1
|
Deng Q, Wu C, Parker E, Zhu J, Liu TCY, Duan R, Yang L. Mystery of gamma wave stimulation in brain disorders. Mol Neurodegener 2024; 19:96. [PMID: 39695746 DOI: 10.1186/s13024-024-00785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Neuronal oscillations refer to rhythmic and periodic fluctuations of electrical activity in the central nervous system that arise from the cellular properties of diverse neuronal populations and their interactions. Specifically, gamma oscillations play a crucial role in governing the connectivity between distinct brain regions, which are essential in perception, motor control, memory, and emotions. In this context, we recapitulate various current stimulation methods to induce gamma entrainment. These methods include sensory stimulation, optogenetic modulation, photobiomodulation, and transcranial electrical or magnetic stimulation. Simultaneously, we explore the association between abnormal gamma oscillations and central nervous system disorders such as Alzheimer's disease, Parkinson's disease, stroke, schizophrenia, and autism spectrum disorders. Evidence suggests that gamma entrainment-inducing stimulation methods offer notable neuroprotection, although somewhat controversial. This review comprehensively discusses the functional role of gamma oscillations in higher-order brain activities from both physiological and pathological perspectives, emphasizing gamma entrainment as a potential therapeutic approach for neuropsychiatric disorders. Additionally, we discuss future opportunities and challenges in implementing such strategies.
Collapse
Affiliation(s)
- Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Emily Parker
- Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Jing Zhu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
McKeon SD, Perica MI, Calabro FJ, Foran W, Hetherington H, Moon CH, Luna B. Prefrontal excitation/inhibition balance supports adolescent enhancements in circuit signal to noise ratio. Prog Neurobiol 2024; 243:102695. [PMID: 39622336 DOI: 10.1016/j.pneurobio.2024.102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/18/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
The development and refinement of neuronal circuitry allow for stabilized and efficient neural recruitment, supporting adult-like behavioral performance. During adolescence, the maturation of PFC is proposed to be a critical period (CP) for executive function, driven by a break in balance between glutamatergic excitation and GABAergic inhibition (E/I) neurotransmission. During CPs, cortical circuitry fine-tunes to improve information processing and reliable responses to stimuli, shifting from spontaneous to evoked activity, enhancing the SNR, and promoting neural synchronization. Harnessing 7 T MR spectroscopy and EEG in a longitudinal cohort (N = 164, ages 10-32 years, 283 neuroimaging sessions), we outline associations between age-related changes in glutamate and GABA neurotransmitters and EEG measures of cortical SNR. We find developmental decreases in spontaneous activity and increases in cortical SNR during our auditory steady state task using 40 Hz stimuli. Decreases in spontaneous activity were associated with glutamate levels in DLPFC, while increases in cortical SNR were associated with more balanced Glu and GABA levels. These changes were associated with improvements in working memory performance. This study provides evidence of CP plasticity in the human PFC during adolescence, leading to stabilized circuitry that allows for the optimal recruitment and integration of multisensory input, resulting in improved executive function.
Collapse
Affiliation(s)
- Shane D McKeon
- Department of Bioengineering, University of Pittsburgh, PA, USA; The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA.
| | - Maria I Perica
- The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA; Department of Psychology, University of Pittsburgh, PA, USA
| | - Finnegan J Calabro
- Department of Bioengineering, University of Pittsburgh, PA, USA; The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, PA, USA
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, PA, USA
| | - Hoby Hetherington
- Resonance Research Incorporated, Billerica, MA, USA; Department of Radiology, University of Missouri, Columbia, MO, USA
| | - Chan-Hong Moon
- Department of Radiology, University of Pittsburgh, PA, USA
| | - Beatriz Luna
- The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, PA, USA.
| |
Collapse
|
3
|
McKeon SD, Perica MI, Calabro FJ, Foran W, Hetherington H, Moon CH, Luna B. Prefrontal Excitation/ Inhibition Balance Supports Adolescent Enhancements in Circuit Signal to Noise Ratio. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608100. [PMID: 39229165 PMCID: PMC11370379 DOI: 10.1101/2024.08.15.608100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The development and refinement of neuronal circuitry allow for stabilized and efficient neural recruitment, supporting adult-like behavioral performance. During adolescence, the maturation of PFC is proposed to be a critical period (CP) for executive function, driven by a break in balance between glutamatergic excitation and GABAergic inhibition (E/I) neurotransmission. During CPs, cortical circuitry fine-tunes to improve information processing and reliable responses to stimuli, shifting from spontaneous to evoked activity, enhancing the SNR, and promoting neural synchronization. Harnessing 7T MR spectroscopy and EEG in a longitudinal cohort (N = 164, ages 10-32 years, 283 neuroimaging sessions), we outline associations between age-related changes in glutamate and GABA neurotransmitters and EEG measures of cortical SNR. We find developmental decreases in spontaneous activity and increases in cortical SNR during our auditory steady state task using 40 Hz stimuli. Decreases in spontaneous activity were associated with glutamate levels in DLPFC, while increases in cortical SNR were associated with more balanced Glu and GABA levels. These changes were associated with improvements in working memory performance. This study provides evidence of CP plasticity in the human PFC during adolescence, leading to stabilized circuitry that allows for the optimal recruitment and integration of multisensory input, resulting in improved executive function.
