1
|
Bundy DT, Barbay S, Hudson HM, Frost SB, Nudo RJ, Guggenmos DJ. Stimulation-Evoked Effective Connectivity (SEEC): An in-vivo approach for defining mesoscale corticocortical connectivity. J Neurosci Methods 2023; 384:109767. [PMID: 36493978 DOI: 10.1016/j.jneumeth.2022.109767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cortical electrical stimulation is a versatile technique for examining the structure and function of cortical regions and for implementing novel therapies. While electrical stimulation has been used to examine the local spread of neural activity, it may also enable longitudinal examination of mesoscale interregional connectivity. NEW METHOD Here, we sought to use intracortical microstimulation (ICMS) in conjunction with recordings of multi-unit action potentials to assess the mesoscale effective connectivity within sensorimotor cortex. Neural recordings were made from multielectrode arrays placed into sensory, motor, and premotor regions during surgical experiments in three squirrel monkeys. During each recording, single-pulse ICMS was repeatably delivered to a single region. Mesoscale effective connectivity was calculated from ICMS-evoked changes in multi-unit firing. RESULTS Multi-unit action potentials were able to be detected on the order of 1 ms after each ICMS pulse. Across sensorimotor regions, short-latency (< 2.5 ms) ICMS-evoked neural activity strongly correlated with known anatomical connections. Additionally, ICMS-evoked responses remained stable across the experimental period, despite small changes in electrode locations and anesthetic state. COMPARISON WITH EXISTING METHODS Previous imaging studies investigating cross-regional responses to stimulation are limited to utilizing indirect hemodynamic responses and thus lack the temporal specificity of ICMS-evoked responses. CONCLUSIONS These results show that monitoring ICMS-evoked neural activity, in a technique we refer to as Stimulation-Evoked Effective Connectivity (SEEC), is a viable way to longitudinally assess effective connectivity, enabling studies comparing the time course of connectivity changes with the time course of changes in behavioral function.
Collapse
Affiliation(s)
- David T Bundy
- Departiment of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Scott Barbay
- Departiment of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Heather M Hudson
- Departiment of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shawn B Frost
- Departiment of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Randolph J Nudo
- Departiment of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA; Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, USA.
| | - David J Guggenmos
- Departiment of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
2
|
Cortical connectivity is embedded in resting state at columnar resolution. Prog Neurobiol 2022; 213:102263. [DOI: 10.1016/j.pneurobio.2022.102263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/04/2023]
|
3
|
Orban GA, Sepe A, Bonini L. Parietal maps of visual signals for bodily action planning. Brain Struct Funct 2021; 226:2967-2988. [PMID: 34508272 PMCID: PMC8541987 DOI: 10.1007/s00429-021-02378-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022]
Abstract
The posterior parietal cortex (PPC) has long been understood as a high-level integrative station for computing motor commands for the body based on sensory (i.e., mostly tactile and visual) input from the outside world. In the last decade, accumulating evidence has shown that the parietal areas not only extract the pragmatic features of manipulable objects, but also subserve sensorimotor processing of others’ actions. A paradigmatic case is that of the anterior intraparietal area (AIP), which encodes the identity of observed manipulative actions that afford potential motor actions the observer could perform in response to them. On these bases, we propose an AIP manipulative action-based template of the general planning functions of the PPC and review existing evidence supporting the extension of this model to other PPC regions and to a wider set of actions: defensive and locomotor actions. In our model, a hallmark of PPC functioning is the processing of information about the physical and social world to encode potential bodily actions appropriate for the current context. We further extend the model to actions performed with man-made objects (e.g., tools) and artifacts, because they become integral parts of the subject’s body schema and motor repertoire. Finally, we conclude that existing evidence supports a generally conserved neural circuitry that transforms integrated sensory signals into the variety of bodily actions that primates are capable of preparing and performing to interact with their physical and social world.
Collapse
Affiliation(s)
- Guy A Orban
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy.
| | - Alessia Sepe
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy
| | - Luca Bonini
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy.
| |
Collapse
|
4
|
Bakola S, Burman KJ, Bednarek S, Chan JM, Jermakow N, Worthy KH, Majka P, Rosa MGP. Afferent Connections of Cytoarchitectural Area 6M and Surrounding Cortex in the Marmoset: Putative Homologues of the Supplementary and Pre-supplementary Motor Areas. Cereb Cortex 2021; 32:41-62. [PMID: 34255833 DOI: 10.1093/cercor/bhab193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
Cortical projections to the caudomedial frontal cortex were studied using retrograde tracers in marmosets. We tested the hypothesis that cytoarchitectural area 6M includes homologues of the supplementary and pre-supplementary motor areas (SMA and pre-SMA) of other primates. We found that, irrespective of the injection sites' location within 6M, over half of the labeled neurons were located in motor and premotor areas. Other connections originated in prefrontal area 8b, ventral anterior and posterior cingulate areas, somatosensory areas (3a and 1-2), and areas on the rostral aspect of the dorsal posterior parietal cortex. Although the origin of afferents was similar, injections in rostral 6M received higher percentages of prefrontal afferents, and fewer somatosensory afferents, compared to caudal injections, compatible with differentiation into SMA and pre-SMA. Injections rostral to 6M (area 8b) revealed a very different set of connections, with increased emphasis on prefrontal and posterior cingulate afferents, and fewer parietal afferents. The connections of 6M were also quantitatively different from those of the primary motor cortex, dorsal premotor areas, and cingulate motor area 24d. These results show that the cortical motor control circuit is conserved in simian primates, indicating that marmosets can be valuable models for studying movement planning and control.
Collapse
Affiliation(s)
- Sophia Bakola
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| | - Kathleen J Burman
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| | - Sylwia Bednarek
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Jonathan M Chan
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| | - Natalia Jermakow
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Katrina H Worthy
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Piotr Majka
- Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia.,Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
5
|
Liao C, Qi H, Reed JL, Jeoung H, Kaas JH. Corticocuneate projections are altered after spinal cord dorsal column lesions in New World monkeys. J Comp Neurol 2021; 529:1669-1702. [PMID: 33029803 PMCID: PMC7987845 DOI: 10.1002/cne.25050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/31/2022]
Abstract
Recovery of responses to cutaneous stimuli in the area 3b hand cortex of monkeys after dorsal column lesions (DCLs) in the cervical spinal cord relies on neural rewiring in the cuneate nucleus (Cu) over time. To examine whether the corticocuneate projections are modified during recoveries after the DCL, we injected cholera toxin subunit B into the hand representation in Cu to label the cortical neurons after various recovery times, and related results to the recovery of neural responses in the affected area 3b hand cortex. In normal New World monkeys, labeled neurons were predominately distributed in the hand regions of contralateral areas 3b, 3a, 1 and 2, parietal ventral (PV), secondary somatosensory cortex (S2), and primary motor cortex (M1), with similar distributions in the ipsilateral cortex in significantly smaller numbers. In monkeys with short-term recoveries, the area 3b hand neurons were unresponsive or responded weakly to touch on the hand, while the cortical labeling pattern was largely unchanged. After longer recoveries, the area 3b hand neurons remained unresponsive, or responded to touch on the hand or somatotopically abnormal parts, depending on the lesion extent. The distributions of cortical labeled neurons were much more widespread than the normal pattern in both hemispheres, especially when lesions were incomplete. The proportion of labeled neurons in the contralateral area 3b hand cortex was not correlated with the functional reactivation in the area 3b hand cortex. Overall, our findings indicated that corticocuneate inputs increase during the functional recovery, but their functional role is uncertain.
Collapse
Affiliation(s)
- Chia‐Chi Liao
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Hui‐Xin Qi
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Jamie L. Reed
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Ha‐Seul Jeoung
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Jon H. Kaas
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| |
Collapse
|
6
|
Kaas JH. Comparative Functional Anatomy of Marmoset Brains. ILAR J 2021; 61:260-273. [PMID: 33550381 PMCID: PMC9214571 DOI: 10.1093/ilar/ilaa026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
Marmosets and closely related tamarins have become popular models for understanding aspects of human brain organization and function because they are small, reproduce and mature rapidly, and have few cortical fissures so that more cortex is visible and accessible on the surface. They are well suited for studies of development and aging. Because marmosets are highly social primates with extensive vocal communication, marmoset studies can inform theories of the evolution of language in humans. Most importantly, marmosets share basic features of major sensory and motor systems with other primates, including those of macaque monkeys and humans with larger and more complex brains. The early stages of sensory processing, including subcortical nuclei and several cortical levels for the visual, auditory, somatosensory, and motor systems, are highly similar across primates, and thus results from marmosets are relevant for making inferences about how these systems are organized and function in humans. Nevertheless, the structures in these systems are not identical across primate species, and homologous structures are much bigger and therefore function somewhat differently in human brains. In particular, the large human brain has more cortical areas that add to the complexity of information processing and storage, as well as decision-making, while making new abilities possible, such as language. Thus, inferences about human brains based on studies on marmoset brains alone should be made with a bit of caution.
