1
|
Mahady LJ, Perez SE, Emerich DF, Wahlberg LU, Mufson EJ. Cholinergic profiles in the Goettingen miniature pig (Sus scrofa domesticus) brain. J Comp Neurol 2016; 525:553-573. [PMID: 27490949 DOI: 10.1002/cne.24087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 11/10/2022]
Abstract
Central cholinergic structures within the brain of the even-toed hoofed Goettingen miniature domestic pig (Sus scrofa domesticus) were evaluated by immunohistochemical visualization of choline acetyltransferase (ChAT) and the low-affinity neurotrophin receptor, p75NTR . ChAT-immunoreactive (-ir) perikarya were seen in the olfactory tubercle, striatum, medial septal nucleus, vertical and horizontal limbs of the diagonal band of Broca, and the nucleus basalis of Meynert, medial habenular nucleus, zona incerta, neurosecretory arcuate nucleus, cranial motor nuclei III and IV, Edinger-Westphal nucleus, parabigeminal nucleus, pedunculopontine nucleus, and laterodorsal tegmental nucleus. Cholinergic ChAT-ir neurons were also found within transitional cortical areas (insular, cingulate, and piriform cortices) and hippocampus proper. ChAT-ir fibers were seen throughout the dentate gyrus and hippocampus, in the mediodorsal, laterodorsal, anteroventral, and parateanial thalamic nuclei, the fasciculus retroflexus of Meynert, basolateral and basomedial amygdaloid nuclei, anterior pretectal and interpeduncular nuclei, as well as select laminae of the superior colliculus. Double immunofluorescence demonstrated that virtually all ChAT-ir basal forebrain neurons were also p75NTR -positive. The present findings indicate that the central cholinergic system in the miniature pig is similar to other mammalian species. Therefore, the miniature pig may be an appropriate animal model for preclinical studies of neurodegenerative diseases where the cholinergic system is compromised. J. Comp. Neurol. 525:553-573, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura J Mahady
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona.,Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, Arizona
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| | | | | | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| |
Collapse
|
2
|
Physiological role for amyloid precursor protein in adult experience-dependent plasticity. Proc Natl Acad Sci U S A 2016; 113:7912-7. [PMID: 27354516 DOI: 10.1073/pnas.1604299113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Changes in neural circuits after experience-dependent plasticity are brought about by the formation of new circuits via axonal growth and pruning. Here, using a combination of electrophysiology, adeno-associated virus-delivered fluorescent proteins, analysis of mutant mice, and two-photon microscopy, we follow long-range horizontally projecting axons in primary somatosensory cortex before and after selective whisker plucking. Whisker plucking induces axonal growth and pruning of horizontal projecting axons from neurons located in the surrounding intact whisker representations. We report that amyloid precursor protein is crucial for axonal pruning and contributes in a cell autonomous way.
Collapse
|
3
|
Orczyk JJ, Sethia R, Doster D, Garraghty PE. Transcriptome response to infraorbital nerve transection in the gonadally intact male rat barrel cortex: RNA-seq. J Comp Neurol 2016; 524:152-9. [PMID: 26109564 DOI: 10.1002/cne.23831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 11/11/2022]
Abstract
The effects of infraorbital nerve (ION) transection on gene expression in the adult male rat barrel cortex were investigated using RNA sequencing. After a 24-hour survival duration, 98 genes were differentially regulated by ION transection. Differentially expressed genes suggest changes in neuronal activity, excitability, and morphology. The production of mRNA for neurotrophins, including brain-derived neurotrophin factor (BNDF), was decreased following ION transection. Several potassium channels showed decreased mRNA production, whereas a sodium channel (Na(V)β4) associated with burst firing showed increased mRNA production. The results may have important implications for phantom-limb pain and complex regional pain syndrome. Future experiments should determine the extent to which changes in RNA result in changes in protein expression, in addition to utilizing laser capture microdissection techniques to differentiate between neuronal and glial cells.
Collapse
Affiliation(s)
- John J Orczyk
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, 47045
| | - Rishabh Sethia
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, 47045
| | - Dominique Doster
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, 47045
| | - Preston E Garraghty
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, 47045.,Program in Neuroscience, Indiana University, Bloomington, Indiana, 47045
| |
Collapse
|
4
|
Sammons RP, Keck T. Adult plasticity and cortical reorganization after peripheral lesions. Curr Opin Neurobiol 2015; 35:136-41. [PMID: 26313527 DOI: 10.1016/j.conb.2015.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/29/2015] [Accepted: 08/04/2015] [Indexed: 11/26/2022]
Abstract
Following loss of input due to peripheral lesions, functional reorganization occurs in the deprived cortical region in adults. Over a period of hours to months, cells in the lesion projection zone (LPZ) begin to respond to novel stimuli. This reorganization is mediated by two processes: a reduction of inhibition in a gradient throughout the cortex and input remapping via sprouting of axonal arbors from cortical regions spatially adjacent to the LPZ, and strengthening of pre-existing subthreshold inputs. Together these inputs facilitate receptive field remapping of cells in the LPZ. Recent experiments have revealed time courses and potential interactions of the mechanisms associated with functional reorganization, suggesting that large scale reorganization in the adult may utilize plasticity mechanisms prominent during development.
