1
|
Jun S, Alderson TH, Malone SM, Harper J, Hunt RH, Thomas KM, Iacono WG, Wilson S, Sadaghiani S. Rapid dynamics of electrophysiological connectome states are heritable. Netw Neurosci 2024; 8:1065-1088. [PMID: 39735507 PMCID: PMC11674403 DOI: 10.1162/netn_a_00391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/17/2024] [Indexed: 12/31/2024] Open
Abstract
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state (N = 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60-500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states' Modularity and connectivity pattern. We conclude that genetic effects shape individuals' connectome dynamics at rapid timescales, specifically states' overall occurrence and sequencing.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Thomas H. Alderson
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Stephen M. Malone
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Jeremy Harper
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Ruskin H. Hunt
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Kathleen M. Thomas
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - William G. Iacono
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sepideh Sadaghiani
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
2
|
Zhen Y, Yang Y, Zheng Y, Wang X, Liu L, Zheng Z, Zheng H, Tang S. The heritability and structural correlates of resting-state fMRI complexity. Neuroimage 2024; 296:120657. [PMID: 38810892 DOI: 10.1016/j.neuroimage.2024.120657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024] Open
Abstract
The complexity of fMRI signals quantifies temporal dynamics of spontaneous neural activity, which has been increasingly recognized as providing important insights into cognitive functions and psychiatric disorders. However, its heritability and structural underpinnings are not well understood. Here, we utilize multi-scale sample entropy to extract resting-state fMRI complexity in a large healthy adult sample from the Human Connectome Project. We show that fMRI complexity at multiple time scales is heritable in broad brain regions. Heritability estimates are modest and regionally variable. We relate fMRI complexity to brain structure including surface area, cortical myelination, cortical thickness, subcortical volumes, and total brain volume. We find that surface area is negatively correlated with fine-scale complexity and positively correlated with coarse-scale complexity in most cortical regions, especially the association cortex. Most of these correlations are related to common genetic and environmental effects. We also find positive correlations between cortical myelination and fMRI complexity at fine scales and negative correlations at coarse scales in the prefrontal cortex, lateral temporal lobe, precuneus, lateral parietal cortex, and cingulate cortex, with these correlations mainly attributed to common environmental effects. We detect few significant associations between fMRI complexity and cortical thickness. Despite the non-significant association with total brain volume, fMRI complexity exhibits significant correlations with subcortical volumes in the hippocampus, cerebellum, putamen, and pallidum at certain scales. Collectively, our work establishes the genetic basis and structural correlates of resting-state fMRI complexity across multiple scales, supporting its potential application as an endophenotype for psychiatric disorders.
Collapse
Affiliation(s)
- Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Yaqian Yang
- School of Mathematical Sciences, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Xin Wang
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China; Zhongguancun Laboratory, Beijing 100094, China; Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China; PengCheng Laboratory, Shenzhen 518055, China
| | - Longzhao Liu
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China; Zhongguancun Laboratory, Beijing 100094, China; Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China; PengCheng Laboratory, Shenzhen 518055, China
| | - Zhiming Zheng
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China; Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China; Zhongguancun Laboratory, Beijing 100094, China; Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China; PengCheng Laboratory, Shenzhen 518055, China; State Key Lab of Software Development Environment, Beihang University, Beijing 100191, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing, Beijing 100085, China.
| | - Shaoting Tang
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China; Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China; Zhongguancun Laboratory, Beijing 100094, China; Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China; PengCheng Laboratory, Shenzhen 518055, China; State Key Lab of Software Development Environment, Beihang University, Beijing 100191, China.
| |
Collapse
|
3
|
Wu X, Zhang Y, Xue M, Li J, Li X, Cui Z, Gao JH, Yang G. Heritability of functional gradients in the human subcortico-cortical connectivity. Commun Biol 2024; 7:854. [PMID: 38997510 PMCID: PMC11245549 DOI: 10.1038/s42003-024-06551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
The human subcortex plays a pivotal role in cognition and is widely implicated in the pathophysiology of many psychiatric disorders. However, the heritability of functional gradients based on subcortico-cortical functional connectivity remains elusive. Here, leveraging twin functional MRI (fMRI) data from both the Human Connectome Project (n = 1023) and the Adolescent Brain Cognitive Development study (n = 936) datasets, we construct large-scale subcortical functional gradients and delineate an increased principal functional gradient pattern from unimodal sensory/motor networks to transmodal association networks. We observed that this principal functional gradient is heritable, and the strength of heritability exhibits a heterogeneous pattern along a hierarchical unimodal-transmodal axis in subcortex for both young adults and children. Furthermore, employing a machine learning framework, we show that this heterogeneous pattern of the principal functional gradient in subcortex can accurately discern the relationship between monozygotic twin pairs and dizygotic twin pairs with an accuracy of 76.2% (P < 0.001). The heritability of functional gradients is associated with the anatomical myelin proxied by MRI-derived T1-weighted/T2-weighted (T1w/T2w) ratio mapping in subcortex. This study provides new insights into the biological basis of subcortical functional hierarchy by revealing the structural and genetic properties of the subcortical functional gradients.