Collapse
Affiliation(s)
- Jon H Kaas
- Corresponding Author: Jon H. Kaas, PhD, Department of Psychology, Vanderbilt University, 301 Wilson Hall, 111 21st Ave. S., Nashville, TN 37203, USA. E-mail:
| |
Collapse
|
7
|
Thomas J, Sharma D, Mohanta S, Jain N. Resting-State functional networks of different topographic representations in the somatosensory cortex of macaque monkeys and humans. Neuroimage 2020; 228:117694. [PMID: 33385552 DOI: 10.1016/j.neuroimage.2020.117694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Information processing in the brain is mediated through a complex functional network architecture whose comprising nodes integrate and segregate themselves on different timescales. To gain an understanding of the network function it is imperative to identify and understand the network structure with respect to the underlying anatomical connectivity and the topographic organization. Here we show that the previously described resting-state network for the somatosensory area 3b comprises of distinct networks that are characteristic for different topographic representations. Seed-based resting-state functional connectivity analysis in macaque monkeys and humans using BOLD-fMRI signals from the face, the hand and rest of the medial somatosensory representations of area 3b revealed different correlation patterns. Both monkeys and humans have many similarities in the connectivity networks, although the networks are more complex in humans with many more nodes. In both the species face area network has the highest ipsilateral and contralateral connectivity, which included areas 3b and 4, and ventral premotor area. The area 3b hand network included ipsilateral hand representation in area 4. The emergent functional network structures largely reflect the known anatomical connectivity. Our results show that different body part representations in area 3b have independent functional networks perhaps reflecting differences in the behavioral use of different body parts. The results also show that large cortical areas if considered together, do not give a complete and accurate picture of the network architecture.
Collapse
Affiliation(s)
- John Thomas
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India
| | - Dixit Sharma
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India
| | - Sounak Mohanta
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India
| | - Neeraj Jain
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India.
| |
Collapse
|
8
|
Cléry JC, Hori Y, Schaeffer DJ, Gati JS, Pruszynski JA, Everling S. Whole brain mapping of somatosensory responses in awake marmosets investigated with ultra-high-field fMRI. J Neurophysiol 2020; 124:1900-1913. [PMID: 33112698 DOI: 10.1152/jn.00480.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The common marmoset (Callithrix jacchus) is a small-bodied New World primate that is becoming an important model to study brain functions. Despite several studies exploring the somatosensory system of marmosets, all results have come from anesthetized animals using invasive techniques and postmortem analyses. Here, we demonstrate the feasibility for getting high-quality and reproducible somatosensory mapping in awake marmosets with functional magnetic resonance imaging (fMRI). We acquired fMRI sequences in four animals, while they received tactile stimulation (via air-puffs), delivered to the face, arm, or leg. We found a topographic body representation with the leg representation in the most medial part, the face representation in the most lateral part, and the arm representation between leg and face representation within areas 3a, 3b, and 1/2. A similar sequence from leg to face from caudal to rostral sites was identified in areas S2 and PV. By generating functional connectivity maps of seeds defined in the primary and second somatosensory regions, we identified two clusters of tactile representation within the posterior and midcingulate cortex. However, unlike humans and macaques, no clear somatotopic maps were observed. At the subcortical level, we found a somatotopic body representation in the thalamus and, for the first time in marmosets, in the putamen. These maps have similar organizations, as those previously found in Old World macaque monkeys and humans, suggesting that these subcortical somatotopic organizations were already established before Old and New World primates diverged. Our results show the first whole brain mapping of somatosensory responses acquired in a noninvasive way in awake marmosets.NEW & NOTEWORTHY We used somatosensory stimulation combined with functional MRI (fMRI) in awake marmosets to reveal the topographic body representation in areas S1, S2, thalamus, and putamen. We showed the existence of a body representation organization within the thalamus and the cingulate cortex by computing functional connectivity maps from seeds defined in S1/S2, using resting-state fMRI data. This noninvasive approach will be essential for chronic studies by guiding invasive recording and manipulation techniques.
Collapse
Affiliation(s)
- Justine C Cléry
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Yuki Hori
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - David J Schaeffer
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - J Andrew Pruszynski
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
9
|
Gilissen SRJ, Farrow K, Bonin V, Arckens L. Reconsidering the Border between the Visual and Posterior Parietal Cortex of Mice. Cereb Cortex 2020; 31:1675-1692. [PMID: 33159207 DOI: 10.1093/cercor/bhaa318] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
The posterior parietal cortex (PPC) contributes to multisensory and sensory-motor integration, as well as spatial navigation. Based on primate studies, the PPC is composed of several subdivisions with differing connection patterns, including areas that exhibit retinotopy. In mice the composition of the PPC is still under debate. We propose a revised anatomical delineation in which we classify the higher order visual areas rostrolateral area (RL), anteromedial area (AM), and Medio-Medial-Anterior cortex (MMA) as subregions of the mouse PPC. Retrograde and anterograde tracing revealed connectivity, characteristic for primate PPC, with sensory, retrosplenial, orbitofrontal, cingulate and motor cortex, as well as with several thalamic nuclei and the superior colliculus in the mouse. Regarding cortical input, RL receives major input from the somatosensory barrel field, while AM receives more input from the trunk, whereas MMA receives strong inputs from retrosplenial, cingulate, and orbitofrontal cortices. These input differences suggest that each posterior PPC subregion may have a distinct function. Summarized, we put forward a refined cortical map, including a mouse PPC that contains at least 6 subregions, RL, AM, MMA and PtP, MPta, LPta/A. These anatomical results set the stage for a more detailed understanding about the role that the PPC and its subdivisions play in multisensory integration-based behavior in mice.
Collapse
Affiliation(s)
- Sara R J Gilissen
- KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Karl Farrow
- KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium.,Neuro-Electronics Research Flanders, 3001 Leuven, Belgium.,VIB, 3001 Leuven, Belgium.,Imec, 3001 Leuven, Belgium
| | - Vincent Bonin
- KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium.,Neuro-Electronics Research Flanders, 3001 Leuven, Belgium.,VIB, 3001 Leuven, Belgium.,Imec, 3001 Leuven, Belgium
| | - Lutgarde Arckens
- KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Intact tactile detection yet biased tactile localization in a hand-centered frame of reference: Evidence from a dissociation. Neuropsychologia 2020; 147:107585. [PMID: 32841632 DOI: 10.1016/j.neuropsychologia.2020.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/20/2020] [Accepted: 08/10/2020] [Indexed: 11/21/2022]
Abstract
We examined the performance of an individual with subcortical damage, but an intact somatosensory thalamocortical pathway, to examine the functional architecture of tactile detection and tactile localization processes. Consistent with the intact somatosensory thalamocortical pathway, tactile detection on the contralesional hand was well within the normal range. Despite intact detection, the individual demonstrated substantial localization biases. Across all localization experiments, he consistently localized tactile stimuli to the left side in space relative to the long axis of his hand. This was observed when the contralesional hand was palm up, palm down, rotated 90° relative to the trunk, and when making verbal responses. Furthermore, control experiments demonstrated that this response pattern was unlikely a motor response error. These findings indicate that tactile localization on the body is influenced by proprioceptive information specifically in a hand-centered frame of reference. Furthermore, this also provides evidence that aspects of tactile localization are mediated by pathways outside of the primary somatosensory thalamocortical pathway.
Collapse
|
11
|
Abstract
Neuroscience needs behavior. However, it is daunting to render the behavior of organisms intelligible without suppressing most, if not all, references to life. When animals are treated as passive stimulus-response, disembodied and identical machines, the life of behavior perishes. Here, we distill three biological principles (materiality, agency, and historicity), spell out their consequences for the study of animal behavior, and illustrate them with various examples from the literature. We propose to put behavior back into context, with the brain in a species-typical body and with the animal's body situated in the world; stamp Newtonian time with nested ontogenetic and phylogenetic processes that give rise to individuals with their own histories; and supplement linear cause-and-effect chains and information processing with circular loops of purpose and meaning. We believe that conceiving behavior in these ways is imperative for neuroscience.
Collapse
|
12
|
Allart E, Viard R, Lopes R, Devanne H, Delval A. Influence of Motor Deficiency and Spatial Neglect on the Contralesional Posterior Parietal Cortex Functional and Structural Connectivity in Stroke Patients. Brain Topogr 2019; 33:176-190. [PMID: 31832813 DOI: 10.1007/s10548-019-00749-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
The posterior parietal cortex (PPC) is a key structure for visual attention and upper limb function, two features that could be impaired after stroke, and could be implied in their recovery. If it is well established that stroke is responsible for intra- and interhemispheric connectivity troubles, little is known about those existing for the contralesional PPC. In this study, we aimed at mapping the functional (using resting state fMRI) and structural (using diffusion tensor imagery) networks from 3 subparts of the PPC of the contralesional hemisphere (the anterior intraparietal sulcus), the posterior intraparietal sulcus and the superior parieto-occipital cortex to bilateral frontal areas and ipsilesional homologous PPC parts in 11 chronic stroke patients compared to 13 healthy controls. We also aimed at assessing the relationship between connectivity and the severity of visuospatial and motor deficiencies. We showed that interhemispheric functional and structural connectivity between PPCs was altered in stroke patients compared to controls, without any specificity among seeds. Alterations of parieto-frontal intra- and interhemispheric connectivity were less observed. Neglect severity was associated with several alterations in intra- and interhemispheric connectivity, whereas we did not find any behavioral/connectivity correlations for motor deficiency. The results of this exploratory study shed a new light on the influence of the contralesional PPC in post-stroke patients, they have to be confirmed and refined in further larger studies.
