1
|
Assem M, Shashidhara S, Glasser M, Duncan J. Category-biased patches encircle core domain-general regions in the human lateral prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633461. [PMID: 39868282 PMCID: PMC11761636 DOI: 10.1101/2025.01.16.633461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The fine-grained functional organization of the human lateral prefrontal cortex (PFC) remains poorly understood. Previous fMRI studies delineated focal domain-general, or multiple-demand (MD), PFC areas that co-activate during diverse cognitively demanding tasks. While there is some evidence for category-selective (face and scene) patches, in human and non-human primate PFC, these have not been systematically assessed. Recent precision fMRI studies have also revealed sensory-biased PFC patches adjacent to MD regions. To investigate if this topographic arrangement extends to other domains, we analysed two independent fMRI datasets (n=449 and n=37) utilizing the high-resolution multimodal MRI approaches of the Human Connectome Project (HCP). Both datasets included cognitive control tasks and stimuli spanning different categories: faces, places, tools and body parts. Contrasting each stimulus category against the remaining ones revealed focal interdigitated patches of activity located adjacent to core MD regions. The results were robust, replicating across different executive tasks, experimental designs (block and event-related) and at the single subject level. Our results paint a refined view of the fine-grained functional organization of the PFC, revealing a recurring motif of interdigitated domain-specific and domain-general circuits. This organization offers new constraints for models of cognitive control, cortical specialization and development.
Collapse
|
2
|
Yamaguchi A, Jitsuishi T. Structural connectivity of the precuneus and its relation to resting-state networks. Neurosci Res 2024; 209:9-17. [PMID: 38160734 DOI: 10.1016/j.neures.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
The precuneus is an association area in the posteromedial cortex (PMC) that is involved in high-order cognitive functions through integrating multi-modal information. Previous studies have shown that the precuneus is functionally heterogeneous and subdivided into several subfields organized by the anterior-posterior and ventral-dorsal axes. Further, the precuneus forms the structural core of brain connectivity as a rich-club hub and overlaps with the default mode network (DMN) as the functional core. This review summarizes recent research on the connectivity and cognitive functions of the precuneus. We then present our recent tractography-based studies of the precuneus and contextual these results here with respect to possible cognitive functions and resting-state networks.
Collapse
Affiliation(s)
- Atsushi Yamaguchi
- Department of Functional Anatomy, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Tatsuya Jitsuishi
- Department of Functional Anatomy, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
3
|
Müller VI, Cieslik EC, Ficco L, Tyralla S, Sepehry AA, Aziz-Safaie T, Feng C, Eickhoff SB, Langner R. Not All Stroop-Type Tasks Are Alike: Assessing the Impact of Stimulus Material, Task Design, and Cognitive Demand via Meta-analyses Across Neuroimaging Studies. Neuropsychol Rev 2024:10.1007/s11065-024-09647-1. [PMID: 39264479 DOI: 10.1007/s11065-024-09647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024]
Abstract
The Stroop effect is one of the most often studied examples of cognitive conflict processing. Over time, many variants of the classic Stroop task were used, including versions with different stimulus material, control conditions, presentation design, and combinations with additional cognitive demands. The neural and behavioral impact of this experimental variety, however, has never been systematically assessed. We used activation likelihood meta-analysis to summarize neuroimaging findings with Stroop-type tasks and to investigate whether involvement of the multiple-demand network (anterior insula, lateral frontal cortex, intraparietal sulcus, superior/inferior parietal lobules, midcingulate cortex, and pre-supplementary motor area) can be attributed to resolving some higher-order conflict that all of the tasks have in common, or if aspects that vary between task versions lead to specialization within this network. Across 133 neuroimaging experiments, incongruence processing in the color-word Stroop variant consistently recruited regions of the multiple-demand network, with modulation of spatial convergence by task variants. In addition, the neural patterns related to solving Stroop-like interference differed between versions of the task that use different stimulus material, with the only overlap between color-word, emotional picture-word, and other types of stimulus material in the posterior medial frontal cortex and right anterior insula. Follow-up analyses on behavior reported in these studies (in total 164 effect sizes) revealed only little impact of task variations on the mean effect size of reaction time. These results suggest qualitative processing differences among the family of Stroop variants, despite similar task difficulty levels, and should carefully be considered when planning or interpreting Stroop-type neuroimaging experiments.
