1
|
Garat J, Di Paolo A, Eastman G, Castillo PE, Sotelo-Silveira J. The Trail of Axonal Protein Synthesis: Origins and Current Functional Landscapes. Neuroscience 2025; 567:195-208. [PMID: 39755230 DOI: 10.1016/j.neuroscience.2024.12.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/03/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Local protein synthesis (LPS) in axons is now recognized as a physiological process, participating both in the maintenance of axonal function and diverse plastic phenomena. In the last decades of the 20th century, the existence and function of axonal LPS were topics of significant debate. Very early, axonal LPS was thought not to occur at all and was later accepted to play roles only during development or in response to specific conditions. However, compelling evidence supports its essential and pervasive role in axonal function in the mature nervous system. Remarkably, in the last five decades, Uruguayan neuroscientists have contributed significantly to demonstrating axonal LPS by studying motor and sensory axons of the peripheral nervous system of mammals, as well as giant axons of the squid and the Mauthner cell of fish. For LPS to occur, a highly regulated transport system must deliver the necessary macromolecules, such as mRNAs and ribosomes. This review discusses key findings related to the localization and abundance of axonal mRNAs and their translation levels, both in basal states and in response to physiological processes, such as learning and memory consolidation, as well as neurodevelopmental and neurodegenerative disorders, including Alzheimer's disease, autism spectrum disorder, and axonal injury. Moreover, we discuss the current understanding of axonal ribosomes, from their localization to the potential roles of locally translated ribosomal proteins, in the context of emerging research that highlights the regulatory roles of the ribosome in translation. Lastly, we address the main challenges and open questions for future studies.
Collapse
Affiliation(s)
- Joaquin Garat
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay
| | - Andres Di Paolo
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay
| | - Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay; Department of Biology, University of Virginia, 485 McCormick Rd, Charlottesville, VA, 22904, USA
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay; Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá, Montevideo, 4225, CP 11400, Uruguay.
| |
Collapse
|
2
|
Martinez-Sanchez M, Skarnes W, Jain A, Vemula S, Sun L, Rockowitz S, Whitman MC. Chromosome 4 Duplication Associated with Strabismus Leads to Gene Expression Changes in iPSC-Derived Cortical Neurons. Genes (Basel) 2025; 16:80. [PMID: 39858627 PMCID: PMC11764630 DOI: 10.3390/genes16010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Strabismus is the most common ocular disorder of childhood. Three rare, recurrent genetic duplications have been associated with both esotropia and exotropia, but the mechanisms by which they contribute to strabismus are unknown. This work aims to investigate the mechanisms of the smallest of the three, a 23 kb duplication on chromosome 4 (hg38|4:25,554,985-25,578,843). METHODS Using CRISPR and bridging oligos, we introduced the duplication into the Kolf2.1J iPSC line. We differentiated the parent line and the line with the duplication into cortical neurons using a three-dimensional differentiation protocol, and performed bulk RNASeq on neural progenitors (day 14) and differentiated neurons (day 63). RESULTS We successfully introduced the duplication into Kolf2.1J iPSCs by nucleofecting a bridging oligo for the newly formed junction along with cas9 ribonucleoparticles. We confirmed that the cells had a tandem duplication without inversion or deletion. The parent line and the line with the duplication both differentiated into neurons reliably. There were a total of 37 differentially expressed genes (DEGs) at day 63, 25 downregulated and 12 upregulated. There were 55 DEGs at day 14, 18 of which were also DEGs at day 63. The DEGs included a number of protocadherins, several genes involved in neuronal development, including SLITRK2, CSMD1, and VGF, and several genes of unknown function. CONCLUSIONS A copy number variant (CNV) that confers risk for strabismus affects gene expression of several genes involved in neural development, highlighting that strabismus most likely results from abnormal neural development, and identifying several new genes and pathways for further research into the pathophysiology of strabismus.
Collapse
Affiliation(s)
- Mayra Martinez-Sanchez
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (M.M.-S.); (S.V.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - William Skarnes
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
| | - Ashish Jain
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.J.); (L.S.); (S.R.)
| | - Sampath Vemula
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (M.M.-S.); (S.V.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.J.); (L.S.); (S.R.)
| | - Shira Rockowitz
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.J.); (L.S.); (S.R.)
