1
|
He Y, Qu Y, Jin S, Zhang Y, Qin L. ALDH3A1 upregulation inhibits neutrophils N2 polarization and halts oral cancer growth. Oral Dis 2024; 30:4231-4242. [PMID: 38225738 DOI: 10.1111/odi.14863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
OBJECTIVES Tumor-associated neutrophils (TANs) are among the most abundant inflammatory cells in tumor microenvironment (TME). Aldehyde dehydrogenase 3A1 (ALDH3A1) is significantly reduced in oral squamous cell carcinoma (OSCC), ALDH3A1 overexpression suppresses tumorigenesis by inhibiting inflammation. This study investigated the relationship and mechanisms underlying the crosstalk between ALDH3A1 and TANs in OSCC. MATERIALS AND METHODS Immunohistochemistry and immunofluorescence were performed to investigate the abundance of TANs and the expression of ALDH3A1. dHL-60 were induced with tumor-conditioned media and recombinant IL-6/IL-8. The expression of key proteins in PI3K/AKT/NF-κB pathway were detected by RT-PCR and western blot. A xenograft model was utilized to examine the effect of ALDH3A1 on tumorigenicity and polarization of TANs. RESULTS In patients with OSCC, TANs significantly increased and were associated with a worse prognosis. Additionally, ALDH3A1 negatively correlated with TANs infiltration and especially the N2 phenotype which was the prominent part in OSCC. Furthermore, our study demonstrated that tumor-derived IL-8 drives ALDH3A1-mediated TANs N2 polarization in the TME through PI3K/AKT/NF-κB pathway in vitro and in vivo. CONCLUSION Our results indicate that TANs can serve as a prognostic biomarker and ALDH3A1 could be a promising therapeutic target for regulating TANs N2 polarization in antitumor therapy.
Collapse
Affiliation(s)
- Ying He
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yi Qu
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Shan Jin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yongfeng Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Ghosh S, Zanoni I. The Dark Knight: Functional Reprogramming of Neutrophils in the Pathogenesis of Colitis-Associated Cancer. Cancer Immunol Res 2024; 12:1311-1319. [PMID: 39270036 PMCID: PMC11444878 DOI: 10.1158/2326-6066.cir-23-0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/05/2024] [Accepted: 07/17/2024] [Indexed: 09/15/2024]
Abstract
Neutrophils are the primary myeloid cells that are recruited to inflamed tissues, and they are key players during colitis, being also present within the tumor microenvironment during the initiation and growth of colon cancer. Neutrophils fundamentally serve to protect the host against microorganism invasion, but during cancer development, they can become protumoral and lead to tumor initiation, growth, and eventually, metastasis-hence, playing a dichotomic role for the host. Protumoral neutrophils in cancer patients can be immunosuppressive and serve as markers for disease progression but their characteristics are not fully defined. In this review, we explore the current knowledge on how neutrophils in the gut fluctuate between an inflammatory or immunosuppressive state and how they contribute to tumor development. We describe neutrophils' antitumoral and protumoral effects during inflammatory bowel diseases and highlight their capacity to provoke the advent of inflammation-driven colorectal cancer. We present the functional ambivalence of the neutrophil populations within the colon tumor microenvironment, which can be potentially exploited to establish therapies that will prevent, or even reverse, inflammation-dependent colon cancer incidence in high-risk patients.
Collapse
Affiliation(s)
- Sreya Ghosh
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology and Division of Gastroenterology, Boston, 02115, USA
| | - Ivan Zanoni
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology and Division of Gastroenterology, Boston, 02115, USA
| |
Collapse
|
3
|
Zheng C, Li J, Chen H, Ma X, Si T, Zhu W. Dual role of CD177 + neutrophils in inflammatory bowel disease: a review. J Transl Med 2024; 22:813. [PMID: 39223577 PMCID: PMC11370282 DOI: 10.1186/s12967-024-05539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Inflammatory bowel disease (IBD) represents a group of recurrent chronic inflammatory disorders associated with autoimmune dysregulation, typically characterized by neutrophil infiltration and mucosal inflammatory lesions. Neutrophils, as the earliest immune cells to arrive at inflamed tissues, play a dual role in the onset and progression of mucosal inflammation in IBD. Most of these cells specifically express CD177, a molecule increasingly recognized for its critical role in the pathogenesis of IBD. Under IBD-related inflammatory stimuli, CD177 is highly expressed on neutrophils and promotes their migration. CD177 + neutrophils activate bactericidal and barrier-protective functions at IBD mucosal inflammation sites and regulate the release of inflammatory mediators highly correlated with the severity of inflammation in IBD patients, thus playing a dual role. However, mitigating the detrimental effects of neutrophils in inflammatory bowel disease remains a challenge. Based on these data, we have summarized recent articles on the role of neutrophils in intestinal inflammation, with a particular emphasis on CD177, which mediates the recruitment, transepithelial migration, and activation of neutrophils, as well as their functional consequences. A better understanding of CD177 + neutrophils may contribute to the development of novel therapeutic targets to selectively modulate the protective role of this class of cells in IBD.
Collapse
Affiliation(s)
- Chengli Zheng
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiekai Li
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailin Chen
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolin Ma
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianyu Si
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenwei Zhu
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
Jin Y, Christenson ES, Zheng L, Li K. Neutrophils in pancreatic ductal adenocarcinoma: bridging preclinical insights to clinical prospects for improved therapeutic strategies. Expert Rev Clin Immunol 2024; 20:945-958. [PMID: 38690749 DOI: 10.1080/1744666x.2024.2348605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by a dismal five-year survival rate of less than 10%. Neutrophils are key components of the innate immune system, playing a pivotal role in the PDAC immune microenvironment. AREAS COVERED This review provides a comprehensive survey of the pivotal involvement of neutrophils in the tumorigenesis and progression of PDAC. Furthermore, it synthesizes preclinical and clinical explorations aimed at targeting neutrophils within the milieu of PDAC, subsequently proposing a conceptual framework to propel further inquiry focused on enhancing the therapeutic efficacy of PDAC through neutrophil-targeted strategies. PubMed and Web of Science databases were utilized for researching neutrophils in pancreatic cancer publications prior to 2024. EXPERT OPINION Neutrophils play roles in promoting tumor growth and metastasis in PDAC and are associated with poor prognosis. However, the heterogeneity and plasticity of neutrophils and their complex relationships with other immune cells and extracellular matrix also provide new insights for immunotherapy targeting neutrophils to achieve a better prognosis for PDAC.
Collapse
Affiliation(s)
- Yi Jin
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Eric S Christenson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Li Y, Wu J. CD177 is a novel IgG Fc receptor and CD177 genetic variants affect IgG-mediated function. Front Immunol 2024; 15:1418539. [PMID: 39131159 PMCID: PMC11316256 DOI: 10.3389/fimmu.2024.1418539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
CD177 plays an important role in the proliferation and differentiation of myeloid lineage cells including neutrophils, myelocytes, promyelocytes, megakaryocytes, and early erythroblasts in bone marrow. CD177 deficiency is a common phenotype in humans. Our previous studies revealed genetic mechanisms of human CD177 deficiency and expression variations. Up to now, immune functions of CD177 remain undefined. In the current study, we revealed human IgG as a ligand for CD177 by using flow cytometry, bead-rosette formation, and surface plasmon resonance (SPR) assays. In addition, we show that CD177 variants affect the binding capacity of CD177 for human IgG. Furthermore, we show that the CD177 genetic variants significantly affect antibody-dependent cell-mediated cytotoxicity (ADCC) function. The demonstration of CD177 as a functional IgG Fc-receptor may provide new insights into CD177 immune function and genetic mechanism underlying CD177 as biomarkers for human diseases.
Collapse
Affiliation(s)
- Yunfang Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Burgos-Molina AM, Téllez Santana T, Redondo M, Bravo Romero MJ. The Crucial Role of Inflammation and the Immune System in Colorectal Cancer Carcinogenesis: A Comprehensive Perspective. Int J Mol Sci 2024; 25:6188. [PMID: 38892375 PMCID: PMC11172443 DOI: 10.3390/ijms25116188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic inflammation drives the growth of colorectal cancer through the dysregulation of molecular pathways within the immune system. Infiltration of immune cells, such as macrophages, into tumoral regions results in the release of proinflammatory cytokines (IL-6; IL-17; TNF-α), fostering tumor proliferation, survival, and invasion. Tumors employ various mechanisms to evade immune surveillance, effectively 'cloaking' themselves from detection and subsequent attack. A comprehensive understanding of these intricate molecular interactions is paramount for advancing novel strategies aimed at modulating the immune response against cancer.
Collapse
Affiliation(s)
- Antonio Manuel Burgos-Molina
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
| | - Teresa Téllez Santana
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
- Research Network on Chronic Diseases, Primary Care, and Health Promotion (RICAPPS), Carlos III Health Institute (Instituto de Salud Carlos III), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
- Málaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28, 29010 Málaga, Spain
| | - Maximino Redondo
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
- Research Network on Chronic Diseases, Primary Care, and Health Promotion (RICAPPS), Carlos III Health Institute (Instituto de Salud Carlos III), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
- Málaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28, 29010 Málaga, Spain
- Research Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain
| | - María José Bravo Romero
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
| |
Collapse
|
7
|
Zhou J, Xu Q, Liu H, Miao J, Bian C, Wei Y, Wang W, Jiang S. Prognostic value of tumor‑associated CD177 + neutrophils in lung adenocarcinoma. Oncol Lett 2024; 27:189. [PMID: 38495836 PMCID: PMC10941067 DOI: 10.3892/ol.2024.14322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
The aim of the present study was to detect CD177+ neutrophils in tumor tissues and analyze their association with the clinical characteristics and prognosis of patients with lung adenocarcinoma (LUAD). Immunohistochemistry was used to detect CD177+ neutrophils in tumors and adjacent tissues of 16 patients with LUAD who underwent curative surgical resection. A total of 120 patients with LUAD were recruited, and their clinical data were collected; survival follow-up was performed. CD177+ neutrophils in tumor tissues were detected via immunohistochemistry, and the association between CD177+ neutrophils and clinical characteristics was analyzed. The density of CD177+ neutrophils in tumor tissues and adjacent tissues of patients with LUAD was analyzed using t-test, and the association between CD177+ neutrophils and clinical characteristics was analyzed through the Chi-square test. Survival was calculated using the Kaplan-Meier survival rate curve. Finally, the association between these indicators and the survival of LUAD patients was evaluated using Cox regression analysis. CD177+ neutrophil infiltration was significantly higher in LUAD tumor tissues, and the high density of CD177+ neutrophils was associated with the clinical characteristics of TNM stage, tumor differentiation and poor progression-free and overall survival in LUAD. In conclusion, tumor-associated CD177+ neutrophils associated with malignant progression and poor prognosis may be independent and unfavorable prognostic biomarkers for LUAD.