Collapse
Affiliation(s)
- Veronika I Müller
- Institute of Neuroscience and Medicine, INM-7, Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| | - Edna C Cieslik
- Institute of Neuroscience and Medicine, INM-7, Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Linda Ficco
- Department of General Psychology and Cognitive Neuroscience, Friedrich Schiller University, Jena, Germany
- Department of Linguistics and Cultural Evolution, International Max Planck Research School for the Science of Human History, Jena, Germany
| | - Sandra Tyralla
- Institute for Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Amir Ali Sepehry
- Clinical Psychology Program, Adler University (Vancouver Campus), Vancouver, Canada
| | - Taraneh Aziz-Safaie
- Institute of Neuroscience and Medicine, INM-7, Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Guangzhou, China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, INM-7, Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine, INM-7, Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
4
|
Wang X, Krieger-Redwood K, Cui Y, Smallwood J, Du Y, Jefferies E. Macroscale brain states support the control of semantic cognition. Commun Biol 2024; 7:926. [PMID: 39090387 PMCID: PMC11294576 DOI: 10.1038/s42003-024-06630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
A crucial aim in neuroscience is to understand how the human brain adapts to varying cognitive demands. This study investigates network reconfiguration during controlled semantic retrieval in differing contexts. We analyze brain responses to two semantic tasks of varying difficulty - global association and feature matching judgments - which are contrasted with non-semantic tasks on the cortical surface and within a whole-brain state space. Demanding semantic association tasks elicit activation in anterior prefrontal and temporal regions, while challenging semantic feature matching and non-semantic tasks predominantly activate posterior regions. Task difficulty also modulates activation along different dimensions of functional organization, suggesting different mechanisms of cognitive control. More demanding semantic association judgments engage cognitive control and default mode networks together, while feature matching and non-semantic tasks are skewed towards cognitive control networks. These findings highlight the brain's dynamic ability to tailor its networks to support diverse neurocognitive states, enriching our understanding of controlled cognition.
Collapse
Affiliation(s)
- Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK.
| | | | - Yanni Cui
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | - Yi Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.
| | - Elizabeth Jefferies
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
5
|
Shashidhara S, Assem M, Glasser MF, Duncan J. Task and stimulus coding in the multiple-demand network. Cereb Cortex 2024; 34:bhae278. [PMID: 39004756 PMCID: PMC11246790 DOI: 10.1093/cercor/bhae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
In the human brain, a multiple-demand (MD) network plays a key role in cognitive control, with core components in lateral frontal, dorsomedial frontal and lateral parietal cortex, and multivariate activity patterns that discriminate the contents of many cognitive activities. In prefrontal cortex of the behaving monkey, different cognitive operations are associated with very different patterns of neural activity, while details of a particular stimulus are encoded as small variations on these basic patterns (Sigala et al, 2008). Here, using the advanced fMRI methods of the Human Connectome Project and their 360-region cortical parcellation, we searched for a similar result in MD activation patterns. In each parcel, we compared multivertex patterns for every combination of three tasks (working memory, task-switching, and stop-signal) and two stimulus classes (faces and buildings). Though both task and stimulus category were discriminated in every cortical parcel, the strength of discrimination varied strongly across parcels. The different cognitive operations of the three tasks were strongly discriminated in MD regions. Stimulus categories, in contrast, were most strongly discriminated in a large region of primary and higher visual cortex, and intriguingly, in both parietal and frontal lobe regions adjacent to core MD regions. In the monkey, frontal neurons show a strong pattern of nonlinear mixed selectivity, with activity reflecting specific conjunctions of task events. In our data, however, there was limited evidence for mixed selectivity; throughout the brain, discriminations of task and stimulus combined largely linearly, with a small nonlinear component. In MD regions, human fMRI data recapitulate some but not all aspects of electrophysiological data from nonhuman primates.