Collapse
Affiliation(s)
- Etienne Allart
- Neurorehabilitation Unit, Lille University Medical Center, 59000, Lille, France. .,Inserm U1171-Degenerative and Vascular Cognitive Disorders, University Lille, 59000, Lille, France.
| | - Romain Viard
- Inserm U1171-Degenerative and Vascular Cognitive Disorders, University Lille, 59000, Lille, France.,Clinical Imaging Core FaCility, Lille University Medical Center, 59000, Lille, France
| | - Renaud Lopes
- Inserm U1171-Degenerative and Vascular Cognitive Disorders, University Lille, 59000, Lille, France.,Clinical Imaging Core FaCility, Lille University Medical Center, 59000, Lille, France
| | - Hervé Devanne
- Department of Clinical Neurophysiology, Lille University Medical Center, 59000, Lille, France.,URePSSS Unité de Recherche Pluridisciplinaire Sport Santé Société (EA7369), ULCO, 62228, Calais, France
| | - Arnaud Delval
- Inserm U1171-Degenerative and Vascular Cognitive Disorders, University Lille, 59000, Lille, France.,Department of Clinical Neurophysiology, Lille University Medical Center, 59000, Lille, France
| |
Collapse
|
13
|
Baldwin MKL, Cooke DF, Goldring AB, Krubitzer L. Representations of Fine Digit Movements in Posterior and Anterior Parietal Cortex Revealed Using Long-Train Intracortical Microstimulation in Macaque Monkeys. Cereb Cortex 2019; 28:4244-4263. [PMID: 29136133 DOI: 10.1093/cercor/bhx279] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022] Open
Abstract
The current investigation in macaque monkeys utilized long-train intracortical microstimulation to determine the extent of cortex from which movements could be evoked. Not only were movements evoked from motor areas (PMC and M1), but they were also evoked from posterior parietal (5, 7a, 7b) and anterior parietal areas (3b, 1, 2). Large representations of digit movements involving only the index finger (D2) and thumb (D1), were elicited from areas 1, 2, 7b, and M1. Other movements evoked from these regions were similar to ethologically relevant movements that have been described in other primates. These include combined forelimb and mouth movements and full hand grasps. However, many other movements were much more complex and could not be categorized into any of the previously described ethological categories. Movements involving specific digits, which mimic precision grips, are unique to macaques and have not been described in New World or prosimian primates. We propose that these multiple and expanded motor representations of the digits co-evolved with the emergence of the opposable thumb and alterations in grip type in some anthropoid lineages.
Collapse
Affiliation(s)
- Mary K L Baldwin
- Center for Neuroscience, University of California, 1544 Newton Court, Davis, CA, USA
| | - Dylan F Cooke
- Center for Neuroscience, University of California, 1544 Newton Court, Davis, CA, USA.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada
| | - Adam B Goldring
- Center for Neuroscience, University of California, 1544 Newton Court, Davis, CA, USA
| | - Leah Krubitzer
- Center for Neuroscience, University of California, 1544 Newton Court, Davis, CA, USA.,Department of Psychology, University of California, Davis, CA, USA
| |
Collapse
|
14
|
Padberg J, Cooke DF, Cerkevich CM, Kaas JH, Krubitzer L. Cortical connections of area 2 and posterior parietal area 5 in macaque monkeys. J Comp Neurol 2019; 527:718-737. [PMID: 29663384 PMCID: PMC6191384 DOI: 10.1002/cne.24453] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/04/2018] [Accepted: 03/25/2018] [Indexed: 01/28/2023]
Abstract
The overarching goal of the current investigation was to examine the connections of anterior parietal area 2 and the medial portion of posterior parietal area 5 in macaque monkeys; two areas that are part of a network involved reaching and grasping in primates. We injected neuroanatomical tracers into specified locations in each field and directly related labeled cells to histologically identified cortical field boundaries. Labeled cells were counted so that the relative density of projections to areas 2 and 5 from other cortical fields could be determined. Projections to area 2 were restricted and were predominantly from other somatosensory areas of the anterior parietal cortex (areas 1, 3b, and 3a), the second somatosensory area (S2), and from medial and lateral portions of area 5 (5M and 5L respectively). On the other hand, area 5M had very broadly distributed projections from a number of cortical areas including anterior parietal areas, from primary motor cortex (M1), premotor cortex (PM), the supplementary motor area (SMA), cortex on the medial wall, and from posterior parietal areas 5L and 7b. The more restricted pattern of connections of area 2 indicates that it processes somatic inputs locally and provides proprioceptive information to area 5M. 5M, which at least partially overlaps with functionally defined area MIP, receives inputs from somatosensory (predominantly from area 2), posterior parietal and motor cortex, which could provide the substrate for representing multiple coordinate systems necessary for planning ethologically relevant movements, particularly those involving the hand.
Collapse
Affiliation(s)
- Jeffrey Padberg
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Dylan F. Cooke
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, V5A1S6, Canada
| | | | | | - Leah Krubitzer
- Center for Neuroscience, University of California, Davis, CA, 95618, USA
- Department of Psychology, University of California, Davis, CA, 95618, USA
| |
Collapse
|
15
|
Truppa V, Carducci P, Sabbatini G. Object grasping and manipulation in capuchin monkeys (genera Cebus and Sapajus). Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Valentina Truppa
- Institute of Cognitive Sciences and Technologies, National Research Council (CNR), Via Ulisse Aldrovandi, Rome, Italy
| | - Paola Carducci
- Institute of Cognitive Sciences and Technologies, National Research Council (CNR), Via Ulisse Aldrovandi, Rome, Italy
- Environmental and Evolutionary Biology PhD Program, Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro, Rome, Italy
| | - Gloria Sabbatini
- Institute of Cognitive Sciences and Technologies, National Research Council (CNR), Via Ulisse Aldrovandi, Rome, Italy
| |
Collapse
|
16
|
Cerkevich CM, Kaas JH. Corticocortical projections to area 1 in squirrel monkeys (Saimiri sciureus). Eur J Neurosci 2018; 49:1024-1040. [PMID: 29495078 DOI: 10.1111/ejn.13884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 11/29/2022]
Abstract
Cortical area 1 is a non-primary somatosensory area in the primate anterior parietal cortex that is critical to tactile discrimination. The corticocortical projections to area 1 in squirrel monkeys were determined by placing multiple injections of anatomical tracers into separate body part representations defined by multiunit microelectrode mapping in area 1. The pattern of labeled cells in the cortex indicated that area 1 has strong intrinsic connections within each body part representation and has inputs from somatotopically matched regions of areas 3b, 3a, 2 and 5. Somatosensory areas in the lateral sulcus, including the second somatosensory area (S2), the parietal ventral area (PV), and the presumptive parietal rostral (PR) and ventral somatosensory (VS) areas, also project to area 1. Topographically organized projections to area 1 also came from the primary motor cortex (M1), the dorsal and ventral premotor areas (PMd and PMv), and the supplementary motor area (SMA). Labeled cells were also found in cingulate motor and sensory areas on the medial wall of the hemisphere. Previous studies revealed a similar pattern of projections to area 1 in Old World macaque monkeys, suggesting a pattern of cortical inputs to area 1 that is common across anthropoid primates.
Collapse
Affiliation(s)
- Christina M Cerkevich
- Department of Psychology, Vanderbilt University, 301 David K. Wilson Hall, 111 21st Avenue South, Nashville, TN, 37203, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, 301 David K. Wilson Hall, 111 21st Avenue South, Nashville, TN, 37203, USA
| |
Collapse
|
17
|
Michely J, Volz LJ, Hoffstaedter F, Tittgemeyer M, Eickhoff SB, Fink GR, Grefkes C. Network connectivity of motor control in the ageing brain. NEUROIMAGE-CLINICAL 2018; 18:443-455. [PMID: 29552486 PMCID: PMC5852391 DOI: 10.1016/j.nicl.2018.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 11/24/2022]
Abstract
Older individuals typically display stronger regional brain activity than younger subjects during motor performance. However, knowledge regarding age-related changes of motor network interactions between brain regions remains scarce. We here investigated the impact of ageing on the interaction of cortical areas during movement selection and initiation using dynamic causal modelling (DCM). We found that age-related psychomotor slowing was accompanied by increases in both regional activity and effective connectivity, especially for ‘core’ motor coupling targeting primary motor cortex (M1). Interestingly, younger participants within the older group showed strongest connectivity targeting M1, which steadily decreased with advancing age. Conversely, prefrontal influences on the motor system increased with advancing age, and were inversely correlated with reduced parietal influences and core motor coupling. Interestingly, higher net coupling within the prefrontal-premotor-M1 axis predicted faster psychomotor speed in ageing. Hence, as opposed to a uniform age-related decline, our findings are compatible with the idea of different age-related compensatory mechanisms, with an important role of the prefrontal cortex compensating for reduced coupling within the core motor network. Enhanced motor network activity and connectivity in ageing Parietal-premotor and premotor-M1 coupling decreases with advancing age. Prefrontal influences on the motor system increase with advancing age. Prefrontal cortex compensates for age-related decline in other motor connections. Prefrontal-premotor-M1 coupling predicts psychomotor speed in ageing.