Collapse
Affiliation(s)
- Xinyu Wu
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Yu Zhang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Mufan Xue
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Jinlong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Xuesong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- McGovern Institute for Brain Research, Peking University, Beijing, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
| | - Guoyuan Yang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China.
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
4
|
Proshina E, Deynekina T, Martynova O. Neurogenetics of Brain Connectivity: Current Approaches to the Study (Review). Sovrem Tekhnologii Med 2024; 16:66-76. [PMID: 39421629 PMCID: PMC11482091 DOI: 10.17691/stm2024.16.1.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 10/19/2024] Open
Abstract
Owing to the advances of neuroimaging techniques, a number of functional brain networks associated both with specific functions and the state of relative inactivity has been distinguished. A sufficient bulk of information has been accumulated on changes in connectivity (links between brain regions) in psychopathologies, for example, depression, schizophrenia, autism. Their genetic markers are being actively investigated using a candidate-gene approach or a genome-wide association study. At the same time, there is not much data considering connectivity as an intermediate link in the genotype-pathology chain, although it seems to be a reliable endophenotype, since it demonstrates a high stability and high heritability. In the present review, we consider the results of investigations devoted to the search for biomarkers, molecular and genetic associations of functional, partially anatomical, and effective connectivity. The main approaches to the evaluation of connectivity neurogenetics have been described, as well as specific genetic variants, for which the association with brain connectivity in psychiatric pathologies has been detected.
Collapse
Affiliation(s)
- E.A. Proshina
- Researcher, Centre for Cognition & Decision Making, Institute for Cognitive Neurosciences; National Research University Higher School of Economics, 20 Myasnitskaya St., Moscow, 101000, Russia
| | - T.S. Deynekina
- Analyst; Center for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - O.V. Martynova
- Deputy Director, Head of the Laboratory of Human Higher Nervous Activity; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow, 117485, Russia, Associate Professor, Department of Biology and Biotechnology; National Research University Higher School of Economics, 20 Myasnitskaya St., Moscow, 101000, Russia
| |
Collapse
|
5
|
Busch EL, Rapuano KM, Anderson KM, Rosenberg MD, Watts R, Casey BJ, Haxby JV, Feilong M. Dissociation of Reliability, Heritability, and Predictivity in Coarse- and Fine-Scale Functional Connectomes during Development. J Neurosci 2024; 44:e0735232023. [PMID: 38148152 PMCID: PMC10866091 DOI: 10.1523/jneurosci.0735-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
The functional connectome supports information transmission through the brain at various spatial scales, from exchange between broad cortical regions to finer-scale, vertex-wise connections that underlie specific information processing mechanisms. In adults, while both the coarse- and fine-scale functional connectomes predict cognition, the fine scale can predict up to twice the variance as the coarse-scale functional connectome. Yet, past brain-wide association studies, particularly using large developmental samples, focus on the coarse connectome to understand the neural underpinnings of individual differences in cognition. Using a large cohort of children (age 9-10 years; n = 1,115 individuals; both sexes; 50% female, including 170 monozygotic and 219 dizygotic twin pairs and 337 unrelated individuals), we examine the reliability, heritability, and behavioral relevance of resting-state functional connectivity computed at different spatial scales. We use connectivity hyperalignment to improve access to reliable fine-scale (vertex-wise) connectivity information and compare the fine-scale connectome with the traditional parcel-wise (coarse scale) functional connectomes. Though individual differences in the fine-scale connectome are more reliable than those in the coarse-scale, they are less heritable. Further, the alignment and scale of connectomes influence their ability to predict behavior, whereby some cognitive traits are equally well predicted by both connectome scales, but other, less heritable cognitive traits are better predicted by the fine-scale connectome. Together, our findings suggest there are dissociable individual differences in information processing represented at different scales of the functional connectome which, in turn, have distinct implications for heritability and cognition.
