1
|
Johansen A, Beliveau V, Colliander E, Raval NR, Dam VH, Gillings N, Aznar S, Svarer C, Plavén-Sigray P, Knudsen GM. An In Vivo High-Resolution Human Brain Atlas of Synaptic Density. J Neurosci 2024; 44:e1750232024. [PMID: 38997157 PMCID: PMC11326867 DOI: 10.1523/jneurosci.1750-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Synapses are fundamental to the function of the central nervous system and are implicated in a number of brain disorders. Despite their pivotal role, a comprehensive imaging resource detailing the distribution of synapses in the human brain has been lacking until now. Here, we employ high-resolution PET neuroimaging in healthy humans (17F/16M) to create a 3D atlas of the synaptic marker Synaptic Vesicle glycoprotein 2A (SV2A). Calibration to absolute density values (pmol/ml) was achieved by leveraging postmortem human brain autoradiography data. The atlas unveils distinctive cortical and subcortical gradients of synapse density that reflect functional topography and hierarchical order from core sensory to higher-order integrative areas-a distribution that diverges from SV2A mRNA patterns. Furthermore, we found a positive association between IQ and SV2A density in several higher-order cortical areas. This new resource will help advance our understanding of brain physiology and the pathogenesis of brain disorders, serving as a pivotal tool for future neuroscience research.
Collapse
Affiliation(s)
- Annette Johansen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Vincent Beliveau
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Emil Colliander
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nakul Ravi Raval
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut 06520
- Yale PET Center, Yale University, New Haven, Connecticut 06520
| | - Vibeke Høyrup Dam
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Nic Gillings
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Susana Aznar
- Center for Neuroscience and Stereology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, Copenhagen 2400, Denmark
| | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Pontus Plavén-Sigray
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
2
|
Magielse N, Heuer K, Toro R, Schutter DJLG, Valk SL. A Comparative Perspective on the Cerebello-Cerebral System and Its Link to Cognition. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1293-1307. [PMID: 36417091 PMCID: PMC10657313 DOI: 10.1007/s12311-022-01495-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Abstract
The longstanding idea that the cerebral cortex is the main neural correlate of human cognition can be elaborated by comparative analyses along the vertebrate phylogenetic tree that support the view that the cerebello-cerebral system is suited to support non-motor functions more generally. In humans, diverse accounts have illustrated cerebellar involvement in cognitive functions. Although the neocortex, and its transmodal association cortices such as the prefrontal cortex, have become disproportionately large over primate evolution specifically, human neocortical volume does not appear to be exceptional relative to the variability within primates. Rather, several lines of evidence indicate that the exceptional volumetric increase of the lateral cerebellum in conjunction with its connectivity with the cerebral cortical system may be linked to non-motor functions and mental operation in primates. This idea is supported by diverging cerebello-cerebral adaptations that potentially coevolve with cognitive abilities across other vertebrates such as dolphins, parrots, and elephants. Modular adaptations upon the vertebrate cerebello-cerebral system may thus help better understand the neuroevolutionary trajectory of the primate brain and its relation to cognition in humans. Lateral cerebellar lobules crura I-II and their reciprocal connections to the cerebral cortical association areas appear to have substantially expanded in great apes, and humans. This, along with the notable increase in the ventral portions of the dentate nucleus and a shift to increased relative prefrontal-cerebellar connectivity, suggests that modular cerebellar adaptations support cognitive functions in humans. In sum, we show how comparative neuroscience provides new avenues to broaden our understanding of cerebellar and cerebello-cerebral functions in the context of cognition.
Collapse
Affiliation(s)
- Neville Magielse
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Center Jülich, Jülich, Germany
- Otto Hahn Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Systems Neuroscience, Heinrich Heine University, Düsseldorf, Germany
| | - Katja Heuer
- Institute Pasteur, Unité de Neuroanatomie Appliquée et Théorique, Université Paris Cité, Paris, France
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Roberto Toro
- Institute Pasteur, Unité de Neuroanatomie Appliquée et Théorique, Université Paris Cité, Paris, France
| | - Dennis J L G Schutter
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Sofie L Valk
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Center Jülich, Jülich, Germany.