Collapse
Affiliation(s)
- J Michely
- Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom
| | - L J Volz
- Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany; Department of Psychological and Brain Sciences and UCSB Brain Imaging Center, University of California, 93106 Santa Barbara, USA
| | - F Hoffstaedter
- Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, 52428 Jülich, Germany; Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - M Tittgemeyer
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - S B Eickhoff
- Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, 52428 Jülich, Germany; Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - G R Fink
- Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany; Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, 52428 Jülich, Germany
| | - C Grefkes
- Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany; Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, 52428 Jülich, Germany.
| |
Collapse
|
18
|
Tacchino G, Gandolla M, Coelli S, Barbieri R, Pedrocchi A, Bianchi AM. EEG Analysis During Active and Assisted Repetitive Movements: Evidence for Differences in Neural Engagement. IEEE Trans Neural Syst Rehabil Eng 2017; 25:761-771. [DOI: 10.1109/tnsre.2016.2597157] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Hamadjida A, Dea M, Deffeyes J, Quessy S, Dancause N. Parallel Cortical Networks Formed by Modular Organization of Primary Motor Cortex Outputs. Curr Biol 2016; 26:1737-1743. [DOI: 10.1016/j.cub.2016.04.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/08/2016] [Accepted: 04/27/2016] [Indexed: 11/16/2022]
|
20
|
The Neural Correlates of Long-Term Carryover following Functional Electrical Stimulation for Stroke. Neural Plast 2016; 2016:4192718. [PMID: 27073701 PMCID: PMC4814690 DOI: 10.1155/2016/4192718] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/16/2023] Open
Abstract
Neurorehabilitation effective delivery for stroke is likely to be improved by establishing a mechanistic understanding of how to enhance adaptive plasticity. Functional electrical stimulation is effective at reducing poststroke foot drop; in some patients, the effect persists after therapy has finished with an unknown mechanism. We used fMRI to examine neural correlates of functional electrical stimulation key elements, volitional intent to move and concurrent stimulation, in a group of chronic stroke patients receiving functional electrical stimulation for foot-drop correction. Patients exhibited task-related activation in a complex network, sharing bilateral sensorimotor and supplementary motor activation with age-matched controls. We observed consistent separation of patients with and without carryover effect on the basis of brain responses. Patients who experienced the carryover effect had responses in supplementary motor area that correspond to healthy controls; the interaction between experimental factors in contralateral angular gyrus was seen only in those without carryover. We suggest that the functional electrical stimulation carryover mechanism of action is based on movement prediction and sense of agency/body ownership—the ability of a patient to plan the movement and to perceive the stimulation as a part of his/her own control loop is important for carryover effect to take place.
Collapse
|
21
|
Abstract
A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans.
Collapse
|
22
|
Dea M, Hamadjida A, Elgbeili G, Quessy S, Dancause N. Different Patterns of Cortical Inputs to Subregions of the Primary Motor Cortex Hand Representation in Cebus apella. Cereb Cortex 2016; 26:1747-61. [PMID: 26966266 PMCID: PMC4785954 DOI: 10.1093/cercor/bhv324] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The primary motor cortex (M1) plays an essential role in the control of hand movements in primates and is part of a complex cortical sensorimotor network involving multiple premotor and parietal areas. In a previous study in squirrel monkeys, we found that the ventral premotor cortex (PMv) projected mainly to 3 regions within the M1 forearm representation [rostro-medial (RM), rostro-lateral (RL), and caudo-lateral (CL)] with very few caudo-medial (CM) projections. These results suggest that projections from premotor areas to M1 are not uniform, but rather segregated into subregions. The goal of the present work was to study how inputs from diverse areas of the ipsilateral cortical network are organized within the M1 hand representation. In Cebus apella, different retrograde neuroanatomical tracers were injected in 4 subregions of the hand area of M1 (RM, RL, CM, and CL). We found a different pattern of input to each subregion of M1. RM receives inputs predominantly from dorsal premotor cortex, RL from PMv, CM from area 5, and CL from area 2. These results support that the M1 hand representation is composed of several subregions, each part of a unique cortical network.
Collapse
Affiliation(s)
- Melvin Dea
- Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Adjia Hamadjida
- Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Montréal, Québec, Canada
| | - Guillaume Elgbeili
- Psychosocial Research Division, Douglas Institute Research Centre, Verdun, QC, Canada
| | - Stephan Quessy
- Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Numa Dancause
- Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
23
|
Mayer A, Nascimento-Silva ML, Keher NB, Bittencourt-Navarrete RE, Gattass R, Franca JG. Architectonic mapping of somatosensory areas involved in skilled forelimb movements and tool use. J Comp Neurol 2015; 524:1399-423. [PMID: 26477782 DOI: 10.1002/cne.23916] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 11/12/2022]
Abstract
Cebus monkeys stand out from other New World monkeys by their ability to perform fine hand movements, and by their spontaneous use of tools in the wild. Those behaviors rely on the integration of somatosensory information, which occurs in different areas of the parietal cortex. Although a few studies have examined and parceled the somatosensory areas of the cebus monkey, mainly using electrophysiological criteria, very little is known about its anatomical organization. In this study we used SMI-32 immunohistochemistry, myelin, and Nissl stains to characterize the architecture of the parietal cortical areas of cebus monkeys. Seven cortical areas were identified between the precentral gyrus and the anterior bank of the intraparietal sulcus. Except for areas 3a and 3b, distinction between different somatosensory areas was more evident in myelin-stained sections and SMI-32 immunohistochemistry than in Nissl stain, especially for area 2 and subdivisions of area 5. Our results show that cebus monkeys have a relatively complex somatosensory cortex, similar to that of macaques and humans. This suggests that, during primate evolution, the emergence of new somatosensory areas underpinned complex manual behaviors in most Old World simians and in the New World cebus monkey. J. Comp. Neurol. 524:1399-1423, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrei Mayer
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Márcio L Nascimento-Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia B Keher
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ricardo Gattass
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João G Franca
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Rao JS, Ma M, Zhao C, Liu Z, Yang ZY, Li XG. Alteration of brain regional homogeneity of monkeys with spinal cord injury: A longitudinal resting-state functional magnetic resonance imaging study. Magn Reson Imaging 2015; 33:1156-1162. [PMID: 26117702 DOI: 10.1016/j.mri.2015.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/12/2015] [Accepted: 06/20/2015] [Indexed: 12/13/2022]
Abstract
PURPOSE To investigate the longitudinal brain regional homogeneity (ReHo) changes in nonhuman primate after spinal cord injury (SCI) by resting-state functional magnetic resonance imaging (fMRI). METHODS Three adult female rhesus monkeys underwent unilateral thoracic cord injury. A resting-state fMRI examination was performed in the healthy stage and 4, 8, and 12 weeks after the injury. The ReHo value of each voxel in the monkey brain was calculated and compared between pre- and post-SCI monkeys with paired t test. The regions of interest (ROIs) in the significantly changed ReHo regions were set. The correlations between the ReHo change and the time after injury were also determined. RESULTS Compared with those in healthy period, the ReHo values of the left premotor cortex and the anterior cingulate cortex (ACC) in post-SCI rhesus monkeys significantly increased in 4-week follow-up examinations. The ReHo values of posterior cingulate cortex, left precuneus, left temporal parietooccipital area, and bilateral superior parietal lobules decreased at 8-week follow-up examinations. In 12-week follow-up examinations, the ReHo values of the left postcentral gyrus, right caudate nucleus, and superior temporal gyrus increased. Correlation analysis showed positive correlations between left ACC and the postoperative time. CONCLUSION SCI can change the regional synchronism of brain activity in sensorimotor system and the default mode network. These findings may help us to understand the potential pathophysiological changes in the central nervous system after SCI.
Collapse
Affiliation(s)
- Jia-Sheng Rao
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Manxiu Ma
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Can Zhao
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zuxiang Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhao-Yang Yang
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Institutes for Neuroscience, Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiao-Guang Li
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Institutes for Neuroscience, Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
25
|
Abstract
A fundamental goal of the human auditory system is to map complex acoustic signals onto stable internal representations of the basic sound patterns of speech. Phonemes and the distinctive features that they comprise constitute the basic building blocks from which higher-level linguistic representations, such as words and sentences, are formed. Although the neural structures underlying phonemic representations have been well studied, there is considerable debate regarding frontal-motor cortical contributions to speech as well as the extent of lateralization of phonological representations within auditory cortex. Here we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to investigate the distributed patterns of activation that are associated with the categorical and perceptual similarity structure of 16 consonant exemplars in the English language used in Miller and Nicely's (1955) classic study of acoustic confusability. Participants performed an incidental task while listening to phonemes in the MRI scanner. Neural activity in bilateral anterior superior temporal gyrus and supratemporal plane was correlated with the first two components derived from a multidimensional scaling analysis of a behaviorally derived confusability matrix. We further showed that neural representations corresponding to the categorical features of voicing, manner of articulation, and place of articulation were widely distributed throughout bilateral primary, secondary, and association areas of the superior temporal cortex, but not motor cortex. Although classification of phonological features was generally bilateral, we found that multivariate pattern information was moderately stronger in the left compared with the right hemisphere for place but not for voicing or manner of articulation.