Collapse
Affiliation(s)
- Shane D. McKeon
- Department of Bioengineering, University of Pittsburgh, PA, USA
- The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA
| | - Maria I. Perica
- The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, PA, USA
| | - Finnegan J. Calabro
- Department of Bioengineering, University of Pittsburgh, PA, USA
- The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, PA, USA
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, PA, USA
| | - Hoby Hetherington
- Resonance Research Incorporated, Billerica, MA, USA
- Department of Radiology, University of Missouri, Columbia, MO, USA
| | - Chan-Hong Moon
- Department of Radiology, University of Pittsburgh, PA, USA
| | - Beatriz Luna
- The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, PA, USA
| |
Collapse
|
4
|
Isik OG, Cassim TZ, Ahmed MT, Kreuzer M, Daramola AM, Garcia PS. Effect of transcranial direct current stimulation and narrow-band auditory stimulation on the intraoperative electroencephalogram: an exploratoratory feasibility study. Front Psychiatry 2024; 15:1362749. [PMID: 39081532 PMCID: PMC11286499 DOI: 10.3389/fpsyt.2024.1362749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction During general anesthesia, frontal electroencephalogram (EEG) activity in the alpha frequency band (8-12 Hz) correlates with the adequacy of analgesia. Transcranial direct current stimulation (tDCS) and auditory stimulation, two noninvasive neuromodulation techniques, can entrain alpha activity in awake or sleeping patients. This study evaluates their effects on alpha oscillations in patients under general anesthesia. Methods 30 patients receiving general anesthesia for surgery were enrolled in this two-by-two randomized clinical trial. Each participant received active or sham tDCS followed by auditory stimulation or silence according to assigned group (TDCS/AUD, TDCS/SIL, SHAM/AUD, SHAM/SIL). Frontal EEG was recorded before and after neuromodulation. Patients with burst suppression, mid-study changes in anesthetic, or incomplete EEG recordings were excluded from analysis. The primary outcome was post-stimulation change in oscillatory alpha power, compared in each intervention group against the change in the control group SHAM/SIL by Wilcoxon Rank Sum testing. Results All 30 enrolled participants completed the study. Of the 22 included for analysis, 8 were in TDCS/AUD, 4 were in TDCS/SIL, 5 were in SHAM/AUD, and 5 were in SHAM/SIL. The median change in oscillatory alpha power was +4.7 dB (IQR 4.4, 5.8 dB) in SHAM/SIL, +2.8 dB (IQR 1.5, 8.9 dB) in TDCS/SIL (p = 0.730), +5.5 dB in SHAM/AUD (p = 0.421), and -6.1 dB (IQR -10.2, -2.2 dB) in TDCS/AUD (p = 0.045). Conclusion tDCS and auditory stimulation can be administered safely intraoperatively. However, these interventions did not increase alpha power as administered and measured in this pilot study.
Collapse
Affiliation(s)
- Oliver G. Isik
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Tuan Z. Cassim
- Department of Psychology, School of Social and Behavioral Science, University of Utah, Salt Lake City, UT, United States
| | - Meah T. Ahmed
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Alice M. Daramola
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Paul S. Garcia
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
5
|
Toso A, Wermuth AP, Arazi A, Braun A, Jong TG', Uhlhaas PJ, Donner TH. 40 Hz Steady-State Response in Human Auditory Cortex Is Shaped by Gabaergic Neuronal Inhibition. J Neurosci 2024; 44:e2029232024. [PMID: 38670804 PMCID: PMC11170946 DOI: 10.1523/jneurosci.2029-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 04/28/2024] Open
Abstract
The 40 Hz auditory steady-state response (ASSR), an oscillatory brain response to periodically modulated auditory stimuli, is a promising, noninvasive physiological biomarker for schizophrenia and related neuropsychiatric disorders. The 40 Hz ASSR might be amplified by synaptic interactions in cortical circuits, which are, in turn, disturbed in neuropsychiatric disorders. Here, we tested whether the 40 Hz ASSR in the human auditory cortex depends on two key synaptic components of neuronal interactions within cortical circuits: excitation via N-methyl-aspartate glutamate (NMDA) receptors and inhibition via gamma-amino-butyric acid (GABA) receptors. We combined magnetoencephalography (MEG) recordings with placebo-controlled, low-dose pharmacological interventions in the same healthy human participants (13 males, 7 females). All participants exhibited a robust 40 Hz ASSR in auditory cortices, especially in the right hemisphere, under a placebo. The GABAA receptor-agonist lorazepam increased the amplitude of the 40 Hz ASSR, while no effect was detectable under the NMDA blocker memantine. Our findings indicate that the 40 Hz ASSR in the auditory cortex involves synaptic (and likely intracortical) inhibition via the GABAA receptor, thus highlighting its utility as a mechanistic signature of cortical circuit dysfunctions involving GABAergic inhibition.