Collapse
Affiliation(s)
- Rosanna P Sammons
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK; MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | - Tara Keck
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
5
|
Abstract
Sensory experience alters cortical circuitry by parallel processes of axon outgrowth and pruning, but the mechanisms that control these rearrangements are poorly understood. Using in vivo 2-photon longitudinal imaging, we found a marked reduction in axonal pruning in somatosensory cortex of mice with a knock-out of the DR6 gene, which codes for Death Receptor 6. This effect was seen for both long-range horizontal excitatory connections and for the axons of inhibitory neurons. These results identify a new pathway governing axonal plasticity associated with experience-dependent changes in cortical maps.
Collapse
|
6
|
Vierci G, Oliveira CSD, Perera LR, Bornia N, Leal RB, Rossi FM. Creb is modulated in the mouse superior colliculus in developmental and experimentally-induced models of plasticity. Int J Dev Neurosci 2012; 31:46-52. [PMID: 23085336 DOI: 10.1016/j.ijdevneu.2012.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/28/2012] [Accepted: 10/07/2012] [Indexed: 12/20/2022] Open
Abstract
In the central nervous system long-term plastic processes need the activation of specific gene expression programs and the synthesis of new protein in order to occur. A transcription factor fundamental for several plasticity mechanisms in various CNS areas is the cAMP response element-binding protein, CREB. This factor is activated through phosphorylation at its Serine 133 residue by multiple signaling pathways. Little is known about CREB role in the superior colliculus, a midbrain area considered an experimentally useful model for the study of neuronal plasticity processes. In the present work we studied by Western blot analysis the modulation of CREB expression and activation in the mouse superior colliculus in three models of neuronal plasticity: (1) developmental plasticity; (2) lesion-induced plasticity; (3) and fluoxetine-induced restored plasticity. We used an antibody that detects endogenous level of the total CREB protein (anti-TCREB) to identify possible modulations at CREB expression level, and a second antibody (anti-PCREB) that detects endogenous level of CREB only when it is phosphorylated at Ser133, to identify modifications of CREB activation state. The results showed that: (1) the expression and activation of CREB increase during the development of the superior colliculus in temporal correlation with the plastic process of refinement of retino-collicular projections; (2) the activation of CREB is induced by a monocular lesion performed during the critical period for plasticity in young animals but not when performed in less plastic juvenile mice; (3) the expression and activation of CREB increase in adult animals treated with fluoxetine, known to restore high levels of plasticity in adult animals. These results suggest that CREB transcription factor plays a fundamental role in plasticity processes also at the level of the mouse superior colliculus.
Collapse
Affiliation(s)
- Gabriela Vierci
- Laboratorio de Neurociencias Neuroplasticity Unit, Facultad de Ciencias, UdelaR, Iguá 4225, esq. Mataojo, 11400 Montevideo, Uruguay.
| | | | | | | | | | | |
Collapse
|
7
|
Botelho EP, Ceriatte C, Soares JGM, Gattass R, Fiorani M. Quantification of early stages of cortical reorganization of the topographic map of V1 following retinal lesions in monkeys. Cereb Cortex 2012; 24:1-16. [PMID: 23010747 PMCID: PMC3862261 DOI: 10.1093/cercor/bhs208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We quantified the capacity for reorganization of the topographic representation of area V1 in adult monkeys. Bias-free automated mapping methods were used to delineate receptive fields (RFs) of an array of neuronal clusters prior to, and up to 6 h following retinal lesions. Monocular lesions caused a significant reorganization of the topographic map in this area, both inside and outside the cortical lesion projection zone (LPZ). Small flashed stimuli revealed responses up to 0.85 mm inside the boundaries of the LPZ, with RFs representing regions of undamaged retina immediately surrounding the lesion. In contrast, long moving bars that spanned the scotoma resulting from the lesion revealed responsive units up to 1.87 mm inside the LPZ, with RFs representing interpolated responses in this region. This reorganization is present immediately after monocular retinal lesioning. Both stimuli showed a similar and significant (5-fold) increase of the RF scatter in the LPZ, 0.56 mm (median), compared with the undamaged retina, 0.12 mm. Our results reveal an array of preexisting subthreshold functional connections of up to 2 mm in V1, which can be rapidly mobilized independently from the differential qualitative reorganization elicited by each stimulus.
Collapse
Affiliation(s)
- Eliã P Botelho
- Programa de Neurobiologia, Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ 21941-900, Brazil
| | | | | | | | | |
Collapse
|
8
|
Recovery from Retinal Lesions: Molecular Plasticity Mechanisms in Visual Cortex Far beyond the Deprived Zone. Cereb Cortex 2011; 21:2883-92. [DOI: 10.1093/cercor/bhr079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
9
|
Abstract
Recognition of objects is accomplished through the use of cues that depend on internal representations of familiar shapes. We used a paradigm of perceptual learning during visual search to explore what features human observers use to identify objects. Human subjects were trained to search for a target object embedded in an array of distractors, until their performance improved from near-chance levels to over 80% of trials in an object-specific manner. We determined the role of specific object components in the recognition of the object as a whole by measuring the transfer of learning from the trained object to other objects sharing components with it. Depending on the geometric relationship of the trained object with untrained objects, transfer to untrained objects was observed. Novel objects that shared a component with the trained object were identified at much higher levels than those that did not, and this could be used as an indicator of which features of the object were important for recognition. Training on an object also transferred to the components of the object when these components were embedded in an array of distractors of similar complexity. These results suggest that objects are not represented in a holistic manner during learning but that their individual components are encoded. Transfer between objects was not complete and occurred for more than one component, regardless of how well they distinguish the object from distractors. This suggests that a joint involvement of multiple components was necessary for full performance.