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Mary C. Whitman
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (M.M.-S.); (S.V.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
3
|
Khademi R, Malekzadeh H, Bahrami S, Saki N, Khademi R, Villa-Diaz LG. Regulation and Functions of α6-Integrin (CD49f) in Cancer Biology. Cancers (Basel) 2023; 15:3466. [PMID: 37444576 DOI: 10.3390/cancers15133466] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Over the past decades, our knowledge of integrins has evolved from being understood as simple cell surface adhesion molecules to receptors that have a complex range of intracellular and extracellular functions, such as delivering chemical and mechanical signals to cells. Consequently, they actively control cellular proliferation, differentiation, and apoptosis. Dysregulation of integrin signaling is a major factor in the development and progression of many tumors. Many reviews have covered the broader integrin family in molecular and cellular studies and its roles in diseases. Nevertheless, further understanding of the mechanisms specific to an individual subunit of different heterodimers is more useful. Thus, we describe the current understanding of and exploratory investigations on the α6-integrin subunit (CD49f, VLA6; encoded by the gene itga6) in normal and cancer cells. The roles of ITGA6 in cell adhesion, stemness, metastasis, angiogenesis, and drug resistance, and as a diagnosis biomarker, are discussed. The role of ITGA6 differs based on several features, such as cell background, cancer type, and post-transcriptional alterations. In addition, exosomal ITGA6 also implies metastatic organotropism. The importance of ITGA6 in the progression of a number of cancers, including hematological malignancies, suggests its potential usage as a novel prognostic or diagnostic marker and useful therapeutic target for better clinical outcomes.
Collapse
Affiliation(s)
- Rahele Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Hossein Malekzadeh
- Department of Oral Medicine, Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Sara Bahrami
- Resident of Restorative Dentistry, Qazvin University of Medical Sciences, Qazvin 3419759811, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Reyhane Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
- Department of Medical Laboratory Sciences, School of Para-Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Luis G Villa-Diaz
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
4
|
Bennison SA, Blazejewski SM, Liu X, Hacohen-Kleiman G, Sragovich S, Zoidou S, Touloumi O, Grigoriadis N, Gozes I, Toyo-Oka K. The cytoplasmic localization of ADNP through 14-3-3 promotes sex-dependent neuronal morphogenesis, cortical connectivity, and calcium signaling. Mol Psychiatry 2023; 28:1946-1959. [PMID: 36631597 DOI: 10.1038/s41380-022-01939-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023]
Abstract
Defective neuritogenesis is a contributing pathogenic mechanism underlying a variety of neurodevelopmental disorders. Single gene mutations in activity-dependent neuroprotective protein (ADNP) are the most frequent among autism spectrum disorders (ASDs) leading to the ADNP syndrome. Previous studies showed that during neuritogenesis, Adnp localizes to the cytoplasm/neurites, and Adnp knockdown inhibits neuritogenesis in culture. Here, we hypothesized that Adnp is localized in the cytoplasm during neurite formation and that this process is mediated by 14-3-3. Indeed, applying the 14-3-3 inhibitor, difopein, blocked Adnp cytoplasmic localization. Furthermore, co-immunoprecipitations showed that Adnp bound 14-3-3 proteins and proteomic analysis identified several potential phosphorylation-dependent Adnp/14-3-3 binding sites. We further discovered that knockdown of Adnp using in utero electroporation of mouse layer 2/3 pyramidal neurons in the somatosensory cortex led to previously unreported changes in neurite formation beginning at P0. Defects were sustained throughout development, the most notable included increased basal dendrite number and axon length. Paralleling the observed morphological aberrations, ex vivo calcium imaging revealed that Adnp deficient neurons had greater and more frequent spontaneous calcium influx in female mice. GRAPHIC, a novel synaptic tracing technology substantiated this finding, revealing increased interhemispheric connectivity between female Adnp deficient layer 2/3 pyramidal neurons. We conclude that Adnp is localized to the cytoplasm by 14-3-3 proteins, where it regulates neurite formation, maturation, and functional cortical connectivity significantly building on our current understanding of Adnp function and the etiology of ADNP syndrome.
Collapse
Affiliation(s)
- Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Sara M Blazejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Xiaonan Liu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Gal Hacohen-Kleiman
- The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shlomo Sragovich
- The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Sofia Zoidou
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Olga Touloumi
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Illana Gozes
- The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
5
|
Makowski C, Wang H, Srinivasan A, Qi A, Qiu Y, van der Meer D, Frei O, Zou J, Visscher P, Yang J, Chen CH. Larger cerebral cortex is genetically correlated with greater frontal area and dorsal thickness. Proc Natl Acad Sci U S A 2023; 120:e2214834120. [PMID: 36893272 PMCID: PMC10089183 DOI: 10.1073/pnas.2214834120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/18/2023] [Indexed: 03/11/2023] Open
Abstract
Human cortical expansion has occurred non-uniformly across the brain. We assessed the genetic architecture of cortical global expansion and regionalization by comparing two sets of genome-wide association studies of 24 cortical regions with and without adjustment for global measures (i.e., total surface area, mean cortical thickness) using a genetically informed parcellation in 32,488 adults. We found 393 and 756 significant loci with and without adjusting for globals, respectively, where 8% and 45% loci were associated with more than one region. Results from analyses without adjustment for globals recovered loci associated with global measures. Genetic factors that contribute to total surface area of the cortex particularly expand anterior/frontal regions, whereas those contributing to thicker cortex predominantly increase dorsal/frontal-parietal thickness. Interactome-based analyses revealed significant genetic overlap of global and dorsolateral prefrontal modules, enriched for neurodevelopmental and immune system pathways. Consideration of global measures is important in understanding the genetic variants underlying cortical morphology.