Collapse
|
26
|
The cortical motor system of the marmoset monkey (Callithrix jacchus). Neurosci Res 2015; 93:72-81. [DOI: 10.1016/j.neures.2014.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 12/31/2022]
|
27
|
Mitchell JF, Leopold DA. The marmoset monkey as a model for visual neuroscience. Neurosci Res 2015; 93:20-46. [PMID: 25683292 PMCID: PMC4408257 DOI: 10.1016/j.neures.2015.01.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 11/26/2022]
Abstract
The common marmoset (Callithrix jacchus) has been valuable as a primate model in biomedical research. Interest in this species has grown recently, in part due to the successful demonstration of transgenic marmosets. Here we examine the prospects of the marmoset model for visual neuroscience research, adopting a comparative framework to place the marmoset within a broader evolutionary context. The marmoset's small brain bears most of the organizational features of other primates, and its smooth surface offers practical advantages over the macaque for areal mapping, laminar electrode penetration, and two-photon and optical imaging. Behaviorally, marmosets are more limited at performing regimented psychophysical tasks, but do readily accept the head restraint that is necessary for accurate eye tracking and neurophysiology, and can perform simple discriminations. Their natural gaze behavior closely resembles that of other primates, with a tendency to focus on objects of social interest including faces. Their immaturity at birth and routine twinning also makes them ideal for the study of postnatal visual development. These experimental factors, together with the theoretical advantages inherent in comparing anatomy, physiology, and behavior across related species, make the marmoset an excellent model for visual neuroscience.
Collapse
Affiliation(s)
- Jude F Mitchell
- Brain and Cognitive Sciences Department, Meliora Hall, University of Rochester, Rochester, NY 14627, USA.
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Borjon JI, Ghazanfar AA. Convergent evolution of vocal cooperation without convergent evolution of brain size. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:93-102. [PMID: 25247613 DOI: 10.1159/000365346] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
One pragmatic underlying successful vocal communication is the ability to take turns. Taking turns - a form of cooperation - facilitates the transmission of signals by reducing the amount of their overlap. This allows vocalizations to be better heard. Until recently, non-human primates were not thought of as particularly cooperative, especially in the vocal domain. We recently demonstrated that common marmosets (Callithrix jacchus), a small New World primate species, take turns when they exchange vocalizations with both related and unrelated conspecifics. As the common marmoset is distantly related to humans (and there is no documented evidence that Old World primates exhibit vocal turn taking), we argue that this ability arose as an instance of convergent evolution, and is part of a suite of prosocial behavioral tendencies. Such behaviors seem to be, at least in part, the outcome of the cooperative breeding strategy adopted by both humans and marmosets. Importantly, this suite of shared behaviors occurs without correspondence in encephalization. Marmoset vocal turn taking demonstrates that a large brain size and complex cognitive machinery is not needed for vocal cooperation to occur. Consistent with this idea, the temporal structure of marmoset vocal exchanges can be described in terms of coupled oscillator dynamics, similar to quantitative descriptions of human conversations. We propose a simple neural circuit mechanism that may account for these dynamics and, at its core, involves vocalization-induced reductions of arousal. Such a mechanism may underlie the evolution of vocal turn taking in both marmoset monkeys and humans.
Collapse
Affiliation(s)
- Jeremy I Borjon
- Princeton Neuroscience Institute, Princeton University, Princeton, N.J., USA
| | | |
Collapse
|
29
|
Burman KJ, Bakola S, Richardson KE, Reser DH, Rosa MGP. Patterns of cortical input to the primary motor area in the marmoset monkey. J Comp Neurol 2014; 522:811-43. [PMID: 23939531 DOI: 10.1002/cne.23447] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 01/25/2023]
Abstract
In primates the primary motor cortex (M1) forms a topographic map of the body, whereby neurons in the medial part of this area control movements involving trunk and hindlimb muscles, those in the intermediate part control movements involving forelimb muscles, and those in the lateral part control movements of facial and other head muscles. This topography is accompanied by changes in cytoarchitectural characteristics, raising the question of whether the anatomical connections also vary between different parts of M1. To address this issue, we compared the patterns of cortical afferents revealed by retrograde tracer injections in different locations within M1 of marmoset monkeys. We found that the entire extent of this area is unified by projections from the dorsocaudal and medial subdivisions of premotor cortex (areas 6DC and 6M), from somatosensory areas 3a, 3b, 1/2, and S2, and from posterior parietal area PE. While cingulate areas projected to all subdivisions, they preferentially targeted the medial part of M1. Conversely, the ventral premotor areas were preferentially connected with the lateral part of M1. Smaller but consistent inputs originated in frontal area 6DR, ventral posterior parietal cortex, the retroinsular cortex, and area TPt. Connections with intraparietal, prefrontal, and temporal areas were very sparse, and variable. Our results demonstrate that M1 is unified by a consistent pattern of major connections, but also shows regional variations in terms of minor inputs. These differences likely reflect requirements for control of voluntary movement involving different body parts.
Collapse
Affiliation(s)
- Kathleen J Burman
- Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | | | | | | | | |
Collapse
|
30
|
Goldring AB, Cooke DF, Baldwin MKL, Recanzone GH, Gordon AG, Pan T, Simon SI, Krubitzer L. Reversible deactivation of higher-order posterior parietal areas. II. Alterations in response properties of neurons in areas 1 and 2. J Neurophysiol 2014; 112:2545-60. [PMID: 25143537 DOI: 10.1152/jn.00141.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role that posterior parietal (PPC) and motor cortices play in modulating neural responses in somatosensory areas 1 and 2 was examined with reversible deactivation by transient cooling. Multiunit recordings from neurons in areas 1 and 2 were collected from six anesthetized adult monkeys (Macaca mulatta) before, during, and after reversible deactivation of areas 5L or 7b or motor cortex (M1/PM), while select locations on the hand and forelimb were stimulated. Response changes were quantified as increases and decreases to stimulus-driven activity relative to baseline and analyzed during three recording epochs: during deactivation ("cool") and at two time points after deactivation ("rewarm 1," "rewarm 2"). Although the type of response change observed was variable, for neurons at the recording sites tested >90% exhibited a significant change in response during cooling of 7b while cooling area 5L or M1/PM produced a change in 75% and 64% of sites, respectively. These results suggest that regions in the PPC, and to a lesser extent motor cortex, shape the response characteristics of neurons in areas 1 and 2 and that this kind of feedback modulation is necessary for normal somatosensory processing. Furthermore, this modulation appears to happen on a minute-by-minute basis and may serve as the substrate for phenomena such as somatosensory attention.
Collapse
Affiliation(s)
- Adam B Goldring
- Center for Neuroscience, University of California, Davis, California; Department of Psychology, University of California, Davis, California
| | - Dylan F Cooke
- Center for Neuroscience, University of California, Davis, California; Department of Psychology, University of California, Davis, California
| | - Mary K L Baldwin
- Department of Psychology, University of California, Davis, California
| | - Gregg H Recanzone
- Department of Psychology, University of California, Davis, California; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California; and
| | - Adam G Gordon
- Center for Neuroscience, University of California, Davis, California
| | - Tingrui Pan
- Department of Biomedical Engineering, University of California, Davis, California
| | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, California
| | - Leah Krubitzer
- Center for Neuroscience, University of California, Davis, California; Department of Psychology, University of California, Davis, California;
| |
Collapse
|
31
|
Liao CC, Gharbawie OA, Qi H, Kaas JH. Cortical connections to single digit representations in area 3b of somatosensory cortex in squirrel monkeys and prosimian galagos. J Comp Neurol 2014; 521:3768-90. [PMID: 23749740 DOI: 10.1002/cne.23377] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/30/2013] [Accepted: 05/23/2013] [Indexed: 11/06/2022]
Abstract
The ventral posterior nucleus of thalamus sends highly segregated inputs into each digit representation in area 3b of primary somatosensory cortex. However, the spatial organization of the connections that link digit representations of areas 3b with other somatosensory areas is less understood. Here we examined the cortical inputs to individual digit representations of area 3b in four squirrel monkeys and one prosimian galago. Retrograde tracers were injected into neurophysiologically defined representations of individual digits of area 3b. Cortical tissues were cut parallel to the surface in some cases and showed that feedback projections to individual digits overlapped extensively in the hand representations of areas 3b, 1, and parietal ventral (PV) and second somatosensory (S2) areas. Other regions with overlapping populations of labeled cells included area 3a and primary motor cortex (M1). The results were confirmed in other cases in which the cortical tissues were cut in the coronal plane. The same cases also showed that cells were primarily labeled in the infragranular and supragranular layers. Thus, feedback projections to individual digit representations in area 3b mainly originate from multiple digits and other portions of hand representations of areas 3b, 1, PV, and S2. This organization is in stark contrast to the segregated thalamocortical inputs, which originate in single digit representations and terminate in the matching digit representation in the cortex. The organization of feedback connections could provide a substrate for the integration of information across the representations of adjacent digits in area 3b.
