1
|
Zaman A, Setton R, Catmur C, Russell C. What is autonoetic consciousness? Examining what underlies subjective experience in memory and future thinking. Cognition 2024; 253:105934. [PMID: 39216189 DOI: 10.1016/j.cognition.2024.105934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Autonoetic consciousness is the awareness that an event we remember is one that we ourselves experienced. It is a defining feature of our subjective experience of remembering and imagining future events. Given its subjective nature, there is ongoing debate about how to measure it. Our goal was to develop a framework to identify cognitive markers of autonoetic consciousness. Across two studies (N = 342) we asked young, healthy participants to provide written descriptions of two autobiographical memories, two plausible future events, and an experimentally encoded video. Participants then rated their subjective experience during remembering and imagining. Exploratory Factor Analysis of this data uncovered the latent variables underlying autonoetic consciousness across these different events. In contrast to work that emphasizes the distinction between Remember and Know as being key to autonoetic consciousness, Re-experiencing, and Pre-experiencing for future events, were consistently identified as core markers of autonoetic consciousness. This was alongside Mental Time Travel in all types of memory events, but not for imagining the future. In addition, our factor analysis allows us to demonstrate directly - for the first time - the features of mental imagery associated with the sense of autonoetic consciousness in autobiographical memory; vivid, visual imagery from a first-person perspective. Finally, with regression analysis, the emergent factor structure of autonoetic consciousness was able to predict the richness of autobiographical memory texts, but not of episodic recall of the encoded video. This work provides a novel way to assess autonoetic consciousness, illustrates how autonoetic consciousness manifests differently in memory and imagination and defines the mental representations intrinsic to this process.
Collapse
Affiliation(s)
- Andreea Zaman
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.
| | - Roni Setton
- Department of Psychology, Harvard University, United States
| | - Caroline Catmur
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Charlotte Russell
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| |
Collapse
|
2
|
Lenormand D, Mentec I, Gaston-Bellegarde A, Orriols E, Piolino P. Decoding episodic autobiographical memory in naturalistic virtual reality. Sci Rep 2024; 14:25639. [PMID: 39463396 PMCID: PMC11514229 DOI: 10.1038/s41598-024-76944-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Episodic autobiographical memory (EAM) is a long-term memory system of personally experienced events with their context - what, where, when - and subjective elements, e.g., emotions, thoughts, or self-reference. EAM formation has rarely been studied in a controlled, real-life-like paradigm, and there is no predictive model of long-term retrieval from self-rated subjective experience at encoding. The present longitudinal study, with three surprise free recall memory tests immediately, one-week and one-month after encoding, investigated incidental encoding of EAM in an immersive virtual environment where 30 participants either interacted with or observed specific events of varying emotional valences with simultaneous physiological recordings. The predictive analyses highlight the temporal dynamics of the predictors of EAM from subjective ratings at encoding: common characteristics related to sense of remembering and infrequency of real-life encounter of the event were identified over time, but different variables become relevant at different time points, such as the emotion and mental imagery or prospective aspects. This dynamic and time-dependent role of memory predictors challenges traditional views of a uniform influence of encoding factors over time. Current evidence for the multiphasic nature of memory formation points to the role of different mechanisms at play during encoding but also consolidation and subsequent retrieval.
Collapse
Affiliation(s)
- Diane Lenormand
- Laboratoire Mémoire, Cerveau & Cognition, Institut de Psychologie, Université Paris Cité, Paris, LMC2 UR 7536, France.
| | - Inès Mentec
- Laboratoire Mémoire, Cerveau & Cognition, Institut de Psychologie, Université Paris Cité, Paris, LMC2 UR 7536, France
- Unité de recherche Conscience, Cognition et Computation, Faculté de Psychologie, Sciences de l'Éducation et Logopédie, Université Libre de Bruxelles, Bruxelles, Belgique
| | - Alexandre Gaston-Bellegarde
- Laboratoire Mémoire, Cerveau & Cognition, Institut de Psychologie, Université Paris Cité, Paris, LMC2 UR 7536, France
| | - Eric Orriols
- Laboratoire Mémoire, Cerveau & Cognition, Institut de Psychologie, Université Paris Cité, Paris, LMC2 UR 7536, France
| | - Pascale Piolino
- Laboratoire Mémoire, Cerveau & Cognition, Institut de Psychologie, Université Paris Cité, Paris, LMC2 UR 7536, France.
