1
|
Cerullo AR, McDermott MB, Pepi LE, Liu ZL, Barry D, Zhang S, Yang X, Chen X, Azadi P, Holford M, Braunschweig AB. Comparative mucomic analysis of three functionally distinct Cornu aspersum Secretions. Nat Commun 2023; 14:5361. [PMID: 37660066 PMCID: PMC10475054 DOI: 10.1038/s41467-023-41094-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/21/2023] [Indexed: 09/04/2023] Open
Abstract
Every animal secretes mucus, placing them among the most diverse biological materials. Mucus hydrogels are complex mixtures of water, ions, carbohydrates, and proteins. Uncertainty surrounding their composition and how interactions between components contribute to mucus function complicates efforts to exploit their properties. There is substantial interest in commercializing mucus from the garden snail, Cornu aspersum, for skincare, drug delivery, tissue engineering, and composite materials. C. aspersum secretes three mucus-one shielding the animal from environmental threats, one adhesive mucus from the pedal surface of the foot, and another pedal mucus that is lubricating. It remains a mystery how compositional differences account for their substantially different properties. Here, we characterize mucus proteins, glycosylation, ion content, and mechanical properties that could be used to provide insight into structure-function relationships through an integrative "mucomics" approach. We identify macromolecular components of these hydrogels, including a previously unreported protein class termed Conserved Anterior Mollusk Proteins (CAMPs). Revealing differences between C. aspersum mucus shows how considering structure at all levels can inform the design of mucus-inspired materials.
Collapse
Affiliation(s)
- Antonio R Cerullo
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
| | - Maxwell B McDermott
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
| | - Lauren E Pepi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Zhi-Lun Liu
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Department of Chemical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Diariou Barry
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Sheng Zhang
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Xu Yang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Xi Chen
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Department of Chemical Engineering, The City College of New York, New York, NY, 10031, USA
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- The PhD Program in Physics, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Mande Holford
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- The PhD Program in Biology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, NY, 10024, USA
| | - Adam B Braunschweig
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA.
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
| |
Collapse
|
2
|
Živná M, Kidd KO, Barešová V, Hůlková H, Kmoch S, Bleyer AJ. Autosomal dominant tubulointerstitial kidney disease: A review. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:309-324. [PMID: 36250282 PMCID: PMC9619361 DOI: 10.1002/ajmg.c.32008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/10/2022] [Accepted: 09/29/2022] [Indexed: 01/11/2023]
Abstract
The clinical characteristics of autosomal dominant tubulointerstitial kidney disease (ADTKD) include bland urinary sediment, slowly progressive chronic kidney disease (CKD) with many patients reaching end stage renal disease (ESRD) between age 20 and 70 years, and autosomal dominant inheritance. Due to advances in genetic diagnosis, ADTKD is becoming increasingly recognized as a cause of CKD. Pathogenic variants in UMOD, MUC1, and REN are the most common causes of ADTKD. ADTKD-UMOD is also associated with hyperuricemia and gout. ADTKD-REN often presents in childhood with mild hypotension, CKD, hyperkalemia, acidosis, and anemia. ADTKD-MUC1 patients present only with CKD. This review describes the pathophysiology, genetics, clinical manifestation, and diagnosis for ADTKD, with an emphasis on genetic testing and genetic counseling suggestions for patients.