Collapse
Affiliation(s)
- Jinhua Zhou
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
- Department of Respiratory Medicine, Jining First People's Hospital, Jining, Shandong 272000, P.R. China
| | - Qingxia Xu
- Department of Pathology, Jining First People's Hospital, Jining, Shandong 272000, P.R. China
| | - Huan Liu
- Department of Emergency Internal Medicine, Jining First People's Hospital, Jining, Shandong 272000, P.R. China
| | - Jianlong Miao
- Department of Respiratory Medicine, Jining First People's Hospital, Jining, Shandong 272000, P.R. China
| | - Cuixia Bian
- Department of Respiratory Medicine, Jining First People's Hospital, Jining, Shandong 272000, P.R. China
| | - Yutao Wei
- Department of Thoracic Surgery, Jining First People's Hospital, Jining, Shandong 272000, P.R. China
| | - Wei Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong 272000, P.R. China
| |
Collapse
|
8
|
Traum A, Jehle S, Waxmann Y, Litmeyer AS, Berghöfer H, Bein G, Dammann R, Perniss A, Burg-Roderfeld M, Sachs UJ, Bayat B. The CD177 c.1291A Allele Leads to a Loss of Membrane Expression and Mimics a CD177-Null Phenotype. Int J Mol Sci 2024; 25:2877. [PMID: 38474126 DOI: 10.3390/ijms25052877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
CD177 is a glycosyl phosphatidyl inositol (GPI)-linked, neutrophil-specific glycoprotein that in 3-5% of normal individuals is absent from all neutrophils. The molecular mechanism behind the absence of CD177 has not been unravelled completely. Here, we analyse the impact of the recently described CD177 c.1291G>A variant on CD177 expression. Recombinant CD177 c.1291G>A was expressed in HEK293F cells and its expression on the cell surface, inside the cell, and in the culture supernatant was investigated. The CD177 c.1291G>A protein was characterised serologically and its interaction with proteinase 3 (PR3) was demonstrated by confocal laser scanning microscopy. Our experiments show that CD177 c.1291G>A does not interfere with CD177 protein biosynthesis but affects the membrane expression of CD177, leading to very low copy numbers of the protein on the cellular surface. The mutation does not interfere with the ability of the protein to bind PR3 or human polyclonal antibodies against wild-type CD177. Carriers of the c.1291G>A allele are supposed to be phenotyped as CD177-negative, but the protein is present in soluble form. The presence of CD177 c.1291A leads to the production of an unstable CD177 protein and an apparent "CD177-null" phenotype.
Collapse
Affiliation(s)
- Annalena Traum
- Institute for Clinical Immunology, Transfusion Medicine and Haemostasis, Medical Faculty, Justus-Liebig-University, 35390 Giessen, Germany
| | - Stefanie Jehle
- Institute for Clinical Immunology, Transfusion Medicine and Haemostasis, Medical Faculty, Justus-Liebig-University, 35390 Giessen, Germany
| | - Yannick Waxmann
- Institute for Clinical Immunology, Transfusion Medicine and Haemostasis, Medical Faculty, Justus-Liebig-University, 35390 Giessen, Germany
| | - Anne-Sophie Litmeyer
- Institute for Clinical Immunology, Transfusion Medicine and Haemostasis, Medical Faculty, Justus-Liebig-University, 35390 Giessen, Germany
| | - Heike Berghöfer
- Institute for Clinical Immunology, Transfusion Medicine and Haemostasis, Medical Faculty, Justus-Liebig-University, 35390 Giessen, Germany
| | - Gregor Bein
- Institute for Clinical Immunology, Transfusion Medicine and Haemostasis, Medical Faculty, Justus-Liebig-University, 35390 Giessen, Germany
| | - Reinhard Dammann
- Institute for Genetics, Faculty of Biology and Chemistry, Justus-Liebig-University, 35390 Giessen, Germany
| | - Alexander Perniss
- Institute for Anatomy and Cell Biology, German Center for Lung Research, Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, 35392 Giessen, Germany
| | - Monika Burg-Roderfeld
- Faculty of Biology and Chemistry, Fresenius University of Applied Sciences, 65510 Idstein, Germany
| | - Ulrich J Sachs
- Institute for Clinical Immunology, Transfusion Medicine and Haemostasis, Medical Faculty, Justus-Liebig-University, 35390 Giessen, Germany
- Department of Thrombosis and Haemostasis, Giessen University Hospital, 35390 Giessen, Germany
| | - Behnaz Bayat
- Institute for Clinical Immunology, Transfusion Medicine and Haemostasis, Medical Faculty, Justus-Liebig-University, 35390 Giessen, Germany
| |
Collapse
|
9
|
Liu Z, Qin X, Nong K, Fang X, Zhang B, Chen W, Wang Z, Wu Y, Shi H, Wang X, Zhang H. Oral administration of LfcinB alleviates DSS-induced colitis by improving the intestinal barrier and microbiota. Food Funct 2024; 15:2038-2051. [PMID: 38293816 DOI: 10.1039/d3fo05236b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Ulcerative colitis (UC) is a kind of inflammatory bowel disease (IBD) that often recurs and is difficult to cure, and no drugs with few side effects are available to treat this disease. LfcinB is a small molecular peptide obtained by the hydrolysis of bovine lactoferrin in the digestive tract of animals. It has strong antibacterial and anti-inflammatory activities. However, direct evidence that LfcinB improves the condition of colitis in mice is rarely reported. In this study, UC was induced in mice by adding 2.5% dextran sulfate (DSS) to drinking water and LfcinB was orally administered. The results showed that oral administration of LfcinB improved colonic tissue damage and inflammatory cell infiltration, increased the expression of tight junction proteins, and down-regulated the phosphorylation of proteins related to the NF-κB/MAPK inflammatory signalling pathway in mice. It also significantly suppressed the relative abundance of potentially pathogenic bacteria (Bacteroides, Barnesiella and Escherichia) in the intestinal flora. In conclusion, oral administration of LfcinB significantly alleviated DSS-induced UC. This may be related to the regulation of inflammatory signalling pathways and gut microbial composition by LfcinB.
Collapse
Affiliation(s)
- Zhineng Liu
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Xinyun Qin
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Keyi Nong
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Xin Fang
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Bin Zhang
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Wanyan Chen
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Zihan Wang
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Yijia Wu
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Huiyu Shi
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Xuemei Wang
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Haiwen Zhang
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| |
Collapse
|
10
|
Di Ceglie I, Carnevale S, Rigatelli A, Grieco G, Molisso P, Jaillon S. Immune cell networking in solid tumors: focus on macrophages and neutrophils. Front Immunol 2024; 15:1341390. [PMID: 38426089 PMCID: PMC10903099 DOI: 10.3389/fimmu.2024.1341390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The tumor microenvironment is composed of tumor cells, stromal cells and leukocytes, including innate and adaptive immune cells, and represents an ecological niche that regulates tumor development and progression. In general, inflammatory cells are considered to contribute to tumor progression through various mechanisms, including the formation of an immunosuppressive microenvironment. Macrophages and neutrophils are important components of the tumor microenvironment and can act as a double-edged sword, promoting or inhibiting the development of the tumor. Targeting of the immune system is emerging as an important therapeutic strategy for cancer patients. However, the efficacy of the various immunotherapies available is still limited. Given the crucial importance of the crosstalk between macrophages and neutrophils and other immune cells in the formation of the anti-tumor immune response, targeting these interactions may represent a promising therapeutic approach against cancer. Here we will review the current knowledge of the role played by macrophages and neutrophils in cancer, focusing on their interaction with other immune cells.
Collapse
Affiliation(s)
| | | | | | - Giovanna Grieco
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Piera Molisso
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
11
|
Li Y, Wu J. CD177 is a novel IgG Fc receptor and CD177 genetic variants affect IgG-mediated function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574546. [PMID: 38260289 PMCID: PMC10802432 DOI: 10.1101/2024.01.07.574546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
CD177 plays an important role in the proliferation and differentiation of myeloid lineage cells including neutrophils, myelocytes, promyelocytes, megakaryocytes, and early erythroblasts in bone marrow. CD177 deficiency is a common phenotype in humans. Our previous studies revealed genetic mechanisms of human CD177 deficiency and expression variations. Up to now, immune functions of CD177 remain undefined. In the current study, we revealed human IgG as a ligand for CD177 by using flow cytometry, bead-rosette formation, and surface plasmon resonance (SPR) assays. In addition, we show that CD177 variants affect the binding capacity of CD177 for human IgG. Furthermore, we showed that the CD177 genetic variants significantly affect antibody-dependent cell-mediated cytotoxicity (ADCC) function. The demonstration of CD177 as a functional IgG Fc-receptor may provide new insights into CD177 immune function and genetic mechanism underlying CD177 as biomarkers for human diseases.