Collapse
|
10
|
Chen J, Yamahachi H, Gilbert CD. Experience-dependent gene expression in adult visual cortex. Cereb Cortex 2009; 20:650-60. [PMID: 19571270 DOI: 10.1093/cercor/bhp131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Experience-dependent plasticity of the adult visual cortex underlies perceptual learning and recovery of function following central nervous system lesions. To reveal the signal transduction cascades involved in adult cortical plasticity, we utilized a model of remapping of cortical topography following binocular retinal lesions. In this model, the lesion projection zone (LPZ) of primary visual cortex (V1) recovers visually driven activity by the sprouting of horizontal axonal connections originating from the cells in the surrounding region. To explore the molecular mechanism underlying this process, we used gene microarrays from an expression library prepared from Macaque V1. By microarray analysis of gene expression levels in the LPZ and the surrounding region, and subsequent confirmation with Quantitative Real-Time polymerase chain reaction and in situ hybridization, the participation of a number of genes was observed, including the Rho GTPase family. Its role in regulation of cytoskeleton assembly provides a possible link between the alteration of neural activity and cortical functional reorganization.
Collapse
Affiliation(s)
- Jiabin Chen
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
11
|
Hu TT, Laeremans A, Eysel UT, Cnops L, Arckens L. Analysis of c-fos and zif268 expression reveals time-dependent changes in activity inside and outside the lesion projection zone in adult cat area 17 after retinal lesions. Cereb Cortex 2009; 19:2982-92. [PMID: 19386633 DOI: 10.1093/cercor/bhp069] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Retinal lesions induce a topographic reorganization in the corresponding lesion projection zone (LPZ) in the visual cortex of adult cats. To gain a better insight into the reactivation dynamics, we investigated the alterations in cortical activity throughout area 17. We implemented in situ hybridization and real-time polymerase chain reaction to analyze the spatiotemporal expression patterns of the activity marker genes zif268 and c-fos. The immediate early gene (IEG) data confirmed a strong and permanent activity decrease in the center of the LPZ as previously described by electrophysiology. A recovery of IEG expression was clearly measured in the border of the LPZ. We were able to register reorganization over 2.5-6 mm. We also present evidence that the central retinal lesions concomitantly influence the activity in far peripheral parts of area 17. Its IEG expression levels appeared dependent of time and distance from the LPZ. We therefore propose that coupled changes in activity occur inside and outside the LPZ. In conclusion, alterations in activity reporter gene expression throughout area 17 contribute to the lesion-induced functional reorganization.
Collapse
Affiliation(s)
- Tjing-Tjing Hu
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
12
|
Tropea D, Van Wart A, Sur M. Molecular mechanisms of experience-dependent plasticity in visual cortex. Philos Trans R Soc Lond B Biol Sci 2009; 364:341-55. [PMID: 18977729 PMCID: PMC2674480 DOI: 10.1098/rstb.2008.0269] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A remarkable amount of our current knowledge of mechanisms underlying experience-dependent plasticity during cortical development comes from study of the mammalian visual cortex. Recent advances in high-resolution cellular imaging, combined with genetic manipulations in mice, novel fluorescent recombinant probes, and large-scale screens of gene expression, have revealed multiple molecular mechanisms that underlie structural and functional plasticity in visual cortex. We situate these mechanisms in the context of a new conceptual framework of feed-forward and feedback regulation for understanding how neurons of the visual cortex reorganize their connections in response to changes in sensory inputs. Such conceptual advances have important implications for understanding not only normal development but also pathological conditions that afflict the central nervous system.
Collapse
Affiliation(s)
- Daniela Tropea
- Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
13
|
Keck T, Mrsic-Flogel TD, Vaz Afonso M, Eysel UT, Bonhoeffer T, Hübener M. Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nat Neurosci 2008; 11:1162-7. [DOI: 10.1038/nn.2181] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 07/02/2008] [Indexed: 11/09/2022]
|
14
|
Cnops L, Hu TT, Eysel UT, Arckens L. Effect of binocular retinal lesions on CRMP2 and CRMP4 but not Dyn I and Syt I expression in adult cat area 17. Eur J Neurosci 2007; 25:1395-401. [PMID: 17425566 DOI: 10.1111/j.1460-9568.2007.05395.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Removal of retinal input from a restricted region of adult cat visual cortex leads to a substantial reorganization of the retinotopy within the sensory-deprived cortical lesion projection zone (LPZ). Still little is known about the molecular mechanisms underlying this cortical map reorganization. We chose two members of the collapsin response mediator protein (CRMP) family, CRMP2 and CRMP4, because of their involvement in neurite growth, and compared gene and protein expression levels between normal control and reorganizing visual cortex upon induction of central retinal lesions. Parallel analysis of Dynamin I (Dyn I) and Synaptotagmin I (Syt I), two molecules implicated in the exocytosis-endocytosis cycle, was performed because changes in neurotransmitter release have been implicated in cortical plasticity. Western blotting and real-time polymerase chain reaction revealed a clear time-dependent effect of retinal lesioning on CRMP2 and CRMP4 expression, with maximal impact 2 weeks post-lesion. Altered CRMP levels were not a direct consequence of decreased visual activity in the LPZ as complete surgical removal of retinal input to one hemisphere had no effect on CRMP2 or CRMP4 expression. Thus, CRMP expression is correlated to cortical reorganization following partial deafferentation of adult visual cortex. In contrast, Dyn I and Syt I were not influenced and thereby do not promote exocytosis-endocytosis cycle modifications in adult cat cortical plasticity.