Collapse
Affiliation(s)
- Martina Živná
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Kendrah O. Kidd
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles UniversityPragueCzech Republic
- Wake Forest University School of MedicineSection on NephrologyWinston‐SalemNorth CarolinaUSA
| | - Veronika Barešová
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Helena Hůlková
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Stanislav Kmoch
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles UniversityPragueCzech Republic
- Wake Forest University School of MedicineSection on NephrologyWinston‐SalemNorth CarolinaUSA
| | - Anthony J. Bleyer
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles UniversityPragueCzech Republic
- Wake Forest University School of MedicineSection on NephrologyWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
3
|
Multi-Level Analysis and Identification of Tumor Mutational Burden Genes across Cancer Types. Genes (Basel) 2022; 13:genes13020365. [PMID: 35205408 PMCID: PMC8872466 DOI: 10.3390/genes13020365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
Tumor mutational burden (TMB) is considered a potential biomarker for predicting the response and effect of immune checkpoint inhibitors (ICIs). However, there are still inconsistent standards of gene panels using next-generation sequencing and poor correlation between the TMB genes, immune cell infiltrating, and prognosis. We applied text-mining technology to construct specific TMB-associated gene panels cross various cancer types. As a case exploration, Pearson’s correlation between TMB genes and immune cell infiltrating was further analyzed in colorectal cancer. We then performed LASSO Cox regression to construct a prognosis predictive model and calculated the risk score of each sample for receiver operating characteristic (ROC) analysis. The results showed that the assessment of TMB gene panels performed well with fewer than 500 genes, highly mutated genes, and the inclusion of synonymous mutations and immune regulatory and drug-target genes. Moreover, the analysis of TMB differentially expressed genes (DEGs) suggested that JAKMIP1 was strongly correlated with the gene expression level of CD8+ T cell markers in colorectal cancer. Additionally, the prognosis predictive model based on 19 TMB DEGs reached AUCs of 0.836, 0.818, and 0.787 in 1-, 3-, and 5-year OS models, respectively (C-index: 0.810). In summary, the gene panel performed well and TMB DEGs showed great potential value in immune cell infiltration and in predicting survival.
Collapse
|
4
|
Kshirsagar PG, Gulati M, Junker WM, Aithal A, Spagnol G, Das S, Mallya K, Gautam SK, Kumar S, Sorgen P, Pandey KK, Batra SK, Jain M. Characterization of recombinant β subunit of human MUC4 mucin (rMUC4β). Sci Rep 2021; 11:23730. [PMID: 34887447 PMCID: PMC8660890 DOI: 10.1038/s41598-021-02860-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
MUC4 is a transmembrane mucin expressed on various epithelial surfaces, including respiratory and gastrointestinal tracts, and helps in their lubrication and protection. MUC4 is also aberrantly overexpressed in various epithelial malignancies and functionally contributes to cancer development and progression. MUC4 is putatively cleaved at the GDPH site into a mucin-like α-subunit and a membrane-tethered growth factor-like β-subunit. Due to the presence of several functional domains, the characterization of MUC4β is critical for understanding MUC4 biology. We developed a method to produce and purify multi-milligram amounts of recombinant MUC4β (rMUC4β). Purified rMUC4β was characterized by Far-UV CD and I-TASSER-based protein structure prediction analyses, and its ability to interact with cellular proteins was determined by the affinity pull-down assay. Two of the three EGF-like domains exhibited typical β-fold, while the third EGF-like domain and vWD domain were predominantly random coils. We observed that rMUC4β physically interacts with Ezrin and EGFR family members. Overall, this study describes an efficient and simple strategy for the purification of biologically-active rMUC4β that can serve as a valuable reagent for a variety of biochemical and functional studies to elucidate MUC4 function and generating domain-specific antibodies and vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Prakash G Kshirsagar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Wade M Junker
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA.,Sanguine Diagnostics and Therapeutics, Omaha, NE, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Srustidhar Das
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Paul Sorgen
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Krishan K Pandey
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, St. Louis, MO, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA. .,Sanguine Diagnostics and Therapeutics, Omaha, NE, USA. .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA. .,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA. .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
5
|
Khodabakhsh F, Merikhian P, Eisavand MR, Farahmand L. Crosstalk between MUC1 and VEGF in angiogenesis and metastasis: a review highlighting roles of the MUC1 with an emphasis on metastatic and angiogenic signaling. Cancer Cell Int 2021; 21:200. [PMID: 33836774 PMCID: PMC8033681 DOI: 10.1186/s12935-021-01899-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
VEGF and its receptor family (VEGFR) members have unique signaling transduction system that play significant roles in most pathological processes, such as angiogenesis in tumor growth and metastasis. VEGF-VEGFR complex is a highly specific mitogen for endothelial cells and any de-regulation of the angiogenic balance implicates directly in endothelial cell proliferation and migration. Moreover, it has been shown that overexpressing Mucin 1 (MUC1) on the surface of many tumor cells resulting in upregulation of numerous signaling transduction cascades, such as growth and survival signaling pathways related to RTKs, loss of cell-cell and cell-matrix adhesion, and EMT. It promotes gene transcription of pro-angiogenic proteins such as HIF-1α during periods of oxygen scarcity (hypoxia) to enhance tumor growth and angiogenesis stimulation. In contrast, the cytoplasmic domain of MUC1 (MUC1-C) inhibits apoptosis, which in turn, impresses upon cell fate. Besides, it has been established that reduction in VEGF expression level correlated with silencing MUC1-C level indicating the anti-angiogenic effect of MUC1 downregulation. This review enumerates the role of MUC1-C oncoprotein and VEGF in angiogenesis and metastasis and describes several signaling pathways by which MUC1-C would mediate the pro-angiogenic activities of cancer cells.