Collapse
Affiliation(s)
- Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | | | | | | |
Collapse
|
32
|
Bowes C, Burish M, Cerkevich C, Kaas J. Patterns of cortical reorganization in the adult marmoset after a cervical spinal cord injury. J Comp Neurol 2014; 521:3451-63. [PMID: 23681952 DOI: 10.1002/cne.23360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/26/2022]
Abstract
In the present study, we used microelectrode recordings of multiunit responses to evaluate patterns of the reactivation of somatosensory cortex after sensory loss produced by spinal cord lesions in the common marmoset (Callithrix jacchus). These New World monkeys have become a popular model in studies of cortical organization and function. Primary somatosensory cortex and adjoining somatosensory areas can become extensively deactivated by lesions of somatosensory afferents as they ascend in the dorsal columns of the cervical spinal cord. Six to 7 weeks after complete lesions of the cuneate fasciculus subserving the forelimb at cervical levels 5-6, the hand region in contralateral areas 3b and 1 was reactivated by inputs from the forelimb, but excluded representations of some or all digits. In a similar manner, recording sites from the forelimb region of areas 2-5 responded to parts of the forelimb but not to digits after an extensive lesion of the contralateral cuneate fasciculus at C5-C6. Lesions that damaged only the gracile fasciculus or a small percentage of the cuneate fasciculus did not produce changes in the gross hand representation in contralateral areas 3b, 3a, 1, and 2. Finally, a complete but lower lesion of the cuneate fasciculus at C8 produced some abnormalities in the reactivation, but the digits were represented. The results indicate that areas 3a, 3b, 1, and 2-5 of the somatosensory cortex are extensively reactivated after large, apparently complete lesions of the contralateral cuneate fasciculus, but afferents from the digits may not contribute to their reactivation.
Collapse
Affiliation(s)
- Charnese Bowes
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, 37203
| | | | | | | |
Collapse
|
33
|
Guipponi O, Odouard S, Pinède S, Wardak C, Ben Hamed S. fMRI Cortical Correlates of Spontaneous Eye Blinks in the Nonhuman Primate. Cereb Cortex 2014; 25:2333-45. [PMID: 24654257 DOI: 10.1093/cercor/bhu038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eyeblinks are defined as a rapid closing and opening of the eyelid. Three types of blinks are defined: spontaneous, reflexive, and voluntary. Here, we focus on the cortical correlates of spontaneous blinks, using functional magnetic resonance imaging (fMRI) in the nonhuman primate. Our observations reveal an ensemble of cortical regions processing the somatosensory, proprioceptive, peripheral visual, and possibly nociceptive consequences of blinks. These observations indicate that spontaneous blinks have consequences on the brain beyond the visual cortex, possibly contaminating fMRI protocols that generate in the participants heterogeneous blink behaviors. This is especially the case when these protocols induce (nonunusual) eye fatigue and corneal dryness due to demanding fixation requirements, as is the case here. Importantly, no blink related activations were observed in the prefrontal and parietal blinks motor command areas nor in the prefrontal, parietal, and medial temporal blink suppression areas. This indicates that the absence of activation in these areas is not a signature of the absence of blink contamination in the data. While these observations increase our understanding of the neural bases of spontaneous blinks, they also strongly call for new criteria to identify whether fMRI recordings are contaminated by a heterogeneous blink behavior or not.
Collapse
Affiliation(s)
- Olivier Guipponi
- Centre de Neuroscience Cognitive, CNRS UMR 5229-Université Claude Bernard Lyon I, 69675 Bron Cedex, France
| | - Soline Odouard
- Centre de Neuroscience Cognitive, CNRS UMR 5229-Université Claude Bernard Lyon I, 69675 Bron Cedex, France
| | - Serge Pinède
- Centre de Neuroscience Cognitive, CNRS UMR 5229-Université Claude Bernard Lyon I, 69675 Bron Cedex, France
| | - Claire Wardak
- Centre de Neuroscience Cognitive, CNRS UMR 5229-Université Claude Bernard Lyon I, 69675 Bron Cedex, France
| | - Suliann Ben Hamed
- Centre de Neuroscience Cognitive, CNRS UMR 5229-Université Claude Bernard Lyon I, 69675 Bron Cedex, France
| |
Collapse
|
34
|
Négyessy L, Pálfi E, Ashaber M, Palmer C, Jákli B, Friedman RM, Chen LM, Roe AW. Intrinsic horizontal connections process global tactile features in the primary somatosensory cortex: neuroanatomical evidence. J Comp Neurol 2014; 521:2798-817. [PMID: 23436325 DOI: 10.1002/cne.23317] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/31/2013] [Accepted: 02/05/2013] [Indexed: 11/05/2022]
Abstract
To understand manual tactile functions in primates, it is essential to explore the interactions between the finger pad representations in somatosensory cortex. To this end, we used optical imaging and electrophysiological mapping to guide neuroanatomical tracer injections into distal digit tip representations of Brodmann area 3b in the squirrel monkey. Retrogradely labeled cell densities and anterogradely labeled fibers and terminal patches in somatosensory areas were plotted and quantified with respect to tangential distribution. Within area 3b, reciprocal patchy distribution of anterograde and retrograde labeling spanned the representation of the distal pad of multiple digits, indicating strong cross-digit connectivity. Inter-areal connections revealed bundles of long-range fibers projecting anteroposteriorly, connecting area 3b with clusters of labeled neurons and terminal axon arborizations in area 1. Inter-areal linkage appeared to be largely confined to the representation of the injected finger. These findings provide the neuroanatomical basis for the interaction between distal finger pad representations observed by recent electrophysiological studies. We propose that intra-areal connectivity may be heavily involved in interdigit integration such as shape discrimination, whereas long-range inter-areal connections may subserve active touch in a digit-specific manner.
Collapse
Affiliation(s)
- László Négyessy
- Department of Theory, Institute for Particle and Nuclear Physics, Wigner Research Center for Physics, Hungarian Academy of Sciences, Budapest H-1121, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gandolla M, Ferrante S, Molteni F, Guanziroli E, Frattini T, Martegani A, Ferrigno G, Friston K, Pedrocchi A, Ward NS. Re-thinking the role of motor cortex: context-sensitive motor outputs? Neuroimage 2014; 91:366-74. [PMID: 24440530 PMCID: PMC3988837 DOI: 10.1016/j.neuroimage.2014.01.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 12/05/2013] [Accepted: 01/05/2014] [Indexed: 12/05/2022] Open
Abstract
The standard account of motor control considers descending outputs from primary motor cortex (M1) as motor commands and efference copy. This account has been challenged recently by an alternative formulation in terms of active inference: M1 is considered as part of a sensorimotor hierarchy providing top–down proprioceptive predictions. The key difference between these accounts is that predictions are sensitive to the current proprioceptive context, whereas efference copy is not. Using functional electric stimulation to experimentally manipulate proprioception during voluntary movement in healthy human subjects, we assessed the evidence for context sensitive output from M1. Dynamic causal modeling of functional magnetic resonance imaging responses showed that FES altered proprioception increased the influence of M1 on primary somatosensory cortex (S1). These results disambiguate competing accounts of motor control, provide some insight into the synaptic mechanisms of sensory attenuation and may speak to potential mechanisms of action of FES in promoting motor learning in neurorehabilitation. Peripheral functional electrical stimulation provides altered proprioception. Altered proprioception and volitional movement interaction is shown in M1 and S1. M1–S1 connection is modulated by proprioception and therefore is context-sensitive. Context-sensitive M1–S1 pathway supports an active inference motor control account.
Collapse
Affiliation(s)
- Marta Gandolla
- Politecnico di Milano, NearLab, Department of Electronics, Information and Bioengineering, Via G. Colombo 40, 20133 Milano, Italy.
| | - Simona Ferrante
- Politecnico di Milano, NearLab, Department of Electronics, Information and Bioengineering, Via G. Colombo 40, 20133 Milano, Italy.
| | - Franco Molteni
- Valduce Hospital, Villa Beretta Rehabilitation Center, Via N. Sauro 17, 23845 Costamasnaga, LC, Italy.
| | - Eleonora Guanziroli
- Valduce Hospital, Villa Beretta Rehabilitation Center, Via N. Sauro 17, 23845 Costamasnaga, LC, Italy.
| | - Tiziano Frattini
- Valduce Hospital, Unità Operativa Complessa di Radiologia, via D. Alighieri 11, 22100 Como, Italy.
| | - Alberto Martegani
- Valduce Hospital, Unità Operativa Complessa di Radiologia, via D. Alighieri 11, 22100 Como, Italy.
| | - Giancarlo Ferrigno
- Politecnico di Milano, NearLab, Department of Electronics, Information and Bioengineering, Via G. Colombo 40, 20133 Milano, Italy.
| | - Karl Friston
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK.
| | - Alessandra Pedrocchi
- Politecnico di Milano, NearLab, Department of Electronics, Information and Bioengineering, Via G. Colombo 40, 20133 Milano, Italy.
| | - Nick S Ward
- Sobell Department of Movement Neuroscience, UCL Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
36
|
Wang Z, Qi HX, Kaas JH, Roe AW, Chen LM. Functional signature of recovering cortex: dissociation of local field potentials and spiking activity in somatosensory cortices of spinal cord injured monkeys. Exp Neurol 2013; 249:132-43. [PMID: 24017995 DOI: 10.1016/j.expneurol.2013.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/08/2013] [Accepted: 08/22/2013] [Indexed: 11/27/2022]
Abstract
After disruption of dorsal column afferents at high cervical spinal levels in adult monkeys, somatosensory cortical neurons recover responsiveness to tactile stimulation of the hand; this reactivation correlates with a recovery of hand use. However, it is not known if all neuronal response properties recover, and whether different cortical areas recover in a similar manner. To address this, we recorded neuronal activity in cortical area 3b and S2 in adult squirrel monkeys weeks after unilateral lesion of the dorsal columns. We found that in response to vibrotactile stimulation, local field potentials remained robust at all frequency ranges. However, neuronal spiking activity failed to follow at high frequencies (≥15 Hz). We suggest that the failure to generate spiking activity at high stimulus frequency reflects a changed balance of inhibition and excitation in both area 3b and S2, and that this mismatch in spiking and local field potential is a signature of an early phase of recovering cortex (<two months).