Collapse
Affiliation(s)
- Alessandro Toso
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg- Eppendorf, Hamburg 20251, Germany
| | - Annika P Wermuth
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg- Eppendorf, Hamburg 20251, Germany
| | - Ayelet Arazi
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg- Eppendorf, Hamburg 20251, Germany
| | - Anke Braun
- Department of Psychiatry, Charité Universitätsmedizin, Berlin 10117, Germany
| | - Tineke Grent-'t Jong
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, United Kingdom
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin 13353, Germany
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, United Kingdom
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin 13353, Germany
| | - Tobias H Donner
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg- Eppendorf, Hamburg 20251, Germany
| |
Collapse
|
6
|
Neklyudova A, Kuramagomedova R, Voinova V, Sysoeva O. Atypical brain responses to 40-Hz click trains in girls with Rett syndrome: Auditory steady-state response and sustained wave. Psychiatry Clin Neurosci 2024; 78:282-290. [PMID: 38321640 DOI: 10.1111/pcn.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024]
Abstract
AIM The current study aimed to infer neurophysiological mechanisms of auditory processing in children with Rett syndrome (RTT)-rare neurodevelopmental disorders caused by MECP2 mutations. We examined two brain responses elicited by 40-Hz click trains: auditory steady-state response (ASSR), which reflects fine temporal analysis of auditory input, and sustained wave (SW), which is associated with integral processing of the auditory signal. METHODS We recorded electroencephalogram findings in 43 patients with RTT (aged 2.92-17.1 years) and 43 typically developing children of the same age during 40-Hz click train auditory stimulation, which lasted for 500 ms and was presented with interstimulus intervals of 500 to 800 ms. Mixed-model ancova with age as a covariate was used to compare amplitude of ASSR and SW between groups, taking into account the temporal dynamics and topography of the responses. RESULTS Amplitude of SW was atypically small in children with RTT starting from early childhood, with the difference from typically developing children decreasing with age. ASSR showed a different pattern of developmental changes: the between-group difference was negligible in early childhood but increased with age as ASSR increased in the typically developing group, but not in those with RTT. Moreover, ASSR was associated with expressive speech development in patients, so that children who could use words had more pronounced ASSR. CONCLUSION ASSR and SW show promise as noninvasive electrophysiological biomarkers of auditory processing that have clinical relevance and can shed light onto the link between genetic impairment and the RTT phenotype.
Collapse
Affiliation(s)
- Anastasia Neklyudova
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow, Russia
| | - Rabiat Kuramagomedova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov, Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia
| | - Victoria Voinova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov, Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia
| | - Olga Sysoeva
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow, Russia
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| |
Collapse
|
7
|
Koshiyama D, Nishimura R, Usui K, Fujioka M, Tada M, Kirihara K, Araki T, Kawakami S, Okada N, Koike S, Yamasue H, Abe O, Kasai K. Cortical white matter microstructural alterations underlying the impaired gamma-band auditory steady-state response in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:32. [PMID: 38472253 DOI: 10.1038/s41537-024-00454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
The gamma-band auditory steady-state response (ASSR), primarily generated from the auditory cortex, has received substantial attention as a potential brain marker indicating the pathophysiology of schizophrenia. Previous studies have shown reduced gamma-band ASSR in patients with schizophrenia and demonstrated correlations with impaired neurocognition and psychosocial functioning. Recent studies in clinical and healthy populations have suggested that the neural substrates of reduced gamma-band ASSR may be distributed throughout the cortices surrounding the auditory cortex, especially in the right hemisphere. This study aimed to investigate associations between the gamma-band ASSR and white matter alterations in the bundles broadly connecting the right frontal, parietal and occipital cortices to clarify the networks underlying reduced gamma-band ASSR in patients with schizophrenia. We measured the 40 Hz ASSR using electroencephalography and diffusion tensor imaging in 42 patients with schizophrenia and 22 healthy comparison subjects. The results showed that the gamma-band ASSR was positively correlated with fractional anisotropy (an index of white matter integrity) in the regions connecting the right frontal, parietal and occipital cortices in healthy subjects (β = 0.41, corrected p = 0.075, uncorrected p = 0.038) but not in patients with schizophrenia (β = 0.17, corrected p = 0.46, uncorrected p = 0.23). These findings support our hypothesis that the generation of gamma-band ASSR is supported by white matter bundles that broadly connect the cortices and that these relationships may be disrupted in schizophrenia. Our study may help characterize and interpret reduced gamma-band ASSR as a useful brain marker of schizophrenia.
Collapse
Affiliation(s)
- Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryoichi Nishimura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kaori Usui
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Community Mental Health and Law, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mao Fujioka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mariko Tada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Kenji Kirihara
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Disablity Services Office, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Araki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Psychiatry, Teikyo University Hospital, Kawasaki, Japan
| | - Shintaro Kawakami
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- The International Research Center for Neurointelligence (WPI-IRCN) at Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
8
|
Takasago M, Kunii N, Fujitani S, Ishishita Y, Tada M, Kirihara K, Komatsu M, Uka T, Shimada S, Nagata K, Kasai K, Saito N. Auditory prediction errors in sound frequency and duration generated different cortical activation patterns in the human brain: an ECoG study. Cereb Cortex 2024; 34:bhae072. [PMID: 38466116 DOI: 10.1093/cercor/bhae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