Collapse
Affiliation(s)
- Lieselotte Cnops
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
15
|
Lalonde J, Chaudhuri A. Dynamic changes in CREB phosphorylation and neuroadaptive gene expression in area V1 of adult monkeys after monocular enucleation. Mol Cell Neurosci 2007; 35:24-37. [PMID: 17336089 DOI: 10.1016/j.mcn.2007.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2006] [Revised: 01/24/2007] [Accepted: 01/26/2007] [Indexed: 01/07/2023] Open
Abstract
Our understanding of the molecular events that emerge after change in sensory input remains elusive, especially with regard to mature area V1. Here, we characterized P-CREB expression in area V1 of monkeys at multiple time-points after monocular enucleation (ME) to assess the possible contribution of CREB in visually deprived neocortex. Immunoblot assays and immunostainings showed that P-CREB is dynamically regulated in adult area V1, reaching a peak level between 5 and 30 days after ME, and becoming reduced at the 90-day post-ME time-point. This striking temporal increase in P-CREB level was paralleled by a concomitant increase of two CREB-regulated pro-survival effectors, namely Bcl-2 and Bcl-w. We present our results in the context of recent advances about adult visual neocortex and propose that ME induces a multifaceted CREB-mediated response that favors intrinsic stability of neurons and facilitates mature cortical networks to reorganize over a prolonged period.
Collapse
Affiliation(s)
- Jasmin Lalonde
- Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montréal, Québec, Canada H3A 1B1.
| | | |
Collapse
|
16
|
Dynamics and specificity of cortical map reorganization after retinal lesions. Proc Natl Acad Sci U S A 2006; 103:10805-10. [PMID: 16818873 DOI: 10.1073/pnas.0604539103] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons in the mature visual cortex deprived of their normal retinotopic inputs by matched binocular retinal lesions are initially silenced but become reactivated with time when the "blind" cortical lesion projection zone (LPZ) is filled in by new suprathreshold visual responses. In an attempt to gain further insight into the dynamics of this process, we investigated in detail the spatiotemporal pattern of single-cell properties and recording probability during cortical reorganization up to 12 months after retinal lesions. In the early phases of filling in, a transient peak of hyperactivity moves from the border of the normal cortex into the LPZ and forms the leading edge of a functional reconnection process. In the course of this process hyperactive cells inside the LPZ develop ectopic receptive fields that are initially enlarged and regain orientation specificity. During the proceeding recovery, hyperactivity and receptive field size normalize, while the quality of orientation tuning remains reduced at longer distances inside the LPZ at all stages of recovery up to 1 year. Within the adult anatomical framework of cortical connectivity, the maximal lateral distance of reconnection is limited, and the probability to encounter spiking cells decreases with increasing distance inside the LPZ. However, this recording probability was significantly increased after 1 year.
Collapse
|
17
|
Tropea D, Kreiman G, Lyckman A, Mukherjee S, Yu H, Horng S, Sur M. Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex. Nat Neurosci 2006; 9:660-8. [PMID: 16633343 DOI: 10.1038/nn1689] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 03/28/2006] [Indexed: 12/31/2022]
Abstract
Two key models for examining activity-dependent development of primary visual cortex (V1) involve either reduction of activity in both eyes via dark-rearing (DR) or imbalance of activity between the two eyes via monocular deprivation (MD). Combining DNA microarray analysis with computational approaches, RT-PCR, immunohistochemistry and physiological imaging, we find that DR leads to (i) upregulation of genes subserving synaptic transmission and electrical activity, consistent with a coordinated response of cortical neurons to reduction of visual drive, and (ii) downregulation of parvalbumin expression, implicating parvalbumin-expressing interneurons as underlying the delay in cortical maturation after DR. MD partially activates homeostatic mechanisms but differentially upregulates molecular pathways related to growth factors and neuronal degeneration, consistent with reorganization of connections after MD. Expression of a binding protein of insulin-like growth factor-1 (IGF1) is highly upregulated after MD, and exogenous application of IGF1 prevents the physiological effects of MD on ocular dominance plasticity examined in vivo.