- Otto Hahn Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
3
|
Paulson OB, Schousboe A, Hultborn H. The history of Danish neuroscience. Eur J Neurosci 2023; 58:2893-2960. [PMID: 37477973 DOI: 10.1111/ejn.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023]
Abstract
The history of Danish neuroscience starts with an account of impressive contributions made at the 17th century. Thomas Bartholin was the first Danish neuroscientist, and his disciple Nicolaus Steno became internationally one of the most prominent neuroscientists in this period. From the start, Danish neuroscience was linked to clinical disciplines. This continued in the 19th and first half of the 20th centuries with new initiatives linking basic neuroscience to clinical neurology and psychiatry in the same scientific environment. Subsequently, from the middle of the 20th century, basic neuroscience was developing rapidly within the preclinical university sector. Clinical neuroscience continued and was even reinforced during this period with important translational research and a close co-operation between basic and clinical neuroscience. To distinguish 'history' from 'present time' is not easy, as many historical events continue in present time. Therefore, we decided to consider 'History' as new major scientific developments in Denmark, which were launched before the end of the 20th century. With this aim, scientists mentioned will have been born, with a few exceptions, no later than the early 1960s. However, we often refer to more recent publications in documenting the developments of initiatives launched before the end of the last century. In addition, several scientists have moved to Denmark after the beginning of the present century, and they certainly are contributing to the present status of Danish neuroscience-but, again, this is not the History of Danish neuroscience.
Collapse
Affiliation(s)
- Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, 9 Blegdamsvej, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Hultborn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Petersen MC, Gallop MR, Flores Ramos S, Zarrinpar A, Broussard JL, Chondronikola M, Chaix A, Klein S. Complex physiology and clinical implications of time-restricted eating. Physiol Rev 2022; 102:1991-2034. [PMID: 35834774 PMCID: PMC9423781 DOI: 10.1152/physrev.00006.2022] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Time-restricted eating (TRE) is a dietary intervention that limits food consumption to a specific time window each day. The effect of TRE on body weight and physiological functions has been extensively studied in rodent models, which have shown considerable therapeutic effects of TRE and important interactions among time of eating, circadian biology, and metabolic homeostasis. In contrast, it is difficult to make firm conclusions regarding the effect of TRE in people because of the heterogeneity in results, TRE regimens, and study populations. In this review, we 1) provide a background of the history of meal consumption in people and the normal physiology of eating and fasting; 2) discuss the interaction between circadian molecular metabolism and TRE; 3) integrate the results of preclinical and clinical studies that evaluated the effects of TRE on body weight and physiological functions; 4) summarize other time-related dietary interventions that have been studied in people; and 4) identify current gaps in knowledge and provide a framework for future research directions.