| |
Collapse
|
3
|
Viard A, Allen AP, Doyle CM, Naveau M, Bokde ALW, Platel H, Eustache F, Commins S, Roche RAP. Autobiographical Cerebral Network Activation in Older Adults Before and After Reminiscence Therapy: A Preliminary Report. Biol Res Nurs 2024; 26:257-269. [PMID: 37907265 DOI: 10.1177/10998004231210982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Reminiscence therapy (RT), which engages individuals to evoke positive memories, has been shown to be effective in improving psychological well-being in older adults suffering from PTSD, depression, and anxiety. However, its impact on brain function has yet to be determined. This paper presents functional magnetic resonance imaging (fMRI) data to describe changes in autobiographical memory networks (AMN) in community-dwelling older adults. METHODS This pilot study used a within-subject design to measure changes in AMN activation in 11 older adults who underwent 6 weeks of RT. In the scanner, participants retrieved autobiographical memories which were either recent or remote, rehearsed or unrehearsed. Participants also underwent a clinical interview to assess changes in memory, quality of life, mental health, and affect. FINDINGS Compared to pretreatment, anxiety decreased (z = -2.014, p = .040) and activated significant areas within the AMN, including bilateral medial prefrontal cortex, left precuneus, right occipital cortex, and left anterior hippocampus. CONCLUSION Although RT had subtle effects on psychological function in this sample with no evidence of impairments, including depression at baseline, the fMRI data support current thinking of the effect RT has on the AMN. Increased activation of right posterior hippocampus following RT is compatible with the Multiple Trace Theory Theory (Nadel & Moscovitch, 1997).
Collapse
Affiliation(s)
- Armelle Viard
- INSERM, U1077, EPHE, Université de Caen Normandie, PSL Research University, GIP Cyceron, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, France
| | - Andrew P Allen
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
- Department of Psychology, Maynooth University, Maynooth, Ireland
| | | | - Mikaël Naveau
- UNICAEN, CNRS, CEA, INSERM, UAR3408 CYCERON, Normandie University, Caen, France
| | - Arun L W Bokde
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Hervé Platel
- INSERM, U1077, EPHE, Université de Caen Normandie, PSL Research University, GIP Cyceron, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, France
| | - Francis Eustache
- INSERM, U1077, EPHE, Université de Caen Normandie, PSL Research University, GIP Cyceron, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, France
| | - Sean Commins
- Department of Psychology, Maynooth University, Maynooth, Ireland
| | | |
Collapse
|
4
|
Song C, Xie S, Zhang X, Han S, Lian Y, Ma K, Mao X, Zhang Y, Cheng J. Similarities and differences of dynamic and static spontaneous brain activity between left and right temporal lobe epilepsy. Brain Imaging Behav 2024; 18:352-367. [PMID: 38087148 DOI: 10.1007/s11682-023-00835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 06/07/2024]
Abstract