Collapse
Affiliation(s)
- Erica L Busch
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - Kristina M Rapuano
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - Kevin M Anderson
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - Monica D Rosenberg
- Department of Psychology, University of Chicago, Chicago, Illinois, 60637
| | - Richard Watts
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - B J Casey
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - James V Haxby
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, 03755
| | - Ma Feilong
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, 03755
| |
Collapse
|
6
|
Voineskos AN, Hawco C, Neufeld NH, Turner JA, Ameis SH, Anticevic A, Buchanan RW, Cadenhead K, Dazzan P, Dickie EW, Gallucci J, Lahti AC, Malhotra AK, Öngür D, Lencz T, Sarpal DK, Oliver LD. Functional magnetic resonance imaging in schizophrenia: current evidence, methodological advances, limitations and future directions. World Psychiatry 2024; 23:26-51. [PMID: 38214624 PMCID: PMC10786022 DOI: 10.1002/wps.21159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Functional neuroimaging emerged with great promise and has provided fundamental insights into the neurobiology of schizophrenia. However, it has faced challenges and criticisms, most notably a lack of clinical translation. This paper provides a comprehensive review and critical summary of the literature on functional neuroimaging, in particular functional magnetic resonance imaging (fMRI), in schizophrenia. We begin by reviewing research on fMRI biomarkers in schizophrenia and the clinical high risk phase through a historical lens, moving from case-control regional brain activation to global connectivity and advanced analytical approaches, and more recent machine learning algorithms to identify predictive neuroimaging features. Findings from fMRI studies of negative symptoms as well as of neurocognitive and social cognitive deficits are then reviewed. Functional neural markers of these symptoms and deficits may represent promising treatment targets in schizophrenia. Next, we summarize fMRI research related to antipsychotic medication, psychotherapy and psychosocial interventions, and neurostimulation, including treatment response and resistance, therapeutic mechanisms, and treatment targeting. We also review the utility of fMRI and data-driven approaches to dissect the heterogeneity of schizophrenia, moving beyond case-control comparisons, as well as methodological considerations and advances, including consortia and precision fMRI. Lastly, limitations and future directions of research in the field are discussed. Our comprehensive review suggests that, in order for fMRI to be clinically useful in the care of patients with schizophrenia, research should address potentially actionable clinical decisions that are routine in schizophrenia treatment, such as which antipsychotic should be prescribed or whether a given patient is likely to have persistent functional impairment. The potential clinical utility of fMRI is influenced by and must be weighed against cost and accessibility factors. Future evaluations of the utility of fMRI in prognostic and treatment response studies may consider including a health economics analysis.
Collapse
Affiliation(s)
- Aristotle N Voineskos
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Neufeld
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cundill Centre for Child and Youth Depression and McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan Anticevic
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Julia Gallucci
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anil K Malhotra
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Dost Öngür
- McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Todd Lencz
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Deepak K Sarpal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
7
|
Jun S, Malone SM, Iacono WG, Harper J, Wilson S, Sadaghiani S. Rapid dynamics of electrophysiological connectome states are heritable. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575731. [PMID: 38293031 PMCID: PMC10827044 DOI: 10.1101/2024.01.15.575731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infra-slow (<0.1Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting-state (N=928, 473 females), we quantified heritability of multivariate (multi-state) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ~60-500ms. Temporal features were heritable, particularly, Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for heritability of spatial features, specifically states' Modularity and connectivity pattern. We conclude that genetic effects strongly shape individuals' connectome dynamics at rapid timescales, specifically states' overall occurrence and sequencing.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Psychology Department, University of Illinois at Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
| | - Stephen M Malone
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Jeremy Harper
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota, Twin Cities, USA
| | - Sepideh Sadaghiani
- Psychology Department, University of Illinois at Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
- Neuroscience Program, University of Illinois at Urbana-Champaign
| |
Collapse
|
8
|
Bukhari H, Su C, Dhamala E, Gu Z, Jamison K, Kuceyeski A. Graph-matching distance between individuals' functional connectomes varies with relatedness, age, and cognitive score. Hum Brain Mapp 2023; 44:3541-3554. [PMID: 37042411 PMCID: PMC10203814 DOI: 10.1002/hbm.26296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023] Open
Abstract
Functional connectomes (FCs), represented by networks or graphs that summarize coactivation patterns between pairs of brain regions, have been related at a population level to age, sex, cognitive/behavioral scores, life experience, genetics, and disease/disorders. However, quantifying FC differences between individuals also provides a rich source of information with which to map to differences in those individuals' biology, experience, genetics or behavior. In this study, graph matching is used to create a novel inter-individual FC metric, called swap distance, that quantifies the distance between pairs of individuals' partial FCs, with a smaller swap distance indicating the individuals have more similar FC. We apply graph matching to align FCs between individuals from the the Human Connectome ProjectN = 997 and find that swap distance (i) increases with increasing familial distance, (ii) increases with subjects' ages, (iii) is smaller for pairs of females compared to pairs of males, and (iv) is larger for females with lower cognitive scores compared to females with larger cognitive scores. Regions that contributed most to individuals' swap distances were in higher-order networks, that is, default-mode and fronto-parietal, that underlie executive function and memory. These higher-order networks' regions also had swap frequencies that varied monotonically with familial relatedness of the individuals in question. We posit that the proposed graph matching technique provides a novel way to study inter-subject differences in FC and enables quantification of how FC may vary with age, relatedness, sex, and behavior.
