1
|
Siqueiros-Sanchez M, Serur Y, McGhee CA, Smith TF, Green T. Social Communication in Ras Pathway Disorders: A Comprehensive Review from Genetics to Behavior in Neurofibromatosis Type 1 and Noonan Syndrome. Biol Psychiatry 2024:S0006-3223(24)01624-X. [PMID: 39366539 DOI: 10.1016/j.biopsych.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024]
Abstract
Neurofibromatosis type 1 (NF1) and Noonan syndrome (NS) are neurogenetic syndromes caused by pathogenetic variants encoding components of the Ras-ERK-MAPK signaling pathway (Ras pathway). NF1 and NS are associated with differences in social communication and related neuropsychiatric risks. During the last decade, there has been growing interest in Ras-linked syndromes as models to understand social communication deficits and autism spectrum disorders. We systematically review the literature between 2010-2023 focusing on the social communication construct of the RDoC framework. We provide an integrative summary of the research on facial and non-facial social communication processes in NF1 and NS across molecular, cellular, neural circuitry, and behavioral domains. At the molecular and cellular levels, dysregulation in the Ras pathway is intricately tied to variations in social communication through changes in GABAergic, glutamatergic, and serotonergic transmission, as well as inhibitory/excitatory imbalance. Neural circuitry typically associated with learning, attention, and memory in NF1 and NS (e.g., cortico-striatal connectivity), is also implicated in social communication. We highlight less researched, potential mechanisms for social communication, such as white matter connectivity and the default mode network. Finally, key gaps in NF1 and NS literature are identified and a roadmap for future research is provided. By leveraging genetic syndromes research, we can understand the mechanisms associated with behaviors and psychiatric disorders.
Collapse
Affiliation(s)
- Monica Siqueiros-Sanchez
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Yaffa Serur
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chloe A McGhee
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Taylor F Smith
- Department of Psychology and Child Development, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA
| | - Tamar Green
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
2
|
Hashimoto RI, Okada R, Aoki R, Nakamura M, Ohta H, Itahashi T. Functional alterations of lateral temporal cortex for processing voice prosody in adults with autism spectrum disorder. Cereb Cortex 2024; 34:bhae363. [PMID: 39270675 DOI: 10.1093/cercor/bhae363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The human auditory system includes discrete cortical patches and selective regions for processing voice information, including emotional prosody. Although behavioral evidence indicates individuals with autism spectrum disorder (ASD) have difficulties in recognizing emotional prosody, it remains understudied whether and how localized voice patches (VPs) and other voice-sensitive regions are functionally altered in processing prosody. This fMRI study investigated neural responses to prosodic voices in 25 adult males with ASD and 33 controls using voices of anger, sadness, and happiness with varying degrees of emotion. We used a functional region-of-interest analysis with an independent voice localizer to identify multiple VPs from combined ASD and control data. We observed a general response reduction to prosodic voices in specific VPs of left posterior temporal VP (TVP) and right middle TVP. Reduced cortical responses in right middle TVP were consistently correlated with the severity of autistic symptoms for all examined emotional prosodies. Moreover, representation similarity analysis revealed the reduced effect of emotional intensity in multivoxel activation patterns in left anterior superior temporal cortex only for sad prosody. These results indicate reduced response magnitudes to voice prosodies in specific TVPs and altered emotion intensity-dependent multivoxel activation patterns in adult ASDs, potentially underlying their socio-communicative difficulties.
