1
|
Nishio M, Liu X, Mackey AP, Arcaro MJ. Myelination across cortical hierarchies and depths in humans and macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636851. [PMID: 39975294 PMCID: PMC11839058 DOI: 10.1101/2025.02.06.636851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Myelination is fundamental to brain function, enabling rapid neural communication and supporting neuroplasticity throughout the lifespan. While hierarchical patterns of myelin maturation across the cortical surface are well-documented in humans, it remains unclear which features reflect evolutionarily conserved developmental processes versus human-characteristic adaptations. Moreover, the laminar development of myelin across the primate cortical surface, which shapes hierarchies and supports functions ranging from sensory integration to network communication, has been largely unexplored. Using neuroimaging to measure the T1-weighted/T2-weighted ratio in tissue contrast as a proxy for myelin content, we systematically compared depth-dependent trajectories of myelination across the cortical surface in humans and macaques. We identified a conserved "inside-out" pattern, with deeper layers exhibiting steeper increases in myelination and earlier plateaus than superficial layers. This depth-dependent organization followed a hierarchical gradient across the cortical surface, progressing from early maturation in sensorimotor regions to prolonged development in association areas. Humans exhibited a markedly extended timeline of myelination across both cortical regions and depths compared to macaques, allowing for prolonged postnatal plasticity across the entire cortical hierarchy - from sensory and motor processing to higher-order association networks. This extended potential for plasticity may facilitate the shaping of cortical circuits through postnatal experience in ways that support human-characteristic perceptual and cognitive capabilities.
Collapse
Affiliation(s)
- Monami Nishio
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xingyu Liu
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Allyson P. Mackey
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael J. Arcaro
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Mikhalkin AA, Nikitina NI, Merkulyeva NS. Early postnatal development of the primary visual areas 17 and 18 of the cat cerebral cortex: An SMI-32 study. J Neurosci Res 2024; 102:e25375. [PMID: 39105520 DOI: 10.1002/jnr.25375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/04/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
Using anti-neurofilament H non-phosphorylated antibodies (SMI-32) as markers for the neuronal maturation level and Y channel responsible for motion processing, we investigated early postnatal development of the primary visual areas 17 and 18 in cats aged 0, 10, 14, and 34 days and in adults. Two analyzed parameters of SMI-32-immunolabeling were used: the total proportion of SMI-32-labeling and the density of labeled neurons. (i) The developmental time course of the total proportion of SMI-32-labeling shows the general increase in the accumulation of heavy-chain neurofilaments. This parameter showed a different time course for cortical layer development; the maximal increment in the total labeling in layer V occurred between the second and fifth postnatal weeks and in layers II-III and VI after the fifth postnatal week. In addition, the delay in accumulation of SMI-32-labeling was shown in layer V of the area 17 periphery representation during the first two postnatal weeks. (ii) The density of SMI-32-labeled neurons decreased in all layers of area 18, but was increased, decreased, or had a transient peak in layers II-III, V, and VI of area 17, respectively. The transient peak is in good correspondence with some transient neurochemical features previously revealed for different classes of cortical and thalamic neurons and reflects the time course of the early development of the thalamocortical circuitry. Some similarities between the time courses for the development of SMI-32-labeling in areas 17/18 and in A- and C-laminae of the LGNd allow us to propose heterochronous postnatal development of two Y sub-channels.
Collapse
Affiliation(s)
- A A Mikhalkin
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - N I Nikitina
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - N S Merkulyeva
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
3
|
Nehme R, Pietiläinen O, Barrett LE. Genomic, molecular, and cellular divergence of the human brain. Trends Neurosci 2024; 47:491-505. [PMID: 38897852 PMCID: PMC11956863 DOI: 10.1016/j.tins.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
While many core biological processes are conserved across species, the human brain has evolved with unique capacities. Current understanding of the neurobiological mechanisms that endow human traits as well as associated vulnerabilities remains limited. However, emerging data have illuminated species divergence in DNA elements and genome organization, in molecular, morphological, and functional features of conserved neural cell types, as well as temporal differences in brain development. Here, we summarize recent data on unique features of the human brain and their complex implications for the study and treatment of brain diseases. We also consider key outstanding questions in the field and discuss the technologies and foundational knowledge that will be required to accelerate understanding of human neurobiology.
Collapse
Affiliation(s)
- Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Olli Pietiläinen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
4
|
Watanabe S, Kurotani T, Oga T, Noguchi J, Isoda R, Nakagami A, Sakai K, Nakagaki K, Sumida K, Hoshino K, Saito K, Miyawaki I, Sekiguchi M, Wada K, Minamimoto T, Ichinohe N. Functional and molecular characterization of a non-human primate model of autism spectrum disorder shows similarity with the human disease. Nat Commun 2021; 12:5388. [PMID: 34526497 PMCID: PMC8443557 DOI: 10.1038/s41467-021-25487-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/12/2021] [Indexed: 02/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is a multifactorial disorder with characteristic synaptic and gene expression changes. Early intervention during childhood is thought to benefit prognosis. Here, we examined the changes in cortical synaptogenesis, synaptic function, and gene expression from birth to the juvenile stage in a marmoset model of ASD induced by valproic acid (VPA) treatment. Early postnatally, synaptogenesis was reduced in this model, while juvenile-age VPA-treated marmosets showed increased synaptogenesis, similar to observations in human tissue. During infancy, synaptic plasticity transiently increased and was associated with altered vocalization. Synaptogenesis-related genes were downregulated early postnatally. At three months of age, the differentially expressed genes were associated with circuit remodeling, similar to the expression changes observed in humans. In summary, we provide a functional and molecular characterization of a non-human primate model of ASD, highlighting its similarity to features observed in human ASD.
Collapse
Affiliation(s)
- Satoshi Watanabe
- grid.419280.60000 0004 1763 8916Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| | - Tohru Kurotani
- grid.419280.60000 0004 1763 8916Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| | - Tomofumi Oga
- grid.419280.60000 0004 1763 8916Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| | - Jun Noguchi
- grid.419280.60000 0004 1763 8916Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| | - Risa Isoda
- grid.419280.60000 0004 1763 8916Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| | - Akiko Nakagami
- grid.419280.60000 0004 1763 8916Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan ,grid.411827.90000 0001 2230 656XDepartment of Psychology, Japan Women’s University, Kawasaki, Kanagawa Japan
| | - Kazuhisa Sakai
- grid.419280.60000 0004 1763 8916Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| | - Keiko Nakagaki
- grid.419280.60000 0004 1763 8916Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| | - Kayo Sumida
- grid.459996.e0000 0004 0376 2692Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Konohana-ku, Osaka, Japan
| | - Kohei Hoshino
- grid.417741.00000 0004 1797 168XPreclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| | - Koichi Saito
- grid.459996.e0000 0004 0376 2692Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Konohana-ku, Osaka, Japan
| | - Izuru Miyawaki
- grid.417741.00000 0004 1797 168XPreclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| | - Masayuki Sekiguchi
- grid.419280.60000 0004 1763 8916Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| | - Keiji Wada
- grid.419280.60000 0004 1763 8916Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| | - Takafumi Minamimoto
- grid.482503.80000 0004 5900 003XDepartment of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, Japan
| | - Noritaka Ichinohe
- grid.419280.60000 0004 1763 8916Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| |
Collapse
|
5
|
Volume reduction without neuronal loss in the primate pulvinar complex following striate cortex lesions. Brain Struct Funct 2021; 226:2417-2430. [PMID: 34324075 DOI: 10.1007/s00429-021-02345-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Lesions in the primary visual cortex (V1) cause extensive retrograde degeneration in the lateral geniculate nucleus, but it remains unclear whether they also trigger any neuronal loss in other subcortical visual centers. The inferior (IPul) and lateral (LPul) pulvinar nuclei have been regarded as part of the pathways that convey visual information to both V1 and extrastriate cortex. Here, we apply stereological analysis techniques to NeuN-stained sections of marmoset brain, in order to investigate whether the volume of these nuclei, and the number of neurons they comprise, change following unilateral long-term V1 lesions. For comparison, the medial pulvinar nucleus (MPul), which has no connections with V1, was also studied. Compared to control animals, animals with lesions incurred either 6 weeks after birth or in adulthood showed significant LPul volume loss following long (> 11 months) survival times. However, no obvious areas of neuronal degeneration were observed. In addition, estimates of neuronal density in lesioned hemispheres were similar to those in the non-lesioned hemispheres of same animals. Our results support the view that, in marked contrast with the geniculocortical projection, the pulvinar pathway is largely spared from the most severe long-term effects of V1 lesions, whether incurred in early postnatal or adult life. This difference can be linked to the more divergent pattern of pulvinar connectivity to the visual cortex, including strong reciprocal connections with extrastriate areas. The results also caution against interpretation of volume loss in brain structures as a marker for neuronal degeneration.
