinicopathological factors was performed and the result suggested the good predictive value of the nomogram. In conclusion, we successfully built a DNA methylation‐associated nomogram, enabling prediction of the RFS of patients with stage I LUAD.
Collapse
Affiliation(s)
- Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Cheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhao
- Department of Hepatobiliary surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hengyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,NHC Key Laboratory of Hormones and Development, Tianjin Institute of Endocrinology, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin, China
| |
Collapse
|
27
|
Elshaer M, ElManawy AI, Hammad A, Namani A, Wang XJ, Tang X. Integrated data analysis reveals significant associations of KEAP1 mutations with DNA methylation alterations in lung adenocarcinomas. Aging (Albany NY) 2020; 12:7183-7206. [PMID: 32327612 PMCID: PMC7202502 DOI: 10.18632/aging.103068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/29/2020] [Indexed: 12/17/2022]
Abstract
KEAP1 regulates the cytoprotection induced by NRF2 and has been reported to be a candidate tumor suppressor. Recent evidence has shown that mutations in several driver genes cause aberrant DNA methylation patterns, a hallmark of cancer. However, the correlation between KEAP1 mutations and DNA methylation in lung cancer has still not been investigated. In this study, we systematically carried out an integrated multi-omics analysis to explore the correlation between KEAP1 mutations and DNA methylation and its effect on gene expression in lung adenocarcinoma (LUAD). We found that most of the DNA aberrations associated with KEAP1 mutations in LAUD were hypomethylation. Surprisingly, we found several NRF2-regulated genes among the genes that showed differential DNA methylation. Moreover, we identified an 8-gene signature with altered DNA methylation pattern and elevated gene expression levels in LUAD patients with mutated KEAP1, and evaluated the prognostic value of this signature in various clinical datasets. These results establish that KEAP1 mutations are associated with DNA methylation changes capable of shaping regulatory network functions. Combining both epigenomic and transcriptomic changes along with KEAP1 mutations may provide a better understanding of the molecular mechanisms associated with the progression of lung cancer and may help to provide better therapeutic approaches.
Collapse
Affiliation(s)
- Mohamed Elshaer
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Ahmed Islam ElManawy
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
- Agricultural Engineering Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed Hammad
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Akhileshwar Namani
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
| | - Xiu Jun Wang
- Department of Pharmacology and Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Xiuwen Tang
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
| |
Collapse
|
28
|
Érsek B, Silló P, Cakir U, Molnár V, Bencsik A, Mayer B, Mezey E, Kárpáti S, Pós Z, Németh K. Melanoma-associated fibroblasts impair CD8+ T cell function and modify expression of immune checkpoint regulators via increased arginase activity. Cell Mol Life Sci 2020; 78:661-673. [PMID: 32328671 PMCID: PMC7581550 DOI: 10.1007/s00018-020-03517-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 01/05/2023]
Abstract
Abstract This study shows that melanoma-associated fibroblasts (MAFs) suppress cytotoxic T lymphocyte (CTL) activity and reveals a pivotal role played by arginase in this phenomenon. MAFs and normal dermal fibroblasts (DFs) were isolated from surgically resected melanomas and identified as Melan-A-/gp100-/FAP+ cells. CTLs of healthy blood donors were activated in the presence of MAF- and DF-conditioned media (CM). Markers of successful CTL activation, cytotoxic degranulation, killing activity and immune checkpoint regulation were evaluated by flow cytometry, ELISPOT, and redirected killing assays. Soluble mediators responsible for MAF-mediated effects were identified by ELISA, flow cytometry, inhibitor assays, and knock-in experiments. In the presence of MAF-CM, activated/non-naïve CTLs displayed dysregulated ERK1/2 and NF-κB signaling, impeded CD69 and granzyme B production, impaired killing activity, and upregulated expression of the negative immune checkpoint receptors TIGIT and BTLA. Compared to DFs, MAFs displayed increased amounts of VISTA and HVEM, a known ligand of BTLA on T cells, increased l-arginase activity and CXCL12 release. Transgenic arginase over-expression further increased, while selective arginase inhibition neutralized MAF-induced TIGIT and BTLA expression on CTLs. Our data indicate that MAF interfere with intracellular CTL signaling via soluble mediators leading to CTL anergy and modify immune checkpoint receptor availability via l-arginine depletion. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s00018-020-03517-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Érsek
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 4 Nagyvarad ter, VII/709, Budapest, 1089, Hungary.,Office for Research Groups Attached to Universities and Other Institutions of the Hungarian Academy of Sciences, Budapest, 1051, Hungary
| | - Pálma Silló
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, 1085, Hungary
| | - Ugur Cakir
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, 1085, Hungary
| | - Viktor Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, 1083, Hungary
| | - András Bencsik
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 4 Nagyvarad ter, VII/709, Budapest, 1089, Hungary
| | - Balázs Mayer
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, 1085, Hungary
| | - Eva Mezey
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20815, USA
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, 1085, Hungary
| | - Zoltán Pós
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 4 Nagyvarad ter, VII/709, Budapest, 1089, Hungary.
| | - Krisztián Németh
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, 1085, Hungary
| |
Collapse
|
29
|
Alterations in the methylome of the stromal tumour microenvironment signal the presence and severity of prostate cancer. Clin Epigenetics 2020; 12:48. [PMID: 32188493 PMCID: PMC7081708 DOI: 10.1186/s13148-020-00836-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
Background Prostate cancer changes the phenotype of cells within the stromal microenvironment, including fibroblasts, which in turn promote tumour progression. Functional changes in prostate cancer-associated fibroblasts (CAFs) coincide with alterations in DNA methylation levels at loci-specific regulatory regions. Yet, it is not clear how these methylation changes compare across CAFs from different patients. Therefore, we examined the consistency and prognostic significance of genome-wide DNA methylation profiles between CAFs from patients with different grades of primary prostate cancer. Results We used Infinium MethylationEPIC BeadChips to evaluate genome-wide DNA methylation profiles from 18 matched CAFs and non-malignant prostate tissue fibroblasts (NPFs) from men with moderate to high grade prostate cancer, as well as five unmatched benign prostate tissue fibroblasts (BPFs) from men with benign prostatic hyperplasia. We identified two sets of differentially methylated regions (DMRs) in patient CAFs. One set of DMRs reproducibly differed between CAFs and fibroblasts from non-malignant tissue (NPFs and BPFs). Indeed, more than 1200 DMRs consistently changed in CAFs from every patient, regardless of tumour grade. The second set of DMRs varied between CAFs according to the severity of the tumour. Notably, hypomethylation of the EDARADD promoter occurred specifically in CAFs from high-grade tumours and correlated with increased transcript abundance and increased EDARADD staining in patient tissue. Across multiple cohorts, tumours with low EDARADD DNA methylation and high EDARADD mRNA expression were consistently associated with adverse clinical features and shorter recurrence free survival. Conclusions We identified a large set of DMRs that are commonly shared across CAFs regardless of tumour grade and outcome, demonstrating highly consistent epigenome changes in the prostate tumour microenvironment. Additionally, we found that CAFs from aggressive prostate cancers have discrete methylation differences compared to CAFs from moderate risk prostate cancer. Together, our data demonstrates that the methylome of the tumour microenvironment reflects both the presence and the severity of the prostate cancer and, therefore, may provide diagnostic and prognostic potential.