To comprehensively investigate the potential temporal dynamic and static abnormalities of spontaneous brain activity (SBA) in left temporal lobe epilepsy (LTLE) and right temporal lobe epilepsy (RTLE) and to detect whether these alterations correlate with cognition. Twelve SBA metrics, including ALFF, dALFF, fALFF, dfALFF, ReHo, dReHo, DC, dDC, GSCorr, dGSCorr, VMHC, and dVMHC, in 46 LTLE patients, 43 RTLE patients, and 53 healthy volunteers were compared in the voxel-wise analysis. Correlation analyses between metrics in regions showing statistic differences and epilepsy duration, epilepsy severity, and cognition scores were also performed. Compared with the healthy volunteers, the alteration of SBA was identified both in LTLE and RTLE patients. The ALFF, fALFF, and dALFF values in LTLE, as well as the fALFF values in RTLE, increased in the bilateral thalamus, basal ganglia, mesial temporal lobe, cerebellum, and vermis. Increased dfALFF in the bilateral basal ganglia, increased ReHo and dReHo in the bilateral thalamus in the LTLE group, increased ALFF and dALFF in the pons, and increased ReHo and dReHo in the right hippocampus in the RTLE group were also detected. However, the majority of deactivation clusters were in the ipsilateral lateral temporal lobe. For LTLE, the fALFF, DC, dDC, and GSCorr values in the left lateral temporal lobe and the ReHo and VMHC values in the bilateral lateral temporal lobe all decreased. For RTLE, the ALFF, fALFF, dfALFF, ReHo, dReHo, and DC values in the right lateral temporal lobe and the VMHC values in the bilateral lateral temporal lobe all decreased. Moreover, for both the LTLE and RTLE groups, the dVMHC values decreased in the calcarine cortex. The most significant difference between LTLE and RTLE was the higher activation in the cerebellum of the LTLE group. The alterations of many SBA metrics were correlated with cognition and epilepsy duration. The patterns of change in SBA abnormalities in the LTLE and RTLE patients were generally similar. The integrated application of temporal dynamic and static SBA metrics might aid in the investigation of the propagation and suppression pathways of seizure activity as well as the cognitive impairment mechanisms in TLE.
Collapse
Affiliation(s)
- Chengru Song
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, China
| | - Shanshan Xie
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, China
| | - Xiaonan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keran Ma
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, China
| | - Xinyue Mao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Lenormand D, Fauvel B, Piolino P. The formation of episodic autobiographical memory is predicted by mental imagery, self-reference, and anticipated details. Front Psychol 2024; 15:1355343. [PMID: 38476385 PMCID: PMC10930760 DOI: 10.3389/fpsyg.2024.1355343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Despite the ecological nature of episodic memory (EM) and the importance of consolidation in its functioning, studies tackling both subjects are still scarce. Therefore, the present study aims at establishing predictions of the future of newly encoded information in EM in an ecological paradigm. Methods Participants recorded two personal events per day with a SenseCam portable camera, for 10 days, and characterized the events with different subjective scales (emotional valence and intensity, self-concept and self-relevance, perspective and anticipated details at a month, mental images…). They then performed a surprise free recall at 5 days and 1 month after encoding. Machine learning algorithms were used to predict the future of events (episodic or forgotten) in memory at 1 month. Results The best algorithm showed an accuracy of 78%, suggesting that such a prediction is reliably possible. Variables that best differentiated between episodic and forgotten memories at 1 month were mental imagery, self-reference, and prospection (anticipated details) at encoding and the first free recall. Discussion These results may establish the basis for the development of episodic autobiographical memory during daily experiences.