Collapse
|
6
|
Atapour N, Worthy KH, Rosa MGP. Neurochemical changes in the primate lateral geniculate nucleus following lesions of striate cortex in infancy and adulthood: implications for residual vision and blindsight. Brain Struct Funct 2021; 226:2763-2775. [PMID: 33743077 DOI: 10.1007/s00429-021-02257-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/10/2021] [Indexed: 12/16/2022]
Abstract
Following lesions of the primary visual cortex (V1), the lateral geniculate nucleus (LGN) undergoes substantial cell loss due to retrograde degeneration. However, visually responsive neurons remain in the degenerated sector of LGN, and these have been implicated in mediation of residual visual capacities that remain within the affected sectors of the visual field. Using immunohistochemistry, we compared the neurochemical characteristics of LGN neurons in V1-lesioned marmoset monkeys (Callithrix jacchus) with those of non-lesioned control animals. We found that GABAergic neurons form approximately 6.5% of the neuronal population in the normal LGN, where most of these cells express the calcium-binding protein parvalbumin. Following long-term V1 lesions in adult monkeys, we observed a marked increase (~ sevenfold) in the proportion of GABA-expressing neurons in the degenerated sector of the LGN, indicating that GABAergic cells are less affected by retrograde degeneration in comparison with magno- and parvocellular projection neurons. In addition, following early postnatal V1 lesions and survival into adulthood, we found widespread expression of GABA in putative projection neurons, even outside the degenerated sectors (lesion projection zones). Our findings show that changes in the ratio of GABAergic neurons in LGN need to be taken into account in the interpretation of the mechanisms of visual abilities that survive V1 lesions in primates.
Collapse
Affiliation(s)
- Nafiseh Atapour
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia. .,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Melbourne, VIC, Australia.
| | - Katrina H Worthy
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Marcello G P Rosa
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Homman-Ludiye J, Bourne JA. The Marmoset: The Next Frontier in Understanding the Development of the Human Brain. ILAR J 2021; 61:248-259. [PMID: 33620074 DOI: 10.1093/ilar/ilaa028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
Rodent models, particularly mice, have dominated the field of developmental neuroscience for decades, like they have in most fields of biomedicine research. However, with 80 million years since rodents and primates last shared a common ancestor, the use of mice to model the development of the human brain is not without many shortcomings. The human brain diverges from the mouse brain in many aspects and is comprised of novel structures as well as diversified cellular subtypes. While these newly evolved features have no equivalent in rodents, they are observed in nonhuman primates. Therefore, elucidating the cellular mechanisms underlying the development and maturation of the healthy and diseased human brain can be achieved using less complex nonhuman primates. Historically, macaques were the preferred nonhuman primate model. However, over the past decade, the New World marmoset monkey (Callithrix jacchus) has gained more importance, particularly in the field of neurodevelopment. With its small size, twin or triplet birth, and prosocial behavior, the marmoset is an ideal model to study normal brain development as well as neurodevelopmental disorders, which are often associated with abnormal social behaviors. The growing interest in the marmoset has prompted many comparative studies, all demonstrating that the marmoset brain closely resembles that of the human and is perfectly suited to model human brain development. The marmoset is thus poised to extend its influence in the field of neurodevelopment and will hopefully fill the gaps that the mouse has left in our understanding of how our brain forms and how neurodevelopmental disorders originate.
Collapse
Affiliation(s)
- Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Turner EC, Gabi M, Liao CC, Kaas JH. The postnatal development of MT, V1, LGN, pulvinar and SC in prosimian galagos (Otolemur garnettii). J Comp Neurol 2020; 528:3075-3094. [PMID: 32067231 PMCID: PMC11495416 DOI: 10.1002/cne.24885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 11/05/2022]
Abstract
Considerable evidence supports the premise that the visual system of primates develops hierarchically, with primary visual cortex developing structurally and functionally first, thereby influencing the subsequent development of higher cortical areas. An apparent exception is the higher order middle temporal visual area (MT), which appears to be histologically distinct near the time of birth in marmosets. Here we used a number of histological and immunohistological markers to evaluate the maturation of cortical and subcortical components of the visual system in galagos ranging from newborns to adults. Galagos are representative of the large strepsirrhine branch of primate evolution, and studies of these primates help identify brain features that are broadly similar across primate taxa. The histological results support the view that MT is functional at or near the time of birth, as is primary visual cortex. Likewise, the superior colliculus, dorsal lateral geniculate nucleus, and the posterior nucleus of the pulvinar are well-developed by birth. Thus, these subcortical structures likely provide visual information directly or indirectly to cortex in newborn galagos. We conclude that MT resembles a primary sensory area by developing early, and that the early development of MT may influence the subsequent development of dorsal stream visual areas.
Collapse
Affiliation(s)
- Emily C Turner
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Mariana Gabi
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
9
|
Yu HH, Rowley DP, Price NSC, Rosa MGP, Zavitz E. A twisted visual field map in the primate dorsomedial cortex predicted by topographic continuity. SCIENCE ADVANCES 2020; 6:6/44/eaaz8673. [PMID: 33115750 PMCID: PMC7608794 DOI: 10.1126/sciadv.aaz8673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Adjacent neurons in visual cortex have overlapping receptive fields within and across area boundaries, an arrangement theorized to minimize wiring cost. This constraint is traditionally thought to create retinotopic maps of opposing field signs (mirror and nonmirror visual field representations) in adjacent areas, a concept that has become central in current attempts to subdivide the extrastriate cortex. We simulated the formation of retinotopic maps using a model that balances constraints imposed by smoothness in the representation within an area and by congruence between areas. As in the primate cortex, this model usually leads to alternating mirror and nonmirror maps. However, we found that it can also produce a more complex type of map, consisting of sectors with opposing field sign within a single area. Using fully quantitative electrode array recordings, we then demonstrate that this type of inhomogeneous map exists in the controversial dorsomedial region of the primate extrastriate cortex.
Collapse
Affiliation(s)
- Hsin-Hao Yu
- Department of Physiology and Neuroscience Program Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
- IBM Research Australia, Southbank, VIC, Australia
| | - Declan P Rowley
- Department of Physiology and Neuroscience Program Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Nicholas S C Price
- Department of Physiology and Neuroscience Program Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Elizabeth Zavitz
- Department of Physiology and Neuroscience Program Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
Mikhalkin A, Nikitina N, Merkulyeva N. Heterochrony of postnatal accumulation of nonphosphorylated heavy‐chain neurofilament by neurons of the cat dorsal lateral geniculate nucleus. J Comp Neurol 2020; 529:1430-1441. [DOI: 10.1002/cne.25028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Aleksandr Mikhalkin
- lab Neuromorphology Pavlov Institute of Physiology RAS Makarov emb, 6 Saint‐Petersburg Russia
| | - Nina Nikitina
- lab Neuromorphology Pavlov Institute of Physiology RAS Makarov emb, 6 Saint‐Petersburg Russia
| | - Natalia Merkulyeva
- lab Neuromorphology Pavlov Institute of Physiology RAS Makarov emb, 6 Saint‐Petersburg Russia
| |
Collapse
|
11
|
Graph theoretical modeling of baby brain networks. Neuroimage 2019; 185:711-727. [DOI: 10.1016/j.neuroimage.2018.06.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 11/20/2022] Open
|
12
|
Homman-Ludiye J, Kwan WC, de Souza MJ, Bourne JA. Full: Ontogenesis and development of the nonhuman primate pulvinar. J Comp Neurol 2018; 526:2870-2883. [PMID: 30225841 DOI: 10.1002/cne.24534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 11/08/2022]
Abstract
Recent evidence demonstrates that the pulvinar nuclei play a critical role in shaping the connectivity and function of the multiple cortical areas they connect. Surprisingly, however, little is known about the development of this area, the largest corpus of the thalamic nuclei, which go on to occupy 40% of the adult thalamus in the human. It was proposed that the nonhuman primate and the human pulvinar develop according to very different processes, with a greatly reduced neurogenic period in nonhuman primate compared to human and divergent origins. In the marmoset monkey, we demonstrate that neurons populating the pulvinar are generated throughout gestation, suggesting that this aspect of development is more similar to the human than first predicted. While we were able to confirm the diencephalic source of pulvinar neurons, we provide new evidence contesting the presence of an additional niche in the telencephalon. Finally, our study defines new molecular markers that will simplify future investigations in the development and evolution of the pulvinar.