Collapse
|
30
|
Najgebauer H, Liloglou T, Jithesh PV, Giger OT, Varro A, Sanderson CM. Integrated omics profiling reveals novel patterns of epigenetic programming in cancer-associated myofibroblasts. Carcinogenesis 2020; 40:500-512. [PMID: 30624614 PMCID: PMC6556705 DOI: 10.1093/carcin/bgz001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/03/2018] [Accepted: 01/04/2019] [Indexed: 12/31/2022] Open
Abstract
There is increasing evidence that stromal myofibroblasts play a key role in the tumour development however, the mechanisms by which they become reprogrammed to assist in cancer progression remain unclear. As cultured cancer-associated myofibroblasts (CAMs) retain an ability to enhance the proliferation and migration of cancer cells in vitro, it is possible that epigenetic reprogramming of CAMs within the tumour microenvironment may confer long-term pro-tumourigenic changes in gene expression. This study reports the first comparative multi-omics analysis of cancer-related changes in gene expression and DNA methylation in primary myofibroblasts derived from gastric and oesophageal tumours. In addition, we identify novel CAM-specific DNA methylation signatures, which are not observed in patient-matched adjacent tissue-derived myofibroblasts, or corresponding normal tissue-derived myofibroblasts. Analysis of correlated changes in DNA methylation and gene expression shows that different patterns of gene-specific DNA methylation have the potential to confer pro-tumourigenic changes in metabolism, cell signalling and differential responses to hypoxia. These molecular signatures provide new insights into potential mechanisms of stromal reprogramming in gastric and oesophageal cancer, while also providing a new resource to facilitate biomarker identification and future hypothesis-driven studies into mechanisms of stromal reprogramming and tumour progression in solid tumours.
Collapse
Affiliation(s)
- Hanna Najgebauer
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Triantafillos Liloglou
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Puthen V Jithesh
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Olivier T Giger
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Andrea Varro
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK.,Department of Medicine, University of Szeged, Szeged, Hungary
| | | |
Collapse
|
31
|
The life cycle of cancer-associated fibroblasts within the tumour stroma and its importance in disease outcome. Br J Cancer 2020; 122:931-942. [PMID: 31992854 PMCID: PMC7109057 DOI: 10.1038/s41416-019-0705-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 02/08/2023] Open
Abstract
The tumour microenvironment (TME) determines vital aspects of tumour development, such as tumour growth, metastases and response to therapy. Cancer-associated fibroblasts (CAFs) are abundant and extremely influential in this process and interact with cellular and matrix TME constituents such as endothelial and immune cells and collagens, fibronectin and elastin, respectively. However, CAFs are also the recipients of signals—both chemical and physical—that are generated by the TME, and their phenotype effectively evolves alongside the tumour mass during tumour progression. Amid a rising clinical interest in CAFs as a crucial force for disease progression, this review aims to contextualise the CAF phenotype using the chronological framework of the CAF life cycle within the evolving tumour stroma, ranging from quiescent fibroblasts to highly proliferative and secretory CAFs. The emergence, properties and clinical implications of CAF activation are discussed, as well as research strategies used to characterise CAFs and current clinical efforts to alter CAF function as a therapeutic strategy.
Collapse
|
32
|
Mishra R, Haldar S, Suchanti S, Bhowmick NA. Epigenetic changes in fibroblasts drive cancer metabolism and differentiation. Endocr Relat Cancer 2019; 26:R673-R688. [PMID: 31627186 PMCID: PMC6859444 DOI: 10.1530/erc-19-0347] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
Abstract
Genomic changes that drive cancer initiation and progression contribute to the co-evolution of the adjacent stroma. The nature of the stromal reprogramming involves differential DNA methylation patterns and levels that change in response to the tumor and systemic therapeutic intervention. Epigenetic reprogramming in carcinoma-associated fibroblasts are robust biomarkers for cancer progression and have a transcriptional impact that support cancer epithelial progression in a paracrine manner. For prostate cancer, promoter hypermethylation and silencing of the RasGAP, RASAL3 that resulted in the activation of Ras signaling in carcinoma-associated fibroblasts. Stromal Ras activity initiated a process of macropinocytosis that provided prostate cancer epithelia with abundant glutamine for metabolic conversion to fuel its proliferation and a signal to transdifferentiate into a neuroendocrine phenotype. This epigenetic oncogenic metabolic/signaling axis seemed to be further potentiated by androgen receptor signaling antagonists and contributed to therapeutic resistance. Intervention of stromal signaling may complement conventional therapies targeting the cancer cell.