Collapse
Affiliation(s)
- Sneha Shashidhara
- Center for Social and Behaviour Change, Ashoka University, Sonipat, 131029, India
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB27EF, United Kingdom
| | - Moataz Assem
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB27EF, United Kingdom
| | - Matthew F Glasser
- Departments of Radiology and Neuroscience, Washington University in St. Louis, Saint Louis, MO 63110, United States
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB27EF, United Kingdom
| |
Collapse
|
6
|
Wolna A, Szewczyk J, Diaz M, Domagalik A, Szwed M, Wodniecka Z. Tracking Components of Bilingual Language Control in Speech Production: An fMRI Study Using Functional Localizers. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:315-340. [PMID: 38832359 PMCID: PMC11093400 DOI: 10.1162/nol_a_00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/13/2023] [Indexed: 06/05/2024]
Abstract
When bilingual speakers switch back to speaking in their native language (L1) after having used their second language (L2), they often experience difficulty in retrieving words in their L1. This phenomenon is referred to as the L2 after-effect. We used the L2 after-effect as a lens to explore the neural bases of bilingual language control mechanisms. Our goal was twofold: first, to explore whether bilingual language control draws on domain-general or language-specific mechanisms; second, to investigate the precise mechanism(s) that drive the L2 after-effect. We used a precision fMRI approach based on functional localizers to measure the extent to which the brain activity that reflects the L2 after-effect overlaps with the language network (Fedorenko et al., 2010) and the domain-general multiple demand network (Duncan, 2010), as well as three task-specific networks that tap into interference resolution, lexical retrieval, and articulation. Forty-two Polish-English bilinguals participated in the study. Our results show that the L2 after-effect reflects increased engagement of domain-general but not language-specific resources. Furthermore, contrary to previously proposed interpretations, we did not find evidence that the effect reflects increased difficulty related to lexical access, articulation, and the resolution of lexical interference. We propose that difficulty of speech production in the picture naming paradigm-manifested as the L2 after-effect-reflects interference at a nonlinguistic level of task schemas or a general increase of cognitive control engagement during speech production in L1 after L2.
Collapse
Affiliation(s)
- Agata Wolna
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| | - Jakub Szewczyk
- Institute of Psychology, Jagiellonian University, Kraków, Poland
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Michele Diaz
- Social, Life, and Engineering Sciences Imaging Center, Pennsylvania State University, Pennsylvania, USA
| | | | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| | - Zofia Wodniecka
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
7
|
Du J, DiNicola LM, Angeli PA, Saadon-Grosman N, Sun W, Kaiser S, Ladopoulou J, Xue A, Yeo BTT, Eldaief MC, Buckner RL. Organization of the human cerebral cortex estimated within individuals: networks, global topography, and function. J Neurophysiol 2024; 131:1014-1082. [PMID: 38489238 PMCID: PMC11383390 DOI: 10.1152/jn.00308.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
The cerebral cortex is populated by specialized regions that are organized into networks. Here we estimated networks from functional MRI (fMRI) data in intensively sampled participants. The procedure was developed in two participants (scanned 31 times) and then prospectively applied to 15 participants (scanned 8-11 times). Analysis of the networks revealed a global organization. Locally organized first-order sensory and motor networks were surrounded by spatially adjacent second-order networks that linked to distant regions. Third-order networks possessed regions distributed widely throughout association cortex. Regions of distinct third-order networks displayed side-by-side juxtapositions with a pattern that repeated across multiple cortical zones. We refer to these as supra-areal association megaclusters (SAAMs). Within each SAAM, two candidate control regions were adjacent to three separate domain-specialized regions. Response properties were explored with task data. The somatomotor and visual networks responded to body movements and visual stimulation, respectively. Second-order networks responded to transients in an oddball detection task, consistent with a role in orienting to salient events. The third-order networks, including distinct regions within each SAAM, showed two levels of functional specialization. Regions linked to candidate control networks responded to working memory load across multiple stimulus domains. The remaining regions dissociated across language, social, and spatial/episodic processing domains. These results suggest that progressively higher-order networks nest outward from primary sensory and motor cortices. Within the apex zones of association cortex, there is specialization that repeatedly divides domain-flexible from domain-specialized regions. We discuss implications of these findings, including how repeating organizational motifs may emerge during development.NEW & NOTEWORTHY The organization of cerebral networks was estimated within individuals with intensive, repeat sampling of fMRI data. A hierarchical organization emerged in each individual that delineated first-, second-, and third-order cortical networks. Regions of distinct third-order association networks consistently exhibited side-by-side juxtapositions that repeated across multiple cortical zones, with clear and robust functional specialization among the embedded regions.