Collapse
Affiliation(s)
- Diane Lenormand
- Laboratoire Mémoire, Cerveau & Cognition (LMC2 UR 7536), Institut de Psychologie, Université Paris Cité, Paris, France
| | | | - Pascale Piolino
- Laboratoire Mémoire, Cerveau & Cognition (LMC2 UR 7536), Institut de Psychologie, Université Paris Cité, Paris, France
| |
Collapse
|
6
|
Dimitriadis SI, Castells-Sánchez A, Roig-Coll F, Dacosta-Aguayo R, Lamonja-Vicente N, Torán-Monserrat P, García-Molina A, Monte-Rubio G, Stillman C, Perera-Lluna A, Mataró M. Intrinsic functional brain connectivity changes following aerobic exercise, computerized cognitive training, and their combination in physically inactive healthy late-middle-aged adults: the Projecte Moviment. GeroScience 2024; 46:573-596. [PMID: 37872293 PMCID: PMC10828336 DOI: 10.1007/s11357-023-00946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/13/2023] [Indexed: 10/25/2023] Open
Abstract
Lifestyle interventions have positive neuroprotective effects in aging. However, there are still open questions about how changes in resting-state functional connectivity (rsFC) contribute to cognitive improvements. The Projecte Moviment is a 12-week randomized controlled trial of a multimodal data acquisition protocol that investigated the effects of aerobic exercise (AE), computerized cognitive training (CCT), and their combination (COMB). An initial list of 109 participants was recruited from which a total of 82 participants (62% female; age = 58.38 ± 5.47) finished the intervention with a level of adherence > 80%. Only in the COMB group, we revealed an extended network of 33 connections that involved an increased and decreased rsFC within and between the aDMN/pDMN and a reduced rsFC between the bilateral supplementary motor areas and the right thalamus. No global and especially local rsFC changes due to any intervention mediated the cognitive benefits detected in the AE and COMB groups. Projecte Moviment provides evidence of the clinical relevance of lifestyle interventions and the potential benefits when combining them.
Collapse
Affiliation(s)
- Stavros I Dimitriadis
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain.
- Institut de Neurociències, University of Barcelona, Barcelona, Spain.
| | - Alba Castells-Sánchez
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Francesca Roig-Coll
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Rosalía Dacosta-Aguayo
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain
- Unitat de Suport a La Recerca Metropolitana Nord, Fundació Institut Universitari Per a La Recerca a L'Atenció Primària de Salut Jordi Gol I Gurina, Mataró, Spain
- Institut d'Investigació en Ciències de La Salut Germans Trias I Pujol (IGTP), Badalona, Spain
| | - Noemí Lamonja-Vicente
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Unitat de Suport a La Recerca Metropolitana Nord, Fundació Institut Universitari Per a La Recerca a L'Atenció Primària de Salut Jordi Gol I Gurina, Mataró, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Pere Torán-Monserrat
- Unitat de Suport a La Recerca Metropolitana Nord, Fundació Institut Universitari Per a La Recerca a L'Atenció Primària de Salut Jordi Gol I Gurina, Mataró, Spain
- Department of Medicine, Universitat de Girona, Girona, Spain
| | - Alberto García-Molina
- Institut d'Investigació en Ciències de La Salut Germans Trias I Pujol (IGTP), Badalona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Gemma Monte-Rubio
- Centre for Comparative Medicine and Bioimage (CMCiB), Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
| | - Chelsea Stillman
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexandre Perera-Lluna
- B2SLab, Departament d'Enginyeria de Sistemes, CIBER-BBN, Automàtica I Informàtica Industrial, Universitat Politècnica de Catalunya, 08028, Barcelona, Spain
- Department of Biomedical Engineering, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Maria Mataró
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain.
- Institut de Neurociències, University of Barcelona, Barcelona, Spain.
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.
| |
Collapse
|
7
|
Devitt AL, Roberts R, Metson A, Tippett LJ, Addis DR. Neural substrates of specific and general autobiographical memory retrieval in younger and older adults. Neuropsychologia 2024; 193:108754. [PMID: 38092333 DOI: 10.1016/j.neuropsychologia.2023.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/16/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Healthy aging is associated with a shift away from the retrieval of specific episodic autobiographical memories (AMs), towards more general and semanticized memories. Younger adults modulate activity in the default mode network according to the episodic specificity of AM retrieval. However, little is known about whether aging disrupts this neural modulation. In the current study we examine age-related changes in the modulation of whole-brain networks in response to three tasks falling along a gradient of episodic specificity. Younger and older adults retrieved specific (unique) AMs, general (routine) AMs, and semantic (general knowledge) memories. We found that both younger and older adults modulated default mode regions in response to varying episodic specificity. In addition, younger adults upregulated activity in several default mode regions with increasing episodic specificity, while older adults either did not modulate these regions, or downregulated activity in these regions. In contrast, older adults upregulated activity in the left temporal pole for tasks with higher episodic specificity. These brain activation patterns converge with prior findings that specific AMs are diminished in episodic richness with age, but are supplemented with conceptual and general information. Age-related reductions in the modulation of default mode regions might contribute to the shift away from episodic retrieval and towards semantic retrieval, resulting in reduced episodic specificity of personal memories.