Collapse
Affiliation(s)
- Rajeev Mishra
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Subhash Haldar
- Department of Biotechnology, Brainware University, Kolkata, India
| | - Surabhi Suchanti
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Research, Greater Los Angeles Veterans Administration, Los Angeles, California, USA
- Correspondence should be addressed to N A Bhowmick:
| |
Collapse
|
33
|
Sen M, Kindsfather A, Danilova L, Zhang F, Colombo R, LaPorte MG, Kurland BF, Huryn DM, Wipf P, Herman JG. PTPRT epigenetic silencing defines lung cancer with STAT3 activation and can direct STAT3 targeted therapies. Epigenetics 2019; 15:604-617. [PMID: 31595832 DOI: 10.1080/15592294.2019.1676597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Signal Transducers and Activators of Transcription-3 (STAT3), a potent oncogenic transcription factor, is constitutively activated in lung cancer, but mutations in pathway genes are infrequent. Protein Tyrosine Phosphatase Receptor-T (PTPRT) is an endogenous inhibitor of STAT3 and PTPRT loss-of-function represents one potential mechanism of STAT3 hyperactivation as observed in other malignancies. We determined the role of PTPRT promoter methylation and sensitivity to STAT3 pathway inhibitors in non-small cell lung cancer (NSCLC). TCGA and Pittsburgh lung cancer cohort methylation data revealed hypermethylation of PTPRT associated with diminished mRNA expression in a subset of NSCLC patients. We report frequent hypermethylation of the PTPRT promoter which correlates with transcriptional silencing of PTPRT and increased STAT3 phosphorylation (Y705) as determined by methylation-specific PCR (MSP) and real time quantitative reverse transcription (RT)-PCR in NSCLC cell lines. Silencing of PTPRT using siRNA in H520 lung cancer cell line resulted in increased pSTAT3Tyr705 and upregulation of STAT3 target genes such as Cyclin D1 and Bcl-XL expression. We show this association of PRPRT methylation with upregulation of the STAT3 target genes Cyclin D1 and Bcl-XL in patient derived lung tumour samples. We further demonstrate that PTPRT promoter methylation associated with different levels of pSTAT3Ty705 in lung cancer cell lines had selective sensitivity to STAT3 pathway small molecule inhibitors (SID 864,669 and SID 4,248,543). Our data strongly suggest that silencing of PTPRT by promoter hypermethylation is an important mechanism of STAT3 hyperactivation and targeting STAT3 may be an effective approach for the development of new lung cancer therapeutics.
Collapse
Affiliation(s)
- Malabika Sen
- Department of Hematology/Oncology, UPMC Hillman Cancer Center , Pittsburgh, PA, USA
| | - Audrey Kindsfather
- Department of Hematology/Oncology, UPMC Hillman Cancer Center , Pittsburgh, PA, USA
| | - Ludmila Danilova
- Department of Oncology, Laboratory of Systems Biology and Computational Genetics, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore, MD, USA.,Vavilov Institute of General Genetics, Russian Academy of Sciences , Moscow, Russia
| | - Feng Zhang
- Chemical Diversity Center, University of Pittsburgh , Pittsburgh, PA, USA
| | - Raffaele Colombo
- Chemical Diversity Center, University of Pittsburgh , Pittsburgh, PA, USA
| | - Matthew G LaPorte
- Chemical Diversity Center, University of Pittsburgh , Pittsburgh, PA, USA
| | - Brenda F Kurland
- Department of Biostatistics, University of Pittsburgh , Pittsburgh, PA, USA
| | - Donna M Huryn
- Chemical Diversity Center, University of Pittsburgh , Pittsburgh, PA, USA
| | - Peter Wipf
- Chemical Diversity Center, University of Pittsburgh , Pittsburgh, PA, USA
| | - James G Herman
- Department of Hematology/Oncology, UPMC Hillman Cancer Center , Pittsburgh, PA, USA
| |
Collapse
|
34
|
Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J Hematol Oncol 2019; 12:86. [PMID: 31462327 PMCID: PMC6714445 DOI: 10.1186/s13045-019-0770-1] [Citation(s) in RCA: 561] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
Among all the stromal cells that present in the tumor microenvironment, cancer-associated fibroblasts (CAFs) are one of the most abundant and critical components of the tumor mesenchyme, which not only provide physical support for tumor cells but also play a key role in promoting and retarding tumorigenesis in a context-dependent manner. CAFs have also been involved in the modulation of many components of the immune system, and recent studies have revealed their roles in immune evasion and poor responses to cancer immunotherapy. In this review, we describe our current understanding of the tumorigenic significance, origin, and heterogeneity of CAFs, as well as the roles of different CAFs subtypes in distinct immune cell types. More importantly, we highlight potential therapeutic strategies that target CAFs to unleash the immune system against the tumor.
Collapse
|
35
|
Tang X, Tu G, Yang G, Wang X, Kang L, Yang L, Zeng H, Wan X, Qiao Y, Cui X, Liu M, Hou Y. Autocrine TGF-β1/miR-200s/miR-221/DNMT3B regulatory loop maintains CAF status to fuel breast cancer cell proliferation. Cancer Lett 2019; 452:79-89. [PMID: 30851420 PMCID: PMC7560952 DOI: 10.1016/j.canlet.2019.02.044] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/14/2019] [Accepted: 02/28/2019] [Indexed: 01/15/2023]
Abstract
Cancer-associated fibroblasts (CAFs) remain active even in the absence of cancer cells. However, the molecular mechanism underlying the sustained active status of CAFs is largely unrevealed. We found that in CAFs, DNMT3B was not only a target of miR-200b, miR-200c and miR-221, but was able to induce DNA methylation of miR-200s promoters. DNMT3B eventually reached a stably high level by the counteracting effect of decreasing miR-200b/c and increasing miR-221 in normal fibroblasts (NFs) with long-term exogenous TGF-β1 treatment, and DNMT3B further led to a low level of miR-200s which established CAF activation. Meanwhile, miR-200s/miR-221/DNMT3B signaling sustained autocrine TGF-β1 maintaining active CAF status. Destruction of the autocrine TGF-β1/miR-200s/miR-221/DNMT3B signaling led to demethylation of miR-200s promoters and further restored the NF phenotypes. Moreover, we confirmed that TCF12, the target of miR-141, stimulated c-Myc/Cyclin D1 axis in breast cancer cells to promote cancer growth by enhancing CXCL12 of CAFs. The current study reveals that the TGF-β1/miR-200s/miR-221/DNMT3B regulatory loop is responsible for the maintenance of CAFs status and is also necessary for CAF function in promoting malignance of breast cancer, which provides a potential target for CAF-driven therapeutic strategy.
Collapse
Affiliation(s)
- Xi Tang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guanglun Yang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xing Wang
- Department of Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Linmin Kang
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, 15206, USA
| | - Liping Yang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Huan Zeng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yina Qiao
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaojiang Cui
- Department of Surgery, Department of Obstetrics and Gynecology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 91006, USA
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Yixuan Hou
- Experimental Teaching Center of Basic Medicine Science, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
36
|
Hong HG, Christiani DC, Li Y. Quantile regression for survival data in modern cancer research: expanding statistical tools for precision medicine. PRECISION CLINICAL MEDICINE 2019; 2:90-99. [PMID: 31355047 PMCID: PMC6644129 DOI: 10.1093/pcmedi/pbz007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023] Open
Abstract
Quantile regression links the whole distribution of an outcome to the covariates of interest and has become an important alternative to commonly used regression models. However, the presence of censored data such as survival time, often the main endpoint in cancer studies, has hampered the use of quantile regression techniques because of the incompleteness of data. With the advent of the precision medicine era and availability of high throughput data, quantile regression with high-dimensional predictors has attracted much attention and provided added insight compared to traditional regression approaches. This paper provides a practical guide for using quantile regression for right censored outcome data with covariates of low- or high-dimensionality. We frame our discussion using a dataset from the Boston Lung Cancer Survivor Cohort, a hospital-based prospective cohort study, with the goals of broadening the scope of cancer research, maximizing the utility of collected data, and offering useful statistical alternatives. We use quantile regression to identify clinical and molecular predictors, for example CpG methylation sites, associated with high-risk lung cancer patients, for example those with short survival.