Collapse
Affiliation(s)
- Jingnan Du
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Lauren M DiNicola
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Peter A Angeli
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Noam Saadon-Grosman
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Wendy Sun
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Stephanie Kaiser
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Joanna Ladopoulou
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Aihuiping Xue
- Centre for Sleep & Cognition and Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - B T Thomas Yeo
- Centre for Sleep & Cognition and Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Mark C Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| |
Collapse
|
8
|
Wang X, Krieger-Redwood K, Lyu B, Lowndes R, Wu G, Souter NE, Wang X, Kong R, Shafiei G, Bernhardt BC, Cui Z, Smallwood J, Du Y, Jefferies E. The Brain's Topographical Organization Shapes Dynamic Interaction Patterns That Support Flexible Behavior Based on Rules and Long-Term Knowledge. J Neurosci 2024; 44:e2223232024. [PMID: 38527807 PMCID: PMC11140685 DOI: 10.1523/jneurosci.2223-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/27/2024] Open
Abstract
Adaptive behavior relies both on specific rules that vary across situations and stable long-term knowledge gained from experience. The frontoparietal control network (FPCN) is implicated in the brain's ability to balance these different influences on action. Here, we investigate how the topographical organization of the cortex supports behavioral flexibility within the FPCN. Functional properties of this network might reflect its juxtaposition between the dorsal attention network (DAN) and the default mode network (DMN), two large-scale systems implicated in top-down attention and memory-guided cognition, respectively. Our study tests whether subnetworks of FPCN are topographically proximal to the DAN and the DMN, respectively, and how these topographical differences relate to functional differences: the proximity of each subnetwork is anticipated to play a pivotal role in generating distinct cognitive modes relevant to working memory and long-term memory. We show that FPCN subsystems share multiple anatomical and functional similarities with their neighboring systems (DAN and DMN) and that this topographical architecture supports distinct interaction patterns that give rise to different patterns of functional behavior. The FPCN acts as a unified system when long-term knowledge supports behavior but becomes segregated into discrete subsystems with different patterns of interaction when long-term memory is less relevant. In this way, our study suggests that the topographical organization of the FPCN and the connections it forms with distant regions of cortex are important influences on how this system supports flexible behavior.
Collapse
Affiliation(s)
- Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Katya Krieger-Redwood
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Baihan Lyu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rebecca Lowndes
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Guowei Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nicholas E Souter
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Xiaokang Wang
- Department of Biomedical Engineering, University of California, Davis, California 95616
| | - Ru Kong
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jonathan Smallwood
- Department of Psychology, Queens University, Kingston, Ontario K7L 3N6, Canada
| | - Yi Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China
| | - Elizabeth Jefferies
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
9
|
Chiou R, Branzi FM, Krieger-Redwood K, Jefferies E. Dissecting the neuroanatomy of creativity and curiosity: The subdivisions within networks matter. Behav Brain Sci 2024; 47:e96. [PMID: 38770872 DOI: 10.1017/s0140525x23003473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ivancovsky et al. argue that the neurocognitive mechanisms of creativity and curiosity both rely on the interplay among brain networks. Research to date demonstrates that such inter-network dynamics are further complicated by functional fractionation within networks. Investigating how networks subdivide and reconfigure in service of a task offers insights about the precise anatomy that underpins creative and curious behaviour.
Collapse
Affiliation(s)
- Rocco Chiou
- School of Psychology, University of Surrey, Guildford, UK https://roccochiou.weebly.com/
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
10
|
Jackson JB, Rich AN, Moerel D, Teichmann L, Duncan J, Woolgar A. Domain general frontoparietal regions show modality-dependent coding of auditory and visual rules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583318. [PMID: 38903119 PMCID: PMC11188079 DOI: 10.1101/2024.03.04.583318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A defining feature of human cognition is our ability to respond flexibly to what we see and hear, changing how we respond depending on our current goals. In fact, we can rapidly associate almost any input stimulus with any arbitrary behavioural response. This remarkable ability is thought to depend on a frontoparietal "multiple demand" circuit which is engaged by many types of cognitive demand and widely referred to as domain general. However, it is not clear how responses to multiple input modalities are structured within this system. Domain generality could be achieved by holding information in an abstract form that generalises over input modality, or in a modality-tagged form, which uses similar resources but produces unique codes to represent the information in each modality. We used a stimulus-response task, with conceptually identical rules in two sensory modalities (visual and auditory), to distinguish between these possibilities. Multivariate decoding of functional magnetic resonance imaging data showed that representations of visual and auditory rules recruited overlapping neural resources but were expressed in modality-tagged non-generalisable neural codes. Our data suggest that this frontoparietal system may draw on the same or similar resources to solve multiple tasks, but does not create modality-general representations of task rules, even when those rules are conceptually identical between domains.