Collapse
|
12
|
Han W, Li C, Wang Y, Huo B, Li W, Shi W. Heme Metabolism-Related Gene TENT5C is a Prognostic Marker and Investigating Its Immunological Role in Colon Cancer. Pharmgenomics Pers Med 2023; 16:1127-1143. [PMID: 38152411 PMCID: PMC10752234 DOI: 10.2147/pgpm.s433790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023] Open
Abstract
Background There is a strong correlation between consuming high amounts of heme and an elevated risk of developing various types of cancer, including colorectal cancer. However, the role of heme metabolism-related genes (HRGs) in colorectal cancer remains unclear. Our study aimed to identify prognostic markers for colorectal cancer patients based on these genes. Methods The heme metabolism score was assessed using gene set variation analysis (GSVA). Potential prognostic HRGs were identified from the TCGA-COAD dataset using LASSO and COX regression analyses. The expression level of TENT5C was validated in the GEO database and clinical samples. To explore the association between TENT5C expression and immune cell infiltrations, we performed ESTIMATE and single-sample gene set enrichment analysis (ssGSEA). Results The low level of heme metabolism score was associated with a poor prognosis in colorectal cancer patients. TENT5C is a prognostic gene and an independent prognostic biomarker for overall survival. Its expression was confirmed in multiple datasets and clinical samples, showing a positive correlation with immune cells and immune score. GSEA results suggested TENT5C's significant role in regulating immune and inflammatory responses in colorectal cancer. Conclusion TENT5C can be used as a biomarker in colorectal cancer. Additionally, TENT5C is associated with both prognosis and immune infiltration. These findings lay a strong groundwork for future research to delve into the specific role of TENT5C in the development and advancement of colorectal cancer.
Collapse
Affiliation(s)
- Wei Han
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Cheng Li
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Yongheng Wang
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Binliang Huo
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Wenhan Li
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Wen Shi
- Department of Gastroenterology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
13
|
Gong YT, Zhang LJ, Liu YC, Tang M, Lin JY, Chen XY, Chen YX, Yan Y, Zhang WD, Jin JM, Luan X. Neutrophils as potential therapeutic targets for breast cancer. Pharmacol Res 2023; 198:106996. [PMID: 37972723 DOI: 10.1016/j.phrs.2023.106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Breast cancer (BC) remains the foremost cause of cancer mortality globally, with neutrophils playing a critical role in its pathogenesis. As an essential tumor microenvironment (TME) component, neutrophils are emerging as pivotal factors in BC progression. Growing evidence has proved that neutrophils play a Janus- role in BC by polarizing into the anti-tumor (N1) or pro-tumor (N2) phenotype. Clinical trials are evaluating neutrophil-targeted therapies, including Reparixin (NCT02370238) and Tigatuzumab (NCT01307891); however, their clinical efficacy remains suboptimal. This review summarizes the evidence regarding the close relationship between neutrophils and BC, emphasizing the critical roles of neutrophils in regulating metabolic and immune pathways. Additionally, we summarize the existing therapeutic approaches that target neutrophils, highlighting the challenges, and affirming the rationale for continuing to explore neutrophils as a viable therapeutic target in BC management.
Collapse
Affiliation(s)
- Yi-Ting Gong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Chen Liu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Min Tang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Yi Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Xu Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Yan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Second Military Medical University, Shanghai 201203, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
14
|
Li J, Ji Y, Chen N, Dai L, Deng H. Colitis-associated carcinogenesis: crosstalk between tumors, immune cells and gut microbiota. Cell Biosci 2023; 13:194. [PMID: 37875976 PMCID: PMC10594787 DOI: 10.1186/s13578-023-01139-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. One of the main causes of colorectal cancer is inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). Intestinal epithelial cells (IECs), intestinal mesenchymal cells (IMCs), immune cells, and gut microbiota construct the main body of the colon and maintain colon homeostasis. In the development of colitis and colitis-associated carcinogenesis, the damage, disorder or excessive recruitment of different cells such as IECs, IMCs, immune cells and intestinal microbiota play different roles during these processes. This review aims to discuss the various roles of different cells and the crosstalk of these cells in transforming intestinal inflammation to cancer, which provides new therapeutic methods for chemotherapy, targeted therapy, immunotherapy and microbial therapy.
Collapse
Affiliation(s)
- Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Yanhong Ji
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Na Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China.
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China.
| |
Collapse
|
15
|
Ephraim R, Fraser S, Devereaux J, Stavely R, Feehan J, Eri R, Nurgali K, Apostolopoulos V. Differential Gene Expression of Checkpoint Markers and Cancer Markers in Mouse Models of Spontaneous Chronic Colitis. Cancers (Basel) 2023; 15:4793. [PMID: 37835487 PMCID: PMC10571700 DOI: 10.3390/cancers15194793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The presence of checkpoint markers in cancer cells aids in immune escape. The identification of checkpoint markers and early cancer markers is of utmost importance to gain clarity regarding the relationship between colitis and progressive inflammation leading to cancer. Herein, the gene expression levels of checkpoint makers, cancer-related pathways, and cancer genes in colon tissues of mouse models of chronic colitis (Winnie and Winnie-Prolapse mice) using next-generation sequencing are determined. Winnie mice are a result of a Muc2 missense mutation. The identification of such genes and their subsequent expression and role at the protein level would enable novel markers for the early diagnosis of cancer in IBD patients. The differentially expressed genes in the colonic transcriptome were analysed based on the Kyoto Encyclopedia of Genes and Genomes pathway. The expression of several oncogenes is associated with the severity of IBD, with Winnie-Prolapse mice expressing a large number of key genes associated with development of cancer. This research presents a number of new targets to evaluate for the development of biomarkers and therapeutics.
Collapse
Affiliation(s)
- Ramya Ephraim
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (R.E.); (S.F.); (J.D.); (J.F.); (K.N.)
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (R.E.); (S.F.); (J.D.); (J.F.); (K.N.)
| | - Jeannie Devereaux
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (R.E.); (S.F.); (J.D.); (J.F.); (K.N.)
| | - Rhian Stavely
- Pediatric Surgery Research Laboratories, Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (R.E.); (S.F.); (J.D.); (J.F.); (K.N.)
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Rajaraman Eri
- STEM/School of Science, RMIT University, Melbourne, VIC 3001, Australia;
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (R.E.); (S.F.); (J.D.); (J.F.); (K.N.)
- Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (R.E.); (S.F.); (J.D.); (J.F.); (K.N.)
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| |
Collapse
|
16
|
Huang C, Fan X, Shen Y, Shen M, Yang L. Neutrophil subsets in noncancer liver diseases: Cellular crosstalk and therapeutic targets. Eur J Immunol 2023; 53:e2250324. [PMID: 37495829 DOI: 10.1002/eji.202250324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023]
Abstract
Neutrophils are the most abundant circulating granulocytes, linking innate and adaptive immunity. Neutrophils can regulate inflammatory and immune responses through degranulation, reactive oxygen species generation, the production of cytokines and chemokines, and NETosis. Emerging evidence has indicated that neutrophils contribute to the pathogenesis of various noncancer liver diseases, including nonalcoholic fatty liver disease, alcohol-associated liver disease, hepatic ischemia-reperfusion injury, and liver fibrosis. Cellular interactions among neutrophils, other immune cells, and nonimmune cells constitute a complex network that regulates the immune microenvironment of the liver. This review summarizes novel neutrophil subtypes, including CD177+ neutrophils and low-density neutrophils. Moreover, we provide an overview of the cellular cros stalk of neutrophils in noncancer liver diseases, aiming to shed new light on mechanistic studies of novel neutrophil subtypes. In addition, we discuss the potential of neutrophils as therapeutic targets in noncancer liver diseases, including inhibitors targeting NETosis, granule proteins, and chemokines.
Collapse
Affiliation(s)
- Chen Huang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Shen
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Mengyi Shen
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Zhou W, Cao X, Xu Q, Qu J, Sun Y. The double-edged role of neutrophil heterogeneity in inflammatory diseases and cancers. MedComm (Beijing) 2023; 4:e325. [PMID: 37492784 PMCID: PMC10363828 DOI: 10.1002/mco2.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils are important immune cells act as the body's first line of defense against infection and respond to diverse inflammatory cues. Many studies have demonstrated that neutrophils display plasticity in inflammatory diseases and cancers. Clarifying the role of neutrophil heterogeneity in inflammatory diseases and cancers will contribute to the development of novel treatment strategies. In this review, we have presented a review on the development of the understanding on neutrophil heterogeneity from the traditional perspective and a high-resolution viewpoint. A growing body of evidence has confirmed the double-edged role of neutrophils in inflammatory diseases and tumors. This may be due to a lack of precise understanding of the role of specific neutrophil subsets in the disease. Thus, elucidating specific neutrophil subsets involved in diseases would benefit the development of precision medicine. Thusly, we have summarized the relevance and actions of neutrophil heterogeneity in inflammatory diseases and cancers comprehensively. Meanwhile, we also discussed the potential intervention strategy for neutrophils. This review is intended to deepen our understanding of neutrophil heterogeneity in inflammatory diseases and cancers, while hold promise for precise treatment of neutrophil-related diseases.
Collapse
Affiliation(s)
- Wencheng Zhou
- Department of PharmacyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| |
Collapse
|
18
|
Zhang Q, Feng X, Zhang M, Sun W, Zhai Y, Qing S, Liu Y, Zhao H, Sun J, Zhang Y, Ma C. Clinical plasma cells-related genes to aid therapy in colon cancer. BMC Genomics 2023; 24:430. [PMID: 37528394 PMCID: PMC10391883 DOI: 10.1186/s12864-023-09481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/23/2023] [Indexed: 08/03/2023] Open
Abstract
The tumor immune microenvironment (TIME) of colon cancer (CC) has been associated with extensive immune cell infiltration (IMI). Increasing evidence demonstrated that plasma cells (PC) have an extremely important role in advance of antitumor immunity. Nonetheless, there is a lack of comprehensive analyses of PC infiltration in clinical prognosis and immunotherapy in CC. This study systematically addressed the gene expression model and clinical information of CC patients. Clinical samples were obtained from the TCGA (The Cancer Genome Atlas) databases. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), GSVA, and the MAlignant Tumors using Expression data (ESTIMATE) algorithm were employed to research the potential mechanism and pathways. Immunophenoscore (IPS) was obtained to evaluate the immunotherapeutic significance of risk score. Half maximal inhibitory concentration (IC50) of chemotherapeutic medicine was predicted by employing the pRRophetic algorithm. A total of 513 CC samples (including 472 tumor samples and 41 normal samples) were collected from the TCGA-GDC database. Significant black modules and 313 candidate genes were considered PC-related genes by accessing WGCNA. Five pivotal genes were established through multiple analyses, which revealed excellent prognostic. The underlying correlation between risk score with tumor mutation burden (TMB) was further explored. In addition, the risk score was obviously correlated with various tumor immune microenvironment (TIME). Also, risk CC samples showed various signaling pathways activity and different pivotal sensitivities to administering chemotherapy. Finally, the biological roles of the CD177 gene were uncovered in CC.