Collapse
Affiliation(s)
- Farnaz Khodabakhsh
- Department of Genetics and Advanced Medical Technology, Medical Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Parnaz Merikhian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No. 146, South Gandhi Ave., Vanak Sq., Tehran, Iran
| | - Mohammad Reza Eisavand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No. 146, South Gandhi Ave., Vanak Sq., Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No. 146, South Gandhi Ave., Vanak Sq., Tehran, Iran.
| |
Collapse
|
6
|
Abstract
A dynamic mucosal layer shields the epithelial cells lining the body cavities and is made up of high molecular weight, heavily glycosylated, multidomain proteins called mucins. Mucins, broadly grouped into transmembrane and secreted mucins, are the first responders to any mechanical or chemical insult to the epithelia and help maintain tissue homeostasis. However, their intrinsic properties to protect and repair the epithelia are exploited during oncogenic processes, where mucins are metamorphosed to aid the tumor cells in their malignant journey. Diverse domains, like the variable number tandem repeats (VNTR), sea urchin sperm protein enterokinase and agrin (SEA), adhesion-associated domain (AMOP), nidogen-like domain (NIDO), epidermal growth factor-like domain (EGF), and von Willebrand factor type D domain (vWD) on mucins, including MUC1, MUC4, MUC5AC, MUC5B, and MUC16, have been shown to facilitate cell-to-cell and cell-to-matrix interactions, and cell-autonomous signaling to promote tumorigenesis and distant dissemination of tumor cells. Several obstacles have limited the study of mucins, including technical difficulties in working with these huge glycoproteins, the dearth of scientific tools, and lack of animal models; thus, the tissue-dependent and domain-specific roles of mucins during mucosal protection, chronic inflammation, tumorigenesis, and hematological dissemination of malignant cells are still unclear. Future studies should try to integrate information on the rheological, molecular, and biological characteristics of mucins to comprehensively delineate their pathophysiological role and evaluate their suitability as targets in future diagnostic and therapeutic strategies.
Collapse
|
7
|
Polymorphisms PSCA rs2294008, IL-4 rs2243250 and MUC1 rs4072037 are associated with gastric cancer in a high risk population. Mol Biol Rep 2020; 47:9239-9243. [PMID: 33128686 DOI: 10.1007/s11033-020-05943-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/22/2020] [Indexed: 01/22/2023]
Abstract
Genetic variants are considered risk factors for gastric cancer. To date, 61 polymorphisms have been identified as associated with this disease. The aim of the present study was to analyze the association of some of those polymorphisms with GC in Chile. We performed a case-control study including 310 gastric cancer cases and 311 controls to assess the association of 36 single-nucleotide polymorphisms genotyped by Global Screening Array (GSA). Three polymorphisms was significantly associated: PSCA rs2294008 (allele model, OR = 1.49, 95%CI 1.17-1.88, P = 1.08 × 10-3), IL-4 rs2243250 (allele model, OR = 1.28, 95%CI 1.01-1.62, P = 0.04), and MUC1 rs4072037 (allele model, OR = 0.78, 95%CI 0.61-0.99, P = 0.04).PSCA rs2294008, IL-4 rs2243250 and MUC1 rs4072037 are associated with gastric cancer in Chile. It suggests that those polymorphisms could be used as biomarkers to assess the genetic risk for this cancer outside of the previously studied populations, not only for East Asians and Caucasians populations.