Collapse
Affiliation(s)
- Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - William C Kwan
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Mitchell J de Souza
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
13
|
Ouyang M, Kang H, Detre JA, Roberts TPL, Huang H. Short-range connections in the developmental connectome during typical and atypical brain maturation. Neurosci Biobehav Rev 2017; 83:109-122. [PMID: 29024679 DOI: 10.1016/j.neubiorev.2017.10.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/09/2017] [Accepted: 10/06/2017] [Indexed: 01/10/2023]
Abstract
The human brain is remarkably complex with connectivity constituting its basic organizing principle. Although long-range connectivity has been focused on in most research, short-range connectivity is characterized by unique and spatiotemporally heterogeneous dynamics from infancy to adulthood. Alterations in the maturational dynamics of short-range connectivity has been associated with neuropsychiatric disorders, such as autism and schizophrenia. Recent advances in neuroimaging techniques, especially diffusion magnetic resonance imaging (dMRI), resting-state functional MRI (rs-fMRI), electroencephalography (EEG) and magnetoencephalography (MEG), have made quantification of short-range connectivity possible in pediatric populations. This review summarizes findings on the development of short-range functional and structural connections at the macroscale. These findings suggest an inverted U-shaped pattern of maturation from primary to higher-order brain regions, and possible "hyper-" and "hypo-" short-range connections in autism and schizophrenia, respectively. The precisely balanced short- and long-range connections contribute to the integration and segregation of the connectome during development. The mechanistic relationship among short-range connectivity maturation, the developmental connectome and emerging brain functions needs further investigation, including the refinement of methodological approaches.
Collapse
Affiliation(s)
- Minhui Ouyang
- Radiology Research, Children's Hospital of Philadelphia, PA, United States
| | - Huiying Kang
- Radiology Research, Children's Hospital of Philadelphia, PA, United States; Department of Radiology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - John A Detre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, PA, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Timothy P L Roberts
- Radiology Research, Children's Hospital of Philadelphia, PA, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Hao Huang
- Radiology Research, Children's Hospital of Philadelphia, PA, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, United States.
| |
Collapse
|
14
|
Seki F, Hikishima K, Komaki Y, Hata J, Uematsu A, Okahara N, Yamamoto M, Shinohara H, Sasaki E, Okano H. Developmental trajectories of macroanatomical structures in common marmoset brain. Neuroscience 2017; 364:143-156. [PMID: 28939259 DOI: 10.1016/j.neuroscience.2017.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/11/2017] [Accepted: 09/12/2017] [Indexed: 11/17/2022]
Abstract
Morphometry studies of human brain development have revealed characteristics of some growth patterns, such as gray matter (GM) and white matter (WM), but the features that make human neurodevelopment distinct from that in other species remain unclear. Studies of the common marmoset (Callithrix jacchus), a small New World primate, can provide insights into unique features such as cooperative behaviors complementary to those from comparative analyses using mouse and rhesus monkey. In the present study, we analyzed developmental patterns of GM, WM, and cortical regions with volume measurements using longitudinal sample (23 marmosets; 11 male, 12 female) between the ages of one and 30months. Regional analysis using a total of 164 magnetic resonance imaging datasets revealed that GM volume increased before puberty (5.4months), but subsequently declined until adulthood, whereas WM volume increased rapidly before stabilizing around puberty (9.9months). Cortical regions showed similar patterns of increase and decrease, patterns with global GM but differed in the timing of volume peak and degree of decline across regions. The progressive-regressive pattern detected in both global and cortical GM was well correlated to phases of synaptogenesis and synaptic pruning reported in previous marmoset studies. A rapid increase in WM in early development may represent a distinctive aspect of human neurodevelopment. These findings suggest that studies of marmoset brain development can provide valuable comparative information that will facilitate a deeper understanding of human brain growth and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Fumiko Seki
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Laboratory for Marmoset Neural Architecture, Brain Science Institute RIKEN, Wako, Japan
| | - Keigo Hikishima
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuji Komaki
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Central Institute for Experimental Animals, Kawasaki, Japan
| | - Junichi Hata
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Laboratory for Marmoset Neural Architecture, Brain Science Institute RIKEN, Wako, Japan
| | - Akiko Uematsu
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Laboratory for Marmoset Neural Architecture, Brain Science Institute RIKEN, Wako, Japan
| | - Norio Okahara
- Central Institute for Experimental Animals, Kawasaki, Japan
| | | | | | - Erika Sasaki
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Central Institute for Experimental Animals, Kawasaki, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, Brain Science Institute RIKEN, Wako, Japan.
| |
Collapse
|
15
|
Kirkcaldie MTK, Dwyer ST. The third wave: Intermediate filaments in the maturing nervous system. Mol Cell Neurosci 2017; 84:68-76. [PMID: 28554564 DOI: 10.1016/j.mcn.2017.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/10/2017] [Accepted: 05/25/2017] [Indexed: 01/16/2023] Open
Abstract
Intermediate filaments are critical for the extreme structural specialisations of neurons, providing integrity in dynamic environments and efficient communication along axons a metre or more in length. As neurons mature, an initial expression of nestin and vimentin gives way to the neurofilament triplet proteins and α-internexin, substituted by peripherin in axons outside the CNS, which physically consolidate axons as they elongate and find their targets. Once connection is established, these proteins are transported, assembled, stabilised and modified, structurally transforming axons and dendrites as they acquire their full function. The interaction between these neurons and myelinating glial cells optimises the structure of axons for peak functional efficiency, a property retained across their lifespan. This finely calibrated structural regulation allows the nervous system to maintain timing precision and efficient control across large distances throughout somatic growth and, in maturity, as a plasticity mechanism allowing functional adaptation.
Collapse
Affiliation(s)
- Matthew T K Kirkcaldie
- School of Medicine, Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia.
| | - Samuel T Dwyer
- School of Medicine, Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia
| |
Collapse
|
16
|
Abstract
Structural plasticity of the axon initial segment (AIS), the site of action potential initiation, is observed as part of the normal early development of the cortex, as well as in association with injury and disease. Here, we show that structural AIS plasticity also occurs with normal aging in adult marmosets. Immunohistochemical techniques were used to reveal the extent of the AIS of layer 2/3A pyramidal cells in 8 neocortical areas. We found that the AIS length varied significantly between areas in young adult (2-3 years old) marmosets, with neurons in frontal area 14C having the longest AIS, and those in the primary visual cortex the shortest. Similar interareal differences were observed in aged (12-14 year old) monkeys, but the AIS was significantly shortened in many areas, relative to the corresponding length in young adults. Shortening of the AIS is likely to represent a compensatory response to changes in the excitation-inhibition balance, associated with the loss of GABAergic interneurons in the aged cortex.
Collapse
Affiliation(s)
- Nafiseh Atapour
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia; Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Melbourne, Victoria, Australia.
| | - Marcello G P Rosa
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia; Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
The marmoset: An emerging model to unravel the evolution and development of the primate neocortex. Dev Neurobiol 2016; 77:263-272. [DOI: 10.1002/dneu.22425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 12/13/2022]
|
18
|
Reyes LD, Stimpson CD, Gupta K, Raghanti MA, Hof PR, Reep RL, Sherwood CC. Neuron Types in the Presumptive Primary Somatosensory Cortex of the Florida Manatee (Trichechus manatus latirostris). BRAIN, BEHAVIOR AND EVOLUTION 2015; 86:210-31. [PMID: 26613530 DOI: 10.1159/000441964] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/25/2015] [Indexed: 11/19/2022]
Abstract
Within afrotherians, sirenians are unusual due to their aquatic lifestyle, large body size and relatively large lissencephalic brain. However, little is known about the neuron type distributions of the cerebral cortex in sirenians within the context of other afrotherians and aquatic mammals. The present study investigated two cortical regions, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2), in the presumptive primary somatosensory cortex (S1) in Florida manatees (Trichechus manatus latirostris) to characterize cyto- and chemoarchitecture. The mean neuron density for both cortical regions was 35,617 neurons/mm(3) and fell within the 95% prediction intervals relative to brain mass based on a reference group of afrotherians and xenarthrans. Densities of inhibitory interneuron subtypes labeled against calcium-binding proteins and neuropeptide Y were relatively low compared to afrotherians and xenarthrans and also formed a small percentage of the overall population of inhibitory interneurons as revealed by GAD67 immunoreactivity. Nonphosphorylated neurofilament protein-immunoreactive (NPNFP-ir) neurons comprised a mean of 60% of neurons in layer V across DL1 and CL2. DL1 contained a higher percentage of NPNFP-ir neurons than CL2, although CL2 had a higher variety of morphological types. The mean percentage of NPNFP-ir neurons in the two regions of the presumptive S1 were low compared to other afrotherians and xenarthrans but were within the 95% prediction intervals relative to brain mass, and their morphologies were comparable to those found in other afrotherians and xenarthrans. Although this specific pattern of neuron types and densities sets the manatee apart from other afrotherians and xenarthrans, the manatee isocortex does not appear to be explicitly adapted for an aquatic habitat. Many of the features that are shared between manatees and cetaceans are also shared with a diverse array of terrestrial mammals and likely represent highly conserved neural features. A comparative study across manatees and dugongs is necessary to determine whether these traits are specific to one or more of the manatee species, or can be generalized to all sirenians.