Collapse
Affiliation(s)
- Hyokyoung G Hong
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, USA
| | - David C Christiani
- Departments of Environmental Health and Epidemiology, Harvard University, Boston, MA, USA
| | - Yi Li
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
37
|
Cadmium-induced genome-wide DNA methylation changes in growth and oxidative metabolism in Drosophila melanogaster. BMC Genomics 2019; 20:356. [PMID: 31072326 PMCID: PMC6507226 DOI: 10.1186/s12864-019-5688-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Background Cadmium (Cd)-containing chemicals can cause serious damage to biological systems. In animals and plants, Cd exposure can lead to metabolic disorders or death. However, for the most part the effects of Cd on specific biological processes are not known. DNA methylation is an important mechanism for the regulation of gene expression. In this study we examined the effects of Cd exposure on global DNA methylation in a living organism by whole-genome bisulfite sequencing (WGBS) using Drosophila melanogaster as model. Results A total of 71 differentially methylated regions and 63 differentially methylated genes (DMGs) were identified by WGBS. A total of 39 genes were demethylated in the Cd treatment group but not in the control group, whereas 24 showed increased methylation in the former relative to the latter. In most cases, demethylation activated gene expression: genes such as Cdc42 and Mekk1 were upregulated as a result of demethylation. There were 37 DMGs that overlapped with differentially expressed genes from the digital expression library including baz, Act5C, and ss, which are associated with development, reproduction, and energy metabolism. Conclusions DNA methylation actively regulates the physiological response to heavy metal stress in Drosophila in part via activation of apoptosis. Electronic supplementary material The online version of this article (10.1186/s12864-019-5688-z) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Wang Y, Deng H, Xin S, Zhang K, Shi R, Bao X. Prognostic and Predictive Value of Three DNA Methylation Signatures in Lung Adenocarcinoma. Front Genet 2019; 10:349. [PMID: 31105737 PMCID: PMC6492637 DOI: 10.3389/fgene.2019.00349] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/01/2019] [Indexed: 01/11/2023] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is the leading cause of cancer-related mortality worldwide. Molecular characterization-based methods hold great promise for improving the diagnostic accuracy and for predicting treatment response. The DNA methylation patterns of LUAD display a great potential as a specific biomarker that will complement invasive biopsy, thus improving early detection. Method: In this study, based on the whole-genome methylation datasets from The Cancer Genome Atlas (TCGA) and several machine learning methods, we evaluated the possibility of DNA methylation signatures for identifying lymph node metastasis of LUAD, differentiating between tumor tissue and normal tissue, and predicting the overall survival (OS) of LUAD patients. Using the regularized logistic regression, we built a classifier based on the 3616 CpG sites to identify the lymph node metastasis of LUAD. Furthermore, a classifier based on 14 CpG sites was established to differentiate between tumor and normal tissues. Using the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression, we built a 16-CpG-based model to predict the OS of LUAD patients. Results: With the aid of 3616-CpG-based classifier, we were able to identify the lymph node metastatic status of patients directly by the methylation signature from the primary tumor tissues. The 14-CpG-based classifier could differentiate between tumor and normal tissues. The area under the receiver operating characteristic (ROC) curve (AUC) for both classifiers achieved values close to 1, demonstrating the robust classifier effect. The 16-CpG-based model showed independent prognostic value in LUAD patients. Interpretation: These findings will not only facilitate future treatment decisions based on the DNA methylation signatures but also enable additional investigations into the utilization of LUAD DNA methylation pattern by different machine learning methods.
Collapse
Affiliation(s)
- Yanfang Wang
- Ludwig-Maximilians-Universität München, Munich, Germany
| | - Haowen Deng
- Chair for Computer Aided Medical Procedures and Augmented Reality, Technical University Munich, Munich, Germany
| | - Shan Xin
- Ludwig-Maximilians-Universität München, Munich, Germany.,Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Kai Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Run Shi
- Ludwig-Maximilians-Universität München, Munich, Germany
| | - Xuanwen Bao
- Institute of Radiation Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Technical University Munich (TUM), Munich, Germany
| |
Collapse
|
39
|
Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment. Oncogene 2019; 38:4887-4901. [PMID: 30816343 DOI: 10.1038/s41388-019-0765-y] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022]
Abstract
Increasing lines of evidence show that the malignant behavior of cancer is not exclusively attributable to cancer cells but also radically influenced by cancerous stroma activity and controlled through various mechanisms by the microenvironment. In addition to structural components, such as the extracellular matrix, stromal cells, such as macrophages, endothelial cells, and specifically cancer-associated fibroblasts (CAFs), have attracted substantial attention over recent decades. CAFs provide routes for aggressive carcinomas and contribute to invasion and metastasis through the biochemical alteration and regulation of cancer-related pathways. However, another facet of CAFs that has been neglected by numerous studies is that CAFs might serve as a negative regulator of cancer progression under certain circumstances. The various origins of CAFs, the diverse tissues in which they reside and their interactions with different cancer cells appear to be responsible for this inconsistency. This review summarizes the latest knowledge regarding CAF heterogeneity and offers a novel perspective and a beneficial approach for obtaining an improved understanding of CAFs.