Collapse
|
8
|
Shete S, Liu H, Wang J, Yu R, Sturgis EM, Li G, Dahlstrom KR, Liu Z, Amos CI, Wei Q. A Genome-Wide Association Study Identifies Two Novel Susceptible Regions for Squamous Cell Carcinoma of the Head and Neck. Cancer Res 2020; 80:2451-2460. [PMID: 32276964 PMCID: PMC7299763 DOI: 10.1158/0008-5472.can-19-2360] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/06/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
To identify genetic variants for risk of squamous cell carcinoma of the head and neck (SCCHN), we conducted a two-phase genome-wide association study consisting of 7,858,089 SNPs in 2,171 cases and 4,493 controls of non-Hispanic white, of which, 434,839 typed and 7,423,250 imputed SNPs were used as the discovery. SNPs with P < 1 × 10-3 were further validated in the OncoArray study of oral and pharynx cancer (5,205 cases and 3,232 controls of European ancestry) from databases of Genotypes and Phenotypes. Meta-analysis of the discovery and replication studies identified one novel locus 6p22.1 (P = 2.96 × 10-9 for the leading rs259919) and two cancer susceptibility loci 6p21.32 (rs3135001, HLA-DQB1) and 6p21.33 (rs1265081, CCHCR1) associated with SCCHN risk. Further stratification by tumor site revealed four known cancer loci (5p15.33, 6p21.32, 6p21.33, and 2p23.1) associated with oral cavity cancer risk and oropharyngeal cancer risk, respectively. In addition, one novel locus 18q22.2 (P = 2.54 × 10-9 for the leading SNP rs142021700) was identified for hypopharynx and larynx cancer risk. For SNPs in those reported or novel loci, we also performed functional annotations by bioinformatics prediction and expression quantitative trait loci analysis. Collectively, our identification of four reported loci (2p23.1, 5p15.33, 6p21.32, and 6p21.33) and two novel loci (6p22.1 and 18q22.2) for SCCHN risk highlight the importance of human leukocyte antigen loci for oropharyngeal cancer risk, suggesting that immunologic mechanisms are implicated in the etiology of this subset of SCCHN. SIGNIFICANCE: Two novel risk loci for SCCHN in non-Hispanic white individuals highlight the importance of immunologic mechanism in the disease etiology.
Collapse
Affiliation(s)
- Sanjay Shete
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert Yu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Erich M Sturgis
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kristina R Dahlstrom
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhensheng Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Christopher I Amos
- The Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina.
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Department of Population Health Sciences, Duke University Medical School, Durham, North Carolina
| |
Collapse
|
9
|
Denneny E, Sahota J, Beatson R, Thornton D, Burchell J, Porter J. Mucins and their receptors in chronic lung disease. Clin Transl Immunology 2020; 9:e01120. [PMID: 32194962 PMCID: PMC7077995 DOI: 10.1002/cti2.1120] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/12/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
There is growing recognition that mucus and mucin biology have a considerable impact on respiratory health, and subsequent global morbidity and mortality. Mucins play a critical role in chronic lung disease, not only by providing a physical barrier and clearing pathogens, but also in immune homeostasis. The aim of this review is to familiarise the reader with the role of mucins in both lung health and disease, with particular focus on function in immunity, infection and inflammation. We will also discuss their receptors, termed glycan-binding proteins, and how they provide an attractive prospect for therapeutic intervention.