Collapse
Affiliation(s)
- Qi Zhang
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Zhuzhou Orthopaedic Hospital of Traditional Chinese Medicine, Zhuzhou, 412000, China
| | - Xiao Feng
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Mingming Zhang
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Xi'an Daxing Hospital, Xian, 710000, China
| | - Wenjing Sun
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yuqing Zhai
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Shuangshuang Qing
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Ying Liu
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Haoran Zhao
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jing Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yi Zhang
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Chaoqun Ma
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
19
|
Linde IL, Prestwood TR, Qiu J, Pilarowski G, Linde MH, Zhang X, Shen L, Reticker-Flynn NE, Chiu DKC, Sheu LY, Van Deursen S, Tolentino LL, Song WC, Engleman EG. Neutrophil-activating therapy for the treatment of cancer. Cancer Cell 2023; 41:356-372.e10. [PMID: 36706760 PMCID: PMC9968410 DOI: 10.1016/j.ccell.2023.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 11/02/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to induce eradication of tumors and reduce metastatic seeding through the combined actions of tumor necrosis factor, CD40 agonist, and tumor-binding antibody. The same combination activates human neutrophils in vitro, enabling their lysis of human tumor cells. Mechanistically, this therapy induces rapid mobilization and tumor infiltration of neutrophils along with complement activation in tumors. Complement component C5a activates neutrophils to produce leukotriene B4, which stimulates reactive oxygen species production via xanthine oxidase, resulting in oxidative damage and T cell-independent clearance of multiple tumor types. These data establish neutrophils as potent anti-tumor immune mediators and define an inflammatory pathway that can be harnessed to drive neutrophil-mediated eradication of cancer.
Collapse
Affiliation(s)
- Ian L Linde
- Program in Immunology, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Tyler R Prestwood
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Jingtao Qiu
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Genay Pilarowski
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Miles H Linde
- Program in Immunology, Stanford University, Stanford, CA 94305, USA
| | - Xiangyue Zhang
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lei Shen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | | | - Lauren Y Sheu
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Simon Van Deursen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lorna L Tolentino
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edgar G Engleman
- Program in Immunology, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Wang L, Chen X, Zhang H, Hong L, Wang J, Shao L, Chen G, Wu J. Comprehensive analysis of transient receptor potential channels-related signature for prognosis, tumor immune microenvironment, and treatment response of colorectal cancer. Front Immunol 2022; 13:1014834. [PMID: 36389750 PMCID: PMC9642045 DOI: 10.3389/fimmu.2022.1014834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/23/2022] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Transient receptor potential channels (TRPC) play critical regulatory functions in cancer occurrence and progression. However, knowledge on its role in colorectal cancer (CRC) is limited. In addition, neoadjuvant treatment and immune checkpoint inhibitors (ICIs) have increasing roles in CRC management, but not all patients benefit from them. In this study, a TRPC related signature (TRPCRS) was constructed for prognosis, tumor immune microenvironment (TIME), and treatment response of CRC. METHODS Data on CRC gene expression and clinical features were retrospectively collected from TCGA and GEO databases. Twenty-eight TRPC regulators (TRPCR) were retrieved using gene set enrichment analysis. Different TRPCR expression patterns were identified using non-negative matrix factorization for consensus clustering, and a TRPCRS was established using LASSO. The potential value of TRPCRS was assessed using functional enrichment analysis, tumor immune analysis, tumor somatic mutation analysis, and response to preoperative chemoradiotherapy or ICIs. Moreover, an external validation was conducted using rectal cancer samples that received preoperative chemoradiotherapy at Fujian Cancer Hospital (FJCH) via qRT-PCR. RESULTS Among 834 CRC samples in the TCGA and meta-GEO cohorts, two TRPCR expression patterns were identified, which were associated with various immune infiltrations. In addition, 266 intersected genes from 5564 differentially expressed genes (DEGs) between two TRPC subtypes, 4605 DEGs between tumor tissue and adjacent non-tumor tissue (all FDR< 0.05, adjusted P< 0.001), and 1329 prognostic related genes (P< 0.05) were identified to establish the TRPCRS, which was confirmed in the TCGA cohort, two cohorts from GEO, and one qRT-PCR cohort from FJCH. According to the current signature, the high-TRPC score group had higher expressions of PD-1, PD-L1, and CTLA4, lower TIDE score, and improved response to anti-PD-1 treatment with better predictive ability. Compared to the high-TRPC score group, the low-TRPC score group comprised an immunosuppressive phenotype with increased infiltration of neutrophils and activated MAPK signaling pathway, but was more sensitive to preoperative chemoradiotherapy and associated with improved prognosis. CONCLUSIONS The current TRPCRS predicted the prognosis of CRC, evaluated the TIME in CRC, and anticipated the response to immune therapy and neoadjuvant treatment.
Collapse
Affiliation(s)
- Lei Wang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xingte Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Hejun Zhang
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Liang Hong
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jianchao Wang
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Lingdong Shao
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Gang Chen
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Junxin Wu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
21
|
Yan M, Zheng M, Niu R, Yang X, Tian S, Fan L, Li Y, Zhang S. Roles of tumor-associated neutrophils in tumor metastasis and its clinical applications. Front Cell Dev Biol 2022; 10:938289. [PMID: 36060811 PMCID: PMC9428510 DOI: 10.3389/fcell.2022.938289] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
Metastasis, a primary cause of death in patients with malignancies, is promoted by intrinsic changes in both tumor and non-malignant cells in the tumor microenvironment (TME). As major components of the TME, tumor-associated neutrophils (TANs) promote tumor progression and metastasis through communication with multiple growth factors, chemokines, inflammatory factors, and other immune cells, which together establish an immunosuppressive TME. In this review, we describe the potential mechanisms by which TANs participate in tumor metastasis based on recent experimental evidence. We have focused on drugs in chemotherapeutic regimens that target TANs, thereby providing a promising future for cancer immunotherapy.
Collapse
Affiliation(s)
- Man Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Rui Niu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Linlin Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- *Correspondence: Shiwu Zhang,
| |
Collapse
|
22
|
Gelmez E, Lehr K, Kershaw O, Frentzel S, Vilchez-Vargas R, Bank U, Link A, Schüler T, Jeron A, Bruder D. Characterization of Maladaptive Processes in Acute, Chronic and Remission Phases of Experimental Colitis in C57BL/6 Mice. Biomedicines 2022; 10:biomedicines10081903. [PMID: 36009449 PMCID: PMC9405850 DOI: 10.3390/biomedicines10081903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease with unknown etiology. Dextran sulfate sodium (DSS) induced colitis is a widely used mouse model in IBD research. DSS colitis involves activation of the submucosal immune system and can be used to study IBD-like disease characteristics in acute, chronic, remission and transition phases. Insight into colon inflammatory parameters is needed to understand potentially irreversible adaptations to the chronification of colitis, determining the baseline and impact of further inflammatory episodes. We performed analyses of non-invasive and invasive colitis parameters in acute, chronic and remission phases of the DSS colitis in C57BL/6 mice. Non-invasive colitis parameters poorly reflected inflammatory aspects of colitis in chronic remission phase. We found invasive inflammatory parameters, positively linked to repeated DSS-episodes, such as specific colon weight, inflamed colon area, spleen weight, absolute cell numbers of CD4+ and CD8+ T cells as well as B cells, blood IFN-γ level, colonic chemokines BLC and MDC as well as the prevalence of Turicibacter species in feces. Moreover, microbial Lactobacillus species decreased with chronification of disease. Our data point out indicative parameters of recurrent gut inflammation in context of DSS colitis.
Collapse
Affiliation(s)
- Elif Gelmez
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Konrad Lehr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Olivia Kershaw
- Institute of Veterinary Pathology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Sarah Frentzel
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Ute Bank
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Andreas Jeron
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Correspondence: ; Tel.: +49-391-67-13374
| |
Collapse
|
23
|
Tumor-associated neutrophils and neutrophil-targeted cancer therapies. Biochim Biophys Acta Rev Cancer 2022; 1877:188762. [PMID: 35853517 DOI: 10.1016/j.bbcan.2022.188762] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/08/2023]
Abstract
Neutrophils are the frontline cells in response to microbial infections and are involved in a range of inflammatory disorders in the body. In recent years, neutrophils have gained considerable attention in their involvement of complex roles in tumor development and progression. Tumor-associated neutrophils (TANs) that accumulate in local region could be triggered by external stimuli from tumor microenvironment (TME) and switch between anti- and pro-tumor phenotypes. The anti-tumor neutrophils kill tumor cells through direct cytotoxic effects as well as indirect effects by activating adaptive immune responses. In contrast, the pro-tumor phenotype of neutrophils might be associated with cell proliferation, angiogenesis, and immunosuppression in TME. More recently, neutrophils have been proposed as a potential target in cancer therapy for their ability to diminish the pro-tumor pathways, such as by immune checkpoint blockade. This review discusses the complex roles of neutrophils in TME and highlights the strategies in neutrophil targeting in cancer treatment with a particular focus on the progresses of ongoing clinical trials involving neutrophil-targeted therapies.