Collapse
|
40
|
Bi Y, Meng Y, Niu Y, Li S, Liu H, He J, Zhang Y, Liang N, Liu L, Mao X, Yan J, Long B, Liang Z, Wu Z. Genome‑wide DNA methylation profile of thymomas and potential epigenetic regulation of thymoma subtypes. Oncol Rep 2019; 41:2762-2774. [PMID: 30816514 PMCID: PMC6448127 DOI: 10.3892/or.2019.7035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to examine the whole-genome DNA methylation status of thymomas and identify differences in thymoma DNA methylation profiles. DNA methylation profiles of tissues (n=12) were studied using the Infinium MethylationEPIC BeadChip microarray (850K) and analyzed in relation to gene expression data. Functional annotation analysis of DNA methylation between the different groups was performed using the online tool GeneCodis3. In order to assess the diagnostic value of candidate DNA methylation markers, receiver operation characteristic (ROC) analysis was performed using the pROC package. A total of 10,014 CpGs were found to be differentially methylated (Δβ>0.2) between two thymoma types (type A and B). Combination analysis showed that 36 genes had differentially methylated CpG sites in their promoter region. ‘Pathways in cancer’, ‘focal adhesion’ and ‘regulation of actin cytoskeleton’ were the most enriched KEGG pathways of differentially methylated genes between tumor and controls. Among the 29 genes that were hypomethylated with a high expression, zinc finger protein 396 and Fraser extracellular matrix complex subunit 1 had the largest area under the curve. The present results may provide useful insights into the tumorigenesis of thymomas and a strong basis for future research on the molecular subtyping of epigenetic regulation in thymomas.
Collapse
Affiliation(s)
- Yalan Bi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yunxiao Meng
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yuchen Niu
- Central Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Shanqing Li
- Department of General Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Hongsheng Liu
- Department of General Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Jia He
- Department of General Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Ye Zhang
- Department of General Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Naixin Liang
- Department of General Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Lei Liu
- Department of General Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xinxin Mao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Jie Yan
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Bo Long
- Central Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Zhihong Wu
- Central Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
41
|
Pidsley R, Lawrence MG, Zotenko E, Niranjan B, Statham A, Song J, Chabanon RM, Qu W, Wang H, Richards M, Nair SS, Armstrong NJ, Nim HT, Papargiris M, Balanathan P, French H, Peters T, Norden S, Ryan A, Pedersen J, Kench J, Daly RJ, Horvath LG, Stricker P, Frydenberg M, Taylor RA, Stirzaker C, Risbridger GP, Clark SJ. Enduring epigenetic landmarks define the cancer microenvironment. Genome Res 2018; 28:625-638. [PMID: 29650553 PMCID: PMC5932604 DOI: 10.1101/gr.229070.117] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 03/27/2018] [Indexed: 12/21/2022]
Abstract
The growth and progression of solid tumors involves dynamic cross-talk between cancer epithelium and the surrounding microenvironment. To date, molecular profiling has largely been restricted to the epithelial component of tumors; therefore, features underpinning the persistent protumorigenic phenotype of the tumor microenvironment are unknown. Using whole-genome bisulfite sequencing, we show for the first time that cancer-associated fibroblasts (CAFs) from localized prostate cancer display remarkably distinct and enduring genome-wide changes in DNA methylation, significantly at enhancers and promoters, compared to nonmalignant prostate fibroblasts (NPFs). Differentially methylated regions associated with changes in gene expression have cancer-related functions and accurately distinguish CAFs from NPFs. Remarkably, a subset of changes is shared with prostate cancer epithelial cells, revealing the new concept of tumor-specific epigenome modifications in the tumor and its microenvironment. The distinct methylome of CAFs provides a novel epigenetic hallmark of the cancer microenvironment and promises new biomarkers to improve interpretation of diagnostic samples.
Collapse
Affiliation(s)
- Ruth Pidsley
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia.,St. Vincent's Clinical School, UNSW Sydney, New South Wales 2052, Australia
| | - Mitchell G Lawrence
- Prostate Research Group, Cancer Program-Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia.,Prostate Cancer Translational Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Elena Zotenko
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia.,St. Vincent's Clinical School, UNSW Sydney, New South Wales 2052, Australia
| | - Birunthi Niranjan
- Prostate Research Group, Cancer Program-Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia
| | - Aaron Statham
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Jenny Song
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Roman M Chabanon
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Wenjia Qu
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Hong Wang
- Prostate Research Group, Cancer Program-Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia
| | - Michelle Richards
- Prostate Research Group, Cancer Program-Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia
| | - Shalima S Nair
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia.,St. Vincent's Clinical School, UNSW Sydney, New South Wales 2052, Australia
| | - Nicola J Armstrong
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia.,Mathematics and Statistics, Murdoch University, Perth, Western Australia 6150, Australia
| | - Hieu T Nim
- Prostate Research Group, Cancer Program-Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia.,Faculty of Information Technology, Monash University, Clayton, Victoria 3800, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Melissa Papargiris
- Prostate Research Group, Cancer Program-Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia
| | - Preetika Balanathan
- Prostate Research Group, Cancer Program-Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia
| | - Hugh French
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Timothy Peters
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Sam Norden
- Tissupath Pathology, Mount Waverley, Victoria 3149, Australia
| | - Andrew Ryan
- Tissupath Pathology, Mount Waverley, Victoria 3149, Australia
| | - John Pedersen
- Prostate Research Group, Cancer Program-Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia.,Tissupath Pathology, Mount Waverley, Victoria 3149, Australia
| | - James Kench
- Cancer Research Division, Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Darlinghurst, New South Wales 2010, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, Sydney, New South Wales 2050, Australia
| | - Roger J Daly
- Signalling Network Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia
| | - Lisa G Horvath
- Cancer Research Division, Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Darlinghurst, New South Wales 2010, Australia.,Chris O'Brien Lifehouse, Missenden Road, Camperdown, New South Wales 2050, Australia.,University of Sydney, Sydney, New South Wales 2050, Australia
| | - Phillip Stricker
- Cancer Research Division, Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Darlinghurst, New South Wales 2010, Australia.,Department of Urology, St. Vincent's Prostate Cancer Centre, Sydney, New South Wales 2050, Australia
| | - Mark Frydenberg
- Prostate Research Group, Cancer Program-Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia
| | - Renea A Taylor
- Prostate Cancer Translational Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Prostate Research Group, Cancer Program-Biomedicine Discovery Institute Department of Physiology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Clare Stirzaker
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia.,St. Vincent's Clinical School, UNSW Sydney, New South Wales 2052, Australia
| | - Gail P Risbridger
- Prostate Research Group, Cancer Program-Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia.,Prostate Cancer Translational Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia.,St. Vincent's Clinical School, UNSW Sydney, New South Wales 2052, Australia
| |
Collapse
|
42
|
Taylor KM, Wheeler R, Singh N, Vosloo D, Ray DW, Sommer P. The tobacco carcinogen NNK drives accumulation of DNMT1 at the GR promoter thereby reducing GR expression in untransformed lung fibroblasts. Sci Rep 2018; 8:4903. [PMID: 29559689 PMCID: PMC5861118 DOI: 10.1038/s41598-018-23309-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive, predominantly cigarette smoke-induced tumour with poor prognosis. The glucocorticoid receptor (GR), a SCLC tumour suppressor gene, is typically reduced in SCLC. We now show that SCLC cells express high levels of DNA methyltransferase 1 (DNMT1) which accumulates at the GR promoter. DNMT1 expression is further increased by exposure to the tobacco carcinogen NNK. In the untransformed human lung fibroblast cell line, MRC-5, short term NNK treatment decreases GRα mRNA and protein expression due to accumulation of DNMT1 at the GR promoter. Long term NNK treatment results in persistently augmented DNMT1 levels with lowered GR levels. Long term exposure to NNK slows cell proliferation and induces DNA damage, while the GR antagonist RU486 stimulates proliferation and protects against DNA damage. Although both NNK and RU486 treatment increases methylation at the GR promoter, neither are sufficient to prevent senescence in this context. NNK exposure results in accumulation of DNMT1 at the GR promoter in untransformed lung cells mimicking SCLC cells, directly linking tobacco smoke exposure to silencing of the GR, an important step in SCLC carcinogenesis.