Collapse
Affiliation(s)
- Aleea L Devitt
- School of Psychology, The University of Waikato, New Zealand.
| | - Reece Roberts
- School of Psychology, The University of Auckland, New Zealand; Centre for Brain Research, The University of Auckland, New Zealand; Brain Research New Zealand, New Zealand
| | - Abby Metson
- School of Psychology, The University of Auckland, New Zealand
| | - Lynette J Tippett
- School of Psychology, The University of Auckland, New Zealand; Centre for Brain Research, The University of Auckland, New Zealand; Brain Research New Zealand, New Zealand
| | - Donna Rose Addis
- School of Psychology, The University of Auckland, New Zealand; Rotman Research Institute, Baycrest Health Sciences, Canada; Department of Psychology, University of Toronto, Canada
| |
Collapse
|
8
|
Penaud S, Yeh D, Gaston-Bellegarde A, Piolino P. The role of bodily self-consciousness in episodic memory of naturalistic events: an immersive virtual reality study. Sci Rep 2023; 13:17013. [PMID: 37813899 PMCID: PMC10562507 DOI: 10.1038/s41598-023-43823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
Recent studies suggest that the human body plays a critical role in episodic memory. Still, the precise relationship between bodily self-consciousness (BSC) and memory formation of specific events, especially in real-life contexts, remains a topic of ongoing research. The present study investigated the relationship between BSC and episodic memory (EM) using immersive virtual reality (VR) technology. Participants were immersed in an urban environment with naturalistic events, while their visuomotor feedback was manipulated in three within-subjects conditions: Synchronous, Asynchronous, and No-body. Our results show that asynchronous visuomotor feedback and not seeing one's body, compared to synchronous feedback, decrease the sense of self-identification, self-location and agency, and sense of presence. Moreover, navigating in the Asynchronous condition had a detrimental impact on incidental event memory, perceptual details, contextual association, subjective sense of remembering, and memory consolidation. In contrast, participants in the No-Body condition were only impaired in egocentric spatial memory and the sense of remembering at ten-day delay. We discuss these findings in relation to the role of bodily self-representation in space during event memory encoding. This study sheds light on the complex interplay between BSC, sense of presence, and episodic memory processes, and strengthens the potential of embodiment and VR technology in studying and enhancing human cognition.
Collapse
Affiliation(s)
- Sylvain Penaud
- Université Paris Cité, Laboratoire Mémoire, Cerveau & Cognition (LMC2 UR 7536), Institut de Psychologie, 71 Ave Édouard Vaillant, 92100, Boulogne-Billancourt, France.
| | - Delphine Yeh
- Université Paris Cité, Laboratoire Mémoire, Cerveau & Cognition (LMC2 UR 7536), Institut de Psychologie, 71 Ave Édouard Vaillant, 92100, Boulogne-Billancourt, France
| | - Alexandre Gaston-Bellegarde
- Université Paris Cité, Laboratoire Mémoire, Cerveau & Cognition (LMC2 UR 7536), Institut de Psychologie, 71 Ave Édouard Vaillant, 92100, Boulogne-Billancourt, France
| | - Pascale Piolino
- Université Paris Cité, Laboratoire Mémoire, Cerveau & Cognition (LMC2 UR 7536), Institut de Psychologie, 71 Ave Édouard Vaillant, 92100, Boulogne-Billancourt, France.