Sound frequency and duration are essential auditory components. The brain perceives deviations from the preceding sound context as prediction errors, allowing efficient reactions to the environment. Additionally, prediction error response to duration change is reduced in the initial stages of psychotic disorders. To compare the spatiotemporal profiles of responses to prediction errors, we conducted a human electrocorticography study with special attention to high gamma power in 13 participants who completed both frequency and duration oddball tasks. Remarkable activation in the bilateral superior temporal gyri in both the frequency and duration oddball tasks were observed, suggesting their association with prediction errors. However, the response to deviant stimuli in duration oddball task exhibited a second peak, which resulted in a bimodal response. Furthermore, deviant stimuli in frequency oddball task elicited a significant response in the inferior frontal gyrus that was not observed in duration oddball task. These spatiotemporal differences within the Parasylvian cortical network could account for our efficient reactions to changes in sound properties. The findings of this study may contribute to unveiling auditory processing and elucidating the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- Megumi Takasago
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoto Kunii
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Neurosurgery, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Shigeta Fujitani
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yohei Ishishita
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Neurosurgery, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Mariko Tada
- Department of Neuropsychiatry, The University of Tokyo, Tokyo 113-0033, Japan
- Office for Mental Health Support, Center for Research on Counseling and Support Services, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kenji Kirihara
- Department of Neuropsychiatry, The University of Tokyo, Tokyo 113-0033, Japan
- Disability Services Office, The University of Tokyo, Tokyo 113-0033, Japan
| | - Misako Komatsu
- Institution of Innovative Research, Tokyo Institute of Technology, Tokyo 226-8503, Japan
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama 351-0198, Japan
| | - Takanori Uka
- Department of Integrative Physiology, Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Seijiro Shimada
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0033, Japan
| | - Keisuke Nagata
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, The University of Tokyo, Tokyo 113-0033, Japan
- The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo 113-0033, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Tada M, Kirihara K, Nagai T, Koike S, Araki T, Kasai K. Gamma-band harmonic responses for beta-band auditory steady-state response are intact in patients with early stage schizophrenia. Neuropsychopharmacol Rep 2024; 44:240-245. [PMID: 38013609 PMCID: PMC10932762 DOI: 10.1002/npr2.12392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023] Open
Abstract
Gamma oscillations, thought to arise from the activity of ɣ-aminobutyric acid (GABA)ergic interneurons, have potential as a biomarker for schizophrenia. Gamma-band auditory steady-state responses (ASSRs) are notably reduced in both chronic and early-stage schizophrenia patients. Furthermore, alterations in gamma-band ASSRs have been demonstrated in animal models through translational research. However, the 40-Hz harmonic responses of the 20-Hz ASSR are not as well-characterized, despite the possibility that these harmonic oscillatory responses may reflect resonant activity in neural circuits. In this study, we investigated the 40-Hz harmonic response to the 20-Hz ASSR in the early stages of schizophrenia. The study recruited 49 participants, including 15 individuals at ultra-high-risk (UHR) for psychosis, 13 patients with first-episode schizophrenia (FES), and 21 healthy controls (HCs). The 40-Hz harmonic responses of the 20-Hz ASSR were evident in all groups. Interestingly, while previous report observed reduced 40-Hz ASSRs, the 40-Hz harmonic responses of the 20-Hz ASSR were not reduced in the UHR or FES groups. These findings suggest that the gamma-band ASSR and its harmonic responses may represent distinct aspects of pathophysiology in the early stages of schizophrenia.
Collapse
Affiliation(s)
- Mariko Tada
- Department of NeuropsychiatryThe University of Tokyo HospitalTokyoJapan
- International Research Center for Neurointelligence (WPI‐IRCN), UTIASThe University of TokyoTokyoJapan
- Office for Mental Health SupportCenter for Research on Counseling and Support ServicesThe University of TokyoTokyoJapan
| | - Kenji Kirihara
- Department of NeuropsychiatryThe University of Tokyo HospitalTokyoJapan
- Disability Services OfficeThe University of TokyoTokyoJapan
| | - Tatsuya Nagai
- Department of NeuropsychiatryThe University of Tokyo HospitalTokyoJapan
| | - Shinsuke Koike
- Department of NeuropsychiatryThe University of Tokyo HospitalTokyoJapan
- International Research Center for Neurointelligence (WPI‐IRCN), UTIASThe University of TokyoTokyoJapan
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM)TokyoJapan
- Center for Evolutionary Cognitive SciencesGraduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Tsuyoshi Araki
- Department of NeuropsychiatryThe University of Tokyo HospitalTokyoJapan
- Department of PsychiatryTeikyo University HospitalKanagawaJapan
| | - Kiyoto Kasai
- Department of NeuropsychiatryThe University of Tokyo HospitalTokyoJapan
- International Research Center for Neurointelligence (WPI‐IRCN), UTIASThe University of TokyoTokyoJapan
| |
Collapse
|
10
|
Kobayashi K, Shiba Y, Honda S, Nakajima S, Fujii S, Mimura M, Noda Y. Short-Term Effect of Auditory Stimulation on Neural Activities: A Scoping Review of Longitudinal Electroencephalography and Magnetoencephalography Studies. Brain Sci 2024; 14:131. [PMID: 38391706 PMCID: PMC10887208 DOI: 10.3390/brainsci14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/24/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Explored through EEG/MEG, auditory stimuli function as a suitable research probe to reveal various neural activities, including event-related potentials, brain oscillations and functional connectivity. Accumulating evidence in this field stems from studies investigating neuroplasticity induced by long-term auditory training, specifically cross-sectional studies comparing musicians and non-musicians as well as longitudinal studies with musicians. In contrast, studies that address the neural effects of short-term interventions whose duration lasts from minutes to hours are only beginning to be featured. Over the past decade, an increasing body of evidence has shown that short-term auditory interventions evoke rapid changes in neural activities, and oscillatory fluctuations can be observed even in the prestimulus period. In this scoping review, we divided the extracted neurophysiological studies into three groups to discuss neural activities with short-term auditory interventions: the pre-stimulus period, during stimulation, and a comparison of before and after stimulation. We show that oscillatory activities vary depending on the context of the stimuli and are greatly affected by the interplay of bottom-up and top-down modulational mechanisms, including attention. We conclude that the observed rapid changes in neural activitiesin the auditory cortex and the higher-order cognitive part of the brain are causally attributed to short-term auditory interventions.