Collapse
Affiliation(s)
- Hussain Bukhari
- Department of NeuroscienceWeill Cornell MedicineNew YorkNew YorkUSA
| | - Chang Su
- Department of BiostatisticsYale UniversityNew HavenConnecticutUSA
| | - Elvisha Dhamala
- Department of PsychologyYale UniversityNew HavenConnecticutUSA
| | - Zijin Gu
- Department of Electrical and Computer EngineeringCornell UniversityIthacaNew YorkUSA
| | - Keith Jamison
- Department of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| | - Amy Kuceyeski
- Department of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
9
|
Zheng Y, Wu Y, Liu Y, Li D, Liang X, Chen Y, Zhang H, Guo Y, Lu R, Wang J, Qiu S. Abnormal dynamic functional connectivity of thalamic subregions in patients with first-episode, drug-naïve major depressive disorder. Front Psychiatry 2023; 14:1152332. [PMID: 37234210 PMCID: PMC10206063 DOI: 10.3389/fpsyt.2023.1152332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Background Recent studies have shown that major depressive disorder (MDD) is associated with altered intrinsic functional connectivity (FC) of the thalamus; however, investigations of these alterations at a finer time scale and the level of thalamic subregions are still lacking. Methods We collected resting-state functional MRI data from 100 treatment-naïve, first-episode MDD patients and 99 age-, gender- and education-matched healthy controls (HCs). Seed-based whole-brain sliding window-based dFC analyses were performed for 16 thalamic subregions. Between-group differences in the mean and variance of dFC were determined using threshold-free cluster enhancement algorithm. For significant alterations, there relationships with clinical and neuropsychological variables were further examined via bivariate and multivariate correlation analyses. Results Of all thalamic subregions, only the left sensory thalamus (Stha) showed altered variance of dFC in the patients characterized by increases with the left inferior parietal lobule, left superior frontal gyrus, left inferior temporal gyrus, and left precuneus, and decreases with multiple frontal, temporal, parietal, and subcortical regions. These alterations accounted for, to a great extent, clinical, and neuropsychological characteristics of the patients as revealed by the multivariate correlation analysis. In addition, the bivariate correlation analysis revealed a positive correlation between the variance of dFC between the left Stha and right inferior temporal gurus/fusiform and childhood trauma questionnaires scores (r = 0.562, P < 0.001). Conclusion These findings suggest that the left Stha is the most vulnerable thalamic subregion to MDD, whose dFC alterations may serve as potential biomarkers for the diagnosis of the disease.
Collapse
Affiliation(s)
- Yanting Zheng
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yujie Wu
- Department of Clinical Psychology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yujie Liu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Radiology, Guangzhou First People’s Hospital, Guangzhou, Guangdong, China
| | - Danian Li
- Cerebropathy Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xinyu Liang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yaoping Chen
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hanyue Zhang
- Department of Radiology, Guangzhou First People’s Hospital, Guangzhou, Guangdong, China
| | - Yan Guo
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ruoxi Lu
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Blanchett R, Chen Y, Aguate F, Xia K, Cornea E, Burt SA, de Los Campos G, Gao W, Gilmore JH, Knickmeyer RC. Genetic and environmental factors influencing neonatal resting-state functional connectivity. Cereb Cortex 2023; 33:4829-4843. [PMID: 36190430 PMCID: PMC10110449 DOI: 10.1093/cercor/bhac383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/14/2022] Open
Abstract
Functional magnetic resonance imaging has been used to identify complex brain networks by examining the correlation of blood-oxygen-level-dependent signals between brain regions during the resting state. Many of the brain networks identified in adults are detectable at birth, but genetic and environmental influences governing connectivity within and between these networks in early infancy have yet to be explored. We investigated genetic influences on neonatal resting-state connectivity phenotypes by generating intraclass correlations and performing mixed effects modeling to estimate narrow-sense heritability on measures of within network and between-network connectivity in a large cohort of neonate twins. We also used backwards elimination regression and mixed linear modeling to identify specific demographic and medical history variables influencing within and between network connectivity in a large cohort of typically developing twins and singletons. Of the 36 connectivity phenotypes examined, only 6 showed narrow-sense heritability estimates greater than 0.10, with none being statistically significant. Demographic and obstetric history variables contributed to between- and within-network connectivity. Our results suggest that in early infancy, genetic factors minimally influence brain connectivity. However, specific demographic and medical history variables, such as gestational age at birth and maternal psychiatric history, may influence resting-state connectivity measures.
Collapse
Affiliation(s)
- Reid Blanchett
- Genetics and Genome Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Yuanyuan Chen
- Biomedical Imaging Research Institute, Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Fernando Aguate
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Kai Xia
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - S Alexandra Burt
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Gustavo de Los Campos
- Departments of Epidemiology and Biostatistics and Statistics and Probability, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Wei Gao
- Biomedical Imaging Research Institute, Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rebecca C Knickmeyer
- Department of Pediatrics and Human Development, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
11
|
Tissink E, Werme J, de Lange SC, Savage JE, Wei Y, de Leeuw CA, Nagel M, Posthuma D, van den Heuvel MP. The Genetic Architectures of Functional and Structural Connectivity Properties within Cerebral Resting-State Networks. eNeuro 2023; 10:ENEURO.0242-22.2023. [PMID: 36882310 PMCID: PMC10089056 DOI: 10.1523/eneuro.0242-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/12/2022] [Accepted: 01/08/2023] [Indexed: 03/09/2023] Open
Abstract
Functional connectivity within resting-state networks (RSN-FC) is vital for cognitive functioning. RSN-FC is heritable and partially translates to the anatomic architecture of white matter, but the genetic component of structural connections of RSNs (RSN-SC) and their potential genetic overlap with RSN-FC remain unknown. Here, we perform genome-wide association studies (N discovery = 24,336; N replication = 3412) and annotation on RSN-SC and RSN-FC. We identify genes for visual network-SC that are involved in axon guidance and synaptic functioning. Genetic variation in RSN-FC impacts biological processes relevant to brain disorders that previously were only phenotypically associated with RSN-FC alterations. Correlations of the genetic components of RSNs are mostly observed within the functional domain, whereas less overlap is observed within the structural domain and between the functional and structural domains. This study advances the understanding of the complex functional organization of the brain and its structural underpinnings from a genetics viewpoint.