| |
Collapse
|
9
|
Erdeniz B, Tekgün E, Lenggenhager B, Lopez C. Visual perspective, distance, and felt presence of others in dreams. Conscious Cogn 2023; 113:103547. [PMID: 37390767 DOI: 10.1016/j.concog.2023.103547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
The peripersonal space, that is, the limited space surrounding the body, involves multisensory coding and representation of the self in space. Previous studies have shown that peripersonal space representation and the visual perspective on the environment can be dramatically altered when neurotypical individuals self-identify with a distant avatar (i.e., in virtual reality) or during clinical conditions (i.e., out-of-body experience, heautoscopy, depersonalization). Despite its role in many cognitive/social functions, the perception of peripersonal space in dreams, and its relationship with the perception of other characters (interpersonal distance in dreams), remain largely uncharted. The present study aimed to explore the visuospatial properties of this space, which is likely to underlie self-location as well as self/other distinction in dreams. 530 healthy volunteers answered a web-based questionnaire to measure their dominant visuo-spatial perspective in dreams, the frequency of recall for felt distances between their dream self and other dream characters, and the dreamers' viewing angle of other dream characters. Most participants reported dream experiences from a first-person perspective (1PP) (82%) compared to a third-person perspective (3PP) (18%). Independent of their dream perspective, participants reported that they generally perceived other dream characters in their close space, that is, at distance of either between 0 and 90 cm, or 90-180 cm, than in further spaces (180-270 cm). Regardless of the perspective (1PP or 3PP), both groups also reported more frequently seeing other dream characters from eye level (0° angle of viewing) than from above (30° and 60°) or below eye level (-30° and -60°). Moreover, the intensity of sensory experiences in dreams, as measured by the Bodily Self-Consciousness in Dreams Questionnaire, was higher in individuals who habitually see other dream characters closer to their personal dream self (i.e., within 0-90 cm and 90-180 cm). These preliminary findings offer a new, phenomenological account of space representation in dreams with regards to the felt presence of others. They might provide insights not only to our understanding of how dreams are formed, but also to the type of neurocomputations involved in self/other distinction.
Collapse
Affiliation(s)
- Burak Erdeniz
- İzmir University of Economics, Department of Psychology, İzmir, Turkey
| | - Ege Tekgün
- İzmir University of Economics, Department of Psychology, İzmir, Turkey
| | | | | |
Collapse
|
10
|
Fraile E, Gagnepain P, Eustache F, Groussard M, Platel H. Musical experience prior to traumatic exposure as a resilience factor: a conceptual analysis. Front Psychol 2023; 14:1220489. [PMID: 37599747 PMCID: PMC10436084 DOI: 10.3389/fpsyg.2023.1220489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
Resilience mechanisms can be dynamically triggered throughout the lifecourse by resilience factors in order to prevent individuals from developing stress-related pathologies such as posttraumatic stress disorder (PTSD). Some interventional studies have suggested that listening to music and musical practice after experiencing a traumatic event decrease the intensity of PTSD, but surprisingly, no study to our knowledge has explored musical experience as a potential resilience factor before the potential occurrence of a traumatic event. In the present conceptual analysis, we sought to summarize what is known about the concept of resilience and how musical experience could trigger two key mechanisms altered in PTSD: emotion regulation and cognitive control. Our hypothesis is that the stimulation of these two mechanisms by musical experience during the pre-traumatic period could help protect against the symptoms of emotional dysregulation and intrusions present in PTSD. We then developed a new framework to guide future research aimed at isolating and investigating the protective role of musical experience regarding the development of PTSD in response to trauma. The clinical application of this type of research could be to develop pre-trauma training that promotes emotional regulation and cognitive control, aimed at populations at risk of developing PTSD such as healthcare workers, police officers, and military staffs.