Collapse
Affiliation(s)
- Kerryn M Taylor
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Roxanne Wheeler
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nimisha Singh
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Dalene Vosloo
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - David W Ray
- Division of Endocrinology, Diabetes and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Paula Sommer
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
43
|
Ziani L, Chouaib S, Thiery J. Alteration of the Antitumor Immune Response by Cancer-Associated Fibroblasts. Front Immunol 2018; 9:414. [PMID: 29545811 PMCID: PMC5837994 DOI: 10.3389/fimmu.2018.00414] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/14/2018] [Indexed: 12/12/2022] Open
Abstract
Among cells present in the tumor microenvironment, activated fibroblasts termed cancer-associated fibroblasts (CAFs), play a critical role in the complex process of tumor-stroma interaction. CAFs, one of the prominent stromal cell populations in most types of human carcinomas, have been involved in tumor growth, angiogenesis, cancer stemness, extracellular matrix remodeling, tissue invasion, metastasis, and even chemoresistance. During the past decade, these activated tumor-associated fibroblasts have also been involved in the modulation of the anti-tumor immune response on various levels. In this review, we describe our current understanding of how CAFs accomplish this task as well as their potential therapeutic implications.
Collapse
Affiliation(s)
- Linda Ziani
- INSERM, UMR 1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France
| | - Salem Chouaib
- INSERM, UMR 1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France
| | - Jerome Thiery
- INSERM, UMR 1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France
| |
Collapse
|
44
|
Lamprecht S, Sigal-Batikoff I, Shany S, Abu-Freha N, Ling E, Delinasios GJ, Moyal-Atias K, Delinasios JG, Fich A. Teaming Up for Trouble: Cancer Cells, Transforming Growth Factor-β1 Signaling and the Epigenetic Corruption of Stromal Naïve Fibroblasts. Cancers (Basel) 2018; 10:cancers10030061. [PMID: 29495500 PMCID: PMC5876636 DOI: 10.3390/cancers10030061] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/28/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
It is well recognized that cancer cells subvert the phenotype of stromal naïve fibroblasts and instruct the neighboring cells to sustain their growth agenda. The mechanisms underpinning the switch of fibroblasts to cancer-associated fibroblasts (CAFs) are the focus of intense investigation. One of the most significant hallmarks of the biological identity of CAFs is that their tumor-promoting phenotype is stably maintained during in vitro and ex vivo propagation without the continual interaction with the adjacent cancer cells. In this review, we discuss robust evidence showing that the master cytokine Transforming Growth Factor-β1 (TGFβ-1) is a prime mover in reshaping, via epigenetic switches, the phenotype of stromal fibroblasts to a durable state. We also examine, in detail, the pervasive involvement of TGFβ-1 signaling from both cancer cells and CAFs in fostering cancer development, taking colorectal cancer (CRC) as a paradigm of human neoplasia. Finally, we review the stroma-centric anticancer therapeutic approach focused on CAFs—the most abundant cell population of the tumor microenvironment (TME)—as target cells.
Collapse
Affiliation(s)
- Sergio Lamprecht
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Ina Sigal-Batikoff
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Shraga Shany
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
| | - Naim Abu-Freha
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Eduard Ling
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Pediatrics Department B, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - George J Delinasios
- International Institute of Anticancer Research, Kapandriti, Athens 19014, Greece.
| | - Keren Moyal-Atias
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - John G Delinasios
- International Institute of Anticancer Research, Kapandriti, Athens 19014, Greece.
| | - Alexander Fich
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| |
Collapse
|
45
|
Zhang MW, Fujiwara K, Che X, Zheng S, Zheng L. DNA methylation in the tumor microenvironment. J Zhejiang Univ Sci B 2018; 18:365-372. [PMID: 28471108 DOI: 10.1631/jzus.b1600579] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment (TME) plays an important role in supporting cancer progression. The TME is composed of tumor cells, the surrounding tumor-associated stromal cells, and the extracellular matrix (ECM). Crosstalk between the TME components contributes to tumorigenesis. Recently, one of our studies showed that pancreatic ductal adenocarcinoma (PDAC) cells can induce DNA methylation in cancer-associated fibroblasts (CAFs), thereby modifying tumor-stromal interactions in the TME, and subsequently creating a TME that supports tumor growth. Here we summarize recent studies about how DNA methylation affects tumorigenesis through regulating tumor-associated stromal components including fibroblasts and immune cells. We also discuss the potential for targeting DNA methylation for the treatment of cancers.