Collapse
Affiliation(s)
- Laura D Reyes
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, D.C., USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Mundinano IC, Kwan WC, Bourne JA. Mapping the mosaic sequence of primate visual cortical development. Front Neuroanat 2015; 9:132. [PMID: 26539084 PMCID: PMC4611065 DOI: 10.3389/fnana.2015.00132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/05/2015] [Indexed: 12/04/2022] Open
Abstract
Traditional “textbook” theory suggests that the development and maturation of visual cortical areas occur as a wave from V1. However, more recent evidence would suggest that this is not the case, and the emergence of extrastriate areas occurs in a non-hierarchical fashion. This proposition comes from both physiological and anatomical studies but the actual developmental sequence of extrastriate areas remains unknown. In the current study, we examined the development and maturation of the visual cortex of the marmoset monkey, a New World simian, from embryonic day 130 (15 days prior to birth) through to adulthood. Utilizing the well-described expression characteristics of the calcium-binding proteins calbindin and parvalbumin, and nonphosphorylated neurofilament for the pyramidal neurons, we were able to accurately map the sequence of development and maturation of the visual cortex. To this end, we demonstrated that both V1 and middle temporal area (MT) emerge first and that MT likely supports dorsal stream development while V1 supports ventral stream development. Furthermore, the emergence of the dorsal stream-associated areas was significantly earlier than ventral stream areas. The difference in the temporal development of the visual streams is likely driven by a teleological requirement for specific visual behavior in early life.
Collapse
Affiliation(s)
- Inaki-Carril Mundinano
- Bourne Group, Australian Regenerative Medicine Institute, Monash University Melbourne, VIC, Australia
| | - William Chin Kwan
- Bourne Group, Australian Regenerative Medicine Institute, Monash University Melbourne, VIC, Australia
| | - James A Bourne
- Bourne Group, Australian Regenerative Medicine Institute, Monash University Melbourne, VIC, Australia
| |
Collapse
|
20
|
Laskowska-Macios K, Nys J, Hu TT, Zapasnik M, Van der Perren A, Kossut M, Burnat K, Arckens L. Binocular pattern deprivation interferes with the expression of proteins involved in primary visual cortex maturation in the cat. Mol Brain 2015; 8:48. [PMID: 26271461 PMCID: PMC4536594 DOI: 10.1186/s13041-015-0137-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/31/2015] [Indexed: 12/03/2022] Open
Abstract
Background Binocular pattern deprivation from eye opening (early BD) delays the maturation of the primary visual cortex. This delay is more pronounced for the peripheral than the central visual field representation within area 17, particularly between the age of 2 and 4 months [Laskowska-Macios, Cereb Cortex, 2014]. Results In this study, we probed for related dynamic changes in the cortical proteome. We introduced age, cortical region and BD as principal variables in a 2-D DIGE screen of area 17. In this way we explored the potential of BD-related protein expression changes between central and peripheral area 17 of 2- and 4-month-old BD (2BD, 4BD) kittens as a valid parameter towards the identification of brain maturation-related molecular processes. Consistent with the maturation delay, distinct developmental protein expression changes observed for normal kittens were postponed by BD, especially in the peripheral region. These BD-induced proteomic changes suggest a negative regulation of neurite outgrowth, synaptic transmission and clathrin-mediated endocytosis, thereby implicating these processes in normal experience-induced visual cortex maturation. Verification of the expression of proteins from each of the biological processes via Western analysis disclosed that some of the transient proteomic changes correlate to the distinct behavioral outcome in adult life, depending on timing and duration of the BD period [Neuroscience 2013;255:99-109]. Conclusions Taken together, the plasticity potential to recover from BD, in relation to ensuing restoration of normal visual input, appears to rely on specific protein expression changes and cellular processes induced by the loss of pattern vision in early life. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0137-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karolina Laskowska-Macios
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland. .,Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven - University of Leuven, 3000, Leuven, Belgium.
| | - Julie Nys
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven - University of Leuven, 3000, Leuven, Belgium.
| | - Tjing-Tjing Hu
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven - University of Leuven, 3000, Leuven, Belgium.
| | - Monika Zapasnik
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Anke Van der Perren
- Laboratory for Neurobiology and Gene Therapy, KU Leuven - University of Leuven, 3000, Leuven, Belgium.
| | - Malgorzata Kossut
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Kalina Burnat
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven - University of Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
21
|
Are visual peripheries forever young? Neural Plast 2015; 2015:307929. [PMID: 25945262 PMCID: PMC4402573 DOI: 10.1155/2015/307929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/03/2015] [Accepted: 03/13/2015] [Indexed: 11/18/2022] Open
Abstract
The paper presents a concept of lifelong plasticity of peripheral vision. Central vision processing is accepted as critical and irreplaceable for normal perception in humans. While peripheral processing chiefly carries information about motion stimuli features and redirects foveal attention to new objects, it can also take over functions typical for central vision. Here I review the data showing the plasticity of peripheral vision found in functional, developmental, and comparative studies. Even though it is well established that afferent projections from central and peripheral retinal regions are not established simultaneously during early postnatal life, central vision is commonly used as a general model of development of the visual system. Based on clinical studies and visually deprived animal models, I describe how central and peripheral visual field representations separately rely on early visual experience. Peripheral visual processing (motion) is more affected by binocular visual deprivation than central visual processing (spatial resolution). In addition, our own experimental findings show the possible recruitment of coarse peripheral vision for fine spatial analysis. Accordingly, I hypothesize that the balance between central and peripheral visual processing, established in the course of development, is susceptible to plastic adaptations during the entire life span, with peripheral vision capable of taking over central processing.
Collapse
|
22
|
Laskowska-Macios K, Zapasnik M, Hu TT, Kossut M, Arckens L, Burnat K. Zif268 mRNA Expression Patterns Reveal a Distinct Impact of Early Pattern Vision Deprivation on the Development of Primary Visual Cortical Areas in the Cat. Cereb Cortex 2014; 25:3515-26. [PMID: 25205660 PMCID: PMC4585500 DOI: 10.1093/cercor/bhu192] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pattern vision deprivation (BD) can induce permanent deficits in global motion perception. The impact of timing and duration of BD on the maturation of the central and peripheral visual field representations in cat primary visual areas 17 and 18 remains unknown. We compared early BD, from eye opening for 2, 4, or 6 months, with late onset BD, after 2 months of normal vision, using the expression pattern of the visually driven activity reporter gene zif268 as readout. Decreasing zif268 mRNA levels between months 2 and 4 characterized the normal maturation of the (supra)granular layers of the central and peripheral visual field representations in areas 17 and 18. In general, all BD conditions had higher than normal zif268 levels. In area 17, early BD induced a delayed decrease, beginning later in peripheral than in central area 17. In contrast, the decrease occurred between months 2 and 4 throughout area 18. Lack of pattern vision stimulation during the first 4 months of life therefore has a different impact on the development of areas 17 and 18. A high zif268 expression level at a time when normal vision is restored seems to predict the capacity of a visual area to compensate for BD.
Collapse
Affiliation(s)
- Karolina Laskowska-Macios
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Monika Zapasnik
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland
| | - Tjing-Tjing Hu
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Malgorzata Kossut
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Kalina Burnat
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland
| |
Collapse
|
23
|
Solomon SG, Rosa MGP. A simpler primate brain: the visual system of the marmoset monkey. Front Neural Circuits 2014; 8:96. [PMID: 25152716 PMCID: PMC4126041 DOI: 10.3389/fncir.2014.00096] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/22/2014] [Indexed: 12/15/2022] Open
Abstract
Humans are diurnal primates with high visual acuity at the center of gaze. Although primates share many similarities in the organization of their visual centers with other mammals, and even other species of vertebrates, their visual pathways also show unique features, particularly with respect to the organization of the cerebral cortex. Therefore, in order to understand some aspects of human visual function, we need to study non-human primate brains. Which species is the most appropriate model? Macaque monkeys, the most widely used non-human primates, are not an optimal choice in many practical respects. For example, much of the macaque cerebral cortex is buried within sulci, and is therefore inaccessible to many imaging techniques, and the postnatal development and lifespan of macaques are prohibitively long for many studies of brain maturation, plasticity, and aging. In these and several other respects the marmoset, a small New World monkey, represents a more appropriate choice. Here we review the visual pathways of the marmoset, highlighting recent work that brings these advantages into focus, and identify where additional work needs to be done to link marmoset brain organization to that of macaques and humans. We will argue that the marmoset monkey provides a good subject for studies of a complex visual system, which will likely allow an important bridge linking experiments in animal models to humans.