Collapse
Affiliation(s)
- J. B. Jackson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - A. N. Rich
- Perception in Action Research Centre & School of Psychological Sciences, Macquarie University, Australia
| | - D. Moerel
- School of Psychology, University of Sydney, Sydney, NSW, Australia
| | - L. Teichmann
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - J. Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - A. Woolgar
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Assem M, Shashidhara S, Glasser MF, Duncan J. Basis of executive functions in fine-grained architecture of cortical and subcortical human brain networks. Cereb Cortex 2024; 34:bhad537. [PMID: 38244562 PMCID: PMC10839840 DOI: 10.1093/cercor/bhad537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024] Open
Abstract
Theoretical models suggest that executive functions rely on both domain-general and domain-specific processes. Supporting this view, prior brain imaging studies have revealed that executive activations converge and diverge within broadly characterized brain networks. However, the lack of precise anatomical mappings has impeded our understanding of the interplay between domain-general and domain-specific processes. To address this challenge, we used the high-resolution multimodal magnetic resonance imaging approach of the Human Connectome Project to scan participants performing 3 canonical executive tasks: n-back, rule switching, and stop signal. The results reveal that, at the individual level, different executive activations converge within 9 domain-general territories distributed in frontal, parietal, and temporal cortices. Each task exhibits a unique topography characterized by finely detailed activation gradients within domain-general territory shifted toward adjacent resting-state networks; n-back activations shift toward the default mode, rule switching toward dorsal attention, and stop signal toward cingulo-opercular networks. Importantly, the strongest activations arise at multimodal neurobiological definitions of network borders. Matching results are seen in circumscribed regions of the caudate nucleus, thalamus, and cerebellum. The shifting peaks of local gradients at the intersection of task-specific networks provide a novel mechanistic insight into how partially-specialized networks interact with neighboring domain-general territories to generate distinct executive functions.
Collapse
Affiliation(s)
- Moataz Assem
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
| | - Sneha Shashidhara
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Psychology Department, Ashoka University, Sonipat, 131029, India
| | - Matthew F Glasser
- Department of Radiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States
- Department of Neuroscience, Washington University in St. Louis, Saint Louis, MO, 63110, United States
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, United Kingdom
| |
Collapse
|
12
|
Wolna A, Szewczyk J, Diaz M, Domagalik A, Szwed M, Wodniecka Z. Domain-general and language-specific contributions to speech production in a second language: an fMRI study using functional localizers. Sci Rep 2024; 14:57. [PMID: 38168139 PMCID: PMC10761726 DOI: 10.1038/s41598-023-49375-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
For bilinguals, speaking in a second language (L2) compared to the native language (L1) is usually more difficult. In this study we asked whether the difficulty in L2 production reflects increased demands imposed on domain-general or core language mechanisms. We compared the brain response to speech production in L1 and L2 within two functionally-defined networks in the brain: the Multiple Demand (MD) network and the language network. We found that speech production in L2 was linked to a widespread increase of brain activity in the domain-general MD network. The language network did not show a similarly robust differences in processing speech in the two languages, however, we found increased response to L2 production in the language-specific portion of the left inferior frontal gyrus (IFG). To further explore our results, we have looked at domain-general and language-specific response within the brain structures postulated to form a Bilingual Language Control (BLC) network. Within this network, we found a robust increase in response to L2 in the domain-general, but also in some language-specific voxels including in the left IFG. Our findings show that L2 production strongly engages domain-general mechanisms, but only affects language sensitive portions of the left IFG. These results put constraints on the current model of bilingual language control by precisely disentangling the domain-general and language-specific contributions to the difficulty in speech production in L2.
Collapse
Affiliation(s)
- Agata Wolna
- Institute of Psychology, Jagiellonian University, Ul. Ingardena 6, 30-060, Kraków, Poland.
| | - Jakub Szewczyk
- Institute of Psychology, Jagiellonian University, Ul. Ingardena 6, 30-060, Kraków, Poland
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Michele Diaz
- Social, Life, and Engineering Sciences Imaging Center, The Pennsylvania State University, Pennsylvania, USA
| | | | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, Ul. Ingardena 6, 30-060, Kraków, Poland
| | - Zofia Wodniecka
- Institute of Psychology, Jagiellonian University, Ul. Ingardena 6, 30-060, Kraków, Poland.