Collapse
Affiliation(s)
- Elleke Tissink
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, The Netherlands
| | - Josefin Werme
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, The Netherlands
| | - Siemon C de Lange
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, The Netherlands
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam 1105 BA, The Netherlands
| | - Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, The Netherlands
| | - Yongbin Wei
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, The Netherlands
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Christiaan A de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, The Netherlands
| | - Mats Nagel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, The Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, The Netherlands
- Department of Clinical Genetics, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam University Medical Centre, Amsterdam 1081 HZ, The Netherlands
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, The Netherlands
- Department of Clinical Genetics, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam University Medical Centre, Amsterdam 1081 HZ, The Netherlands
| |
Collapse
|
12
|
Song I, Lee TH. Considering dynamic nature of the brain: the clinical importance of connectivity variability in machine learning classification and prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525765. [PMID: 36747828 PMCID: PMC9901018 DOI: 10.1101/2023.01.26.525765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The brain connectivity of resting-state fMRI (rs-fMRI) represents an intrinsic state of brain architecture, and it has been used as a useful neural marker for detecting psychiatric conditions as well as for predicting psychosocial characteristics. However, most studies using brain connectivity have focused more on the strength of functional connectivity over time (static-FC) but less attention to temporal characteristics of connectivity changes (FC-variability). The primary goal of the current study was to investigate the effectiveness of using the FC-variability in classifying an individual's pathological characteristics from others and predicting psychosocial characteristics. In addition, the current study aimed to prove that benefits of the FC-variability are reliable across various analysis procedures. To this end, three open public large resting-state fMRI datasets including individuals with Autism Spectrum Disorder (ABIDE; N = 1249), Schizophrenia disorder (COBRE; N = 145), and typical development (NKI; N = 672) were utilized for the machine learning (ML) classification and prediction based on their static-FC and the FC-variability metrics. To confirm the robustness of FC-variability utility, we benchmarked the ML classification and prediction with various brain parcellations and sliding window parameters. As a result, we found that the ML performances were significantly improved when the ML included FC-variability features in classifying pathological populations from controls (e.g., individuals with autism spectrum disorder vs. typical development) and predicting psychiatric severity (e.g., score of autism diagnostic observation schedule), regardless of parcellation selection and sliding window size. Additionally, the ML performance deterioration was significantly prevented with FC-variability features when excessive features were inputted into the ML models, yielding more reliable results. In conclusion, the current finding proved the usefulness of the FC-variability and its reliability.
Collapse
Affiliation(s)
- Inuk Song
- Department of Psychology, Virginia Tech
| | - Tae-Ho Lee
- Department of Psychology, Virginia Tech
- School of Neuroscience, Virginia Tech
| |
Collapse
|
13
|
Lila E, Aston JAD. Functional random effects modeling of brain shape and connectivity. Ann Appl Stat 2022. [DOI: 10.1214/21-aoas1572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Eardi Lila
- Department of Biostatistics, University of Washington
| | | |
Collapse
|
14
|
Li Y, Qin B, Chen Q, Chen J. Altered dynamic functional network connectivity within default mode network of epileptic children with generalized tonic-clonic seizures. Epilepsy Res 2022; 184:106969. [PMID: 35738202 DOI: 10.1016/j.eplepsyres.2022.106969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/13/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Generalized tonic-clonic seizures (GTCS) is a group of epileptic disorders characterized by widespread generalized spike-and-waves discharges along with unresponsiveness and convulsions. Abnormal connectivity in the DMN is the common findings in children with generalized epilepsy. However, the neural mechanisms underlying the altered brain connectivity of DMN in children with GTCS remain unclear. The aim of the current study was to explore the temporal properties of functional connectivity states by dynamic functional connectivity (dFC) within the DMN of GTCS children. METHODS We collected resting-state functional MRI data from 22 GTCS children and 29 age-matched healthy controls. Sliding window approach and k-mean clustering analysis were applied to analyze the dFC and identify transient states of the DMN. Furthermore, the relationship between the dynamic properties and clinical features was assessed. RESULTS The dFC analyses identified two reoccurring states: a more frequent and weak connected state (State 1) and a less frequent and strong connected state (State 2). Relative to the normal control, GTCS children spent more time in State 1 showing weak connections and spent less time in State 2 showing strong connections. Dynamic functional network connectivity strength within the DMN showed both increase and decrease in patient group. In addition, the changes of dynamic metric were found to be correlated with epilepsy duration. SIGNIFICANT Our findings imply abnormal interactions and the state dynamics in DMN of the children with GTCS. These disruptions of temporal dynamic in DMN may provide significance for understanding the neural mechanism underlying the GTCS in children and suggest that dFC method can be considered as a valuable tool in children with epilepsy.