Collapse
Affiliation(s)
- Meng-Wen Zhang
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou 310009, China.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21231, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21231, USA
| | - Kenji Fujiwara
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21231, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21231, USA
| | - Xu Che
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21231, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21231, USA
| | - Shu Zheng
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou 310009, China
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21231, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21231, USA
| |
Collapse
|
46
|
Lugo R, Gabasa M, Andriani F, Puig M, Facchinetti F, Ramírez J, Gómez-Caro A, Pastorino U, Fuster G, Almendros I, Gascón P, Davalos A, Reguart N, Roz L, Alcaraz J. Heterotypic paracrine signaling drives fibroblast senescence and tumor progression of large cell carcinoma of the lung. Oncotarget 2018; 7:82324-82337. [PMID: 27384989 PMCID: PMC5347694 DOI: 10.18632/oncotarget.10327] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 06/12/2016] [Indexed: 11/25/2022] Open
Abstract
Senescence in cancer cells acts as a tumor suppressor, whereas in fibroblasts enhances tumor growth. Senescence has been reported in tumor associated fibroblasts (TAFs) from a growing list of cancer subtypes. However, the presence of senescent TAFs in lung cancer remains undefined. We examined senescence in TAFs from primary lung cancer and paired control fibroblasts from unaffected tissue in three major histologic subtypes: adenocarcinoma (ADC), squamous cell carcinoma (SCC) and large cell carcinoma (LCC). Three independent senescence markers (senescence-associated beta-galactosidase, permanent growth arrest and spreading) were consistently observed in cultured LCC-TAFs only, revealing a selective premature senescence. Intriguingly, SCC-TAFs exhibited a poor growth response in the absence of senescence markers, indicating a dysfunctional phenotype rather than senescence. Co-culturing normal fibroblasts with LCC (but not ADC or SCC) cancer cells was sufficient to render fibroblasts senescent through oxidative stress, indicating that senescence in LCC-TAFs is driven by heterotypic signaling. In addition, senescent fibroblasts provided selective growth and invasive advantages to LCC cells in culture compared to normal fibroblasts. Likewise, senescent fibroblasts enhanced tumor growth and lung dissemination of tumor cells when co-injected with LCC cells in nude mice beyond the effects induced by control fibroblasts. These results define the subtype-specific aberrant phenotypes of lung TAFs, thereby challenging the common assumption that lung TAFs are a heterogeneous myofibroblast-like cell population regardless of their subtype. Importantly, because LCC often distinguishes itself in the clinic by its aggressive nature, we argue that senescent TAFs may contribute to the selective aggressive behavior of LCC tumors.
Collapse
Affiliation(s)
- Roberto Lugo
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Francesca Andriani
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori INT, Milano, Italy
| | - Marta Puig
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, Barcelona, Spain.,Medical Oncology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Federica Facchinetti
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori INT, Milano, Italy
| | - Josep Ramírez
- Anatomopathology Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Abel Gómez-Caro
- Thoracic Surgery Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Ugo Pastorino
- Thoracic Surgery Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Gemma Fuster
- Thoracic Surgery Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Isaac Almendros
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Pere Gascón
- Medical Oncology Department, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | - Noemí Reguart
- Medical Oncology Department, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Luca Roz
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori INT, Milano, Italy
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
47
|
Gabasa M, Duch P, Jorba I, Giménez A, Lugo R, Pavelescu I, Rodríguez-Pascual F, Molina-Molina M, Xaubet A, Pereda J, Alcaraz J. Epithelial contribution to the profibrotic stiff microenvironment and myofibroblast population in lung fibrosis. Mol Biol Cell 2017; 28:3741-3755. [PMID: 29046395 PMCID: PMC5739292 DOI: 10.1091/mbc.e17-01-0026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022] Open
Abstract
The contribution of epithelial-to-mesenchymal transition (EMT) to the profibrotic stiff microenvironment and myofibroblast accumulation in pulmonary fibrosis remains unclear. We examined EMT-competent lung epithelial cells and lung fibroblasts from control (fibrosis-free) donors or patients with idiopathic pulmonary fibrosis (IPF), which is a very aggressive fibrotic disorder. Cells were cultured on profibrotic conditions including stiff substrata and TGF-β1, and analyzed in terms of morphology, stiffness, and expression of EMT/myofibroblast markers and fibrillar collagens. All fibroblasts acquired a robust myofibroblast phenotype on TGF-β1 stimulation. Yet IPF myofibroblasts exhibited higher stiffness and expression of fibrillar collagens than control fibroblasts, concomitantly with enhanced FAKY397 activity. FAK inhibition was sufficient to decrease fibroblast stiffness and collagen expression, supporting that FAKY397 hyperactivation may underlie the aberrant mechanobiology of IPF fibroblasts. In contrast, cells undergoing EMT failed to reach the values exhibited by IPF myofibroblasts in all parameters examined. Likewise, EMT could be distinguished from nonactivated control fibroblasts, suggesting that EMT does not elicit myofibroblast precursors either. Our data suggest that EMT does not contribute directly to the myofibroblast population, and may contribute to the stiff fibrotic microenvironment through their own stiffness but not their collagen expression. Our results also support that targeting FAKY397 may rescue normal mechanobiology in IPF.
Collapse
Affiliation(s)
- Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Paula Duch
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Ignasi Jorba
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Alícia Giménez
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Roberto Lugo
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Irina Pavelescu
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | - Maria Molina-Molina
- ILD Unit, Pulmonology Department, University Hospital of Bellvitge. Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Antoni Xaubet
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Pneumology Service, Hospital Clínic, 08036 Barcelona, Spain
| | - Javier Pereda
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Departament of Physiology, Faculty of Pharmacy, Universitat de València, 46100 València, Spain
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
48
|
Gabasa M, Ikemori R, Hilberg F, Reguart N, Alcaraz J. Nintedanib selectively inhibits the activation and tumour-promoting effects of fibroblasts from lung adenocarcinoma patients. Br J Cancer 2017; 117:1128-1138. [PMID: 28898237 PMCID: PMC5674098 DOI: 10.1038/bjc.2017.270] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Nintedanib is a clinically approved multikinase receptor inhibitor to treat non-small cell lung cancer with adenocarcinoma (ADC) histology in combination with docetaxel, based on the clinical benefits reported on ADC but not on squamous cell carcinoma (SCC), which are the two most common histologic lung cancer subtypes. METHODS We examined the potential role of tumour-associated fibroblasts (TAFs) in the differential effects of nintedanib in ADC and SCC. Because TAFs are largely quiescent and activated in histologic sections, we focused on the antifibrotic effects of nintedanib on TAFs stimulated with the potent fibroblast activator TGF-β1, which is upregulated in lung cancer. RESULTS Nintedanib dose-dependently inhibited the TGF-β1-induced expression of a panel of pro-fibrotic activation markers in both ADC-TAFs and control fibroblasts derived from uninvolved lung parenchyma, whereas such inhibition was very modest in SCC-TAFs. Remarkably, nintedanib abrogated the stimulation of growth and invasion in a panel of carcinoma cell lines induced by secreted factors from activated TAFs in ADC but not SCC, thereby supporting that TGF-β signalling and aberrant TAF-carcinoma cross-talk is regulated by different mechanisms in ADC and SCC. CONCLUSIONS These results reveal that nintedanib is an effective inhibitor of fibrosis and its associated tumour-promoting effects in ADC, and that the poor antifibrotic response of SCC-TAFs to nintedanib may contribute to the differential clinical benefit observed in both subtypes. Our findings also support that preclinical models based on carcinoma-TAF interactions may help defining the mechanisms of the poor antifibrotic response of SCC-TAFs to nintedanib and testing new combined therapies to further expand the therapeutic effects of this drug in solid tumours.