Collapse
Affiliation(s)
- Daniela Tropea
- Department of Brain and Cognitive Sciences and Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Gonzalez D, Satriotomo I, Miki T, Lee KY, Yokoyama T, Touge T, Matsumoto Y, Li HP, Kuriyama S, Takeuchi Y. Changes of parvalbumin immunoreactive neurons and GFAP immunoreactive astrocytes in the rat lateral geniculate nucleus following monocular enucleation. Neurosci Lett 2006; 395:149-54. [PMID: 16309831 DOI: 10.1016/j.neulet.2005.10.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 10/21/2005] [Accepted: 10/26/2005] [Indexed: 11/16/2022]
Abstract
The expression of calcium binding proteins (CaBPs) has been linked to protection of neurons. The present study investigated the effects of monocular enucleation on the distribution of parvalbumin immunoreactive (PV-IR) neurons and glial fibrillary acidic protein immunoreactive (GFAP-IR) astrocytes in both the dorsal (dLGN) and ventral (vLGN) regions of the lateral geniculate nucleus (LGN). Our results demonstrated an increase in PV-IR neuronal density on the contralateral vLGN at 1-week post-enucleation (PE), which was maintained without significant change for 12 weeks. By contrast, PV-IR neurons in dLGN decreased significantly at all time point examined. The number of GFAP-IR astrocytes showed an initial increase from 1 to 4 weeks PE and then gradually decreased until 48 weeks in both regions of the LGN with contralateral side predominance. The present results suggest that monocular enucleation results in variable expression of PV-IR neurons and GFAP-IR astrocytes in the LGN complex, which may play an important role in neuronal degeneration and neuroplasticity of the rat visual system.
Collapse
Affiliation(s)
- Daniel Gonzalez
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kagawa 761-0793, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Calford MB, Chino YM, Das A, Eysel UT, Gilbert CD, Heinen SJ, Kaas JH, Ullman S. Neuroscience: rewiring the adult brain. Nature 2005; 438:E3; discussion E3-4. [PMID: 16280984 DOI: 10.1038/nature04359] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Any analysis of plastic reorganization at a neuronal locus needs a veridical measure of changes in the functional output--that is, spiking responses of the neurons in question. In a study of the effect of retinal lesions on adult primary visual cortex (V1), Smirnakis et al. propose that there is no cortical reorganization. Their results are based, however, on BOLD (blood-oxygen-level-dependent) fMRI (functional magnetic resonance imaging), which provides an unreliable gauge of spiking activity. We therefore question their criterion for lack of plasticity, particularly in the light of the large body of earlier work that demonstrates cortical plasticity.
Collapse
Affiliation(s)
- Michael B Calford
- School of Biomedical Sciences, The University of Newcastle, New South Wales 2308, Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Soares JGM, Pereira ACCN, Botelho EP, Pereira SS, Fiorani M, Gattass R. Differential expression of Zif268 and c-Fos in the primary visual cortex and lateral geniculate nucleus of normal Cebus monkeys and after monocular lesions. J Comp Neurol 2005; 482:166-75. [PMID: 15611990 DOI: 10.1002/cne.20361] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The transcription factors c-Fos and Zif268 have been used as markers of neuronal activity, and they also have been implicated in neuronal plasticity. In this study, we investigated the expression of c-Fos and Zif268 proteins in the lateral geniculate nucleus (LGN) and in the cortical primary visual area (V1) of normal adult Cebus apella monkeys and in animals with monocular lesions. In the LGN, the reaction for c-Fos showed immunopositive cells in both magnocellular (M) and parvocellular (P) layers; however, the label was heavier in P layers. In animals that suffered monocular lesions, the immunocytochemistry for c-Fos showed more labeling in layers related to the normal eye compared with those of the lesioned eye. No specific label was observed after the reaction for Zif268 in the LGN. In V1, the reaction for both Zif268 and c-Fos showed a pattern of lamination in which heavier labeling was found in layers 2/3, 4A, 4C, and 6. After monocular lesions, we observed a clear pattern of ocular dominance columns in V1 for both c-Fos and Zif268, in which the columns related to the normal eye are more heavily labeled than those related to the lesioned eye. This pattern is more evident in layer 4C after c-Fos reaction, whereas, after Zif268, it is more clearly observed in layers 2/3. These results suggest that, in addition to be regulated by functional activity, these transcription factors are involved in different processes during cortical reorganization.
Collapse
Affiliation(s)
- Juliana G M Soares
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco G, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Age-related macular degeneration (AMD), affecting the retina, afflicts one out of ten people aged 80 years or older in the United States. AMD often results in vision loss to the central 15-20 deg of the visual field (i.e. central scotoma), and frequently afflicts both eyes. In most cases, when the central scotoma includes the fovea, patients will adopt an eccentric preferred retinal locus (PRL) for fixation. The onset of a central scotoma results in the absence of retinal inputs to corresponding regions of retinotopically mapped visual cortex. Animal studies have shown evidence for reorganization in adult mammals for such cortical areas following experimentally induced central scotomata. However, it is still unknown whether reorganization occurs in primary visual cortex (V1) of AMD patients. Nor is it known whether the adoption of a PRL corresponds to changes to the retinotopic mapping of V1. Two recent advances hold out the promise for addressing these issues and for contributing to the rehabilitation of AMD patients: improved methods for assessing visual function across the fields of AMD patients using the scanning laser ophthalmoscope, and the advent of brain-imaging methods for studying retinotopic mapping in humans. For the most part, specialists in these two areas come from different disciplines and communities, with few opportunities to interact. The purpose of this review is to summarize key findings on both the clinical and neuroscience issues related to questions about visual adaptation in AMD patients.