| |
Collapse
|
13
|
Karadachka K, Assem M, Mitchell DJ, Duncan J, Medendorp WP, Mars RB. Structural connectivity of the multiple demand network in humans and comparison to the macaque brain. Cereb Cortex 2023; 33:10959-10971. [PMID: 37798142 PMCID: PMC10646692 DOI: 10.1093/cercor/bhad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 10/07/2023] Open
Abstract
Fluid intelligence encompasses a wide range of abilities such as working memory, problem-solving, and relational reasoning. In the human brain, these abilities are associated with the Multiple Demand Network, traditionally thought to involve combined activity of specific regions predominantly in the prefrontal and parietal cortices. However, the structural basis of the interactions between areas in the Multiple Demand Network, as well as their evolutionary basis among primates, remains largely unexplored. Here, we exploit diffusion MRI to elucidate the major white matter pathways connecting areas of the human core and extended Multiple Demand Network. We then investigate whether similar pathways can be identified in the putative homologous areas of the Multiple Demand Network in the macaque monkey. Finally, we contrast human and monkey networks using a recently proposed approach to compare different species' brains within a common organizational space. Our results indicate that the core Multiple Demand Network relies mostly on dorsal longitudinal connections and, although present in the macaque, these connections are more pronounced in the human brain. The extended Multiple Demand Network relies on distinct pathways and communicates with the core Multiple Demand Network through connections that also appear enhanced in the human compared with the macaque.
Collapse
Affiliation(s)
- Katrin Karadachka
- Donders Institute for Brain, Cognition and Behaviour, Faculty of Social Sciences, Radboud University Nijmegen, 6525HR Nijmegen, The Netherlands
| | - Moataz Assem
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - Daniel J Mitchell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Faculty of Social Sciences, Radboud University Nijmegen, 6525HR Nijmegen, The Netherlands
| | - Rogier B Mars
- Donders Institute for Brain, Cognition and Behaviour, Faculty of Social Sciences, Radboud University Nijmegen, 6525HR Nijmegen, The Netherlands
- Wellcome Centre for Integrative Neuroimaging Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
14
|
Philips M, Schneck SM, Levy DF, Wilson SM. Modality-Specificity of the Neural Correlates of Linguistic and Non-Linguistic Demand. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:516-535. [PMID: 37841966 PMCID: PMC10575553 DOI: 10.1162/nol_a_00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/28/2023] [Indexed: 10/17/2023]
Abstract
Imaging studies of language processing in clinical populations can be complicated to interpret for several reasons, one being the difficulty of matching the effortfulness of processing across individuals or tasks. To better understand how effortful linguistic processing is reflected in functional activity, we investigated the neural correlates of task difficulty in linguistic and non-linguistic contexts in the auditory modality and then compared our findings to a recent analogous experiment in the visual modality in a different cohort. Nineteen neurologically normal individuals were scanned with fMRI as they performed a linguistic task (semantic matching) and a non-linguistic task (melodic matching), each with two levels of difficulty. We found that left hemisphere frontal and temporal language regions, as well as the right inferior frontal gyrus, were modulated by linguistic demand and not by non-linguistic demand. This was broadly similar to what was previously observed in the visual modality. In contrast, the multiple demand (MD) network, a set of brain regions thought to support cognitive flexibility in many contexts, was modulated neither by linguistic demand nor by non-linguistic demand in the auditory modality. This finding was in striking contradistinction to what was previously observed in the visual modality, where the MD network was robustly modulated by both linguistic and non-linguistic demand. Our findings suggest that while the language network is modulated by linguistic demand irrespective of modality, modulation of the MD network by linguistic demand is not inherent to linguistic processing, but rather depends on specific task factors.