Collapse
Affiliation(s)
- Kanon Kobayashi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yasushi Shiba
- Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shinya Fujii
- Faculty of Environment and Information Studies, Keio University, Fujisawa 252-0816, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
11
|
Zouaoui I, Dumais A, Lavoie ME, Potvin S. Auditory Steady-State Responses in Schizophrenia: An Updated Meta-Analysis. Brain Sci 2023; 13:1722. [PMID: 38137170 PMCID: PMC10741772 DOI: 10.3390/brainsci13121722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
This meta-analysis investigates auditory steady-state responses (ASSRs) as potential biomarkers of schizophrenia, focusing on previously unexplored clinical populations, frequencies, and variables. We examined 37 studies, encompassing a diverse cohort of 1788 patients with schizophrenia, including 208 patients with first-episode psychosis, 281 at-risk individuals, and 1603 healthy controls. The results indicate moderate reductions in 40 Hz ASSRs in schizophrenia patients, with significantly greater reductions in first-episode psychosis patients and minimal changes in at-risk individuals. These results call into question the expected progression of ASSR alterations across all stages of schizophrenia. The analysis also revealed the sensitivity of ASSR alterations at 40 Hz to various factors, including stimulus type, level of analysis, and attentional focus. In conclusion, our research highlights ASSRs, particularly at 40 Hz, as potential biomarkers of schizophrenia, revealing varied implications across different stages of the disorder. This study enriches our understanding of ASSRs in schizophrenia, highlighting their potential diagnostic and therapeutic relevance, particularly in the early stages of the disease.
Collapse
Affiliation(s)
- Inès Zouaoui
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada; (I.Z.); (A.D.); (M.E.L.)
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Alexandre Dumais
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada; (I.Z.); (A.D.); (M.E.L.)
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Institut National de Psychiatrie Légale Philippe-Pinel, Montreal, QC H1C 1H1, Canada
| | - Marc E. Lavoie
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada; (I.Z.); (A.D.); (M.E.L.)
- Département de Sciences Humaines, Lettres et Communication, Université TÉLUQ, Montreal, QC G1K 9H6, Canada
| | - Stéphane Potvin
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada; (I.Z.); (A.D.); (M.E.L.)
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
12
|
Nakanishi S, Tamura S, Hirano S, Takahashi J, Kitajima K, Takai Y, Mitsudo T, Togao O, Nakao T, Onitsuka T, Hirano Y. Abnormal phase entrainment of low- and high-gamma-band auditory steady-state responses in schizophrenia. Front Neurosci 2023; 17:1277733. [PMID: 37942136 PMCID: PMC10627971 DOI: 10.3389/fnins.2023.1277733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Gamma-band oscillatory deficits have attracted considerable attention as promising biomarkers of schizophrenia (SZ). Notably, a reduced auditory steady-state response (ASSR) in the low gamma band (40 Hz) is widely recognized as a robust finding among SZ patients. However, a comprehensive investigation into the potential utility of the high-gamma-band ASSR in detecting altered neural oscillations in SZ has not yet been conducted. Methods The present study aimed to assess the ASSR using magnetoencephalography (MEG) data obtained during steady-state stimuli at frequencies of 20, 30, 40, and 80 Hz from 23 SZ patients and 21 healthy controls (HCs). To evaluate the ASSR, we examined the evoked power and phase-locking factor (PLF) in the time-frequency domain for both the primary and secondary auditory cortices. Furthermore, we calculated the phase-locking angle (PLA) to examine oscillatory phase lead or delay in SZ patients. Taking advantage of the high spatial resolution of MEG, we also focused on the hemispheric laterality of low- and high-gamma-band ASSR deficits in SZ. Results We found abnormal phase delay in the 40 Hz ASSR within the bilateral auditory cortex of SZ patients. Regarding the 80 Hz ASSR, our investigation identified an aberrant phase lead in the left secondary auditory cortex in SZ, accompanied by reduced evoked power in both auditory cortices. Discussion Given that abnormal phase lead on 80 Hz ASSR exhibited the highest discriminative power between HC and SZ, we propose that the examination of PLA in the 80 Hz ASSR holds significant promise as a robust candidate for identifying neurophysiological endophenotypes associated with SZ. Furthermore, the left-hemisphere phase lead observed in the deficits of 80 Hz PLA aligns with numerous prior studies, which have consistently proposed that SZ is characterized by left-lateralized brain dysfunctions.
Collapse
Affiliation(s)
- Shoichiro Nakanishi
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Tamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shogo Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junichi Takahashi
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazutoshi Kitajima
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshifumi Takai
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takako Mitsudo
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- National Hospital Organization Sakakibara Hospital, Mie, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Grent-'t-Jong T, Brickwedde M, Metzner C, Uhlhaas PJ. 40-Hz Auditory Steady-State Responses in Schizophrenia: Toward a Mechanistic Biomarker for Circuit Dysfunctions and Early Detection and Diagnosis. Biol Psychiatry 2023; 94:550-560. [PMID: 37086914 DOI: 10.1016/j.biopsych.2023.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/24/2023]
Abstract
There is converging evidence that 40-Hz auditory steady-state responses (ASSRs) are robustly impaired in schizophrenia and could constitute a potential biomarker for characterizing circuit dysfunctions as well as enable early detection and diagnosis. Here, we provide an overview of the mechanisms involved in 40-Hz ASSRs, drawing on computational, physiological, and pharmacological data with a focus on parameters modulating the balance between excitation and inhibition. We will then summarize findings from electro- and magnetoencephalographic studies in participants at clinical high risk for psychosis, patients with first-episode psychosis, and patients with schizophrenia to identify the pattern of deficits across illness stages, the relationship with clinical variables, and the prognostic potential. Finally, data on genetics and developmental modifications will be reviewed, highlighting the importance of late modifications of 40-Hz ASSRs during adolescence, which are closely related to the underlying changes in GABA (gamma-aminobutyric acid) interneurons. Together, our review suggests that 40-Hz ASSRs may constitute an informative electrophysiological approach to characterize circuit dysfunctions in psychosis that could be relevant for the development of mechanistic biomarkers.