Collapse
Affiliation(s)
- Samuel G Solomon
- Department of Experimental Psychology, University College London London, UK
| | - Marcello G P Rosa
- Department of Physiology, Monash University, Clayton, VIC Australia ; Monash Vision Group, Monash University, Clayton, VIC Australia ; Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC Australia
| |
Collapse
|
24
|
Homman-Ludiye J, Bourne JA. Mapping arealisation of the visual cortex of non-primate species: lessons for development and evolution. Front Neural Circuits 2014; 8:79. [PMID: 25071460 PMCID: PMC4081835 DOI: 10.3389/fncir.2014.00079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/19/2014] [Indexed: 01/08/2023] Open
Abstract
The integration of the visual stimulus takes place at the level of the neocortex, organized in anatomically distinct and functionally unique areas. Primates, including humans, are heavily dependent on vision, with approximately 50% of their neocortical surface dedicated to visual processing and possess many more visual areas than any other mammal, making them the model of choice to study visual cortical arealisation. However, in order to identify the mechanisms responsible for patterning the developing neocortex, specifying area identity as well as elucidate events that have enabled the evolution of the complex primate visual cortex, it is essential to gain access to the cortical maps of alternative species. To this end, species including the mouse have driven the identification of cellular markers, which possess an area-specific expression profile, the development of new tools to label connections and technological advance in imaging techniques enabling monitoring of cortical activity in a behaving animal. In this review we present non-primate species that have contributed to elucidating the evolution and development of the visual cortex. We describe the current understanding of the mechanisms supporting the establishment of areal borders during development, mainly gained in the mouse thanks to the availability of genetically modified lines but also the limitations of the mouse model and the need for alternate species.
Collapse
Affiliation(s)
- Jihane Homman-Ludiye
- Bourne Group, Australian Regenerative Medicine Institute, Monash University Clayton, VIC, Australia
| | - James A Bourne
- Bourne Group, Australian Regenerative Medicine Institute, Monash University Clayton, VIC, Australia
| |
Collapse
|
25
|
Goldshmit Y, Homman-Ludiye J, Bourne JA. EphA4 is associated with multiple cell types in the marmoset primary visual cortex throughout the lifespan. Eur J Neurosci 2014; 39:1419-28. [DOI: 10.1111/ejn.12514] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/01/2014] [Accepted: 01/14/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Yona Goldshmit
- Australian Regenerative Medicine Institute; Monash University; Building 75 Clayton Vic. 3800 Australia
| | - Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute; Monash University; Building 75 Clayton Vic. 3800 Australia
| | - James A. Bourne
- Australian Regenerative Medicine Institute; Monash University; Building 75 Clayton Vic. 3800 Australia
| |
Collapse
|
26
|
Teo L, Bourne JA. A reproducible and translatable model of focal ischemia in the visual cortex of infant and adult marmoset monkeys. Brain Pathol 2014; 24:459-74. [PMID: 25469561 DOI: 10.1111/bpa.12129] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/21/2014] [Indexed: 12/12/2022] Open
Abstract
Models of ischemic brain injury in the nonhuman primate (NHP) are advantageous for investigating mechanisms of central nervous system (CNS) injuries and testing of new therapeutic strategies. However, issues of reproducibility and survivability persist in NHP models of CNS injuries. Furthermore, there are currently no pediatric NHP models of ischemic brain injury. Therefore, we have developed a NHP model of cortical focal ischemia that is highly reproducible throughout life to enable better understanding of downstream consequences of injury. Posterior cerebral arterial occlusion was induced through intracortical injections of endothelin-1 in adult (n = 5) and neonatal (n = 3) marmosets, followed by magnetic resonance imaging (MRI), histology and immunohistochemistry. MRI revealed tissue hyperintensity at the lesion site at 1-7 days followed by isointensity at 14-21 days. Peripheral macrophage and serum albumin infiltration was detected at 1 day, persisting at 21 days. The proportional loss of total V1 as a result of infarction was consistent in adults and neonates. Minor hemorrhagic transformation was detected at 21 days at the lesion core, while neovascularization was detected in neonates, but not in adults. We have developed a highly reproducible and survivable model of focal ischemia in the adult and neonatal marmoset primary visual cortex, demonstrating similar downstream anatomical and cellular pathology to those observed in post-ischemic humans.
Collapse
Affiliation(s)
- Leon Teo
- Australian Regenerative Medicine Institute, Monash University, Clayton, Vic., Australia
| | | |
Collapse
|
27
|
Nys J, Aerts J, Ytebrouck E, Vreysen S, Laeremans A, Arckens L. The cross-modal aspect of mouse visual cortex plasticity induced by monocular enucleation is age dependent. J Comp Neurol 2014; 522:950-70. [DOI: 10.1002/cne.23455] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/17/2013] [Accepted: 08/14/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Julie Nys
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| | - Jeroen Aerts
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| | - Ellen Ytebrouck
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| | - Samme Vreysen
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| | - Annelies Laeremans
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| |
Collapse
|
28
|
Retrograde transneuronal degeneration in the retina and lateral geniculate nucleus of the V1-lesioned marmoset monkey. Brain Struct Funct 2013; 220:351-60. [DOI: 10.1007/s00429-013-0659-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
|
29
|
Homman-Ludiye J, Bourne JA. The Guidance Molecule Semaphorin3A is Differentially Involved in the Arealization of the Mouse and Primate Neocortex. Cereb Cortex 2013; 24:2884-98. [DOI: 10.1093/cercor/bht141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
30
|
Matsunaga E, Nambu S, Oka M, Okanoya K, Iriki A. Comparative analysis of protocadherin-11 X-linked expression among postnatal rodents, non-human primates, and songbirds suggests its possible involvement in brain evolution. PLoS One 2013; 8:e58840. [PMID: 23527036 PMCID: PMC3601081 DOI: 10.1371/journal.pone.0058840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/07/2013] [Indexed: 02/02/2023] Open
Abstract
Background Protocadherin-11 is a cell adhesion molecule of the cadherin superfamily. Since, only in humans, its paralog is found on the Y chromosome, it is expected that protocadherin-11X/Y plays some role in human brain evolution or sex differences. Recently, a genetic mutation of protocadherin-11X/Y was reported to be associated with a language development disorder. Here, we compared the expression of protocadherin-11 X-linked in developing postnatal brains of mouse (rodent) and common marmoset (non-human primate) to explore its possible involvement in mammalian brain evolution. We also investigated its expression in the Bengalese finch (songbird) to explore a possible function in animal vocalization and human language faculties. Methodology/Principal Findings Protocadherin-11 X-linked was strongly expressed in the cerebral cortex, hippocampus, amygdala and brainstem. Comparative analysis between mice and marmosets revealed that in certain areas of marmoset brain, the expression was clearly enriched. In Bengalese finches, protocadherin-11 X-linked was expressed not only in nuclei of regions of the vocal production pathway and the tracheosyringeal hypoglossal nucleus, but also in areas homologous to the mammalian amygdala and hippocampus. In both marmosets and Bengalese finches, its expression in pallial vocal control areas was developmentally regulated, and no clear expression was seen in the dorsal striatum, indicating a similarity between songbirds and non-human primates. Conclusions/Significance Our results suggest that the enriched expression of protocadherin-11 X-linked is involved in primate brain evolution and that some similarity exists between songbirds and primates regarding the neural basis for vocalization.
Collapse
Affiliation(s)
- Eiji Matsunaga
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Japan.
| | | | | | | | | |
Collapse
|
31
|
The early maturation of visual cortical area MT is dependent on input from the retinorecipient medial portion of the inferior pulvinar. J Neurosci 2013. [PMID: 23197701 DOI: 10.1523/jneurosci.3269-12.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The hierarchical development of the primate visual cortex and associated streams remains somewhat of a mystery. While anatomical, physiological, and psychological studies have demonstrated the early maturation of the dorsal "where"/"how" or motion cortical stream, little is known about the circuitry responsible. The influence of the retinogeniculostriate pathway has been investigated, but little attention has been paid to the role of two more recently described disynaptic retinothalamic projections to the middle temporal (MT) area, an early maturing dorsal stream cortical field, and which bypass the primary visual cortex (V1). These pathways are via the koniocellular layers of the lateral geniculate nucleus (LGN) and the medial portion of the inferior pulvinar (PIm). Both have been demonstrated in the adult nonhuman primate, but their influence during the maturation of the visual cortex is unknown. We used a combination of neural tracing and immunohistochemistry to follow the development of LGN and PIm inputs to area MT in the marmoset monkey. Our results revealed that the early maturation of area MT is likely due to the disynaptic retinopulvinar input and not the retinogeniculate input or the direct projection from V1. Furthermore, from soon after birth to adulthood, there was a dynamic shift in the ratio of input from these three structures to area MT, with an increasing dominance of the direct V1 afference.