Collapse
Affiliation(s)
- Sing-Hang Cheung
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
22
|
Abstract
Normal visual development requires: 1) environmental factors (i.e. sensory experience) and 2) molecular programs that are genetically determined. Experience determines the development and preservation of visual cortical circuitry in accordance with Hebb's principle. The molecular and genetic mechanisms that regulate visual plasticity are less known. Visual experience induces postnatal neural activity that triggers a cascade of molecular processes including release of neurotrophic factors from target neurons and genetic expression of protein synthesis, transcription factors and neurotransmitters. The continuous sensory experience induces activity-dependent tuning of synaptic connections. The present knowledge permits some manipulation of plasticity and the induction of functional changes beneficial for vision. Three areas of intervention will be discussed: 1) enhancement of visual experience for children with ocular disorders, 2) re-organization of visual cortical maps, 3) retinal and cortical implants (prostheses) and transplants.
Collapse
|
23
|
Irvine DRF, Wright BA. Plasticity of Spectral Processing. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 70:435-72. [PMID: 16472642 DOI: 10.1016/s0074-7742(05)70013-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dexter R F Irvine
- Department of Psychology, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Victoria 3800, Australia
| | | |
Collapse
|
24
|
Leysen I, Van der Gucht E, Eysel UT, Huybrechts R, Vandesande F, Arckens L. Time-dependent changes in the expression of the MEF2 transcription factor family during topographic map reorganization in mammalian visual cortex. Eur J Neurosci 2004; 20:769-80. [PMID: 15255987 DOI: 10.1111/j.1460-9568.2004.03535.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Removal of retinal input from a restricted region of adult mammalian visual cortex leads to a substantial reorganization of the retinotopy within the lesion projection zone (LPZ) of primary visual cortex (area 17). Little is known about the molecular mechanisms underlying such cortical plasticity. We investigated whether small but homonymous central retinal lesions induced differences in gene expression patterns between central area 17, the LPZ, vs. peripheral area 17 of the adult cat. Systematic differential mRNA display screening revealed higher levels for the mRNA encoding the transcription factor MEF2A in the LPZ. Semi-quantitative PCR confirmed this dependency of mef2A mRNA expression on visual eccentricity in area 17 of animals with retinal lesions in contrast to normal animals. Western blotting experiments extended these data to the protein level and to two other members of the MEF2 transcription factor family, i.e. MEF2C and MEF2D. Quantitative analysis of the Western blotting experiments further revealed a post-lesion survival time-dependent change in expression for all three MEF2 family members. The lesion effect was maximal at 3 days and 1 month post-lesion, but only minor at 2 weeks post-lesion. Interestingly, complete removal of retinal input from area 17 by surgery did not significantly alter the expression of the MEF2 transcription factors, excluding a definite correlation between neuronal activity and MEF2A expression levels. MEF2A immunocytochemistry confirmed both qualitatively and quantitatively the Western blotting observations in all animal models. Together, our findings identified a brain plasticity-related expression pattern for the MEF2 transcription factor family in adult mammalian neocortex.
Collapse
Affiliation(s)
- Inge Leysen
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsesstraat 59, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
25
|
Arckens L, Van der Gucht E, Van den Bergh G, Massie A, Leysen I, Vandenbussche E, Eysel UT, Huybrechts R, Vandesande F. Differential display implicates cyclophilin A in adult cortical plasticity. Eur J Neurosci 2003; 18:61-75. [PMID: 12859338 DOI: 10.1046/j.1460-9568.2003.02726.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Removal of retinal input from a restricted region of adult cat visual cortex leads to a substantial reorganization of the retinotopy within the sensory-deprived cortical zone. Little is known about the molecular mechanisms underlying this reorganization. We used differential mRNA display (DDRT-PCR) to compare gene expression patterns between normal control and reorganizing visual cortex (area 17-18), 3 days after induction of central retinal lesions. Systematic screening revealed a decrease in the mRNA encoding cyclophilin A in lesion-affected cortex. In situ hybridization and competitive PCR confirmed the decreased cyclophilin A mRNA levels in reorganizing cortex and extended this finding to longer postlesion survival times as well. Western blotting and immunocytochemistry extended these data to the protein level. In situ hybridization and immunocytochemistry further demonstrated that cyclophilin A mRNA and protein are present in neurons. To exclude the possibility that differences in neuronal activity per se can induce alterations in cyclophilin A mRNA and protein expression, we analyzed cyclophilin A expression in the dorsal lateral geniculate nucleus (dLGN) of retinally lesioned cats and in area 17 and the dLGN of isolated hemisphere cats. In these control experiments cyclophilin A mRNA and protein were distributed as in normal control subjects indicating that the decreased cyclophilin A levels, as observed in sensory-deprived area 17 of retinal lesion cats, are not merely a reflection of changes in neuronal activity. Instead our findings identify cyclophilin A, classically considered a housekeeping gene, as a gene with a brain plasticity-related expression in the central nervous system.