Collapse
Affiliation(s)
- Tineke Grent-'t-Jong
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marion Brickwedde
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Metzner
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany; School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
14
|
Tada M, Kirihara K, Koshiyama D, Nagai T, Fujiouka M, Usui K, Satomura Y, Koike S, Sawada K, Matsuoka J, Morita K, Araki T, Kasai K. Alterations of auditory-evoked gamma oscillations are more pronounced than alterations of spontaneous power of gamma oscillation in early stages of schizophrenia. Transl Psychiatry 2023; 13:218. [PMID: 37365182 DOI: 10.1038/s41398-023-02511-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Several animal models of schizophrenia and patients with chronic schizophrenia have shown increased spontaneous power of gamma oscillations. However, the most robust alterations of gamma oscillations in patients with schizophrenia are reduced auditory-oscillatory responses. We hypothesized that patients with early-stage schizophrenia would have increased spontaneous power of gamma oscillations and reduced auditory-oscillatory responses. This study included 77 participants, including 27 ultra-high-risk (UHR) individuals, 19 patients with recent-onset schizophrenia (ROS), and 31 healthy controls (HCs). The auditory steady-state response (ASSR) and spontaneous power of gamma oscillations measured as induced power during the ASSR period were calculated using electroencephalography during 40-Hz auditory click-trains. The ASSRs were lower in the UHR and ROS groups than in the HC group, whereas the spontaneous power of gamma oscillations in the UHR and ROS groups did not significantly differ from power in the HC group. Both early-latency (0-100 ms) and late-latency (300-400 ms) ASSRs were significantly reduced and negatively correlated with the spontaneous power of gamma oscillations in the ROS group. In contrast, UHR individuals exhibited reduced late-latency ASSR and a correlation between the unchanged early-latency ASSR and the spontaneous power of gamma oscillations. ASSR was positively correlated with the hallucinatory behavior score in the ROS group. Correlation patterns between the ASSR and spontaneous power of gamma oscillations differed between the UHR and ROS groups, suggesting that the neural dynamics involved in non-stimulus-locked/task modulation change with disease progression and may be disrupted after psychosis onset.
Collapse
Affiliation(s)
- Mariko Tada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Office for Mental Health Support, Center for Research on Counseling and Support Services, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Kenji Kirihara
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsuya Nagai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mao Fujiouka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kaori Usui
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yoshihiro Satomura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shinsuke Koike
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Kingo Sawada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Office for Mental Health Support, Center for Research on Counseling and Support Services, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jun Matsuoka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kentaro Morita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tsuyoshi Araki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
15
|
Hirosawa T, Soma D, Miyagishi Y, Furutani N, Yoshimura Y, Kameya M, Yamaguchi Y, Yaoi K, Sano M, Kitamura K, Takahashi T, Kikuchi M. Effect of transcranial direct current stimulation on the functionality of 40 Hz auditory steady state response brain network: graph theory approach. Front Psychiatry 2023; 14:1156617. [PMID: 37363170 PMCID: PMC10288104 DOI: 10.3389/fpsyt.2023.1156617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Measuring whole-brain networks of the 40 Hz auditory steady state response (ASSR) is a promising approach to describe the after-effects of transcranial direct current stimulation (tDCS). The main objective of this study was to evaluate the effect of tDCS on the brain network of 40 Hz ASSR in healthy adult males using graph theory. The second objective was to identify a population in which tDCS effectively modulates the brain network of 40 Hz ASSR. Methods This study used a randomized, sham-controlled, double-blinded crossover approach. Twenty-five adult males (20-24 years old) completed two sessions at least 1 month apart. The participants underwent cathodal or sham tDCS of the dorsolateral prefrontal cortex, after which 40 Hz ASSR was measured using magnetoencephalography. After the signal sources were mapped onto the Desikan-Killiany brain atlas, the statistical relationships between localized activities were evaluated in terms of the debiased weighted phase lag index (dbWPLI). Weighted and undirected graphs were constructed for the tDCS and sham conditions based on the dbWPLI. Weighted characteristic path lengths and clustering coefficients were then measured and compared between the tDCS and sham conditions using mixed linear models. Results The characteristic path length was significantly lower post-tDCS simulation (p = 0.04) than after sham stimulation. This indicates that after tDCS simulation, the whole-brain networks of 40 Hz ASSR show a significant functional integration. Simple linear regression showed a higher characteristic path length at baseline, which was associated with a larger reduction in characteristic path length after tDCS. Hence, a pronounced effect of tDCS is expected for those who have a less functionally integrated network of 40 Hz ASSR. Discussion Given that the healthy brain is functionally integrated, we conclude that tDCS could effectively normalize less functionally integrated brain networks rather than enhance functional integration.