Collapse
Affiliation(s)
- Ryu-Ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-Karasuyama, Setagaya-ku, Tokyo 157-8577, Japan
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Rieko Okada
- Faculty of Intercultural Japanese Studies, Otemae University, 6-42 Ochayasho-cho, Nishinomiya-shi Hyogo 662-8552, Japan
| | - Ryuta Aoki
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Motoaki Nakamura
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-Karasuyama, Setagaya-ku, Tokyo 157-8577, Japan
| | - Haruhisa Ohta
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-Karasuyama, Setagaya-ku, Tokyo 157-8577, Japan
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-Karasuyama, Setagaya-ku, Tokyo 157-8577, Japan
| |
Collapse
|
3
|
Li KE, Dimitrijevic A, Gordon KA, Pang EW, Greiner HM, Kadis DS. Age-related increases in right hemisphere support for prosodic processing in children. Sci Rep 2023; 13:15849. [PMID: 37740012 PMCID: PMC10516972 DOI: 10.1038/s41598-023-43027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
Language comprehension is a complex process involving an extensive brain network. Brain regions responsible for prosodic processing have been studied in adults; however, much less is known about the neural bases of prosodic processing in children. Using magnetoencephalography (MEG), we mapped regions supporting speech envelope tracking (a marker of prosodic processing) in 80 typically developing children, ages 4-18 years, completing a stories listening paradigm. Neuromagnetic signals coherent with the speech envelope were localized using dynamic imaging of coherent sources (DICS). Across the group, we observed coherence in bilateral perisylvian cortex. We observed age-related increases in coherence to the speech envelope in the right superior temporal gyrus (r = 0.31, df = 78, p = 0.0047) and primary auditory cortex (r = 0.27, df = 78, p = 0.016); age-related decreases in coherence to the speech envelope were observed in the left superior temporal gyrus (r = - 0.25, df = 78, p = 0.026). This pattern may indicate a refinement of the networks responsible for prosodic processing during development, where language areas in the right hemisphere become increasingly specialized for prosodic processing. Altogether, these results reveal a distinct neurodevelopmental trajectory for the processing of prosodic cues, highlighting the presence of supportive language functions in the right hemisphere. Findings from this dataset of typically developing children may serve as a potential reference timeline for assessing children with neurodevelopmental hearing and speech disorders.
Collapse
Affiliation(s)
- Kristen E Li
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Neurosciences and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Andrew Dimitrijevic
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Otolaryngology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Otolaryngology, University of Toronto, Toronto, ON, Canada
| | - Karen A Gordon
- Neurosciences and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Otolaryngology, University of Toronto, Toronto, ON, Canada
| | - Elizabeth W Pang
- Neurosciences and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Division of Neurology, Hospital for Sick Children, Toronto, ON, Canada
| | - Hansel M Greiner
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Darren S Kadis
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Neurosciences and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
4
|
Leipold S, Abrams DA, Karraker S, Phillips JM, Menon V. Aberrant Emotional Prosody Circuitry Predicts Social Communication Impairments in Children With Autism. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:531-541. [PMID: 36635147 PMCID: PMC10973204 DOI: 10.1016/j.bpsc.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/25/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Emotional prosody provides acoustical cues that reflect a communication partner's emotional state and is crucial for successful social interactions. Many children with autism have deficits in recognizing emotions from voices; however, the neural basis for these impairments is unknown. We examined brain circuit features underlying emotional prosody processing deficits and their relationship to clinical symptoms of autism. METHODS We used an event-related functional magnetic resonance imaging task to measure neural activity and connectivity during processing of sad and happy emotional prosody and neutral speech in 22 children with autism and 21 matched control children (7-12 years old). We employed functional connectivity analyses to test competing theoretical accounts that attribute emotional prosody impairments to either sensory processing deficits in auditory cortex or theory of mind deficits instantiated in the temporoparietal junction (TPJ). RESULTS Children with autism showed specific behavioral impairments for recognizing emotions from voices. They also showed aberrant functional connectivity between voice-sensitive auditory cortex and the bilateral TPJ during emotional prosody processing. Neural activity in the bilateral TPJ during processing of both sad and happy emotional prosody stimuli was associated with social communication impairments in children with autism. In contrast, activity and decoding of emotional prosody in auditory cortex was comparable between autism and control groups and did not predict social communication impairments. CONCLUSIONS Our findings support a social-cognitive deficit model of autism by identifying a role for TPJ dysfunction during emotional prosody processing. Our study underscores the importance of tuning in to vocal-emotional cues for building social connections in children with autism.
Collapse
Affiliation(s)
- Simon Leipold
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California.
| | - Daniel A Abrams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Shelby Karraker
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Jennifer M Phillips
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Department of Neurology and Neurological Sciences, Stanford University, Stanford, California; Stanford Neurosciences Institute, Stanford University, Stanford, California.
| |
Collapse
|