Collapse
Affiliation(s)
- Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Massie A, Cnops L, Smolders I, Van Damme K, Vandenbussche E, Vandesande F, Eysel UT, Arckens L. Extracellular GABA concentrations in area 17 of cat visual cortex during topographic map reorganization following binocular central retinal lesioning. Brain Res 2003; 976:100-8. [PMID: 12763627 DOI: 10.1016/s0006-8993(03)02717-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system of mammals, plays an important role in cortical reorganization following sensory deprivation, by regulating the level of cortical inhibition and gating changes in receptive field size and synaptic efficacy. In cats it has been shown that 2 weeks after the induction of binocular retinal lesions, GABAergic inhibition, as determined by immunocytochemistry, is decreased in the deafferented region of area 17, whereas 3 months post-lesion, normal GABAergic control is restored within the cortical scotoma. In this study we used in vivo microdialysis to investigate the extracellular GABA concentrations 1-2 months post-lesion, in the sensory-deprived and remote, non-deprived region of area 17. Data were collected at those sample times and sites for which the extracellular glutamate concentrations had been determined in a previous investigation to elucidate the role of this excitatory neurotransmitter in cortical reorganization. As for glutamate, we observed significantly increased extracellular GABA concentrations in non-deprived area 17, whereas in deafferented area 17, extracellular GABA concentrations were comparable to those observed in normal, control subjects. These data suggest that 1-2 months post-lesion the deafferented cortex behaves like normal visual cortex, in contrast to remote, non-deprived cortex. Notwithstanding the increase in extracellular GABA concentration of 134%, the parallel increase in glutamate concentration of 269% could give rise to a net increase in excitability in remote area 17. We therefore suggest that LTP-like mechanisms, and thereby cortical reorganization, might still be facilitated, while possible excessive hyperexcitability is balanced by the moderately increased GABAergic control.
Collapse
Affiliation(s)
- Ann Massie
- Laboratory of Neuroendocrinology and Immunological Biotechnology, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Diverse molecular mechanisms have been discovered that mediate the loss of responses to the deprived eye during monocular deprivation. cAMP/Ca2+ response element-binding protein (CREB) function, in particular, is thought to be essential for ocular dominance plasticity during monocular deprivation. In contrast, we have very little information concerning the molecular mechanisms of recovery from the effects of monocular deprivation, even though this information is highly relevant for understanding cortical plasticity. To test the involvement of CREB activation in recovery of responses to the deprived eye, we used herpes simplex virus (HSV) to express in the primary visual cortex a dominant-negative form of CREB (HSV-mCREB) containing a single point mutation that prevents its activation. This mutant was used to suppress CREB function intracortically during the period when normal vision was restored in two protocols for recovery from monocular deprivation: reverse deprivation and binocular vision. In the reverse deprivation model, inhibition of CREB function prevented loss of responses to the newly deprived eye but did not prevent simultaneous recovery of responses to the previously deprived eye. Full recovery of cortical binocularity after restoration of binocular vision was similarly unaffected by HSV-mCREB treatment. The HSV-mCREB injections produced strong suppression of CREB function in the visual cortex, as ascertained by both DNA binding assays and immunoblot analysis showing a decrease in the expression of the transcription factor C/EBPbeta, which is regulated by CREB. These results show a mechanistic dichotomy between loss and recovery of neural function in visual cortex; CREB function is essential for loss but not for recovery of deprived eye responses.
Collapse
|
28
|
Elston GN, DeFelipe J. Spine distribution in cortical pyramidal cells: a common organizational principle across species. PROGRESS IN BRAIN RESEARCH 2002; 136:109-33. [PMID: 12143375 DOI: 10.1016/s0079-6123(02)36012-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Guy N Elston
- Vision, Touch and Hearing Research Centre, Department of Physiology and Pharmacology, University of Queensland, St. Lucia, QLD 4072, Australia.
| | | |
Collapse
|
29
|
Logothetis NK. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 2002; 357:1003-37. [PMID: 12217171 PMCID: PMC1693017 DOI: 10.1098/rstb.2002.1114] [Citation(s) in RCA: 587] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Magnetic resonance imaging (MRI) has rapidly become an important tool in clinical medicine and biological research. Its functional variant (functional magnetic resonance imaging; fMRI) is currently the most widely used method for brain mapping and studying the neural basis of human cognition. While the method is widespread, there is insufficient knowledge of the physiological basis of the fMRI signal to interpret the data confidently with respect to neural activity. This paper reviews the basic principles of MRI and fMRI, and subsequently discusses in some detail the relationship between the blood-oxygen-level-dependent (BOLD) fMRI signal and the neural activity elicited during sensory stimulation. To examine this relationship, we conducted the first simultaneous intracortical recordings of neural signals and BOLD responses. Depending on the temporal characteristics of the stimulus, a moderate to strong correlation was found between the neural activity measured with microelectrodes and the BOLD signal averaged over a small area around the microelectrode tips. However, the BOLD signal had significantly higher variability than the neural activity, indicating that human fMRI combined with traditional statistical methods underestimates the reliability of the neuronal activity. To understand the relative contribution of several types of neuronal signals to the haemodynamic response, we compared local field potentials (LFPs), single- and multi-unit activity (MUA) with high spatio-temporal fMRI responses recorded simultaneously in monkey visual cortex. At recording sites characterized by transient responses, only the LFP signal was significantly correlated with the haemodynamic response. Furthermore, the LFPs had the largest magnitude signal and linear systems analysis showed that the LFPs were better than the MUAs at predicting the fMRI responses. These findings, together with an analysis of the neural signals, indicate that the BOLD signal primarily measures the input and processing of neuronal information within a region and not the output signal transmitted to other brain regions.