Collapse
|
24
|
Schiffmann LM, Bruns CJ, Schmidt T. Resistance Mechanisms of the Metastatic Tumor Microenvironment to Anti-Angiogenic Therapy. Front Oncol 2022; 12:897927. [PMID: 35664794 PMCID: PMC9162757 DOI: 10.3389/fonc.2022.897927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
Angiogenesis describes the formation of blood vessels from an existing vascular network. Anti-angiogenic drugs that target tumor blood vessels have become standard of care in many cancer entities. Though very promising results in preclinical evaluation, anti-angiogenic treatments fell short of expectations in clinical trials. Patients develop resistance over time or are primarily refractory to anti-angiogenic therapies similar to conventional chemotherapy. To further improve efficacy and outcome to these therapies, a deeper understanding of mechanisms that mediate resistance to anti-angiogenic therapies is needed. The field has done tremendous efforts to gain knowledge about how tumors engage tumor cell and microenvironmental mechanisms to do so. This review highlights the current state of knowledge with special focus on the metastatic tumor site and potential therapeutic relevance of this understanding from a translational and clinical perspective.
Collapse
Affiliation(s)
- Lars M. Schiffmann
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Thomas Schmidt
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
25
|
Russo M, Nastasi C. Targeting the Tumor Microenvironment: A Close Up of Tumor-Associated Macrophages and Neutrophils. Front Oncol 2022; 12:871513. [PMID: 35664746 PMCID: PMC9160747 DOI: 10.3389/fonc.2022.871513] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
The importance of the tumor microenvironment (TME) in dynamically regulating cancer progression and influencing the therapeutic outcome is widely accepted and appreciated. Several therapeutic strategies to modify or modulate the TME, like angiogenesis or immune checkpoint inhibitors, showed clinical efficacy and received approval from regulatory authorities. Within recent decades, new promising strategies targeting myeloid cells have been implemented in preclinical cancer models. The predominance of specific cell phenotypes in the TME has been attributed to pro- or anti-tumoral. Hence, their modulation can, in turn, alter the responses to standard-of-care treatments, making them more or less effective. Here, we summarize and discuss the current knowledge and the correlated challenges about the tumor-associated macrophages and neutrophils targeting strategies, current treatments, and future developments.
Collapse
Affiliation(s)
- Massimo Russo
- Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Mario Negri Pharmacological Research Institute (IRCCS), Milan, Italy
| | - Claudia Nastasi
- Laboratory of Cancer Pharmacology, Department of Oncology, Mario Negri Pharmacological Research Institute (IRCCS), Milan, Italy
| |
Collapse
|
26
|
Ma F, An Z, Yue Q, Zhao C, Zhang S, Sun X, Li K, Zhao L, Su L. Effects of brassinosteroids on cancer cells: A review. J Biochem Mol Toxicol 2022; 36:e23026. [DOI: 10.1002/jbt.23026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 12/26/2022]
Affiliation(s)
- Feifan Ma
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Zaiyong An
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Chen Zhao
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Xin Sun
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Kunlun Li
- Research and Development Departments Jinan Hangchen Biotechnology Co., Ltd. Jinan China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| |
Collapse
|
27
|
Czajka-Francuz P, Cisoń-Jurek S, Czajka A, Kozaczka M, Wojnar J, Chudek J, Francuz T. Systemic Interleukins' Profile in Early and Advanced Colorectal Cancer. Int J Mol Sci 2021; 23:124. [PMID: 35008550 PMCID: PMC8745135 DOI: 10.3390/ijms23010124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023] Open
Abstract
Tumor microenvironment (TME) is characterized by mutual interactions of the tumor, stromal and immune cells. Early and advanced colorectal tumors differ in structure and present altered serum cytokine levels. Mutual crosstalk among TME infiltrating cells may shift the balance into immune suppressive or pro-inflammatory, antitumor response this way influencing patients' prognosis. Cancer-related inflammation affects all the body and this way, the systemic level of cytokines could reflect TME processes. Despite numerous studies, it is still not known how systemic cytokines levels change during colorectal cancer (CRC) tumor development. Better understanding tumor microenvironment processes could help in planning therapeutic interventions and more accurate patient prognosis. To contribute to the comprehension of these processes within TME, we reviewed cytokines levels from clinical trials in early and advanced colorectal cancer. Presented data were analyzed in the context of experimental studies and studies analyzing tumor infiltration with immune cells. The review summarizes clinical data of cytokines secreted by tumor microenvironment cells: lymphocytes T helper 1 (Th1), lymphocytes T helper 2 (Th2), lymphocytes T helper 17 (Th17), regulatory T cells (Treg cells), regulatory T cells (Breg cells), M1/M2 macrophages, N1/N2 neutrophils, myeloid-derived suppressor cells (MDSC), dendritic cells (DC), innate lymphoid cells (ILC) natural killer (NK) cells and tumor cells.
Collapse
Affiliation(s)
- Paulina Czajka-Francuz
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Sylwia Cisoń-Jurek
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Aleksander Czajka
- Department of General Surgery, Vascular Surgery, Angiology and Phlebology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-635 Katowice, Poland;
| | - Maciej Kozaczka
- Department of Radiotherapy and Chemotherapy, National Institute of Oncology, Public Research Institute in Gliwice, 44-101 Gliwice, Poland;
| | - Jerzy Wojnar
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Jerzy Chudek
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Tomasz Francuz
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
28
|
Frigerio S, Lartey DA, D’Haens GR, Grootjans J. The Role of the Immune System in IBD-Associated Colorectal Cancer: From Pro to Anti-Tumorigenic Mechanisms. Int J Mol Sci 2021; 22:12739. [PMID: 34884543 PMCID: PMC8657929 DOI: 10.3390/ijms222312739] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with inflammatory bowel disease (IBD) have increased incidence of colorectal cancer (CRC). IBD-associated cancer follows a well-characterized sequence of intestinal epithelial changes, in which genetic mutations and molecular aberrations play a key role. IBD-associated cancer develops against a background of chronic inflammation and pro-inflammatory immune cells, and their products contribute to cancer development and progression. In recent years, the effect of the immunosuppressive microenvironment in cancer development and progression has gained more attention, mainly because of the unprecedented anti-tumor effects of immune checkpoint inhibitors in selected groups of patients. Even though IBD-associated cancer develops in the background of chronic inflammation which is associated with activation of endogenous anti-inflammatory or suppressive mechanisms, the potential role of an immunosuppressive microenvironment in these cancers is largely unknown. In this review, we outline the role of the immune system in promoting cancer development in chronic inflammatory diseases such as IBD, with a specific focus on the anti-inflammatory mechanisms and suppressive immune cells that may play a role in IBD-associated tumorigenesis.
Collapse
Affiliation(s)
- Sofía Frigerio
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.F.); (D.A.L.); (G.R.D.)
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Dalia A. Lartey
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.F.); (D.A.L.); (G.R.D.)
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Geert R. D’Haens
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.F.); (D.A.L.); (G.R.D.)
| | - Joep Grootjans
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.F.); (D.A.L.); (G.R.D.)
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
29
|
Xiong S, Dong L, Cheng L. Neutrophils in cancer carcinogenesis and metastasis. J Hematol Oncol 2021; 14:173. [PMID: 34674757 PMCID: PMC8529570 DOI: 10.1186/s13045-021-01187-y] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, neutrophils have attracted increasing attention because of their cancer-promoting effects. An elevated neutrophil-to-lymphocyte ratio is considered a prognostic indicator for patients with cancer. Neutrophils are no longer regarded as innate immune cells with a single function, let alone bystanders in the pathological process of cancer. Their diversity and plasticity are being increasingly recognized. This review summarizes previous studies assessing the roles and mechanisms of neutrophils in cancer initiation, progression, metastasis and relapse. Although the findings are controversial, the fact that neutrophils play a dual role in promoting and suppressing cancer is undeniable. The plasticity of neutrophils allows them to adapt to different cancer microenvironments and exert different effects on cancer. Given the findings from our own research, we propose a reasonable hypothesis that neutrophils may be reprogrammed into a cancer-promoting state in the cancer microenvironment. This new perspective indicates that neutrophil reprogramming in the course of cancer treatment is a problem worthy of attention. Preventing or reversing the reprogramming of neutrophils may be a potential strategy for adjuvant cancer therapy.
Collapse
Affiliation(s)
- Shumin Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liaoliao Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
30
|
Tumor Microenvironment of Esophageal Cancer. Cancers (Basel) 2021; 13:cancers13184678. [PMID: 34572905 PMCID: PMC8472305 DOI: 10.3390/cancers13184678] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Esophageal cancer is one of the top ten most deadly cancers. Even when diagnosed in a curable stage, patients prognosis poor. One of the parameters that is very relevant for long-term survival is response to radio(chemo)therapy prior surgery. Complete response rates are between 24 and 50 percent. This puts more than a half of every esophageal cancer patient that is diagnosed in a non-metastasized stage at high risk of recurrence. To improve response rates of treatment regimens prior curative surgery is, therefore, a major challenge in treating esophageal cancer. Not only the response of the cancer cell itself to cancer therapy is determining patients’ fate. Cells around the tumor cells called the tumor microenvironment that together with the cancer cell constitute a malignant tumor are also involved in tumor progression and therapy response. This review depicts the most important parts of the esophageal cancer microenvironment, evaluates chances and challenges of current already established therapeutic concepts that target this microenvironment. It furthermore elucidates specific pathways that are potential valuable targets in the future. Abstract Esophageal cancer is among the top ten most deadly cancers worldwide with adenocarcinomas of the esophagus showing increasing incidences over the last years. The prognosis is determined by tumor stage at diagnosis and in locally advanced stages by response to (radio-)chemotherapy followed by radical surgery. Less than a third of patients with esophageal adenocarcinomas completely respond to neoadjuvant therapies which urgently asks for further strategies to improve these rates. Aiming at the tumor microenvironment with novel targeted therapies can be one strategy to achieve this goal. This review connects experimental, translational, and clinical findings on each component of the esophageal cancer tumor microenvironment involving tumor angiogenesis, tumor-infiltrating immune cells, such as macrophages, T-cells, myeloid-derived suppressor cells, and cancer-associated fibroblasts. The review evaluates the current state of already approved concepts and depicts novel potentially targetable pathways related to esophageal cancer tumor microenvironment.