Collapse
|
11
|
Tisserand A, Philippi N, Botzung A, Blanc F. Me, Myself and My Insula: An Oasis in the Forefront of Self-Consciousness. BIOLOGY 2023; 12:biology12040599. [PMID: 37106799 PMCID: PMC10135849 DOI: 10.3390/biology12040599] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
The insula is a multiconnected brain region that centralizes a wide range of information, from the most internal bodily states, such as interoception, to high-order processes, such as knowledge about oneself. Therefore, the insula would be a core region involved in the self networks. Over the past decades, the question of the self has been extensively explored, highlighting differences in the descriptions of the various components but also similarities in the global structure of the self. Indeed, most of the researchers consider that the self comprises a phenomenological part and a conceptual part, in the present moment or extending over time. However, the anatomical substrates of the self, and more specifically the link between the insula and the self, remain unclear. We conducted a narrative review to better understand the relationship between the insula and the self and how anatomical and functional damages to the insular cortex can impact the self in various conditions. Our work revealed that the insula is involved in the most primitive levels of the present self and could consequently impact the self extended in time, namely autobiographical memory. Across different pathologies, we propose that insular damage could engender a global collapse of the self.
Collapse
Affiliation(s)
- Alice Tisserand
- Geriatrics and Neurology Units, Research and Resources Memory Center (CMRR), Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- ICube Laboratory (CNRS, UMR 7357), 67000 Strasbourg, France
| | - Nathalie Philippi
- Geriatrics and Neurology Units, Research and Resources Memory Center (CMRR), Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- ICube Laboratory (CNRS, UMR 7357), 67000 Strasbourg, France
| | - Anne Botzung
- Geriatrics and Neurology Units, Research and Resources Memory Center (CMRR), Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Frédéric Blanc
- Geriatrics and Neurology Units, Research and Resources Memory Center (CMRR), Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- ICube Laboratory (CNRS, UMR 7357), 67000 Strasbourg, France
| |
Collapse
|
12
|
Gautier J, El Haj M. Eyes don't lie: Eye movements differ during covert and overt autobiographical recall. Cognition 2023; 235:105416. [PMID: 36821995 DOI: 10.1016/j.cognition.2023.105416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
Abstract
In everyday life, autobiographical memories are revisited silently (i.e., covert recall) or shared with others (i.e., overt recall), yet most research regarding eye movements and autobiographical recall has focused on overt recall. With that in mind, the aim of the current study was to evaluate eye movements during the retrieval of autobiographical memories (with a focus on emotion), recollected during covert and overt recall. Forty-three participants recalled personal memories out loud and silently, while wearing eye-tracking glasses, and rated these memories in terms of mental imagery and emotional intensity. Analyses showed fewer and longer fixations, fewer and shorter saccades, and fewer blinks during covert recall compared with overt recall. Participants perceived more mental images and had a more intense emotional experience during covert recall. These results are discussed considering cognitive load theories and the various functions of autobiographical recall. We theorize that fewer and longer fixations during covert recall may be due to more intense mental imagery. This study enriches the field of research on eye movements and autobiographical memory by addressing how we retrieve memories silently, a common activity of everyday life. More broadly, our results contribute to building objective tools to measure autobiographical memory, alongside already existing subjective scales.
Collapse
Affiliation(s)
- Joanna Gautier
- Nantes Université, Univ Angers, Laboratoire de Psychologie des Pays de la Loire (LPPL - EA 4638), Chemin de la Censive du Tertre, F44000 Nantes, France.