Collapse
|
32
|
Teo L, Homman-Ludiye J, Rodger J, Bourne JA. Discrete ephrin-B1 expression by specific layers of the primate retinogeniculostriate system continues throughout postnatal and adult life. J Comp Neurol 2012; 520:2941-56. [PMID: 22778007 DOI: 10.1002/cne.23077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The molecular guidance cue ephrin-B1 has traditionally been associated with the early development of the visual system, encompassing retinocollicular mapping as well as development and maturation of synapses. Although little is known about its role in the visual system during the postnatal period and in adulthood, recent studies have demonstrated the expression of ephrin-B1 in the adult mouse brain, indicating a sustained role beyond early development. Therefore, we explored the spatiotemporal expression of ephrin-B1 in the postnatal and adult nonhuman primate visual system and demonstrated that a modulated expression continued following birth into adulthood in the lateral geniculate nucleus (LGN) and primary visual cortex (V1, striate cortex). This occurred in the layers involved in bidirectional geniculostriate communication: layers 3Bβ, 4, and 6 of V1 and the parvocellular (P) and magnocellular (M) layers of the LGN. Furthermore, discrete gradients between the ipsi- and contralateral inputs of the P and M layers of the LGN evolved between 1 month following birth and the start of the critical period (3 months), and continued into adulthood. We also detected the postsynaptic expression of ephrin-B1 by excitatory cells in adult LGN and V1 and a subset of interneurons in adult V1, suggestive of a more global rather than subtype-specific role. Together these results suggest a possible role for ephrin-B1 in the maturation of the primate retinogeniculostriate pathway throughout postnatal life, extending into adulthood.
Collapse
Affiliation(s)
- Leon Teo
- Australian Regenerative Medicine Institute, Monash University Clayton, Victoria, 3800, Australia
| | | | | | | |
Collapse
|
33
|
Homman-Ludiye J, Merson TD, Bourne JA. The early postnatal nonhuman primate neocortex contains self-renewing multipotent neural progenitor cells. PLoS One 2012; 7:e34383. [PMID: 22470566 PMCID: PMC3314641 DOI: 10.1371/journal.pone.0034383] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 03/01/2012] [Indexed: 01/14/2023] Open
Abstract
The postnatal neocortex has traditionally been considered a non-neurogenic region, under non-pathological conditions. A few studies suggest, however, that a small subpopulation of neural cells born during postnatal life can differentiate into neurons that take up residence within the neocortex, implying that postnatal neurogenesis could occur in this region, albeit at a low level. Evidence to support this hypothesis remains controversial while the source of putative neural progenitors responsible for generating new neurons in the postnatal neocortex is unknown. Here we report the identification of self-renewing multipotent neural progenitor cells (NPCs) derived from the postnatal day 14 (PD14) marmoset monkey primary visual cortex (V1, striate cortex). While neuronal maturation within V1 is well advanced by PD14, we observed cells throughout this region that co-expressed Sox2 and Ki67, defining a population of resident proliferating progenitor cells. When cultured at low density in the presence of epidermal growth factor (EGF) and/or fibroblast growth factor 2 (FGF-2), dissociated V1 tissue gave rise to multipotent neurospheres that exhibited the ability to differentiate into neurons, oligodendrocytes and astrocytes. While the capacity to generate neurones and oligodendrocytes was not observed beyond the third passage, astrocyte-restricted neurospheres could be maintained for up to 6 passages. This study provides the first direct evidence for the existence of multipotent NPCs within the postnatal neocortex of the nonhuman primate. The potential contribution of neocortical NPCs to neural repair following injury raises exciting new possibilities for the field of regenerative medicine.
Collapse
Affiliation(s)
- Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Tobias D. Merson
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Florey Neuroscience Institutes and Centre for Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail: (TM); (JB)
| | - James A. Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- * E-mail: (TM); (JB)
| |
Collapse
|
34
|
Izumi A, Tsuchida J, Yamaguchi C. Effects of rearing conditions on early visual development in common marmosets. Dev Psychobiol 2011; 54:700-5. [PMID: 22127827 DOI: 10.1002/dev.20619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/05/2011] [Indexed: 11/08/2022]
Abstract
Early development of visual behavior was examined in hand-reared (HR) and parentally reared (PR) common marmosets (Callithrix jacchus). On the day of birth, most of the marmosets exhibited sensitivity to light and sound: they closed their eyes in response to light and oriented to the sound sources. The behavior of tracking moving visual stimuli was exhibited at around 10 days postnatally in PR marmosets, but the onset of this behavior was delayed to the age of 16 days in HR marmosets. The delay occurred possibly because of the poor input of optical flow under the HR environment. The onset age of head-cocking was about 2 weeks in both groups of marmosets, and the HR marmosets began head-cocking and visual tracking simultaneously. Both groups of marmosets exhibited sensitivity to optical approach at the age of around 30 days: the age to wean and increase independent locomotion. The results suggested that the onset of motion perception preceded detailed shape and depth perception in marmosets, and the developmental sequence in marmosets was similar to those in humans and macaque monkeys. Marmosets appear to be useful animal models to examine environmental effects on early visual development.
Collapse
Affiliation(s)
- Akihiro Izumi
- Department of Behavioral and Brain Sciences, Primate Research Institute, Kyoto University, Kanrin, Inuyama, Aichi 484-8506, Japan.
| | | | | |
Collapse
|
35
|
Pundir AS, Hameed LS, Dikshit PC, Kumar P, Mohan S, Radotra B, Shankar SK, Mahadevan A, Iyengar S. Expression of medium and heavy chain neurofilaments in the developing human auditory cortex. Brain Struct Funct 2011; 217:303-21. [DOI: 10.1007/s00429-011-0352-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/21/2011] [Indexed: 12/31/2022]
|
36
|
Abstract
Although the adeno-associated virus (AAV) vector is a promising tool for gene transfer into neurons, especially for therapeutic purposes, neurotropism in primate brains is not fully elucidated for specific AAV serotypes. Here, we injected AAV serotype 8 (AAV8) vector carrying the enhanced green fluorescent protein (EGFP) gene under a ubiquitous promoter into the cerebral cortex, striatum and substantia nigra of common marmosets. Robust neuronal EGFP expression was observed at all injected sites. Cell typing with immunohistochemistry confirmed efficient AAV8-mediated gene transfer into the pyramidal neurons in the cortex, calbindin-positive medium spiny neurons in the striatum and dopaminergic neurons in the substantia nigra. The results indicate a preferential tropism of AAV8 for subsets of neurons, but not for glia, in monkey brains.
Collapse
|
37
|
Paulussen M, Jacobs S, Van der Gucht E, Hof PR, Arckens L. Cytoarchitecture of the mouse neocortex revealed by the low-molecular-weight neurofilament protein subunit. Brain Struct Funct 2011; 216:183-99. [DOI: 10.1007/s00429-011-0311-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/13/2011] [Indexed: 12/20/2022]
|
38
|
Homman-Ludiye J, Manger PR, Bourne JA. Immunohistochemical parcellation of the ferret (Mustela putorius) visual cortex reveals substantial homology with the cat (Felis catus). J Comp Neurol 2011; 518:4439-62. [PMID: 20853515 DOI: 10.1002/cne.22465] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Electrophysiological mapping of the adult ferret visual cortex has until now determined the existence of 12 retinotopically distinct areas; however, in the cat, another member of the Carnivora, 20 distinct visual areas have been identified by using retinotopic mapping and immunolabeling. In the present study, the immunohistochemical approach to demarcate the areal boundaries of the adult ferret visual cortex was applied in order to overcome the difficulties in accessing the sulcal surfaces of a small, gyrencephalic brain. Nonphosphorylated neurofilament (NNF) expression profiles were compared with another classical immunostain of cortical nuclei, Cat-301 chondroitin sulfate proteoglycan (CSPG). Together, these two markers reliably demarcated the borders of the 12 previously defined areas and revealed further arealization beyond those borders to a total of 19 areas: 21a and 21b; the anterolateral, posterolateral, dorsal, and ventral lateral suprasylvian areas (ALLS, PLLS, DLS, and VLS, respectively); and the splenial and cingulate visual areas (SVA and CVA). NNF expression profile and location of the newly defined areas correlate with previously defined areas in the cat. Moreover, NNF and Cat-301 together revealed discrete expression domains in the posteroparietal (PP) cortex, demarcating four subdivisions in the caudal lateral and medial domains (PPcL and PPcM) and rostral lateral and medial domains (PPrL and PPrM), where only two retinotopic maps have been previously identified (PPc and PPr). Taken together, these studies suggest that NNF and Cat-301 can illustrate the homology between cortical areas in different species and draw out the principles that have driven evolution of the visual cortex.