Collapse
Affiliation(s)
- Yongxin Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Bing Qin
- Epilepsy Center and Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qian Chen
- Department of Pediatric Neurosurgery, Shenzhen Children's Hospital, Shenzhen, China
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
15
|
Wang J, Wang K, Liu T, Wang L, Suo D, Xie Y, Funahashi S, Wu J, Pei G. Abnormal Dynamic Functional Networks in Subjective Cognitive Decline and Alzheimer's Disease. Front Comput Neurosci 2022; 16:885126. [PMID: 35586480 PMCID: PMC9108158 DOI: 10.3389/fncom.2022.885126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Subjective cognitive decline (SCD) is considered to be the preclinical stage of Alzheimer's disease (AD) and has the potential for the early diagnosis and intervention of AD. It was implicated that CSF-tau, which increases very early in the disease process in AD, has a high sensitivity and specificity to differentiate AD from normal aging, and the highly connected brain regions behaved more tau burden in patients with AD. Thus, a highly connected state measured by dynamic functional connectivity may serve as the early changes of AD. In this study, forty-five normal controls (NC), thirty-six individuals with SCD, and thirty-five patients with AD were enrolled to obtain the resting-state functional magnetic resonance imaging scanning. Sliding windows, Pearson correlation, and clustering analysis were combined to investigate the different levels of information transformation states. Three states, namely, the low state, the middle state, and the high state, were characterized based on the strength of functional connectivity between each pair of brain regions. For the global dynamic functional connectivity analysis, statistically significant differences were found among groups in the three states, and the functional connectivity in the middle state was positively correlated with cognitive scales. Furthermore, the whole brain was parcellated into four networks, namely, default mode network (DMN), cognitive control network (CCN), sensorimotor network (SMN), and occipital-cerebellum network (OCN). For the local network analysis, statistically significant differences in CCN for low state and SMN for middle state and high state were found in normal controls and patients with AD. Meanwhile, the differences were also found in normal controls and individuals with SCD. In addition, the functional connectivity in SMN for high state was positively correlated with cognitive scales. Converging results showed the changes in dynamic functional states in individuals with SCD and patients with AD. In addition, the changes were mainly in the high strength of the functional connectivity state.
Collapse
Affiliation(s)
- Jue Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kexin Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Tiantian Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Li Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Dingjie Suo
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yunyan Xie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shintaro Funahashi
- Kokoro Research Center, Kyoto University, Kyoto, Japan
- Laboratory of Cognitive Brain Science, Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China
- *Correspondence: Jinglong Wu
| | - Guangying Pei
- School of Life Science, Beijing Institute of Technology, Beijing, China
- Guangying Pei
| |
Collapse
|
16
|
Jun S, Alderson TH, Altmann A, Sadaghiani S. Dynamic trajectories of connectome state transitions are heritable. Neuroimage 2022; 256:119274. [PMID: 35504564 PMCID: PMC9223440 DOI: 10.1016/j.neuroimage.2022.119274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
The brain’s functional connectome is dynamic, constantly reconfiguring in an individual-specific manner. However, which characteristics of such reconfigurations are subject to genetic effects, and to what extent, is largely unknown. Here, we identified heritable dynamic features, quantified their heritability, and determined their association with cognitive phenotypes. In resting-state fMRI, we obtained multivariate features, each describing a temporal or spatial characteristic of connectome dynamics jointly over a set of connectome states. We found strong evidence for heritability of temporal features, particularly, Fractional Occupancy (FO) and Transition Probability (TP), representing the duration spent in each connectivity configuration and the frequency of shifting between configurations, respectively. These effects were robust against methodological choices of number of states and global signal regression. Genetic effects explained a substantial proportion of phenotypic variance of these features (h2 = 0.39, 95% CI = [.24,.54] for FO; h2 = 0. 43, 95% CI = [.29,.57] for TP). Moreover, these temporal phenotypes were associated with cognitive performance. Contrarily, we found no robust evidence for heritability of spatial features of the dynamic states (i.e., states’ Modularity and connectivity pattern). Genetic effects may therefore primarily contribute to how the connectome transitions across states, rather than the precise spatial instantiation of the states in individuals. In sum, genetic effects impact the dynamic trajectory of state transitions (captured by FO and TP), and such temporal features may act as endophenotypes for cognitive abilities.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 618201; Psychology Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Thomas H Alderson
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 618201
| | - Andre Altmann
- Centre for Medical Image Computing (CMIC), Department of Medical Physics, University College London, London, UK
| | - Sepideh Sadaghiani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 618201; Psychology Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.