Collapse
Affiliation(s)
- Tetsu Hirosawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Daiki Soma
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yoshiaki Miyagishi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Naoki Furutani
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Faculty of Education, Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Masafumi Kameya
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yohei Yamaguchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Ken Yaoi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masuhiko Sano
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Koji Kitamura
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tetsuya Takahashi
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
16
|
Dondé C, Kantrowitz JT, Medalia A, Saperstein AM, Balla A, Sehatpour P, Martinez A, O'Connell MN, Javitt DC. Early auditory processing dysfunction in schizophrenia: Mechanisms and implications. Neurosci Biobehav Rev 2023; 148:105098. [PMID: 36796472 PMCID: PMC10106448 DOI: 10.1016/j.neubiorev.2023.105098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Schizophrenia is a major mental disorder that affects approximately 1% of the population worldwide. Cognitive deficits are a key feature of the disorder and a primary cause of long-term disability. Over the past decades, significant literature has accumulated demonstrating impairments in early auditory perceptual processes in schizophrenia. In this review, we first describe early auditory dysfunction in schizophrenia from both a behavioral and neurophysiological perspective and examine their interrelationship with both higher order cognitive constructs and social cognitive processes. Then, we provide insights into underlying pathological processes, especially in relationship to glutamatergic and N-methyl-D-aspartate receptor (NMDAR) dysfunction models. Finally, we discuss the utility of early auditory measures as both treatment targets for precision intervention and as translational biomarkers for etiological investigation. Altogether, this review points out the crucial role of early auditory deficits in the pathophysiology of schizophrenia, in addition to major implications for early intervention and auditory-targeted approaches.
Collapse
Affiliation(s)
- Clément Dondé
- Univ. Grenoble Alpes, F-38000 Grenoble, France; INSERM, U1216, F-38000 Grenoble, France; Psychiatry Department, CHU Grenoble Alpes, F-38000 Grenoble, France; Psychiatry Department, CH Alpes-Isère, F-38000 Saint-Egrève, France.
| | - Joshua T Kantrowitz
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States; Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States
| | - Alice Medalia
- New York State Psychiatric Institute, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York Presbyterian, New York, NY 10032, United States
| | - Alice M Saperstein
- New York State Psychiatric Institute, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York Presbyterian, New York, NY 10032, United States
| | - Andrea Balla
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Pejman Sehatpour
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Antigona Martinez
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Monica N O'Connell
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Daniel C Javitt
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
17
|
Ogyu K, Matsushita K, Honda S, Wada M, Tamura S, Takenouchi K, Tobari Y, Kusudo K, Kato H, Koizumi T, Arai N, Koreki A, Matsui M, Uchida H, Fujii S, Onaya M, Hirano Y, Mimura M, Nakajima S, Noda Y. Decrease in gamma-band auditory steady-state response in patients with treatment-resistant schizophrenia. Schizophr Res 2023; 252:129-137. [PMID: 36641960 DOI: 10.1016/j.schres.2023.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/26/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Thirty percent of patients with schizophrenia do not respond to non-clozapine antipsychotics and are termed treatment-resistant schizophrenia (TRS). The 40-Hz auditory steady-state response (ASSR) is a well-known to be reduced in patients with schizophrenia compared to healthy controls (HCs), suggesting impaired gamma oscillation in schizophrenia. Given no ASSR study on TRS, we aimed to examine the neurophysiological basis of TRS employing 40-Hz ASSR paradigm. METHOD We compared ASSR measures among HCs, patients with non-TRS, and patients with TRS. TRS criteria were defined by a score of 4 or higher on two items of the Positive and Negative Syndrome Scale (PANSS) positive symptoms despite standard antipsychotic treatment. Participants were examined for ASSR with 40-Hz click-train stimulus, and then time-frequency analysis was performed to calculate evoked power and phase-locking factor (PLF) of 40-Hz ASSR. RESULTS A total of 79 participants were included: 27 patients with TRS (PANSS = 92.6 ± 15.8); 27 patients with non-TRS (PANSS = 63.3 ± 14.7); and 25 HCs. Evoked power in 40-Hz ASSR was lower in the TRS group than in the HC group (F2,79 = 8.37, p = 0.015; TRS vs. HCs: p = 0.012, d = 1.1) while no differences in PLF were found between the groups. CONCLUSION These results suggest that glutamatergic and GABAergic neurophysiological dysfunctions are involved in the pathophysiology of TRS. Our findings warrant more comprehensive and longitudinal studies for deep phenotyping of TRS.
Collapse
Affiliation(s)
- Kamiyu Ogyu
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba 266-0007, Japan
| | - Karin Matsushita
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shunsuke Tamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazumasa Takenouchi
- Department of Clinical Laboratory Medicine, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba 266-0007, Japan
| | - Yui Tobari
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan; Faculty of Environment and Information Studies, Keio University, Kanagawa, Kanagawa 252-0882, Japan
| | - Keisuke Kusudo
- Department of Psychiatry, National Hospital Organization Chiba Medical Center, Chiba 260-8606, Japan
| | - Hideo Kato
- Department of Epileptology, National Center of Neurology and Psychiatry Hospital, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Teruki Koizumi
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba 266-0007, Japan
| | - Naohiro Arai
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akihiro Koreki
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba 266-0007, Japan
| | - Mie Matsui
- Department of Clinical Cognitive Neuroscience, Institute of Liberal Arts and Science, Kanazawa University, Kanazawa 920-1164, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinya Fujii
- Faculty of Environment and Information Studies, Keio University, Kanagawa, Kanagawa 252-0882, Japan
| | - Mitsumoto Onaya
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba 266-0007, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Psychiatry, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan; Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada.