Collapse
Affiliation(s)
- M Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona 08036, Spain
| | - R Ikemori
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona 08036, Spain
| | - F Hilberg
- Boehringer Ingelheim Austria RCV GmbH &Co KG, Vienna 1120, Austria
| | - N Reguart
- Medical Oncology Department, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - J Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona 08036, Spain
- CIBER de Enfermedades Respiratorias, Madrid 28029, Spain
| |
Collapse
|
49
|
Zhang C, Yu W, Wang L, Zhao M, Guo Q, Lv S, Hu X, Lou J. DNA Methylation Analysis of the SHOX2 and RASSF1A Panel in Bronchoalveolar Lavage Fluid for Lung Cancer Diagnosis. J Cancer 2017; 8:3585-3591. [PMID: 29151944 PMCID: PMC5687174 DOI: 10.7150/jca.21368] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022] Open
Abstract
Introduction: Currently the majority of lung cancer patients are diagnosed as advanced diseases for no sensitive and specific biomarkers exist, noninvasive biomarkers with high sensitivity and specificity are urgently needed in lung cancer diagnosis. Bronchoscopy is a standard procedure of the diagnostic work-up of patients with suspected lung cancer despite of the limited diagnostic accuracy. Besides, epigenetic changes through DNA methylation play an important role in tumorigenesis. Thus, we examined the aberrant methylation of the SHOX2 and RASSF1A in bronchoalveolar lavage fluid (BALF) in comparing with conventional cytology examination and serum CEA in order to evaluate the new diagnostic method. Patients and Methods: BALF and serum samples were collected from 322 patients at the time of diagnosis, 284 of them were pathologically confirmed lung cancer, 35 were benign lung diseases and 3 were malignancies in other systems. For all of the 322 patients, the methylation status of the SHOX2 and RASSF1A gene were detected by a new RT-PCR platform and then confirmed by sanger sequencing. Serum CEA were detected using electrochemiluminescence immunoassay. Results: Profiling data showed the consistency of RT-PCR and sanger sequencing in detecting the methylation of the SHOX2 and RASSF1A. Besides, the combination of SHOX2 and RASSF1A methylation in BALF yielded a diagnostic sensitivity of 81.0% and specificity of 97.4%. When compared with established cytology examination (sensitivity: 68.3%, specificity: 97.4%) and serum biomarker carcinoembryonic antigen (CEA) (sensitivity: 30.6%, specificity: 100.0%), the SHOX2 and RASSF1A methylation panel showed the highest diagnostic efficiency. Notably, the combination of cytology and the SHOX2 and RASSF1A methylation panel could significantly improve the diagnostic efficacy. Conclusion: The methylation analysis of the SHOX2 and RASSF1A panel in BALF with RT-PCR achieved a satisfactory sensitivity and specificity in lung cancer diagnosis, especially in an early stage. It could be used as a promising noninvasive biomarker for auxiliary diagnosis of lung cancer.
Collapse
Affiliation(s)
- Chenzi Zhang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenjun Yu
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lin Wang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mingna Zhao
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qiaomei Guo
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shaogang Lv
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaomeng Hu
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
50
|
Horie M, Miyashita N, Mikami Y, Noguchi S, Yamauchi Y, Suzukawa M, Fukami T, Ohta K, Asano Y, Sato S, Yamaguchi Y, Ohshima M, Suzuki HI, Saito A, Nagase T. TBX4 is involved in the super-enhancer-driven transcriptional programs underlying features specific to lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2017; 314:L177-L191. [PMID: 28971975 DOI: 10.1152/ajplung.00193.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Lung fibroblasts participate in the pathogenesis of respiratory diseases, including lung cancer and pulmonary fibrosis. Although fibroblasts are ubiquitous constituents of various organs, their cellular diversity among different organs has been poorly characterized. Here, we aimed to investigate the distinct gene signature of lung fibroblasts that represents its pulmonary origin and the underlying gene regulatory networks. Promoter-level differential expression analysis by cap analysis of gene expression (CAGE) sequencing revealed distinct gene expression patterns of fibroblasts derived from different anatomical sites and identified 88 coding genes with higher expression in lung fibroblasts relative to other fibroblasts. Multiple key transcription factors important for lung mesenchyme development, including the T-box transcription factors TBX2, TBX4, and TBX5 were enriched in this lung-specific signature and were associated with super-enhancers. TBX4 showed highly specific expression in lung fibroblasts and was required for cell proliferation and collagen gel contraction capacity. Transcriptome analysis revealed that TBX4 could broadly regulate fibroblast-related pathways and partly contribute to super-enhancer-mediated transcriptional programs. Of pathological importance, lung fibroblast-specific genes were globally downregulated in lung cancer-associated fibroblasts (CAFs). Notably, TBX2, TBX4, and TBX5 were downregulated and hypermethylated in lung CAFs, suggesting an association between epigenetic silencing of these factors and phenotypic alteration of lung fibroblasts in cancer. Our study highlights the importance of T-box transcription factors, especially TBX4, and super-enhancers in the roles of lung fibroblasts in pulmonary physiology and pathogenesis.
Collapse
Affiliation(s)
- Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan.,Division for Health Service Promotion, The University of Tokyo , Tokyo , Japan.,Division of Genomic Technologies, RIKEN Center for Life Science Technologies , Kanagawa , Japan
| | - Naoya Miyashita
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Yu Mikami
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan.,Department of Clinical Laboratory, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Satoshi Noguchi
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Yasuhiro Yamauchi
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Maho Suzukawa
- National Hospital Organization Tokyo National Hospital , Tokyo , Japan
| | - Takeshi Fukami
- National Hospital Organization Tokyo National Hospital , Tokyo , Japan
| | - Ken Ohta
- National Hospital Organization Tokyo National Hospital , Tokyo , Japan
| | - Yoshihide Asano
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Yoko Yamaguchi
- Department of Biochemistry, Nihon University School of Dentistry , Tokyo , Japan.,Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry , Tokyo , Japan
| | - Mitsuhiro Ohshima
- Department of Biochemistry, Ohu University School of Pharmaceutical Sciences , Fukushima , Japan
| | - Hiroshi I Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan.,Division for Health Service Promotion, The University of Tokyo , Tokyo , Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| |
Collapse
|