| |
Collapse
|
17
|
Yang H, Zhang H, Meng C, Wohlschläger A, Brandl F, Di X, Wang S, Tian L, Biswal B. Frequency-specific coactivation patterns in resting-state and their alterations in schizophrenia: An fMRI study. Hum Brain Mapp 2022; 43:3792-3808. [PMID: 35475569 PMCID: PMC9294298 DOI: 10.1002/hbm.25884] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/05/2022] [Accepted: 04/05/2022] [Indexed: 11/09/2022] Open
Abstract
The resting‐state human brain is a dynamic system that shows frequency‐dependent characteristics. Recent studies demonstrate that coactivation pattern (CAP) analysis can identify recurring brain states with similar coactivation configurations. However, it is unclear whether and how CAPs depend on the frequency bands. The current study investigated the spatial and temporal characteristics of CAPs in the four frequency sub‐bands from slow‐5 (0.01–0.027 Hz), slow‐4 (0.027–0.073 Hz), slow‐3 (0.073–0.198 Hz), to slow‐2 (0.198–0.25 Hz), in addition to the typical low‐frequency range (0.01–0.08 Hz). In the healthy subjects, six CAP states were obtained at each frequency band in line with our prior study. Similar spatial patterns with the typical range were observed in slow‐5, 4, and 3, but not in slow‐2. While the frequency increased, all CAP states displayed shorter persistence, which caused more between‐state transitions. Specifically, from slow‐5 to slow‐4, the coactivation not only changed significantly in distributed cortical networks, but also increased in the basal ganglia as well as the amygdala. Schizophrenia patients showed significant alteration in the persistence of CAPs of slow‐5. Using leave‐one‐pair‐out, hold‐out and resampling validations, the highest classification accuracy (84%) was achieved by slow‐4 among different frequency bands. In conclusion, our findings provide novel information about spatial and temporal characteristics of CAP states at different frequency bands, which contributes to a better understanding of the frequency aspect of biomarkers for schizophrenia and other disorders.
Collapse
Affiliation(s)
- Hang Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chun Meng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Afra Wohlschläger
- Department of Neuroradiology, TUM-Neuroimaging Center, Technical University of Munich (TUM), Munich, Germany
| | - Felix Brandl
- Department of Psychiatry, TUM-Neuroimaging Center, Technical University of Munich (TUM), Munich, Germany
| | - Xin Di
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Shuai Wang
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Lin Tian
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
18
|
Functional cortical associations and their intraclass correlations and heritability as revealed by the fMRI Human Connectome Project. Exp Brain Res 2022; 240:1459-1469. [PMID: 35292842 DOI: 10.1007/s00221-022-06346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/04/2022] [Indexed: 11/04/2022]
Abstract
We report on the functional connectivity (FC), its intraclass correlation (ICC), and heritability among 70 areas of the human cerebral cortex. FC was estimated as the Pearson correlation between averaged prewhitened Blood Oxygenation Level-Dependent time series of cortical areas in 988 young adult participants in the Human Connectome Project. Pairs of areas were assigned to three groups, namely homotopic (same area in the two hemispheres), ipsilateral (both areas in the same hemisphere), and heterotopic (nonhomotopic areas in different hemispheres). ICC for each pair of areas was computed for six genetic groups, namely monozygotic (MZ) twins, dizygotic (DZ) twins, singleton siblings of MZ twins (MZsb), singleton siblings of DZ twins (DZsb), non-twin siblings (SB), and unrelated individuals (UNR). With respect to FC, we found the following. (a) Homotopic FC was stronger than ipsilateral and heterotopic FC; (b) average FCs of left and right cortical areas were highly and positively correlated; and (c) FC varied in a systematic fashion along the anterior-posterior and inferior-superior dimensions, such that it increased from anterior to posterior and from inferior to superior. With respect to ICC, we found the following. (a) Homotopic ICC was significantly higher than ipsilateral and heterotopic ICC, but the latter two did not differ significantly from each other; (b) ICC was highest for MZ twins; (c) ICC of DZ twins was significantly lower than that of the MZ twins and higher than that of the three sibling groups (MZsb, DZsb, SB); and (d) ICC was close to zero for UNR. Finally, with respect to heritability, it was highest for homotopic areas, followed by ipsilateral, and heterotopic; however, it did not differ statistically significantly from each other.