Collapse
Affiliation(s)
- Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
39
|
Bourne JA. Unravelling the development of the visual cortex: implications for plasticity and repair. J Anat 2010; 217:449-68. [PMID: 20722872 DOI: 10.1111/j.1469-7580.2010.01275.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The visual cortex comprises over 50 areas in the human, each with a specified role and distinct physiology, connectivity and cellular morphology. How these individual areas emerge during development still remains something of a mystery and, although much attention has been paid to the initial stages of the development of the visual cortex, especially its lamination, very little is known about the mechanisms responsible for the arealization and functional organization of this region of the brain. In recent years we have started to discover that it is the interplay of intrinsic (molecular) and extrinsic (afferent connections) cues that are responsible for the maturation of individual areas, and that there is a spatiotemporal sequence in the maturation of the primary visual cortex (striate cortex, V1) and the multiple extrastriate/association areas. Studies in both humans and non-human primates have started to highlight the specific neural underpinnings responsible for the maturation of the visual cortex, and how experience-dependent plasticity and perturbations to the visual system can impact upon its normal development. Furthermore, damage to specific nuclei of the visual cortex, such as the primary visual cortex (V1), is a common occurrence as a result of a stroke, neurotrauma, disease or hypoxia in both neonates and adults alike. However, the consequences of a focal injury differ between the immature and adult brain, with the immature brain demonstrating a higher level of functional resilience. With better techniques for examining specific molecular and connectional changes, we are now starting to uncover the mechanisms responsible for the increased neural plasticity that leads to significant recovery following injury during this early phase of life. Further advances in our understanding of postnatal development/maturation and plasticity observed during early life could offer new strategies to improve outcomes by recapitulating aspects of the developmental program in the adult brain.
Collapse
Affiliation(s)
- James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
40
|
Goldshmit Y, Galley S, Foo D, Sernagor E, Bourne JA. Anatomical changes in the primary visual cortex of the congenitally blind Crx-/- mouse. Neuroscience 2009; 166:886-98. [PMID: 20034544 DOI: 10.1016/j.neuroscience.2009.12.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/09/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
Abstract
Mutations in the human cone-rod homeobox (Crx) gene are associated with retinal dystrophies such as Leber Congenital Amaurosis (LCA), characterized by complete or near complete absence of vision from birth. The photoreceptors of Crx-/- mice lack outer segments, and therefore cannot capture light signals through rods and cones, thus resulting in a lack of normal retinal ganglion cell activity from birth. Using specific antibodies to subsets of neurons and markers of activity, we examined the impact of this absence of sensory input on the development of the primary visual cortex (V1) in early postnatal Crx-/- mice, before wiring of the visual system is complete, and in adulthood. We revealed that Crx-/- mice did not exhibit gross anatomical differences in V1; however, they exhibited significantly fewer calcium-binding protein (parvalbumin and calbindin-D28k) expressing interneurons, as well as reduced nonphosphorylated neurofilament expression in V1. These results reveal that the Crx mutation and lack of light stimulation through the photoreceptor pathway regulate the development and phenotype of different neuronal populations in V1 but not its general morphology. We conclude, therefore, that photoreceptor-mediated visual input during development is crucial for the normal postnatal development and maturation of subsets of cortical neurons.
Collapse
Affiliation(s)
- Y Goldshmit
- Australian Regenerative Medicine Institute, Monash University, VIC, 3800 Australia
| | | | | | | | | |
Collapse
|
41
|
Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals. Brain Struct Funct 2008; 213:301-28. [PMID: 19011898 DOI: 10.1007/s00429-008-0198-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 10/16/2008] [Indexed: 12/24/2022]
Abstract
Interpreting the evolution of neuronal types in the cerebral cortex of mammals requires information from a diversity of species. However, there is currently a paucity of data from the Xenarthra and Afrotheria, two major phylogenetic groups that diverged close to the base of the eutherian mammal adaptive radiation. In this study, we used immunohistochemistry to examine the distribution and morphology of neocortical neurons stained for nonphosphorylated neurofilament protein, calbindin, calretinin, parvalbumin, and neuropeptide Y in three xenarthran species-the giant anteater (Myrmecophaga tridactyla), the lesser anteater (Tamandua tetradactyla), and the two-toed sloth (Choloepus didactylus)-and two afrotherian species-the rock hyrax (Procavia capensis) and the black and rufous giant elephant shrew (Rhynchocyon petersi). We also studied the distribution and morphology of astrocytes using glial fibrillary acidic protein as a marker. In all of these species, nonphosphorylated neurofilament protein-immunoreactive neurons predominated in layer V. These neurons exhibited diverse morphologies with regional variation. Specifically, high proportions of atypical neurofilament-enriched neuron classes were observed, including extraverted neurons, inverted pyramidal neurons, fusiform neurons, and other multipolar types. In addition, many projection neurons in layers II-III were found to contain calbindin. Among interneurons, parvalbumin- and calbindin-expressing cells were generally denser compared to calretinin-immunoreactive cells. We traced the evolution of certain cortical architectural traits using phylogenetic analysis. Based on our reconstruction of character evolution, we found that the living xenarthrans and afrotherians show many similarities to the stem eutherian mammal, whereas other eutherian lineages display a greater number of derived traits.
Collapse
|
42
|
Sia Y, Bourne JA. The rat temporal association cortical area 2 (Te2) comprises two subdivisions that are visually responsive and develop independently. Neuroscience 2008; 156:118-28. [PMID: 18674594 DOI: 10.1016/j.neuroscience.2008.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 07/01/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
Abstract
In this study, we have used the expression of non-phosphorylated neurofilament (NNF), a protein that exhibits differential areal and laminar neuronal patterning, to assess the chemoarchitectural organization of the rat temporal association cortex (Te). Since expression of NNF is associated with the latter stages of neuronal development, this enabled us to profile the hierarchical development of this region of the cortex. We also examined the expression of the protein Fos, the product of the immediate-early gene cFos, as a neuronal activity marker to determine which areas within this region are visually responsive. Our findings reveal the existence of two previously undescribed subdivisions within the dorsal and ventral domains of the rat temporal association cortical area 2 (Te2) which we have termed Te2d and Te2v, respectively. We also demonstrated the early maturation of the caudal region of Te2d while preceding the primary visual cortex. Within this region of the cortex, the Fos protein indicates that both subdivisions are visually responsive.
Collapse
Affiliation(s)
- Y Sia
- Department of Anatomy and Cell Biology, Monash University, Clayton, Victoria, 3800, Australia
| | | |
Collapse
|
43
|
Location, architecture, and retinotopy of the anteromedial lateral suprasylvian visual area (AMLS) of the ferret (Mustela putorius). Vis Neurosci 2008; 25:27-37. [DOI: 10.1017/s0952523808080036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 11/06/2007] [Indexed: 11/07/2022]
Abstract
The present paper describes the results of architectural and electrophysiological mapping observations of the medial bank of the suprasylvian sulcus of the ferret immediately caudal to somatosensory regions. The aim was to determine if the ferret possessed a homologous cortical area to the anteromedial lateral suprasylvian visual area (AMLS) of the domestic cat. We studied the architectural features and visuotopic organization of a region that we now consider to be a homologue to the cat AMLS. This area showed a distinct architecture and retinotopic organization. The retinotopic map was complex in nature with a bias towards representation of the lower visual field. These features indicate that the region described here as AMLS in the ferret is indeed a direct homologue of the previously described cat AMLS and forms part of a hierarchy of cortical areas processing motion in the ferret visual cortex. With the results of the present study and those of earlier studies a total of twelve cortical visual areas have been determined presently for the ferret, all of which appear to have direct homologues with visual cortical areas in the cat (which has a total of eighteen areas).
Collapse
|
44
|
Burman KJ, Lui LL, Rosa MGP, Bourne JA. Development of non-phosphorylated neurofilament protein expression in neurones of the New World monkey dorsolateral frontal cortex. Eur J Neurosci 2007; 25:1767-79. [PMID: 17432964 DOI: 10.1111/j.1460-9568.2007.05442.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied developmental changes in the expression of non-phosphorylated neurofilament protein (NNF) (a marker of the structural maturation of pyramidal neurones) in the dorsolateral frontal cortex of marmoset monkeys, between embryonic day 130 and adulthood. Our focus was on cortical fields that send strong projections to extrastriate cortex, including the dorsal and ventral subdivisions of area 8A, area 46 and area 6d. For comparison, we also investigated the maturation of prefrontal area 9, which has few or no connections with visual areas. The timing of expression of NNF immunostaining in early life can be described as the result of the interaction of two developmental gradients. First, there is an anteroposterior gradient of maturation in the frontal lobe, whereby neurones in caudal areas express NNF earlier than those in rostral areas. Second, there is a laminar gradient, whereby the first NNF-immunoreactive neurones emerge in layer V, followed by those in progressively more superficial parts of layer III. Following a peak in density of NNF-immunopositive cell numbers in layer V at 2-3 months of age, there is a gradual decline towards adulthood. In contrast, the density of immunopositive cells in layer III continues to increase throughout the first postnatal year in area 6d and until late adolescence (> 1.5 years of age) in prefrontal areas. The present results support the view that the maturation of visual cognitive functions involves relatively late processes linked to structural changes in frontal cortical areas.