Collapse
Affiliation(s)
- Carolina Makowski
- Department of Radiology, University of California San Diego, La Jolla, CA92093
| | - Hao Wang
- Department of Radiology, University of California San Diego, La Jolla, CA92093
| | - Anjali Srinivasan
- Department of Radiology, University of California San Diego, La Jolla, CA92093
| | - Anna Qi
- Department of Radiology, University of California San Diego, La Jolla, CA92093
| | - Yuqi Qiu
- School of Statistics, East China Normal University, Shanghai20050, China
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research Centre, Division of Mental Health and Addiction, University of Oslo, Oslo0450, Norway
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research Centre, Division of Mental Health and Addiction, University of Oslo, Oslo0450, Norway
| | - Jingjing Zou
- Division of Biostatistics and Bioinformatics, University of California San Diego, La Jolla, CA92093
| | - Peter M. Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang310024, China
| | - Chi-Hua Chen
- Department of Radiology, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
6
|
He T, Liu W, Shen CA. Anti-inflammatory properties of pigment epithelium-derived factor. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221138857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inflammation is part of the complex biological response to harmful stimuli, such as cell damage, pathogens, or irritants. An excessive inflammatory response can lead to a variety of diseases. Pigment epithelium-derived factor (PEDF) is an endogenous glycoprotein that belongs to the superfamily of serine protease inhibitors and has multiple biological activities. Accumulating evidence suggests that PEDF participates in various inflammatory-related diseases, such as diabetic retinopathy, atherosclerosis, nonalcoholic steatohepatitis, and retinal diseases. However, the mechanism is still incompletely understood. In this paper, we review the anti-inflammatory properties of PEDF and discuss the underlying mechanisms. PEDF can exert its anti-inflammatory effects by downregulating the expression of inflammatory factors, promoting the synthesis of anti-inflammatory factors, inhibiting the activation of proinflammatory pathways and activating anti-inflammatory pathways. Examining the function of PEDF in inflammation addresses the need for further investigation and subsequent target-specific strategies for inflammatory disorders.
Collapse
Affiliation(s)
- Ting He
- The Fourth Medical Center of Chinese PLA General Hospital, Senior Department of Burns and Plastic Surgery, Beijing, China
| | - Wei Liu
- The Fourth Medical Center of Chinese PLA General Hospital, Senior Department of Burns and Plastic Surgery, Beijing, China
| | - Chuan-an Shen
- The Fourth Medical Center of Chinese PLA General Hospital, Senior Department of Burns and Plastic Surgery, Beijing, China
| |
Collapse
|
7
|
Liu X, Bennison SA, Robinson L, Toyo-oka K. Responsible Genes for Neuronal Migration in the Chromosome 17p13.3: Beyond Pafah1b1(Lis1), Crk and Ywhae(14-3-3ε). Brain Sci 2021; 12:brainsci12010056. [PMID: 35053800 PMCID: PMC8774252 DOI: 10.3390/brainsci12010056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 01/07/2023] Open
Abstract
The 17p13.3 chromosome region is often deleted or duplicated in humans, resulting in severe neurodevelopmental disorders such as Miller–Dieker syndrome (MDS) and 17p13.3 duplication syndrome. Lissencephaly can also be caused by gene mutations or deletions of a small piece of the 17p13.3 region, including a single gene or a few genes. PAFAH1B1 gene, coding for LIS1 protein, is a responsible gene for lissencephaly and MDS and regulates neuronal migration by controlling microtubules (MTs) and cargo transport along MTs via dynein. CRK is a downstream regulator of the reelin signaling pathways and regulates neuronal migration. YWHAE, coding for 14-3-3ε, is also responsible for MDS and regulates neuronal migration by binding to LIS1-interacting protein, NDEL1. Although these three proteins are known to be responsible for neuronal migration defects in MDS, there are 23 other genes in the MDS critical region on chromosome 17p13.3, and little is known about their functions in neurodevelopment, especially in neuronal migration. This review will summarize the recent progress on the functions of LIS1, CRK, and 14-3-3ε and describe the recent findings of other molecules in the MDS critical regions in neuronal migration.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19129, USA;
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
| | - Sarah A. Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
| | - Lozen Robinson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
| | - Kazuhito Toyo-oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
- Correspondence: ; Tel.: +1-(215)-991-8288
| |
Collapse
|