Collapse
|
19
|
Ma L, Yuan T, Li W, Guo L, Zhu D, Wang Z, Liu Z, Xue K, Wang Y, Liu J, Man W, Ye Z, Liu F, Wang J. Dynamic Functional Connectivity Alterations and Their Associated Gene Expression Pattern in Autism Spectrum Disorders. Front Neurosci 2022; 15:794151. [PMID: 35082596 PMCID: PMC8784878 DOI: 10.3389/fnins.2021.794151] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a group of heterogeneous neurodevelopmental disorders that are highly heritable and are associated with impaired dynamic functional connectivity (DFC). However, the molecular mechanisms behind DFC alterations remain largely unknown. Eighty-eight patients with ASDs and 87 demographically matched typical controls (TCs) from the Autism Brain Imaging Data Exchange II database were included in this study. A seed-based sliding window approach was then performed to investigate the DFC changes in each of the 29 seeds in 10 classic resting-state functional networks and the whole brain. Subsequently, the relationships between DFC alterations in patients with ASDs and their symptom severity were assessed. Finally, transcription-neuroimaging association analyses were conducted to explore the molecular mechanisms of DFC disruptions in patients with ASDs. Compared with TCs, patients with ASDs showed significantly increased DFC between the right dorsolateral prefrontal cortex (DLPFC) and left fusiform/lingual gyrus, between the DLPFC and the superior temporal gyrus, between the right frontal eye field (FEF) and left middle frontal gyrus, between the FEF and the right angular gyrus, and between the left intraparietal sulcus and the right middle temporal gyrus. Moreover, significant relationships between DFC alterations and symptom severity were observed. Furthermore, the genes associated with DFC changes in ASDs were identified by performing gene-wise across-sample spatial correlation analysis between gene expression extracted from six donors’ brain of the Allen Human Brain Atlas and case-control DFC difference. In enrichment analysis, these genes were enriched for processes associated with synaptic signaling and voltage-gated ion channels and calcium pathways; also, these genes were highly expressed in autistic disorder, chronic alcoholic intoxication and several disorders related to depression. These results not only demonstrated higher DFC in patients with ASDs but also provided novel insight into the molecular mechanisms underlying these alterations.
Collapse
Affiliation(s)
- Lin Ma
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Tengfei Yuan
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Dan Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Department of Radiology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Zirui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhixuan Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaoyi Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiawei Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Weiqi Man
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Zhaoxiang Ye,
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Feng Liu,
| | - Junping Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Junping Wang,
| |
Collapse
|
20
|
Chumin EJ, Risacher SL, West JD, Apostolova LG, Farlow MR, McDonald BC, Wu YC, Saykin AJ, Sporns O. Temporal stability of the ventral attention network and general cognition along the Alzheimer's disease spectrum. Neuroimage Clin 2021; 31:102726. [PMID: 34153687 PMCID: PMC8220588 DOI: 10.1016/j.nicl.2021.102726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 02/01/2023]
Abstract
Understanding the interrelationships of clinical manifestations of Alzheimer's disease (AD) and functional connectivity (FC) as the disease progresses is necessary for use of FC as a potential neuroimaging biomarker. Degradation of resting-state networks in AD has been observed when FC is estimated over the entire scan, however, the temporal dynamics of these networks are less studied. We implemented a novel approach to investigate the modular structure of static (sFC) and time-varying (tvFC) connectivity along the AD spectrum in a two-sample Discovery/Validation design (n = 80 and 81, respectively). Cortical FC networks were estimated across 4 diagnostic groups (cognitively normal, subjective cognitive decline, mild cognitive impairment, and AD) for whole scan (sFC) and with sliding window correlation (tvFC). Modularity quality (across a range of spatial scales) did not differ in either sFC or tvFC. For tvFC, group differences in temporal stability within and between multiple resting state networks were observed; however, these differences were not consistent between samples. Correlation analyses identified a relationship between global cognition and temporal stability of the ventral attention network, which was reproduced in both samples. While the ventral attention system has been predominantly studied in task-evoked designs, the relationship between its intrinsic dynamics at-rest and general cognition along the AD spectrum highlights its relevance regarding clinical manifestation of the disease.
Collapse
Affiliation(s)
- Evgeny J. Chumin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA,Indiana University Network Science Institute, Bloomington, IN, USA,Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, USA,Corresponding author at: Psychology Building 308, 1101 E 10th St, Bloomington, IN 47405, USA.
| | - Shannon L. Risacher
- Indiana University Network Science Institute, Bloomington, IN, USA,Department of Radiology and Imaging Sciences, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA,Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, USA,Department of Neurology, IUSM, Indianapolis, IN, USA
| | - John D. West
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA,Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, USA
| | - Liana G. Apostolova
- Indiana University Network Science Institute, Bloomington, IN, USA,Department of Radiology and Imaging Sciences, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA,Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, USA,Department of Neurology, IUSM, Indianapolis, IN, USA
| | - Martin R. Farlow
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, USA,Department of Neurology, IUSM, Indianapolis, IN, USA
| | - Brenna C. McDonald
- Indiana University Network Science Institute, Bloomington, IN, USA,Department of Radiology and Imaging Sciences, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA,Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, USA,Department of Neurology, IUSM, Indianapolis, IN, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA,Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, USA
| | - Andrew J. Saykin
- Indiana University Network Science Institute, Bloomington, IN, USA,Department of Radiology and Imaging Sciences, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA,Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, USA,Department of Neurology, IUSM, Indianapolis, IN, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA,Indiana University Network Science Institute, Bloomington, IN, USA,Department of Radiology and Imaging Sciences, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA,Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, USA
| |
Collapse
|