Collapse
Affiliation(s)
- Kathleen J Burman
- Department of Physiology and Monash University Centre for Brain and Behaviour, Monash University, Victoria, Australia
| | | | | | | |
Collapse
|
45
|
Van der Gucht E, Hof PR, Van Brussel L, Burnat K, Arckens L. Neurofilament protein and neuronal activity markers define regional architectonic parcellation in the mouse visual cortex. Cereb Cortex 2007; 17:2805-19. [PMID: 17337746 DOI: 10.1093/cercor/bhm012] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study was designed to assess the chemoarchitectural organization and extent of the mouse visual cortex. We used nonphosphorylated neurofilament protein, a neuronal marker that exhibits region-specific cellular and laminar patterns, to delineate cortical subdivisions. A comprehensive analysis demonstrated that pyramidal and nonpyramidal neurons expressing neurofilament proteins display striking laminar and regional patterns in the mouse visual cortex permitting the delineation of the primary visual cortex (V1) and its monocular and binocular zones, 2 lateral, and 5 medial extrastriate cortical areas with clear anatomical boundaries and providing evidence that the mouse medial extrastriate cortex is not homogeneous. We also investigated the expression profiles of 2 neuronal activity markers, the immediate early genes c-fos and zif-268, following deprivation paradigms to ascertain the visual nature of all subdivisions caudal, medial, and lateral to V1. The present data indicate that neurochemically identifiable subdivisions of the mouse visual cortex exist laterally and medially to V1 and reveal specific anatomical and functional characteristics at the cellular and regional levels.
Collapse
Affiliation(s)
- Estel Van der Gucht
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
46
|
Bourne JA, Warner CE, Upton DJ, Rosa MGP. Chemoarchitecture of the middle temporal visual area in the marmoset monkey (Callithrix jacchus): laminar distribution of calcium-binding proteins (calbindin, parvalbumin) and nonphosphorylated neurofilament. J Comp Neurol 2007; 500:832-49. [PMID: 17177255 DOI: 10.1002/cne.21190] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We studied the distributions of interneurons containing the calcium-binding proteins parvalbumin and calbindin D-28k, as well as that of pyramidal neurons containing nonphosphorylated neurofilament (NNF), in the middle temporal visual area (MT) of marmoset monkeys. The distributions of these classes of cells in MT are distinct from those found in adjacent areas. Similar to the primary visual area (V1), in MT, calbindin-immunopositive neurons can be objectively classified into "dark" and "light" subtypes based on optical density of stained cell bodies. Calbindin-positive dark neurons are particularly concentrated in layers 2 and 3, whereas light neurons have a more widespread distribution. In addition, a subcategory of calbindin-positive dark neuron, characterized by a "halo" of stained processes surrounding the cell body, is found within and around layer 4 of MT and V1. These cells are rare in most other visual areas. In comparison, parvalbumin-immunopositive cells in area MT have a relatively homogeneous distribution, although with a trend toward higher spatial density in lower layer 3, and are relatively uniform in terms of density of staining. Finally, MT shows a characteristic trilaminar distribution of NNF-immunopositive pyramidal cells, with stained cell bodies evident in layers 3, 5, and 6. Although the laminar distribution of cells stained for the three markers overlap to some extent, these subcategories can be readily distinguished in terms of morphology, including cell body size. Chemoarchitectural parallels observed between MT and V1 suggest comparable physiological requirements and neuronal circuitry.
Collapse
Affiliation(s)
- James A Bourne
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
47
|
Kaplan G, Rogers LJ. Head-cocking as a form of exploration in the common marmoset and its development. Dev Psychobiol 2007; 48:551-60. [PMID: 17016839 DOI: 10.1002/dev.20155] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Head-cocking of 15 infant marmosets (Callithrix jacchus) was scored from Day 1 to 60 of postnatal life, the growth period with overproduction of interneuronal synapses. Head-cocking was scored during four 30 min intervals daily, including angle of head-cocking and objects being fixated. Mean age of onset of head-cocking was Day 13 (+/-1.3) and frequency increased to a fixed rate by Day 24-29, at the time of maturation of the foveal representation in layer 6 of the visual cortex, thus lending further support to the importance of head-cocking to visual processing. The most common distance of objects fixated during head-cocking was up to .5 m. Angle of head-cocking increased with age, and some asymmetry of direction was noted. Fewer head-cocking events occurred in the morning than in the afternoon. We also scored anogenital licking of offspring. Head-cocking occurred at higher levels in marmosets receiving more anogenital licking. As this was associated positively with increased exploration, head-cocking may be regarded as an exploratory behavior.
Collapse
Affiliation(s)
- Gisela Kaplan
- Centre for Neuroscience and Animal Behaviour, University of New England, Armidale, NSW-2351, Australia.
| | | |
Collapse
|
48
|
Drenhaus U, Rager G, Eggli P, Kretz R. On the postnatal development of the striate cortex (V1) in the tree shrew (Tupaia belangeri). Eur J Neurosci 2006; 24:479-90. [PMID: 16836641 DOI: 10.1111/j.1460-9568.2006.04916.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Histological serial sections, three-dimensional reconstructions and morphometry served to study the postnatal development of V1 in tree shrews. The main objectives were to evaluate the expansion of V1, the implications of its growth on the occipital cortex and, vice versa, the effects of the expanding neocortex on the topography of V1. The future V1 was identified on postnatal day 1 by its granular layer IV, covering the superior surface of the occipital cortices including the poles. A subdivision of layer IV, distinctive for the binocular part, was evident in the central region. V1 expanded continuously with age into all directions succeeded by the maturation of layering. The monocular part was recognized from day 15 onward, after the binocular part had reached its medial border. In reference to the retinotopic map of V1, regions emerged in a coherent temporo-spatial sequence delineating the retinal topography in a central to peripheral gradient beginning with the visual streak representation. The growth of V1 was greatest until tree shrews open their eyes, culminated during adolescence, and completed after a subsequent decrease in the young adult. Simultaneous expansion of the neocortex induced a shifting of V1. Translation and elongation of V1 entailed that the occipital cortex covered the superior colliculi along with a downward rotation of the poles. The enlargement of the occipital part of the hemispheres was in addition associated with the formation of a small occipital horn in the lateral ventricles, indicating an incipient 'true' occipital lobe harbouring mainly cortices involved in visual functions.
Collapse
Affiliation(s)
- Ulrich Drenhaus
- Department of Medicine, Division of Anatomy, University of Fribourg, 1700 Fribourg, Switzerland.
| | | | | | | |
Collapse
|
49
|
Yamamori T, Rockland KS. Neocortical areas, layers, connections, and gene expression. Neurosci Res 2006; 55:11-27. [PMID: 16546282 DOI: 10.1016/j.neures.2006.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 02/05/2006] [Accepted: 02/09/2006] [Indexed: 11/23/2022]
Abstract
Cortical patterns of gene expression provide a new approach to long standing issues of lamination, and area identity and formation. In this review, we summarize recent findings where molecular biological techniques have revealed a small number of area-specific genes in the nonhuman primate cortex. One of these (occ1) is strongly expressed in primary visual cortex and is associated with thalamocortical connections. Another gene, RBP, is more strongly expressed in association areas. It is not clear whether RBP might be linked with any particular connectional system, but several possibilities are raised. We also discuss possible roles of area-specific genes in postnatal development, and conclude with a brief sketch of future directions.
Collapse
Affiliation(s)
- Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology, Aichi 444-8585, Japan.
| | | |
Collapse
|
50
|
Palmer SM, Rosa MGP. Quantitative Analysis of the Corticocortical Projections to the Middle Temporal Area in the Marmoset Monkey: Evolutionary and Functional Implications. Cereb Cortex 2005; 16:1361-75. [PMID: 16292001 DOI: 10.1093/cercor/bhj078] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The connections of the middle temporal area (MT) were investigated in the marmoset, one of the smallest primates. Reflecting the predictions of studies that modeled cortical allometric growth and development, we found that in adult marmosets MT is connected to a more extensive network of cortical areas than in larger primates, including consistent connections with retrosplenial, cingulate, and parahippocampal areas and more widespread connections with temporal, frontal, and parietal areas. Quantitative analyses reveal that MT receives the majority of its afferents from other motion-sensitive areas in the temporal lobe and from the occipitoparietal transition areas, each of these regions containing approximately 30% of the projecting cells. Projections from the primary visual area (V1) and the second visual area (V2) account for approximately 20% of projecting neurons, whereas "ventral stream" and higher-order association areas form quantitatively minor projections. A relationship exists between the percentage of supragranular layer neurons forming the projections from different areas and their putative hierarchical rank. However, this relationship is clearer for projections from ventral stream areas than it is for projections from dorsal stream or frontal areas. These results provide the first quantitative data on the connections of MT and extend current understanding of the relationship between cortical anatomy and function in evolution.
Collapse
Affiliation(s)
- Susan M Palmer
- Department of Physiology and Monash University Centre for Brain and Behaviour, Monash University, Victoria 3800, Australia
| | | |
Collapse
|