Collapse
Affiliation(s)
- Mackenzie Philips
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah M. Schneck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Deborah F. Levy
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen M. Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
15
|
Du J, DiNicola LM, Angeli PA, Saadon-Grosman N, Sun W, Kaiser S, Ladopoulou J, Xue A, Yeo BTT, Eldaief MC, Buckner RL. Within-Individual Organization of the Human Cerebral Cortex: Networks, Global Topography, and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552437. [PMID: 37609246 PMCID: PMC10441314 DOI: 10.1101/2023.08.08.552437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The human cerebral cortex is populated by specialized regions that are organized into networks. Here we estimated networks using a Multi-Session Hierarchical Bayesian Model (MS-HBM) applied to intensively sampled within-individual functional MRI (fMRI) data. The network estimation procedure was initially developed and tested in two participants (each scanned 31 times) and then prospectively applied to 15 new participants (each scanned 8 to 11 times). Detailed analysis of the networks revealed a global organization. Locally organized first-order sensory and motor networks were surrounded by spatially adjacent second-order networks that also linked to distant regions. Third-order networks each possessed regions distributed widely throughout association cortex. Moreover, regions of distinct third-order networks displayed side-by-side juxtapositions with a pattern that repeated similarly across multiple cortical zones. We refer to these as Supra-Areal Association Megaclusters (SAAMs). Within each SAAM, two candidate control regions were typically adjacent to three separate domain-specialized regions. Independent task data were analyzed to explore functional response properties. The somatomotor and visual first-order networks responded to body movements and visual stimulation, respectively. A subset of the second-order networks responded to transients in an oddball detection task, consistent with a role in orienting to salient or novel events. The third-order networks, including distinct regions within each SAAM, showed two levels of functional specialization. Regions linked to candidate control networks responded to working memory load across multiple stimulus domains. The remaining regions within each SAAM did not track working memory load but rather dissociated across language, social, and spatial / episodic processing domains. These results support a model of the cerebral cortex in which progressively higher-order networks nest outwards from primary sensory and motor cortices. Within the apex zones of association cortex there is specialization of large-scale networks that divides domain-flexible from domain-specialized regions repeatedly across parietal, temporal, and prefrontal cortices. We discuss implications of these findings including how repeating organizational motifs may emerge during development.
Collapse
Affiliation(s)
- Jingnan Du
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Lauren M DiNicola
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Peter A Angeli
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Noam Saadon-Grosman
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Wendy Sun
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Stephanie Kaiser
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Joanna Ladopoulou
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Aihuiping Xue
- Centre for Sleep & Cognition & Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - B T Thomas Yeo
- Centre for Sleep & Cognition & Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Mark C Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
16
|
Hickok G, Venezia J, Teghipco A. Beyond Broca: neural architecture and evolution of a dual motor speech coordination system. Brain 2023; 146:1775-1790. [PMID: 36746488 PMCID: PMC10411947 DOI: 10.1093/brain/awac454] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/04/2022] [Accepted: 11/19/2022] [Indexed: 02/08/2023] Open
Abstract
Classical neural architecture models of speech production propose a single system centred on Broca's area coordinating all the vocal articulators from lips to larynx. Modern evidence has challenged both the idea that Broca's area is involved in motor speech coordination and that there is only one coordination network. Drawing on a wide range of evidence, here we propose a dual speech coordination model in which laryngeal control of pitch-related aspects of prosody and song are coordinated by a hierarchically organized dorsolateral system while supralaryngeal articulation at the phonetic/syllabic level is coordinated by a more ventral system posterior to Broca's area. We argue further that these two speech production subsystems have distinguishable evolutionary histories and discuss the implications for models of language evolution.
Collapse
Affiliation(s)
- Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, CA 92697, USA
- Department of Language Science, University of California, Irvine, CA 92697, USA
| | - Jonathan Venezia
- Auditory Research Laboratory, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
- Department of Otolaryngology—Head and Neck Surgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Alex Teghipco
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
17
|
Bedini M, Olivetti E, Avesani P, Baldauf D. Accurate localization and coactivation profiles of the frontal eye field and inferior frontal junction: an ALE and MACM fMRI meta-analysis. Brain Struct Funct 2023; 228:997-1017. [PMID: 37093304 PMCID: PMC10147761 DOI: 10.1007/s00429-023-02641-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
The frontal eye field (FEF) and the inferior frontal junction (IFJ) are prefrontal structures involved in mediating multiple aspects of goal-driven behavior. Despite being recognized as prominent nodes of the networks underlying spatial attention and oculomotor control, and working memory and cognitive control, respectively, the limited quantitative evidence on their precise localization has considerably impeded the detailed understanding of their structure and connectivity. In this study, we performed an activation likelihood estimation (ALE) fMRI meta-analysis by selecting studies that employed standard paradigms to accurately infer the localization of these regions in stereotaxic space. For the FEF, we found the highest spatial convergence of activations for prosaccade and antisaccade paradigms at the junction of the precentral sulcus and superior frontal sulcus. For the IFJ, we found consistent activations across oddball/attention, working memory, task-switching and Stroop paradigms at the junction of the inferior precentral sulcus and inferior frontal sulcus. We related these clusters to previous meta-analyses, sulcal/gyral neuroanatomy, and a comprehensive brain parcellation, highlighting important differences compared to their results and taxonomy. Finally, we leveraged the ALE peak coordinates as seeds to perform a meta-analytic connectivity modeling (MACM) analysis, which revealed systematic coactivation patterns spanning the frontal, parietal, and temporal cortices. We decoded the behavioral domains associated with these coactivations, suggesting that these may allow FEF and IFJ to support their specialized roles in flexible behavior. Our study provides the meta-analytic groundwork for investigating the relationship between functional specialization and connectivity of two crucial control structures of the prefrontal cortex.