Collapse
Affiliation(s)
- Zheng Wang
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
37
|
Qi HX, Gharbawie OA, Wynne KW, Kaas JH. Impairment and recovery of hand use after unilateral section of the dorsal columns of the spinal cord in squirrel monkeys. Behav Brain Res 2013; 252:363-76. [PMID: 23747607 DOI: 10.1016/j.bbr.2013.05.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 12/27/2022]
Abstract
Damage to the ascending forelimb afferents in the dorsal columns (DCs) of the cervical spinal cord in monkeys impairs forelimb use, particularly hand dexterity. Although considerable recovery has been reported, interpretation of the results is complicated by the reproducibility of the lesion and behavioral assessment. Here, we examined the effects of a unilateral DC lesion at the C4-C6 spinal cord level in four adult squirrel monkeys. Behavioral performance was assessed on a reach-to-grasp task over 5-13 weeks after lesion. Retrograde tracers were injected into the skin of the fingertips to determine the distribution of axon terminals in the cuneate nucleus and estimate the effectiveness of lesion at the conclusion of each case. The size and level of DC lesion was reflected in the proportion of spared afferents, which ranged from 1 to 25% across monkeys. The experiments produced two major findings. First, the extent of deafferentation in the DC is directly related to the degree of reaching and grasping impairments, and to the reactivation profile and somatotopic reorganization in contralateral primary somatosensory cortex. Second, considerable behavioral recovery and cortical reorganization occurred even in the monkey with only 1% of axons spared in the DC. Our findings suggest that cutaneous inputs from the hand and forelimb are critical to the integrity of functions such as reaching and grasping. In addition, axon branches from peripheral afferents that terminate on neurons in the dorsal horn of the spinal cord are likely central to the functional recovery.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA.
| | | | | | | |
Collapse
|
38
|
Cortical evolution in mammals: the bane and beauty of phenotypic variability. Proc Natl Acad Sci U S A 2012; 109 Suppl 1:10647-54. [PMID: 22723368 DOI: 10.1073/pnas.1201891109] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Evolution by natural selection, the unifying theory of all biological sciences, provides a basis for understanding how phenotypic variability is generated at all levels of organization from genes to behavior. However, it is important to distinguish what is the target of selection vs. what is transmitted across generations. Physical traits, behaviors, and the extended phenotype are all selected features of an individual, but genes that covary with different aspects of the targets of selection are inherited. Here we review the variability in cortical organization, morphology, and behavior that have been observed across species and describe similar types of variability within species. We examine sources of variability and the constraints that limit the types of changes that evolution has and can produce. Finally, we underscore the importance of how genes and genetic regulatory networks are deployed and interact within an individual, and their relationship to external, physical forces within the environment that shape the ultimate phenotype.
Collapse
|
39
|
Cooke DF, Goldring AB, Yamayoshi I, Tsourkas P, Recanzone GH, Tiriac A, Pan T, Simon SI, Krubitzer L. Fabrication of an inexpensive, implantable cooling device for reversible brain deactivation in animals ranging from rodents to primates. J Neurophysiol 2012; 107:3543-58. [PMID: 22402651 PMCID: PMC3378414 DOI: 10.1152/jn.01101.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/04/2012] [Indexed: 11/22/2022] Open
Abstract
We have developed a compact and lightweight microfluidic cooling device to reversibly deactivate one or more areas of the neocortex to examine its functional macrocircuitry as well as behavioral and cortical plasticity. The device, which we term the "cooling chip," consists of thin silicone tubing (through which chilled ethanol is circulated) embedded in mechanically compliant polydimethylsiloxane (PDMS). PDMS is tailored to compact device dimensions (as small as 21 mm(3)) that precisely accommodate the geometry of the targeted cortical area. The biocompatible design makes it suitable for both acute preparations and chronic implantation for long-term behavioral studies. The cooling chip accommodates an in-cortex microthermocouple measuring local cortical temperature. A microelectrode may be used to record simultaneous neural responses at the same location. Cortex temperature is controlled by computer regulation of the coolant flow, which can achieve a localized cortical temperature drop from 37 to 20°C in less than 3 min and maintain target temperature to within ±0.3°C indefinitely. Here we describe cooling chip fabrication and performance in mediating cessation of neural signaling in acute preparations of rodents, ferrets, and primates.
Collapse
Affiliation(s)
- Dylan F Cooke
- Center for Neuroscience, University of California, Davis, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Plasticity-inducing TMS protocols to investigate somatosensory control of hand function. Neural Plast 2012; 2012:350574. [PMID: 22666612 PMCID: PMC3362131 DOI: 10.1155/2012/350574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/27/2012] [Accepted: 03/14/2012] [Indexed: 11/17/2022] Open
Abstract
Hand function depends on sensory feedback to direct an appropriate motor response. There is clear evidence that somatosensory cortices modulate motor behaviour and physiology within primary motor cortex. However, this information is mainly from research in animals and the bridge to human hand control is needed. Emerging evidence in humans supports the notion that somatosensory cortices modulate motor behaviour, physiology and sensory perception. Transcranial magnetic stimulation (TMS) allows for the investigation of primary and higher-order somatosensory cortices and their role in control of hand movement in humans. This review provides a summary of several TMS protocols in the investigation of hand control via the somatosensory cortices. TMS plasticity inducing protocols reviewed include paired associative stimulation, repetitive TMS, theta-burst stimulation as well as other techniques that aim to modulate cortical excitability in sensorimotor cortices. Although the discussed techniques may modulate cortical excitability, careful consideration of experimental design is needed to isolate factors that may interfere with desired results of the plasticity-inducing protocol, specifically events that may lead to metaplasticity within the targeted cortex.
Collapse
|
41
|
Cooke DF, Padberg J, Zahner T, Krubitzer L. The functional organization and cortical connections of motor cortex in squirrels. Cereb Cortex 2011; 22:1959-78. [PMID: 22021916 DOI: 10.1093/cercor/bhr228] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite extraordinary diversity in the rodent order, studies of motor cortex have been limited to only 2 species, rats and mice. Here, we examine the topographic organization of motor cortex in the Eastern gray squirrel (Sciurus carolinensis) and cortical connections of motor cortex in the California ground squirrel (Spermophilus beecheyi). We distinguish a primary motor area, M1, based on intracortical microstimulation (ICMS), myeloarchitecture, and patterns of connectivity. A sensorimotor area between M1 and the primary somatosensory area, S1, was also distinguished based on connections, functional organization, and myeloarchitecture. We term this field 3a based on similarities with area 3a in nonrodent mammals. Movements are evoked with ICMS in both M1 and 3a in a roughly somatotopic pattern. Connections of 3a and M1 are distinct and suggest the presence of a third far rostral field, termed "F," possibly involved in motor processing based on its connections. We hypothesize that 3a is homologous to the dysgranular zone (DZ) in S1 of rats and mice. Our results demonstrate that squirrels have both similar and unique features of M1 organization compared with those described in rats and mice, and that changes in 3a/DZ borders appear to have occurred in both lineages.
Collapse
Affiliation(s)
- Dylan F Cooke
- Center for Neuroscience, University of California, Davis, 95618, USA
| | | | | | | |
Collapse
|
42
|
Anomal RF, Rocha-Rego V, Franca JG. Topographic Organization and Corticocortical Connections of the Forepaw Representation in Areas S1 and SC of the Opossum: Evidence for a Possible Role of Area SC in Multimodal Processing. Front Neuroanat 2011; 5:56. [PMID: 22069381 PMCID: PMC3207326 DOI: 10.3389/fnana.2011.00056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/10/2011] [Indexed: 11/24/2022] Open
Abstract
In small-brained mammals, such as opossums, the cortex is organized in fewer sensory and motor areas than in mammals endowed with larger cortical sheets. The presence of multimodal fields, involved in the integration of sensory inputs has not been clearly characterized in those mammals. In the present study, the corticocortical connections of the forepaw representation in the somatosensory caudal (SC) area of the Didelphis aurita opossum was studied with injections of fluorescent anatomical tracers in SC. Electrophysiological mapping of S1 was used to delimit its respective rostral and caudal borders, and to guide SC injections. The areal borders of S1 and the location of area SC were further confirmed by myeloarchitecture. In S1, we found a well-delimited forepaw representation, although it presented a crude internal topographic organization. Cortical projections to S1 originate in somatosensory areas of the parietal cortex, and appeared to be mostly homotopic. Physiological and connectional evidence were provided for a topographic organization in opossum area SC as well. Most notably, corticocortical projections to the forepaw representation of SC originated from somatosensory cortical areas and from cortex representing other sensory modalities, especially the visual peristriate cortex. This suggests that SC might be involved in multimodal processing similar to the posterior parietal cortex of species with larger brains.