Collapse
Affiliation(s)
- Nikos K Logothetis
- Max Planck Institute for Biological Cybernetics, Spemannstrasse 38, 72076 Tübingen, Germany.
| |
Collapse
|
30
|
Rapid, experience-dependent changes in levels of synaptic zinc in primary somatosensory cortex of the adult mouse. J Neurosci 2002. [PMID: 11923427 DOI: 10.1523/jneurosci.22-07-02617.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrophysiological studies have established that the adult cerebral cortex undergoes immediate functional reorganizations after perturbations of the sensory periphery. These activity-dependent modifications are thought to be mediated via the rapid regulation of the synaptic strength of existing connections. Recent studies have implicated synaptic zinc as contributing to activity-dependent mechanisms of cortical plasticity, such as long-term potentiation and long-term depression, by virtue of its potent ability to modulate glutamatergic neurotransmission. To investigate the role of synaptic zinc in cortical plasticity, we examined changes in the barrel-specific distribution of zinc in axon terminals innervating the primary somatosensory cortex of adult mice at different time points after whisker plucking. In layer IV of normal adult mice, zinc staining in the barrel field was characterized by intense staining in inter-barrel septae and low levels of staining in barrel hollows. Within 3 hr, and up to 1 week after the removal of a row of whiskers, zinc staining increased significantly in barrel hollows corresponding to the plucked whiskers. With longer survival times, levels of zinc staining gradually declined in deprived barrel hollows, returning to normal levels by 2-3 weeks after whisker removal. Increased levels of zinc staining in deprived barrel hollows were highly, negatively correlated with the length of whiskers as they regrew. These results indicate that levels of synaptic zinc in the neocortex are rapidly regulated by changes in sensory experience and suggest that zinc may participate in the plastic changes that normally occur in the cortex on a moment-to-moment basis.
Collapse
|
31
|
Pantev C, Roberts LE, Schulz M, Engelien A, Ross B. Timbre-specific enhancement of auditory cortical representations in musicians. Neuroreport 2001; 12:169-74. [PMID: 11201080 DOI: 10.1097/00001756-200101220-00041] [Citation(s) in RCA: 233] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neural imaging studies have shown that the brains of skilled musicians respond differently to musical stimuli than do the brains of non-musicians, particularly for musicians who commenced practice at an early age. Whether brain attributes related to musical skill are attributable to musical practice or are hereditary traits that influence the decision to train musically is a subject of controversy, owing to its pedagogic implications. Here we report that auditory cortical representations measured neuromagnetically for tones of different timbre (violin and trumpet) are enhanced compared to sine tones in violinists and trumpeters, preferentially for timbres of the instrument of training. Timbre specificity is predicted by a principle of use-dependent plasticity and imposes new requirements on nativistic accounts of brain attributes associated with musical skill.
Collapse
Affiliation(s)
- C Pantev
- Biomagnetism Center, Institute for Experimental Audiology, University of Münster, Germany
| | | | | | | | | |
Collapse
|
32
|
Arckens L, Van Der Gucht E, Eysel UT, Orban GA, Vandesande F. Investigation of cortical reorganization in area 17 and nine extrastriate visual areas through the detection of changes in immediate early gene expression as induced by retinal lesions. J Comp Neurol 2000; 425:531-44. [PMID: 10975878 DOI: 10.1002/1096-9861(20001002)425:4<531::aid-cne5>3.0.co;2-j] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of binocular central retinal lesions on the expression of the immediate early genes c-fos and zif268 in the dorsal lateral geniculate nucleus (dLGN) and the visual cortex of adult cats was investigated by in situ hybridization and immunocytochemistry. In the deafferented region of the dLGN, the c-fos mRNA level was decreased within 3 days. The dimensions of the geniculate region showing decreased amounts of c-fos mRNA matched the predictions based on the lesion size and the retinotopic maps of Sanderson ([1971] J. Comp. Neurol. 143:101-118). We did not detect zif268 mRNA in the dLGN. At the cortical level, both c-fos and zif268 mRNA expression decreased in the sensory-deprived region of area 17. In addition, the portions of areas 18, 19, 21a, 21b, and 7, as well as the posterior medial lateral suprasylvian area, the posterior lateral lateral suprasylvian area, the ventral lateral suprasylvian area, and the dorsal lateral suprasylvian area corresponding to the retinal lesions also displayed decreased c-fos and zif268 mRNA levels. Immunocytochemistry revealed similar changes for Zif268 and Fos protein. Three days post lesion, the dimensions of the lesion-affected cortical loci exceeded the predictions in relation to the size of the retinal lesions and the available retinotopic maps. Longer postlesion survival times clearly resulted in a time-dependent restoration of immediate early gene expression from the border to the center of the lesion-affected cortical portions. Our findings represent a new approach for investigating the capacity of adult sensory systems to undergo plastic changes following sensory deprivation and for defining the topographic nature of sensory subcortical and cortical structures.
Collapse
Affiliation(s)
- L Arckens
- Laboratory of Neuroendocrinology and Immunological Biotechnology, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|