Collapse
Affiliation(s)
- Emma Denneny
- Leukocyte Trafficking Laboratory Centre for Inflammation and Tissue Repair UCL Respiratory Rayne Institute University College London London UK
| | - Jagdeep Sahota
- Leukocyte Trafficking Laboratory Centre for Inflammation and Tissue Repair UCL Respiratory Rayne Institute University College London London UK
| | - Richard Beatson
- Breast Cancer Biology Group Division of Cancer Studies King's College London Guy's Hospital London UK
| | - David Thornton
- Wellcome Trust Centre for Cell-Matrix Research School of Biological Sciences Faculty of Biology, Medicine and Health Manchester Academic Health Sciences Centre University of Manchester Manchester UK
| | - Joy Burchell
- Breast Cancer Biology Group Division of Cancer Studies King's College London Guy's Hospital London UK
| | - Joanna Porter
- Leukocyte Trafficking Laboratory Centre for Inflammation and Tissue Repair UCL Respiratory Rayne Institute University College London London UK
| |
Collapse
|
10
|
Yu J, Xu L, Yan J, Yu J, Wu X, Dai J, Guo J, Kong Y. MUC4 isoforms expression profiling and prognosis value in Chinese melanoma patients. Clin Exp Med 2020; 20:299-311. [PMID: 32172429 DOI: 10.1007/s10238-020-00619-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
Mucin 4 (MUC4), a type I membrane-bound mucin, blocks apoptosis, promotes invasion, proliferation and migration and causes chemo-resistance in epithelial cancers. However, the expression profiling and clinical implications of MUC4 alternative splicing during cancer pathogenesis, including melanoma, remain obscure. We examined the mRNA expression profiling of MUC4 isoforms in gastrointestinal cancer cell lines, melanoma cell lines, human epidermal melanocyte cells, as well as 138 cases of human melanoma tissues by RT-qPCR. Then we analyzed the relationship of mRNA expression of MUC4 isoforms to clinicopathological characteristics and survival of patients. The dynamic mRNA expression profiling of MUC4 isoforms was found in melanoma. We identified MUC4 isoform f was highly expressed in melanoma cell lines but negative in gastrointestinal cancer cell lines. Clinical analysis based on 138 cases of human melanomas showed that MUC4 isoform d was related with melanoma subtypes (p = 0.028) and TNM stage (p = 0.036). MUC4 isoform e was related with tumor thickness (p = 0.004) and T stage (p = 0.036). The Kaplan-Meier assay showed that the median overall survival (OS) for patients with MUC4 isoform f high expression was significantly shorter than that of patients with low expression (p = 0.024). And the median PFS of the patients with high expression of MUC4 isoform d or e was significantly shorter than that of with low expression (p = 0.012 and 0.035, respectively). Multivariate analysis indicated that high level of MUC4 isoform f was an independent prognostic factor for OS, and MUC4 isoform d was an independent prognostic factor for PFS of patients treated with chemotherapy. In conclusion, our results indicate that the dynamic MUC4 isoforms expressed in melanoma, and MUC4 isoform d and f might be served as a novel prognostic indicator of melanoma patients.
Collapse
Affiliation(s)
- Jinyu Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Longwen Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Junya Yan
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jiayi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaowen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Collaborative Innovation Center for Cancer Medicine, Beijing, China.
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Collaborative Innovation Center for Cancer Medicine, Beijing, China.