Collapse
Affiliation(s)
- Renata Figueiredo Anomal
- Laboratório de Neurobiologia II, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | | |
Collapse
|
43
|
Seelke AMH, Padberg JJ, Disbrow E, Purnell SM, Recanzone G, Krubitzer L. Topographic Maps within Brodmann's Area 5 of macaque monkeys. ACTA ACUST UNITED AC 2011; 22:1834-50. [PMID: 21955920 DOI: 10.1093/cercor/bhr257] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Brodmann's area 5 has traditionally included the rostral bank of the intraparietal sulcus (IPS) as well as posterior portions of the postcentral gyrus and medial wall. However, different portions of this large architectonic zone may serve different functions related to reaching and grasping behaviors. The current study used multiunit recording techniques in anesthetized macaque monkeys to survey a large extent of the rostral bank of the IPS so that hundreds of recording sites could be used to determine the functional subdivisions and topographic organization of cortical areas in this region. We identified a lateral area on the rostral IPS that we term area 5L. Area 5L contains neurons with receptive fields on mostly the shoulder, forelimb, and digits, with no apparent representation of other body parts. Thus, there is a large magnification of the forelimb. Receptive fields for neurons in this region often contain multiple joints of the forelimb or multiple digits, which results in imprecise topography or fractures in map organization. Our results provide the first overall topographic map of area 5L obtained in individual macaque monkeys and suggest that this region is distinct from more medial portions of the IPS.
Collapse
Affiliation(s)
- Adele M H Seelke
- Center for Neuroscience, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
44
|
Kajikawa Y, Falchier A, Musacchia G, Lakatos P, Schroeder C. Audiovisual Integration in Nonhuman Primates. Front Neurosci 2011. [DOI: 10.1201/9781439812174-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
45
|
Kajikawa Y, Falchier A, Musacchia G, Lakatos P, Schroeder C. Audiovisual Integration in Nonhuman Primates. Front Neurosci 2011. [DOI: 10.1201/b11092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
46
|
Kaas JH, Gharbawie OA, Stepniewska I. The organization and evolution of dorsal stream multisensory motor pathways in primates. Front Neuroanat 2011; 5:34. [PMID: 21716641 PMCID: PMC3116136 DOI: 10.3389/fnana.2011.00034] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/01/2011] [Indexed: 11/13/2022] Open
Abstract
In Prosimian primates, New World monkeys, and Old World monkeys microstimulation with half second trains of electrical pulses identifies separate zones in posterior parietal cortex (PPC) where reaching, defensive, grasping, and other complex movements can be evoked. Each functional zone receives a different pattern of visual and somatosensory inputs, and projects preferentially to functionally matched parts of motor and premotor cortex. As PPC is a relatively small portion of cortex in most mammals, including the close relatives of primates, we suggest that a larger, more significant PPC emerged with the first primates as a region where several ethologically relevant behaviors could be initiated by sensory and intrinsic signals, and mediated via connections with premotor and motor cortex. While several classes of PPC modules appear to be retained by all primates, elaboration and differentiation of these modules likely occurred in some primates, especially humans.
Collapse
Affiliation(s)
- Jon H Kaas
- Department of Psychology, Vanderbilt University Nashville, TN, USA
| | | | | |
Collapse
|
47
|
Premji A, Rai N, Nelson A. Area 5 influences excitability within the primary motor cortex in humans. PLoS One 2011; 6:e20023. [PMID: 21603571 PMCID: PMC3095637 DOI: 10.1371/journal.pone.0020023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 04/09/2011] [Indexed: 01/17/2023] Open
Abstract
In non-human primates, Brodmann's area 5 (BA 5) has direct connectivity with primary motor cortex (M1), is largely dedicated to the representation of the hand and may have evolved with the ability to perform skilled hand movement. Less is known about human BA 5 and its interaction with M1 neural circuits related to hand control. The present study examines the influence of BA 5 on excitatory and inhibitory neural circuitry within M1 bilaterally before and after continuous (cTBS), intermittent (iTBS), and sham theta-burst stimulation (sham TBS) over left hemisphere BA 5. Using single and paired-pulse TMS, measurements of motor evoked potentials (MEPs), short interval intracortical inhibition (SICI), and intracortical facilitation (ICF) were quantified for the representation of the first dorsal interosseous muscle. Results indicate that cTBS over BA 5 influences M1 excitability such that MEP amplitudes are increased bilaterally for up to one hour. ITBS over BA 5 results in an increase in MEP amplitude contralateral to stimulation with a delayed onset that persists up to one hour. SICI and ICF were unaltered following TBS over BA 5. Similarly, F-wave amplitude and latency were unaltered following cTBS over BA 5. The data suggest that BA 5 alters M1 output directed to the hand by influencing corticospinal neurons and not interneurons that mediate SICI or ICF circuitry. Targeting BA 5 via cTBS and iTBS is a novel mechanism to powerfully modulate activity within M1 and may provide an avenue for investigating hand control in healthy populations and modifying impaired hand function in clinical populations.
Collapse
Affiliation(s)
- Azra Premji
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Navjot Rai
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Aimee Nelson
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| |
Collapse
|
48
|
Campi KL, Collins CE, Todd WD, Kaas J, Krubitzer L. Comparison of area 17 cellular composition in laboratory and wild-caught rats including diurnal and nocturnal species. BRAIN, BEHAVIOR AND EVOLUTION 2011; 77:116-30. [PMID: 21525748 DOI: 10.1159/000324862] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 12/07/2010] [Indexed: 12/11/2022]
Abstract
In this study we examine the size of primary sensory areas in the neocortex and the cellular composition of area 17/V1 in three rodent groups: laboratory nocturnal Norway rats (Long-Evans; Rattus norvegicus), wild-caught nocturnal Norway rats (R. norvegicus), and laboratory diurnal Nile grass rats (Arvicanthis niloticus). Specifically, we used areal measures of myeloarchitecture of the primary sensory areas to compare area size and the isotropic fractionator method to estimate the number of neurons and nonneurons in area 17 in each species. Our results demonstrate that the percentage of cortex devoted to area 17 is significantly greater and the percentage of cortex devoted to S1 is significantly smaller in the diurnal Nile grass rat compared with the nocturnal Norway rat groups. Further, the laboratory rodent groups have a greater percentage of cortex devoted to auditory cortex compared with the wild-caught group. We also demonstrate that wild-caught rats have a greater density of neurons in area 17 compared to laboratory-reared animals. However, there were no other clear cellular composition differences in area 17 or differences in the percentage of brain weight devoted to area 17 between nocturnal and diurnal rats. Thus, there are differences in primary sensory area size between diurnal versus nocturnal and laboratory versus wild-caught rat groups and cellular density between wild-caught and laboratory rat groups. Our results demonstrate that the differences in the size and cellular composition of cortical areas do not fit with what would be expected based on brain scaling differences alone, and have a consistent relationship with lifestyle and sensory morphology.
Collapse
|
49
|
Bartolomei F, Gavaret M, Hewett R, Valton L, Aubert S, Régis J, Wendling F, Chauvel P. Neural networks underlying parietal lobe seizures: A quantified study from intracerebral recordings. Epilepsy Res 2011; 93:164-76. [DOI: 10.1016/j.eplepsyres.2010.12.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 12/07/2010] [Accepted: 12/12/2010] [Indexed: 11/24/2022]
|
50
|
Gharbawie OA, Stepniewska I, Kaas JH. Cortical connections of functional zones in posterior parietal cortex and frontal cortex motor regions in new world monkeys. Cereb Cortex 2011; 21:1981-2002. [PMID: 21263034 DOI: 10.1093/cercor/bhq260] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We examined the connections of posterior parietal cortex (PPC) with motor/premotor cortex (M1/PM) and other cortical areas. Electrical stimulation (500 ms trains) delivered to microelectrode sites evoked movements of reach, defense, and grasp, from distinct zones in M1/PM and PPC, in squirrel and owl monkeys. Tracer injections into M1/PM reach, defense, and grasp zones showed dense connections with M1/PM hand/forelimb representations. The densest inputs outside of frontal cortex were from PPC zones. M1 zones were additionally connected with somatosensory hand/forelimb representations in areas 3a, 3b, and 1 and the somatosensory areas of the upper bank of the lateral sulcus (S2/PV). Injections into PPC zones showed primarily local connections and the densest inputs outside of PPC originated from M1/PM zones. The PPC reach zone also received dense inputs from cortex caudal to PPC, which likely relayed visual information. In contrast, the PPC grasp zone was densely connected with the hand/forelimb representations of areas 3a, 3b, 1, and S2/PV. Thus, the dorsal parietal-frontal network involved in reaching was preferentially connected to visual cortex, whereas the more ventral network involved in grasping received somatosensory inputs. Additional weak interlinks between dissimilar zones (e.g., PPC reach and PPC grasp) were apparent and may coordinate actions.
Collapse
Affiliation(s)
- Omar A Gharbawie
- Department of Psychology, Vanderbilt University, 301 Wilson Hall, 111 21st Avenue South, Nashville, TN 37203, USA.
| | | | | |
Collapse
|