Collapse
|
31
|
Bui TM, Yalom LK, Sumagin R. Tumor-associated neutrophils: orchestrating cancer pathobiology and therapeutic resistance. Expert Opin Ther Targets 2021; 25:573-583. [PMID: 34236924 DOI: 10.1080/14728222.2021.1954162] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Neutrophils or polymorphonuclear cells (PMNs) account for a considerable portion of the tumor immune stroma. Emerging single-cell transcriptomic analyses have elucidated the striking cellular heterogeneity of PMNs during homeostasis and pathologic conditions and have established their diverse roles in cancer. PMNs have emerged as important players in cancer pathobiology and therapeutic resistance. Tumor-associated neutrophils (TANs) effector functions influence tumor development and resistance or response to therapy.Areas covered: This review focuses on PMN heterogeneity and functional diversity in the context of carcinogenesis. TANs, by activating diverse signaling pathways, contribute to cancer progression and resistance to therapies. Mechanisms by which TANs impact therapeutic resistance include alterations of the tumoral DNA damage response, angiogenesis, reactivation of cancer dormancy, enhancement of tumor cell proliferation/survival and immune evasion.Expert opinion: With the emerging phenotypic and function heterogeneity of TANs, targeting specific TAN functions in developing tumors can lead to translatable therapeutic approaches and limit drug resistance. We propose that combining specific targeting of TAN activity with standard cancer therapy can help patients achieving a complete response and prevent cancer relapse.
Collapse
Affiliation(s)
- Triet M Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lenore K Yalom
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
32
|
Siemińska I, Poljańska E, Baran J. Granulocytes and Cells of Granulocyte Origin-The Relevant Players in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22073801. [PMID: 33917620 PMCID: PMC8038777 DOI: 10.3390/ijms22073801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancy and cause of cancer death worldwide, and it still remains a therapeutic challenge for western medicine. There is strong evidence that, in addition to genetic predispositions, environmental factors have also a substantial impact in CRC development. The risk of CRC is attributed, among others to dietary habits, alcohol consumption, whereas physical activity, food containing dietary fiber, dairy products, and calcium supplements have a protective effect. Despite progress in the available therapies, surgery remains a basic treatment option for CRC. Implementation of additional methods of treatment such as chemo- and/or targeted immunotherapy, improved survival rates, however, the results are still far from satisfactory. One of the reasons may be the lack of deeper understanding of the interactions between the tumor and different types of cells, including tumor infiltrating granulocytes. While the role of neutrophils is quite well explored in many cancers, role of eosinophils and basophils is often underestimated. As part of this review, we focused on the function of different granulocyte subsets in CRC, emphasizing the beneficial role of eosinophils and basophils, as well as dichotomic mode of neutrophils action. In addition, we addressed the current knowledge on cells of granulocyte origin, specifically granulocytic myeloid derived suppressor cells (Gr-MDSCs) and their role in development and progression of CRC.
Collapse
Affiliation(s)
- Izabela Siemińska
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Ewa Poljańska
- Laboratory Medicine, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland;
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland;
- Correspondence:
| |
Collapse
|
33
|
McFarlane AJ, Fercoq F, Coffelt SB, Carlin LM. Neutrophil dynamics in the tumor microenvironment. J Clin Invest 2021; 131:143759. [PMID: 33720040 PMCID: PMC7954585 DOI: 10.1172/jci143759] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment profoundly influences the behavior of recruited leukocytes and tissue-resident immune cells. These immune cells, which inherently have environmentally driven plasticity necessary for their roles in tissue homeostasis, dynamically interact with tumor cells and the tumor stroma and play critical roles in determining the course of disease. Among these immune cells, neutrophils were once considered much more static within the tumor microenvironment; however, some of these earlier assumptions were the product of the notorious difficulty in manipulating neutrophils in vitro. Technological advances that allow us to study neutrophils in context are now revealing the true roles of neutrophils in the tumor microenvironment. Here we discuss recent data generated by some of these tools and how these data might be synthesized into more elegant ways of targeting these powerful and abundant effector immune cells in the clinic.
Collapse
Affiliation(s)
| | - Frédéric Fercoq
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Seth B. Coffelt
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Leo M. Carlin
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
34
|
Zhou G, Wu H, Lin J, Lin R, Feng B, Liu Z. TRIM21 Is Decreased in Colitis-associated Cancer and Negatively Regulates Epithelial Carcinogenesis. Inflamm Bowel Dis 2021; 27:458-468. [PMID: 32860065 DOI: 10.1093/ibd/izaa229] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tripartite motif-containing (TRIM)21 is reported to be associated with the regulation of immune response in gut mucosa. Here we studied the underlying mechanisms of TRIM21 in the pathogenesis of colitis-associated cancer (CAC). METHODS We analyzed TRIM21 expression in tumor tissues from patients with colorectal cancer (CRC) and ulcerative colitis (UC)-associated cancer by immunohistochemistry and real-time polymerase chain reaction and established a CAC model in TRIM21-∕- and wild type mice by azoxymethane (AOM) and dextran sodium sulfate (DSS). Associated gene expression of tumor cell proliferation, adhesion, tissue remodeling and angiogenesis, and inflammatory cytokines were examined in normal colon and CAC by immunohistochemistry and real-time polymerase chain reaction. RESULTS Expression of TRIM21 was found to be decreased in tumor tissues from patients with CRC and UC-associated cancer than that in controls, and TRIM21-∕- deficiency promoted AOM/DSS-induced CAC, characterized by more weight loss and multiple, large colon tumors in TRIM21-∕- mice. Moreover, associated gene expression of tumor cell proliferation (eg, Ki67), tissue remodeling and angiogenesis (eg, MMP10, HIF1-α, COX2, Ang4), and pro-inflammatory cytokines (eg, IL-6, TNF-α, IL-1β) markedly upregulated, whereas associated gene expression of tumor cell adhesion (E-cadherin) and inflammatory cytokines (eg, IL-10, TGF-β, Foxp3, IFN-γ) downregulated in tumor tissues from TRIM21-/- mice compared with controls. CONCLUSIONS TRIM21 is decreased in colitis-associated cancer and negatively regulates intestinal epithelial carcinogenesis by modulating epithelial cell proliferation, adhesion, tissue remodeling and angiogenesis, and pro-inflammatory responses. Therefore, TRIM21 may serve as a novel therapeutic target for CAC therapy.
Collapse
Affiliation(s)
- Guangxi Zhou
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China.,Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Huili Wu
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jian Lin
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Ritian Lin
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Baisui Feng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China.,Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
35
|
Mantovani A, Marchesi F, Jaillon S, Garlanda C, Allavena P. Tumor-associated myeloid cells: diversity and therapeutic targeting. Cell Mol Immunol 2021; 18:566-578. [PMID: 33473192 PMCID: PMC8027665 DOI: 10.1038/s41423-020-00613-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022] Open
Abstract
Myeloid cells in tumor tissues constitute a dynamic immune population characterized by a non-uniform phenotype and diverse functional activities. Both tumor-associated macrophages (TAMs), which are more abundantly represented, and tumor-associated neutrophils (TANs) are known to sustain tumor cell growth and invasion, support neoangiogenesis and suppress anticancer adaptive immune responses. In recent decades, several therapeutic approaches have been implemented in preclinical cancer models to neutralize the tumor-promoting roles of both TAMs and TANs. Some of the most successful strategies have now reached the clinic and are being investigated in clinical trials. In this review, we provide an overview of the recent literature on the ever-growing complexity of the biology of TAMs and TANs and the development of the most promising approaches to target these populations therapeutically in cancer patients.
Collapse
Affiliation(s)
- Alberto Mantovani
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy.
- Department of Biomedical Science, Humanitas University, Rozzano, Italy.
- The William Harvey Research Institute, Queen Mary University of London, London, UK.
| | - Federica Marchesi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sebastien Jaillon
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Rozzano, Italy
| | - Cecilia Garlanda
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Rozzano, Italy
| | - Paola Allavena
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| |
Collapse
|
36
|
Yang Y, Zhang C, Jing D, He H, Li X, Wang Y, Qin Y, Xiao X, Xiong H, Zhou G. IRF5 Acts as a Potential Therapeutic Marker in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2021; 27:407-417. [PMID: 32737976 DOI: 10.1093/ibd/izaa200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs), including ulcerative colitis (UC) and Crohn's disease (CD), are chronic inflammatory disorders. As is well known, interferon regulatory factor (IRF) 5 is closely associated with the pathogenesis of various inflammatory diseases. But the exact role of IRF5 in IBD remains unclear. METHODS In this study, we detected IRF5 expression in peripheral blood mononuclear cells (PBMCs) and inflamed mucosa from IBD patients by immunohistochemistry, western blot, and quantitative real-time polymerase chain reaction. Peripheral blood CD4+ T cells were stimulated with inflammatory cytokines and transfected by lentivirus. RESULTS In active IBD patients, the expression of IRF5 in PBMCs and inflamed colonic tissues was obviously increased and significantly associated with disease activity. Ectopic overexpression of IRF5 could promote the differentiation of IBD CD4+ T cells into Th1 and Th17 cells by regulating T-bet and RAR related orphan receptor C, whereas knockdown of IRF5 had the opposite effects. Tumor necrosis factor (TNF)-α upregulated expression of IRF5 in CD4+ T cells, but anti-TNF treatment with infliximab could markedly reduce IRF5 expression in CD4+ T cells and intestinal mucosa of CD patients. CONCLUSION Our study reveals a novel mechanism that IRF5 levels are correlated with disease activity in IBD and might function as a possible marker for the management of IBD via regulating Th1 and Th17 immune responses and cytokine production.