| |
Collapse
|
11
|
Gautam SK, Kumar S, Dam V, Ghersi D, Jain M, Batra SK. MUCIN-4 (MUC4) is a novel tumor antigen in pancreatic cancer immunotherapy. Semin Immunol 2020; 47:101391. [PMID: 31952903 PMCID: PMC7160012 DOI: 10.1016/j.smim.2020.101391] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/01/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy with a dismal five-year survival rate. This is due to its asymptomatic nature, lack of reliable biomarkers, poor resectability, early metastasis, and high recurrence rate. Limited efficacies of current treatment modalities treatment-associated toxicity underscore the need for the development of immunotherapy-based approaches. For non-resectable, locally advanced metastatic PC, immunotherapy-based approaches including vaccines, antibody-targeted, immune checkpoint inhibition, CAR-T-cells, and adoptive T-cell transfer could be valuable additions to existing treatment modalities. Thus far, the vaccine candidates in PC have demonstrated modest immunological responses in different treatment modalities. The identification of tumor-associated antigens (TAA) and their successful implication in PC treatment is still a challenge. MUC4, a high molecular weight glycoprotein that functionally contributes to PC pathogenesis, is an attractive TAA. It is not detected in the normal pancreas; however, it is overexpressed in mouse and human pancreatic tumors. The recombinant MUC4 domain, as well as predicted immunogenic T-cell epitopes, elicited cellular and humoral anti-MUC4 response, suggesting its ulility as a vaccine candidate for PC therapy. Existence of PC-associated MUC4 splice variants, autoantibodies against overexpressed and aberrantly glycosylated MUC4 and presence of T-cell clones against the mutations present in MUC4 further reinforce its significance as a tumor antigen for vaccine development. Herein, we review the significance of MUC4 as a tumor antigen in PC immunotherapy and discuss both, the development and challenges associated with MUC4 based immunotherapy. Lastly, we will present our perspective on MUC4 antigenicity for the future development of MUC4-based PC immunotherapy.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vi Dam
- School of Interdisciplinary Informatics, University of Nebraska Omaha, NE, 68182, USA
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska Omaha, NE, 68182, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
12
|
An Evolutionary Perspective on the Impact of Genomic Copy Number Variation on Human Health. J Mol Evol 2019; 88:104-119. [PMID: 31522275 DOI: 10.1007/s00239-019-09911-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Copy number variants (CNVs), deletions and duplications of segments of DNA, account for at least five times more variable base pairs in humans than single-nucleotide variants. Several common CNVs were shown to change coding and regulatory sequences and thus dramatically affect adaptive phenotypes involving immunity, perception, metabolism, skin structure, among others. Some of these CNVs were also associated with susceptibility to cancer, infection, and metabolic disorders. These observations raise the possibility that CNVs are a primary contributor to human phenotypic variation and consequently evolve under selective pressures. Indeed, locus-specific haplotype-level analyses revealed signatures of natural selection on several CNVs. However, more traditional tests of selection which are often applied to single-nucleotide variation often have diminished statistical power when applied to CNVs because they often do not show strong linkage disequilibrium with nearby variants. Recombination-based formation mechanisms of CNVs lead to frequent recurrence and gene conversion events, breaking the linkage disequilibrium involving CNVs. Similar methodological challenges also prevent routine genome-wide association studies to adequately investigate the impact of CNVs on heritable human disease. Thus, we argue that the full relevance of CNVs to human health and evolution is yet to be elucidated. We further argue that a holistic investigation of formation mechanisms within an evolutionary framework would provide a powerful framework to understand the functional and biomedical impact of CNVs. In this paper, we review several cases where studies reveal diverse evolutionary histories and unexpected functional consequences of CNVs. We hope that this review will encourage further work on CNVs by both evolutionary and medical geneticists.