Collapse
Affiliation(s)
- Marco Bedini
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy.
- Department of Psychology, University of California, San Diego, McGill Hall 9500 Gilman Dr, La Jolla, CA, 92093-0109, USA.
| | - Emanuele Olivetti
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy
- NILab, Bruno Kessler Foundation (FBK), Via delle Regole 101, 38123, Trento, Italy
| | - Paolo Avesani
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy
- NILab, Bruno Kessler Foundation (FBK), Via delle Regole 101, 38123, Trento, Italy
| | - Daniel Baldauf
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy
| |
Collapse
|
18
|
Himmelberg MM, Kurzawski JW, Benson NC, Pelli DG, Carrasco M, Winawer J. Cross-dataset reproducibility of human retinotopic maps. Neuroimage 2021; 244:118609. [PMID: 34582948 PMCID: PMC8560578 DOI: 10.1016/j.neuroimage.2021.118609] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/11/2022] Open
Abstract
Population receptive field (pRF) models fit to fMRI data are used to non-invasively measure retinotopic maps in human visual cortex, and these maps are a fundamental component of visual neuroscience experiments. Here, we examined the reproducibility of retinotopic maps across two datasets: a newly acquired retinotopy dataset from New York University (NYU) (n = 44) and a public dataset from the Human Connectome Project (HCP) (n = 181). Our goal was to assess the degree to which pRF properties are similar across datasets, despite substantial differences in their experimental protocols. The two datasets simultaneously differ in their stimulus apertures, participant pool, fMRI protocol, MRI field strength, and preprocessing pipeline. We assessed the cross-dataset reproducibility of the two datasets in terms of the similarity of vertex-wise pRF estimates and in terms of large-scale polar angle asymmetries in cortical magnification. Within V1, V2, V3, and hV4, the group-median NYU and HCP vertex-wise polar angle estimates were nearly identical. Both eccentricity and pRF size estimates were also strongly correlated between the two datasets, but with a slope different from 1; the eccentricity and pRF size estimates were systematically greater in the NYU data. Next, to compare large-scale map properties, we quantified two polar angle asymmetries in V1 cortical magnification previously identified in the HCP data. The NYU dataset confirms earlier reports that more cortical surface area represents horizontal than vertical visual field meridian, and lower than upper vertical visual field meridian. Together, our findings show that the retinotopic properties of V1, V2, V3, and hV4 can be reliably measured across two datasets, despite numerous differences in their experimental design. fMRI-derived retinotopic maps are reproducible because they rely on an explicit computational model of the fMRI response. In the case of pRF mapping, the model is grounded in physiological evidence of how visual receptive fields are organized, allowing one to quantitatively characterize the BOLD signal in terms of stimulus properties (i.e., location and size). The new NYU Retinotopy Dataset will serve as a useful benchmark for testing hypotheses about the organization of visual areas and for comparison to the HCP 7T Retinotopy Dataset.
Collapse
Affiliation(s)
- Marc M Himmelberg
- Department of Psychology, New York University, New York 10003, NY, USA.
| | - Jan W Kurzawski
- Department of Psychology, New York University, New York 10003, NY, USA
| | - Noah C Benson
- eScience Institute, University of Washington, Seattle 98195, WA, USA
| | - Denis G Pelli
- Department of Psychology, New York University, New York 10003, NY, USA; Center for Neural Sciences, New York University, New York 10003, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York 10003, NY, USA; Center for Neural Sciences, New York University, New York 10003, NY, USA
| | - Jonathan Winawer
- Department of Psychology, New York University, New York 10003, NY, USA; Center for Neural Sciences, New York University, New York 10003, NY, USA
| |
Collapse
|