Collapse
Affiliation(s)
- Max C Petersen
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Molly R Gallop
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Stephany Flores Ramos
- Division of Gastroenterology, University of California, San Diego, La Jolla, California
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, California
- Department of Veterans Affairs San Diego Health System, La Jolla, California
| | - Josiane L Broussard
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
| | - Maria Chondronikola
- Departments of Nutrition and Radiology, University of California, Davis, California
- Departments of Nutrition and Dietetics, Harokopio University of Athens, Kallithea, Greece
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
5
|
Affiliation(s)
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen, Denmark
| | - Adrian Baddeley
- School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, Australia
| |
Collapse
|
6
|
Raji JI, Potter CJ. The number of neurons in Drosophila and mosquito brains. PLoS One 2021; 16:e0250381. [PMID: 33989293 PMCID: PMC8121336 DOI: 10.1371/journal.pone.0250381] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/03/2021] [Indexed: 01/08/2023] Open
Abstract
Various insect species serve as valuable model systems for investigating the cellular and molecular mechanisms by which a brain controls sophisticated behaviors. In particular, the nervous system of Drosophila melanogaster has been extensively studied, yet experiments aimed at determining the number of neurons in the Drosophila brain are surprisingly lacking. Using isotropic fractionator coupled with immunohistochemistry, we counted the total number of neuronal and non-neuronal cells in the whole brain, central brain, and optic lobe of Drosophila melanogaster. For comparison, we also counted neuronal populations in three divergent mosquito species: Aedes aegypti, Anopheles coluzzii and Culex quinquefasciatus. The average number of neurons in a whole adult brain was determined to be 199,380 ±3,400 cells in D. melanogaster, 217,910 ±6,180 cells in Ae. aegypti, 223,020 ± 4,650 cells in An. coluzzii and 225,911±7,220 cells in C. quinquefasciatus. The mean neuronal cell count in the central brain vs. optic lobes for D. melanogaster (101,140 ±3,650 vs. 107,270 ± 2,720), Ae. aegypti (109,140 ± 3,550 vs. 112,000 ± 4,280), An. coluzzii (105,130 ± 3,670 vs. 107,140 ± 3,090), and C. quinquefasciatus (108,530 ±7,990 vs. 110,670 ± 3,950) was also estimated. Each insect brain was comprised of 89% ± 2% neurons out of its total cell population. Isotropic fractionation analyses did not identify obvious sexual dimorphism in the neuronal and non-neuronal cell population of these insects. Our study provides experimental evidence for the total number of neurons in Drosophila and mosquito brains.
Collapse
Affiliation(s)
- Joshua I. Raji
- The Solomon H. Snyder Department of Neuroscience, The Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Christopher J. Potter
- The Solomon H. Snyder Department of Neuroscience, The Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
7
|
Is there a “g-neuron”? Establishing a systematic link between general intelligence (g) and the von Economo neuron. INTELLIGENCE 2021. [DOI: 10.1016/j.intell.2021.101540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Borghammer P. The α-Synuclein Origin and Connectome Model (SOC Model) of Parkinson's Disease: Explaining Motor Asymmetry, Non-Motor Phenotypes, and Cognitive Decline. JOURNAL OF PARKINSON'S DISEASE 2021; 11:455-474. [PMID: 33682732 PMCID: PMC8150555 DOI: 10.3233/jpd-202481] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 12/12/2022]
Abstract
A new model of Parkinson's disease (PD) pathogenesis is proposed, the α-Synuclein Origin site and Connectome (SOC) model, incorporating two aspects of α-synuclein pathobiology that impact the disease course for each patient: the anatomical location of the initial α-synuclein inclusion, and α-synuclein propagation dependent on the ipsilateral connections that dominate connectivity of the human brain. In some patients, initial α-synuclein pathology occurs within the CNS, leading to a brain-first subtype of PD. In others, pathology begins in the peripheral autonomic nervous system, leading to a body-first subtype. In brain-first cases, it is proposed that the first pathology appears unilaterally, often in the amygdala. If α-synuclein propagation depends on connection strength, a unilateral focus of pathology will disseminate more to the ipsilateral hemisphere. Thus, α-synuclein spreads mainly to ipsilateral structures including the substantia nigra. The asymmetric distribution of pathology leads to asymmetric dopaminergic degeneration and motor asymmetry. In body-first cases, the α-synuclein pathology ascends via the vagus to both the left and right dorsal motor nuclei of the vagus owing to the overlapping parasympathetic innervation of the gut. Consequently, the initial α-synuclein pathology inside the CNS is more symmetric, which promotes more symmetric propagation in the brainstem, leading to more symmetric dopaminergic degeneration and less motor asymmetry. At diagnosis, body-first patients already have a larger, more symmetric burden of α-synuclein pathology, which in turn promotes faster disease progression and accelerated cognitive decline. The SOC model is supported by a considerable body of existing evidence and may have improved explanatory power.
Collapse
Affiliation(s)
- Per Borghammer
- Department of Nuclear Medicine & PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|