Collapse
|
13
|
Luo C, Cen S, Ding G, Wu W. Mucinous colorectal adenocarcinoma: clinical pathology and treatment options. Cancer Commun (Lond) 2019; 39:13. [PMID: 30922401 PMCID: PMC6440160 DOI: 10.1186/s40880-019-0361-0] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
Mucinous colorectal adenocarcinoma is a distinct subtype of colorectal cancer (CRC) characterized by the presence of abundant extracellular mucin which accounts for at least 50% of the tumor volume. Mucinous colorectal adenocarcinoma is found in 10%–20% of CRC patients and occurs more commonly in female and younger patients. Moreover, mucinous colorectal adenocarcinoma is more frequently located in the proximal colon and diagnosed at an advanced stage. Based on its molecular context, mucinous colorectal adenocarcinoma is associated with the overexpression of mucin 2 (MUC2) and mucin 5AC (MUC5AC) proteins. At the same time, it shows higher mutation rates in the fundamental genes of the RAS/MAPK and PI3K/Akt/mTOR pathways. Mucinous colorectal adenocarcinoma also shows higher rates of microsatellite instability (MSI) than non-mucinous colorectal adenocarcinoma which might correlate it with Lynch syndrome and the CpG island methylator phenotype. The prognosis of mucinous colorectal adenocarcinoma as to non-mucinous colorectal adenocarcinoma is debatable. Further, the impaired responses of mucinous colorectal adenocarcinoma to palliative or adjuvant chemotherapy warrant more studies to be performed for a specialized treatment for these patients. In this review, we discuss the molecular background and histopathology of mucinous colorectal adenocarcinoma, and provide an update on its prognosis and therapeutics from recent literatures.
Collapse
Affiliation(s)
- Cong Luo
- Department of Abdominal Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, P. R. China.
| | - Shuyi Cen
- School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, P. R. China
| | - Guojun Ding
- Department of Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, P. R. China
| | - Wei Wu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, P. R. China
| |
Collapse
|
14
|
Gorlov IP, Gorlova OY, Amos CI. Untouchable genes in the human genome: Identifying ideal targets for cancer treatment. Cancer Genet 2019; 231-232:67-79. [PMID: 30803560 DOI: 10.1016/j.cancergen.2019.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/30/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Usually, genes with a higher-than-expected number of somatic mutations in tumor samples are assumed to be cancer related. We identified genes with a fewer-than-expected number of somatic mutations - "untouchable genes". METHODS To predict the expected number of somatic mutations, we used a linear regression model with the number of mutations in the gene as an outcome, and gene characteristics, including gene size, nucleotide composition, level of evolutionary conservation, expression level and others, as predictors. Analysis of residuals from the regression model was used to compare the observed and predicted number of mutations. RESULTS We have identified 19 genes with a less-than-expected number of loss-off-function (nonsense, frameshift or pathogenic missense) mutations - i.e., untouchable genes. The number of silent or neutral missense mutations in untouchable genes was equal or higher than the expected number. Many mucins, including MUC16, MUC17, MUC6, MUC5AC, MUC5B, and MUC12, are untouchable. We hypothesized that untouchable mucins help tumor cells to avoid immune response by providing a protective coat that prevents direct contact between effector immune cells, e.g., cytotoxic T-cells, and tumor cells. Survival analysis of available TCGA data demonstrated that overall survival of patients with low (below the median) expression of untouchable mucins was better compared to patients with high expression of untouchable mucins. Aside from mucins, we have identified a number of other untouchable genes. CONCLUSIONS Untouchable genes may be ideal targets for cancer treatment since suppression of untouchable genes is expected to inhibit survival of tumor cells.
Collapse
Affiliation(s)
- Ivan P Gorlov
- The Geisel School of Medicine, Department of Biomedical Data Science, Dartmouth College, HB7936, One Medical Center Dr., Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States.