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
18
|
Nakamura T, Dinh TH, Asai M, Nishimaru H, Matsumoto J, Setogawa T, Ichijo H, Honda S, Yamada H, Mihara T, Nishijo H. Characteristics of auditory steady-state responses to different click frequencies in awake intact macaques. BMC Neurosci 2022; 23:57. [PMID: 36180823 PMCID: PMC9524006 DOI: 10.1186/s12868-022-00741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Background Auditory steady-state responses (ASSRs) are periodic evoked responses to constant periodic auditory stimuli, such as click trains, and are suggested to be associated with higher cognitive functions in humans. Since ASSRs are disturbed in human psychiatric disorders, recording ASSRs from awake intact macaques would be beneficial to translational research as well as an understanding of human brain function and its pathology. However, ASSR has not been reported in awake macaques. Results Electroencephalograms (EEGs) were recorded from awake intact macaques, while click trains at 20–83.3 Hz were binaurally presented. EEGs were quantified based on event-related spectral perturbation (ERSP) and inter-trial coherence (ITC), and ASSRs were significantly demonstrated in terms of ERSP and ITC in awake intact macaques. A comparison of ASSRs among different click train frequencies indicated that ASSRs were maximal at 83.3 Hz. Furthermore, analyses of laterality indices of ASSRs showed that no laterality dominance of ASSRs was observed. Conclusions The present results demonstrated ASSRs, comparable to those in humans, in awake intact macaques. However, there were some differences in ASSRs between macaques and humans: macaques showed maximal ASSR responses to click frequencies higher than 40 Hz that has been reported to elicit maximal responses in humans, and showed no dominant laterality of ASSRs under the electrode montage in this study compared with humans with right hemisphere dominance. The future ASSR studies using awake intact macaques should be aware of these differences, and possible factors, to which these differences were ascribed, are discussed. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00741-9.
Collapse
Affiliation(s)
- Tomoya Nakamura
- System Emotional Science, Faculty of Medicine, University of Toyama, Sugitani2630, Toyama, 930-0194, Japan.,Department of Anatomy, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Trong Ha Dinh
- System Emotional Science, Faculty of Medicine, University of Toyama, Sugitani2630, Toyama, 930-0194, Japan.,Department of Physiology, Vietnam Military Medical University, Hanoi, 100000, Vietnam
| | - Makoto Asai
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, 305-8585, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Sugitani2630, Toyama, 930-0194, Japan.,Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, 930-0194, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Sugitani2630, Toyama, 930-0194, Japan.,Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, 930-0194, Japan
| | - Tsuyoshi Setogawa
- System Emotional Science, Faculty of Medicine, University of Toyama, Sugitani2630, Toyama, 930-0194, Japan.,Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, 930-0194, Japan
| | - Hiroyuki Ichijo
- Department of Anatomy, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Sokichi Honda
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, 305-8585, Japan
| | - Hiroshi Yamada
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, 305-8585, Japan
| | - Takuma Mihara
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, 305-8585, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Sugitani2630, Toyama, 930-0194, Japan. .,Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
19
|
Schuler AL, Ferrazzi G, Colenbier N, Arcara G, Piccione F, Ferreri F, Marinazzo D, Pellegrino G. Auditory driven gamma synchrony is associated with cortical thickness in widespread cortical areas. Neuroimage 2022; 255:119175. [PMID: 35390460 PMCID: PMC9168448 DOI: 10.1016/j.neuroimage.2022.119175] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/20/2022] [Accepted: 04/02/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Gamma synchrony is a fundamental functional property of the cerebral cortex, impaired in multiple neuropsychiatric conditions (i.e. schizophrenia, Alzheimer's disease, stroke etc.). Auditory stimulation in the gamma range allows to drive gamma synchrony of the entire cortical mantle and to estimate the efficiency of the mechanisms sustaining it. As gamma synchrony depends strongly on the interplay between parvalbumin-positive interneurons and pyramidal neurons, we hypothesize an association between cortical thickness and gamma synchrony. To test this hypothesis, we employed a combined magnetoencephalography (MEG) - Magnetic Resonance Imaging (MRI) study. METHODS Cortical thickness was estimated from anatomical MRI scans. MEG measurements related to exposure of 40 Hz amplitude modulated tones were projected onto the cortical surface. Two measures of cortical synchrony were considered: (a) inter-trial phase consistency at 40 Hz, providing a vertex-wise estimation of gamma synchronization, and (b) phase-locking values between primary auditory cortices and whole cortical mantle, providing a measure of long-range cortical synchrony. A correlation between cortical thickness and synchronization measures was then calculated for 72 MRI-MEG scans. RESULTS Both inter-trial phase consistency and phase locking values showed a significant positive correlation with cortical thickness. For inter-trial phase consistency, clusters of strong associations were found in the temporal and frontal lobes, especially in the bilateral auditory and pre-motor cortices. Higher phase-locking values corresponded to higher cortical thickness in the frontal, temporal, occipital and parietal lobes. DISCUSSION AND CONCLUSIONS In healthy subjects, a thicker cortex corresponds to higher gamma synchrony and connectivity in the primary auditory cortex and beyond, likely reflecting underlying cell density involved in gamma circuitries. This result hints towards an involvement of gamma synchrony together with underlying brain structure in brain areas for higher order cognitive functions. This study contributes to the understanding of inherent cortical functional and structural brain properties, which might in turn constitute the basis for the definition of useful biomarkers in patients showing aberrant gamma synchronization.
Collapse
Affiliation(s)
| | - Giulio Ferrazzi
- IRCCS San Camillo Hospital, Via Alberoni 70, Venice 30126, Italy
| | - Nigel Colenbier
- IRCCS San Camillo Hospital, Via Alberoni 70, Venice 30126, Italy
| | - Giorgio Arcara
- IRCCS San Camillo Hospital, Via Alberoni 70, Venice 30126, Italy
| | | | - Florinda Ferreri
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy; Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Daniele Marinazzo
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University
| | | |
Collapse
|