Collapse
Affiliation(s)
- Yonghong Yang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, P.R. China.,Department of Central Laboratory, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, P.R. China
| | - Cui Zhang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, P.R. China
| | - Dehuai Jing
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, P.R. China
| | - Heng He
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, P.R. China
| | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Yibo Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, P.R. China
| | - Yufen Qin
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, P.R. China
| | - Xiao Xiao
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, P.R. China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, P.R. China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, P.R. China.,Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, P.R. China
| |
Collapse
|
37
|
Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung. Nat Commun 2021; 12:474. [PMID: 33473115 PMCID: PMC7817836 DOI: 10.1038/s41467-020-20733-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Smoking has a profound impact on tumor immunity, and nicotine, which is the major addictive component of smoke, is known to promote tumor progression despite being a non-carcinogen. In this study, we demonstrate that chronic exposure of nicotine plays a critical role in the formation of pre-metastatic niche within the lungs by recruiting pro-tumor N2-neutrophils. This pre-metastatic niche promotes the release of STAT3-activated lipocalin 2 (LCN2), a secretory glycoprotein from the N2-neutrophils, and induces mesenchymal-epithelial transition of tumor cells thereby facilitating colonization and metastatic outgrowth. Elevated levels of serum and urine LCN2 is elevated in early-stage breast cancer patients and cancer-free females with smoking history, suggesting that LCN2 serve as a promising prognostic biomarker for predicting increased risk of metastatic disease in female smoker(s). Moreover, natural compound, salidroside effectively abrogates nicotine-induced neutrophil polarization and consequently reduced lung metastasis of hormone receptor-negative breast cancer cells. Our findings suggest a pro-metastatic role of nicotine-induced N2-neutrophils for cancer cell colonization in the lungs and illuminate the therapeutic use of salidroside to enhance the anti-tumor activity of neutrophils in breast cancer patients. Smoking is known to impact tumor immunity and promote tumor progression. Here, the authors show that chronic nicotine exposure promotes the lung pre-metastatic niche formation by recruiting pro-tumor N2-neutrophils that release lipocalin-2.
Collapse
|
38
|
Beatson R, Graham R, Grundland Freile F, Cozzetto D, Kannambath S, Pfeifer E, Woodman N, Owen J, Nuamah R, Mandel U, Pinder S, Gillett C, Noll T, Bouybayoune I, Taylor-Papadimitriou J, Burchell JM. Cancer-associated hypersialylated MUC1 drives the differentiation of human monocytes into macrophages with a pathogenic phenotype. Commun Biol 2020; 3:644. [PMID: 33149188 PMCID: PMC7642421 DOI: 10.1038/s42003-020-01359-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
The tumour microenvironment plays a crucial role in the growth and progression of cancer, and the presence of tumour-associated macrophages (TAMs) is associated with poor prognosis. Recent studies have demonstrated that TAMs display transcriptomic, phenotypic, functional and geographical diversity. Here we show that a sialylated tumour-associated glycoform of the mucin MUC1, MUC1-ST, through the engagement of Siglec-9 can specifically and independently induce the differentiation of monocytes into TAMs with a unique phenotype that to the best of our knowledge has not previously been described. These TAMs can recruit and prolong the lifespan of neutrophils, inhibit the function of T cells, degrade basement membrane allowing for invasion, are inefficient at phagocytosis, and can induce plasma clotting. This macrophage phenotype is enriched in the stroma at the edge of breast cancer nests and their presence is associated with poor prognosis in breast cancer patients. Beatson et al. show that a sialylated tumour-associated glycoform of the mucin MUC1 induces the differentiation of monocytes into tumour-associated macrophages. These macrophages are found in breast cancer stroma and their presence is associated with poor prognosis.
Collapse
Affiliation(s)
- Richard Beatson
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK.
| | - Rosalind Graham
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Fabio Grundland Freile
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Domenico Cozzetto
- Translational Bioinformatics, Genomics Facility, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, SE1 9RT, UK
| | - Shichina Kannambath
- Genomics Facility, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, SE1 9RT, UK
| | - Ester Pfeifer
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Natalie Woodman
- KHP Tissue Bank, Breast Pathology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Julie Owen
- KHP Tissue Bank, Breast Pathology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Rosamond Nuamah
- Genomics Facility, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, SE1 9RT, UK
| | - Ulla Mandel
- Copenhagen Centre for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200N, Copenhagen, Denmark
| | - Sarah Pinder
- Breast Pathology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Cheryl Gillett
- KHP Tissue Bank, Breast Pathology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Thomas Noll
- Cell Culture Technology, Faculty of Technology & CeBiTec, Bielefeld University, P.O. Box 10 01 31, 33501, Bielefeld, Germany
| | - Ihssane Bouybayoune
- Breast Pathology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Joyce Taylor-Papadimitriou
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Joy M Burchell
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
39
|
Qu Y, Zhang S, Qu Y, Guo H, Wang S, Wang X, Huang T, Zhou H. Novel Gene Signature Reveals Prognostic Model in Acute Myeloid Leukemia. Front Genet 2020; 11:566024. [PMID: 33193652 PMCID: PMC7655922 DOI: 10.3389/fgene.2020.566024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/08/2020] [Indexed: 01/23/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a clonal malignant disease with poor prognosis and a low overall survival rate. Although many studies on the treatment and detection of AML have been conducted, the molecular mechanism of AML development and progression has not been fully elucidated. The present study was designed to pursuit the molecular mechanism of AML using a comprehensive bioinformatics analysis, and build an applicable model to predict the survival probability of AML patients in clinical use. Methods To simplify the complicated regulatory networks, we performed the gene co-expression and PPI network based on WGCNA and STRING database using modularization design. Two machine learning methods, A least absolute shrinkage and selector operation (LASSO) algorithm and support vector machine-recursive feature elimination (SVM-RFE), were used to filter the common hub genes by five-fold cross-validation. The candidate hub genes were used to build the predictive model of AML by the cox-proportional hazards analysis, and validated in The Cancer Genome Atlas (TCGA) cohort and ohsu cohort, which were reliable in the experimental verification by qRT-PCR and western blotting in mRNA and protein levels. Results Three hub genes, FLT3, CD177 and TTPAL were used to build a clinically applicable model to predict the survival probability of AML patients and divided them into high and low groups. To compare the survival ability of the model with the classical clinical features, we generated the nomogram. The model displayed the most risk points contrast to other clinical characteristics, which was compatible with the data of cox multivariate regression. Conclusion This study reveal the novel molecular mechanism of AML, and construct a clinical model significantly related to AML patient prognosis. We showed the integrated roles of critical pathways, hub genes associated, which provide potential targets and new research ideas for the treatment and early detection of AML.
Collapse
Affiliation(s)
- Ying Qu
- Department of Hematology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Shuying Zhang
- Department of Hematology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Yanzhang Qu
- Department of Hematology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Heng Guo
- Department of Hematology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Suling Wang
- Department of Hematology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Xuemei Wang
- Department of Hematology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Tianjiao Huang
- Department of Hematology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Hong Zhou
- Department of Hematology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| |
Collapse
|
40
|
Wang Z, Yang C, Li L, Zhang Z, Pan J, Su K, Chen W, Li J, Qiu F, Huang J. CD62L dim Neutrophils Specifically Migrate to the Lung and Participate in the Formation of the Pre-Metastatic Niche of Breast Cancer. Front Oncol 2020; 10:540484. [PMID: 33178575 PMCID: PMC7593663 DOI: 10.3389/fonc.2020.540484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Lung metastasis is one of the leading causes of death in patients with breast cancer. The mechanism of tumor metastasis remains controversial. Recently, the formation of a pre-metastatic niche has been considered a key factor contributing to breast cancer metastasis, which might also explain the tendency of organ metastasis. Our study initially re-examined the critical time of the niche formation and simultaneously detected a novel subset of neutrophils, CD62Ldim neutrophils, which had not previously been reported in tumor metastasis; the number of these cells progressively increased during breast cancer progression and was closely related to the formation of the pre-metastatic niche. Furthermore, we explored the mechanism of their aggregation in the pre-metastatic niche in the lung and found that they were specifically chemoattracted by the CXCL12-CXCR4 signaling pathway. Compared to the CD62Lhi neutrophils, CD62Ldim neutrophils exhibited stronger adhesion and increased survival. The results provide new insights into the subsequent targeted treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenghui Yang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Li
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhigang Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Su
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wuzhen Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfan Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fuming Qiu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
41
|
Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R, Mantovani A. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer 2020; 20:485-503. [PMID: 32694624 DOI: 10.1038/s41568-020-0281-y] [Citation(s) in RCA: 573] [Impact Index Per Article: 143.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Neutrophils play a key role in defence against infection and in the activation and regulation of innate and adaptive immunity. In cancer, tumour-associated neutrophils (TANs) have emerged as an important component of the tumour microenvironment. Here, they can exert dual functions. TANs can be part of tumour-promoting inflammation by driving angiogenesis, extracellular matrix remodelling, metastasis and immunosuppression. Conversely, neutrophils can also mediate antitumour responses by direct killing of tumour cells and by participating in cellular networks that mediate antitumour resistance. Neutrophil diversity and plasticity underlie the dual potential of TANs in the tumour microenvironment. Myeloid checkpoints as well as the tumour and tissue contexture shape neutrophil function in response to conventional therapies and immunotherapy. We surmise that neutrophils can provide tools to tailor current immunotherapy strategies and pave the way to myeloid cell-centred therapeutic strategies, which would be complementary to current approaches.
Collapse
Affiliation(s)
- Sebastien Jaillon
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy.
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy.
| | - Andrea Ponzetta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy
| | - Diletta Di Mitri
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy
| | - Angela Santoni
- Dipartimento di Medicina Molecolare Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma 'La Sapienza', Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | - Raffaella Bonecchi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy.
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy.