| | - Olga Y Gorlova
- The Geisel School of Medicine, Department of Biomedical Data Science, Dartmouth College, HB7936, One Medical Center Dr., Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States
| | - Christopher I Amos
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| |
Collapse
|
15
|
Jahan R, Macha MA, Rachagani S, Das S, Smith LM, Kaur S, Batra SK. Axed MUC4 (MUC4/X) aggravates pancreatic malignant phenotype by activating integrin-β1/FAK/ERK pathway. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2538-2549. [PMID: 29777904 DOI: 10.1016/j.bbadis.2018.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Alternative splicing is evolving as an eminent player of oncogenic signaling for tumor development and progression. Mucin 4 (MUC4), a type I membrane-bound mucin, is differentially expressed in pancreatic cancer (PC) and plays a critical role in its progression and metastasis. However, the molecular implications of MUC4 splice variants during disease pathogenesis remain obscure. The present study delineates the pathological and molecular significance of a unique splice variant of MUC4, MUC4/X, which lacks the largest exon 2, along with exon 3. Exon 2 encodes for the highly glycosylated tandem repeat (TR) domain of MUC4 and its absence creates MUC4/X, which is devoid of TR. Expression analysis from PC clinical samples revealed significant upregulation of MUC4/X in PC tissues with most differential expression in poorly differentiated tumors. In vitro studies suggest that overexpression of MUC4/X in wild-type-MUC4 (WT-MUC4) null PC cell lines markedly enhanced PC cell proliferation, invasion, and adhesion to extracellular matrix (ECM) proteins. Furthermore, MUC4/X overexpression leads to an increase in the tumorigenic potential of PC cells in orthotopic transplantation studies. In line with these findings, doxycycline-induced expression of MUC4/X in an endogenous WT-MUC4 expressing PC cell line (Capan-1) also displayed enhanced cell proliferation, invasion, and adhesion to ECM, compared to WT-MUC4 alone, emphasizing its direct involvement in the aggressive behavior of PC cells. Investigation into the molecular mechanism suggested that MUC4/X facilitated PC tumorigenesis via integrin-β1/FAK/ERK signaling pathway. Overall, these findings revealed the novel role of MUC4/X in promoting and sustaining the oncogenic features of PC.
Collapse
Affiliation(s)
- Rahat Jahan
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA; Department of Otolaryngology-Head and Neck Surgery, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA
| | - Srustidhar Das
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA
| | - Lynette M Smith
- Department of Biostatistics, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA.
| |
Collapse
|
16
|
Gautam SK, Kumar S, Cannon A, Hall B, Bhatia R, Nasser MW, Mahapatra S, Batra SK, Jain M. MUC4 mucin- a therapeutic target for pancreatic ductal adenocarcinoma. Expert Opin Ther Targets 2017; 21:657-669. [PMID: 28460571 DOI: 10.1080/14728222.2017.1323880] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Pancreatic cancer (PC) is characterized by mucin overexpression. MUC4 is the most differentially overexpressed membrane-bound mucin that plays a functional role in disease progression and therapy resistance. Area covered: We describe the clinicopathological significance of MUC4, summarize mechanisms contributing to its deregulated expression, review preclinical studies aimed at inhibiting MUC4, and discuss how MUC4 overexpression provides opportunities for developing targeted therapies. Finally, we discuss the challenges for developing MUC4-based therapeutics, and identify areas where efforts should be directed to effectively exploit MUC4 as a therapeutic target for PC. Expert opinion: Studies demonstrating that abrogation of MUC4 expression reduces proliferation and metastasis of PC cells and enhances sensitivity to therapeutic agents affirm its utility as a therapeutic target. Emerging evidence also supports the suitability of MUC4 as a potential immunotherapy target. However, these studies have been limited to in vitro, ex vivo or in vivo approaches using xenograft tumors in immunodeficient murine models. For translational relevance, MUC4-targeted therapies should be evaluated in murine models with intact immune system and accurate tumor microenvironment. Additionally, future studies evaluating MUC4 as a target for immunotherapy must entail characterization of immune response in PC patients and investigate its association with immunosuppression and survival.
Collapse
Affiliation(s)
- Shailendra K Gautam
- a Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Sushil Kumar
- a Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Andrew Cannon
- a Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Bradley Hall
- a Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA.,b Department of Surgery , University of Nebraska Medical Center , Omaha , NE , USA
| | - Rakesh Bhatia
- a Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Mohd Wasim Nasser
- a Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Sidharth Mahapatra
- a Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA.,d Department of Pediatrics , University of Nebraska Medical Center , Omaha , NE , USA.,e Fred and Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Surinder K Batra
- a Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA.,c Eppley Institute for Research in Cancer and Allied Diseases , University of Nebraska Medical Center , Omaha , NE , USA.,e Fred and Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Maneesh Jain
- a Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA.,e Fred and Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|