- The William Harvey Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
42
|
Zhang Y, Song J, Zhao Z, Yang M, Chen M, Liu C, Ji J, Zhu D. Single-cell transcriptome analysis reveals tumor immune microenvironment heterogenicity and granulocytes enrichment in colorectal cancer liver metastases. Cancer Lett 2020; 470:84-94. [DOI: 10.1016/j.canlet.2019.10.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 02/09/2023]
|
43
|
Symons LK, Miller JE, Tyryshkin K, Monsanto SP, Marks RM, Lingegowda H, Vanderbeck K, Childs T, Young SL, Lessey BA, Koti M, Tayade C. Neutrophil recruitment and function in endometriosis patients and a syngeneic murine model. FASEB J 2019; 34:1558-1575. [PMID: 31914688 DOI: 10.1096/fj.201902272r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
Abstract
Endometriosis is a chronic inflammatory, gynecological disease characterized by the presence of endometrial-like tissue lesions outside of the uterus. Neutrophils are elevated in the systemic circulation and peritoneal fluid of endometriosis patients; however, whether and how neutrophils contribute to endometriosis pathophysiology remain poorly understood. With emerging roles for neutrophils in chronic and sterile inflammatory conditions, we sought to provide in-depth characterization of neutrophil involvement in endometriosis. We demonstrate that neutrophils reside within patient endometriotic lesions and that patient lesions possess a microenvironment that may influence neutrophil recruitment and function. We also provide the first evidence that systemic circulating neutrophils from endometriosis patients display distinct transcriptomic differences compared neutrophils from healthy control subjects. Time course characterization of our syngeneic, immunocompetent mouse model of endometriosis revealed that neutrophils are rapidly recruited to the peritoneal environment early after endometriotic lesion establishment and remain present in murine lesions long term. In vivo neutrophil depletion altered the systemic and peritoneal immune microenvironment of mice with endometriosis as demonstrated by changes in pro-inflammatory and angiogenic mediators. Taken together, these findings highlight a novel role for neutrophils in early events such as angiogenesis and modulation of the local inflammatory environment associated with endometriosis pathogenesis.
Collapse
Affiliation(s)
- Lindsey K Symons
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Jessica E Miller
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Kathrin Tyryshkin
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Center, Kingston, ON, Canada
| | - Stephany P Monsanto
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Ryan M Marks
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | | | - Kaitlin Vanderbeck
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Center, Kingston, ON, Canada
| | - Timothy Childs
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Center, Kingston, ON, Canada
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Department of Obstetrics and Gynecology, Kingston Health Sciences Center, Kingston, ON, Canada.,Division of Cancer Biology and Genetics, Queen's University, Kingston, ON, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
44
|
Silvestre-Roig C, Fridlender ZG, Glogauer M, Scapini P. Neutrophil Diversity in Health and Disease. Trends Immunol 2019; 40:565-583. [PMID: 31160207 PMCID: PMC7185435 DOI: 10.1016/j.it.2019.04.012] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022]
Abstract
New evidence has challenged the outdated dogma that neutrophils are a homogeneous population of short-lived cells. Although neutrophil subpopulations with distinct functions have been reported under homeostatic and pathological conditions, a full understanding of neutrophil heterogeneity and plasticity is currently lacking. We review here current knowledge of neutrophil heterogeneity and diversity, highlighting the need for deep genomic, phenotypic, and functional profiling of the identified neutrophil subpopulations to determine whether these cells truly represent bona fide novel neutrophil subsets. We suggest that progress in understanding neutrophil heterogeneity will allow the identification of clinically relevant neutrophil subpopulations that may be used in the diagnosis of specific diseases and lead to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Carlos Silvestre-Roig
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Zvi G Fridlender
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, and Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Patrizia Scapini
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy.
| |
Collapse
|
45
|
Yang W, Shi J, Zhou Y, Liu T, Zhan F, Zhang K, Liu N. Integrating proteomics and transcriptomics for the identification of potential targets in early colorectal cancer. Int J Oncol 2019; 55:439-450. [PMID: 31268166 PMCID: PMC6615923 DOI: 10.3892/ijo.2019.4833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/20/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. At present, CRC can often be treated upon diagnosis at stage I or II, or when dysplasia is detected; however, 60-70% of cases are not diagnosed until they have developed into late stages of the disease or until the malignancy is identified. Diagnosis of CRC at an early stage remains a challenge due to the absence of early-stage-specific biomarkers. To identify potential targets of early stage CRC, label-free proteomics analysis was applied to paired tumor-benign tissue samples from patients with stage II CRC (n=21). A total of 2,968 proteins were identified; corresponding RNA-Sequencing data were retrieved from The Cancer Genome Atlas-colon adenocarcinoma. Numerous bioinformatics methods, including differential expression analysis, weighted correlation network analysis, Gene Ontology and protein-protein interaction analyses, were applied to the proteomics and transcriptomics data. A total of 111 key proteins, which appeared as both differentially expressed proteins and mRNAs in the hub module, were identified as key candidates. Among these, three potential targets [protein-arginine deiminase type-2 (PADI2), Fc fragment of IgG binding protein (FCGBP) and phosphoserine aminotransferase 1] were identified from the pathological data. Furthermore, the survival analysis indicated that PADI2 and FCGBP were associated with the prognosis of CRC. The findings of the present study suggested potential targets for the identification of early stage CRC, and may improve understanding of the mechanism underlying the occurrence of CRC.
Collapse
Affiliation(s)
- Wang Yang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jian Shi
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yan Zhou
- Department of Gastrointestinal Surgery, The Second Hospital of Shandong University, Shandong 250000, P.R. China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Fangling Zhan
- Central Laboratory, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Ning Liu
- Central Laboratory, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
46
|
Kather JN, Halama N. Harnessing the innate immune system and local immunological microenvironment to treat colorectal cancer. Br J Cancer 2019; 120:871-882. [PMID: 30936499 PMCID: PMC6734657 DOI: 10.1038/s41416-019-0441-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/20/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Significant progress in the development of new immunotherapies has led to successful clinical trials for malignant melanoma and non-small cell lung cancer; however, for the majority of solid tumours of the gastrointestinal tract, little or no progress has been seen. The efficacy of immunotherapies is limited by the complexities of a diverse set of immune cells, and interactions between the tumour cells and all other cells in the local microenvironment of solid tumours. A large fraction of immune cells present in and around solid tumours derive from the innate arm of the immune system and using these cells against tumours offers an alternative immunotherapeutic option, especially as current strategies largely harness the adaptive arm of the immune system. This option is currently being investigated and attempts at using the innate immune system for gastrointestinal cancers are showing initial results. Several important factors, including cytokines, chemotherapeutics and the microbiome, influence the plasticity and functionality of innate (myeloid) cells in the microenvironment, and this complexity of regulation has limited translation into successful trials so far. In this review, current concepts of the immunobiology of the innate arm in the tumour microenvironment are presented in the context of clinical translation.
Collapse
Affiliation(s)
- Jakob Nikolas Kather
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,German Translational Cancer Consortium (DKTK), Heidelberg, Germany.,Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Niels Halama
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany. .,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany. .,Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Helmholtz Institute for Translational Oncology (HI-TRON), Mainz, Germany.
| |
Collapse
|
47
|
Mao Y, Feng Q, Zheng P, Yang L, Liu T, Xu Y, Zhu D, Chang W, Ji M, Ren L, Wei Y, He G, Xu J. Low tumor purity is associated with poor prognosis, heavy mutation burden, and intense immune phenotype in colon cancer. Cancer Manag Res 2018; 10:3569-3577. [PMID: 30271205 PMCID: PMC6149864 DOI: 10.2147/cmar.s171855] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Purpose Tumor purity is defined as the proportion of cancer cells in the tumor tissue. The impact of tumor purity on colon cancer (CC) prognosis, genetic profile, and microenvironment has not been thoroughly accessed. Materials and methods Clinical and transcriptomic data from three public datasets, GSE17536/17537, GSE39582, and TCGA, were retrospectively collected (n=1,248). Tumor purity of each sample was inferred by a computational method based on transcriptomic data. Survival-related analyses were performed on microarray dataset containing GSE17536/17537 and GSE39582 (n=794), whereas TCGA dataset was utilized for subsequent genomic analysis (n=454). Results Right-sided CC patients showed a significantly lower tumor purity. Low purity CC conferred worse survival, and tumor purity was identified as an independent prognostic factor. Moreover, high tumor purity CC patients benefited more from adjuvant chemotherapy. Subsequent genomic analysis found that the mutation burden was negatively associated with tumor purity, with only APC and KRAS significantly more mutated in high purity CC. However, no somatic copy number alteration event was correlated with tumor purity. Furthermore, immune-related pathways and immunotherapy-associated markers (programmed cell death protein 1 [PD-1], programmed death-ligand 1 [PD-L1], cytotoxic T-lymphocyte-associated protein 4 [CTLA-4], Lymphocyte-activation gene 3 [LAG-3] and T-cell immunoglobulin and mucin-domain containing-3 [TIM-3]) were highly enriched in low purity samples. Notably, the relative proportion of M2 macrophages and neutrophils, which indicated worse survival in CC, was negatively associated with tumor purity. Conclusion Tumor purity exhibited potential value for CC prognostic stratification as well as adjuvant chemotherapy benefit prediction. The relative worse survival in low purity CC may attribute to higher mutation frequency in key pathways and purity-related microenvironmental changing.
Collapse
Affiliation(s)
- Yihao Mao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China, ,
| | - Qingyang Feng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China, , .,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai 200030, China, ,
| | - Peng Zheng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China, ,
| | - Liangliang Yang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China, ,
| | - Tianyu Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China, ,
| | - Yuqiu Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China, ,
| | - Dexiang Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China, , .,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai 200030, China, ,
| | - Wenju Chang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China, , .,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai 200030, China, ,
| | - Meiling Ji
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China, , .,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai 200030, China, ,
| | - Li Ren
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China, , .,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai 200030, China, ,
| | - Ye Wei
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China, , .,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai 200030, China, ,
| | - Guodong He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China, , .,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai 200030, China, ,
| | - Jianmin Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China, , .,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai 200030, China, ,
| |
Collapse
|
48
|
Smith CK, Trinchieri G. The interplay between neutrophils and microbiota in cancer. J Leukoc Biol 2018; 104:701-715. [PMID: 30044897 DOI: 10.1002/jlb.4ri0418-151r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
The role of the microbiota in many diseases including cancer has gained increasing attention. Paired with this is our expanding appreciation for the heterogeneity of the neutrophil compartment regarding surface marker expression and functionality. In this review, we will discuss the influence of the microbiota on granulopoiesis and consequent activity of neutrophils in cancer. As evidence for this microbiota-neutrophil-cancer axis builds, it exposes new therapeutic targets to improve a cancer patient's outcome.
Collapse
Affiliation(s)
- Carolyne K Smith
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|