| | - Mohamad El Haj
- Nantes Université, Univ Angers, Laboratoire de Psychologie des Pays de la Loire (LPPL - EA 4638), Chemin de la Censive du Tertre, F44000 Nantes, France; CHU Nantes, Clinical Gerontology Department, Bd Jacques Monod, F44300, Nantes, France; Institut Universitaire de France, Paris, France
| |
Collapse
|
13
|
Setton R, Mwilambwe-Tshilobo L, Sheldon S, Turner GR, Spreng RN. Hippocampus and temporal pole functional connectivity is associated with age and individual differences in autobiographical memory. Proc Natl Acad Sci U S A 2022; 119:e2203039119. [PMID: 36191210 PMCID: PMC9564102 DOI: 10.1073/pnas.2203039119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Recollection of one's personal past, or autobiographical memory (AM), varies across individuals and across the life span. This manifests in the amount of episodic content recalled during AM, which may reflect differences in associated functional brain networks. We take an individual differences approach to examine resting-state functional connectivity of temporal lobe regions known to coordinate AM content retrieval with the default network (anterior and posterior hippocampus, temporal pole) and test for associations with AM. Multiecho resting-state functional magnetic resonance imaging (fMRI) and autobiographical interviews were collected for 158 younger and 105 older healthy adults. Interviews were scored for internal (episodic) and external (semantic) details. Age group differences in connectivity profiles revealed that older adults had lower connectivity within anterior hippocampus, posterior hippocampus, and temporal pole but greater connectivity with regions across the default network compared with younger adults. This pattern was positively related to posterior hippocampal volumes in older adults, which were smaller than younger adult volumes. Connectivity associations with AM showed two significant patterns. The first dissociated connectivity related to internal vs. external AM across participants. Internal AM was related to anterior hippocampus and temporal pole connectivity with orbitofrontal cortex and connectivity within posterior hippocampus. External AM was related to temporal pole connectivity with regions across the lateral temporal cortex. In the second pattern, younger adults displayed temporal pole connectivity with regions throughout the default network associated with more detailed AMs overall. Our findings provide evidence for discrete ensembles of brain regions that scale with systematic variation in recollective styles across the healthy adult life span.
Collapse
Affiliation(s)
- Roni Setton
- Department of Psychology, Harvard University, Cambridge, MA, 02138
| | - Laetitia Mwilambwe-Tshilobo
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, QC, H3A 1G1, Canada
| | - Gary R. Turner
- Department of Psychology, York University, Toronto, ON, M3J 1P3, Canada
| | - R. Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Psychology, McGill University, Montreal, QC, H3A 1G1, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
- Douglas Mental Health University Institute, Verdun, QC, H4H 1R3, Canada
| |
Collapse
|
14
|
Asakage S, Nakano T. The salience network is activated during self-recognition from both first-person and third-person perspectives. Hum Brain Mapp 2022; 44:559-570. [PMID: 36129447 PMCID: PMC9842878 DOI: 10.1002/hbm.26084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023] Open
Abstract
We usually observe ourselves from two perspectives. One is the first-person perspective, which we perceive directly with our own eyes, and the other is the third-person perspective, which we observe ourselves in a mirror or a picture. However, whether the self-recognition associated with these two perspectives has a common or separate neural basis remains unclear. To address this, we used functional magnetic resonance imaging to examine brain activity while participants viewed pretaped video clips of themselves and others engaged in meal preparation taken from first-person and third-person perspectives. We found that the first-person behavioral videos of the participants and others induced greater activation in the premotor-intraparietal region. In contrast, the third-person behavioral videos induced greater activation in the default mode network compared with the first-person videos. Regardless of the perspective, the videos of the participants induced greater activation in the salience network than the videos of others. On the other hand, the videos of others induced greater activation in the precuneus and lingual gyrus than the videos of the participants. These results suggest that the salience network is commonly involved in self-recognition from both perspectives, even though the brain regions involved in action observation for the two perspectives are distinct.
Collapse
Affiliation(s)
- Shoko Asakage
- Graduate School of Frontiers BioscienceOsaka UniversityOsakaJapan
| | - Tamami Nakano
- Graduate School of Frontiers BioscienceOsaka UniversityOsakaJapan,Graduate School of MedicineOsaka UniversityOsakaJapan,Center for Information and Neural Networks (CiNet)OsakaJapan
| |
Collapse
|
15
|
Song C, Zhang X, Han S, Ma K, Wang K, Mao X, Lian Y, Zhang X, Zhu J, Zhang Y, Cheng J. More than just statics: Static and temporal dynamic changes in intrinsic brain activity in unilateral temporal lobe epilepsy. Front Hum Neurosci 2022; 16:971062. [PMID: 36118964 PMCID: PMC9471141 DOI: 10.3389/fnhum.2022.971062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background Temporal lobe epilepsy (TLE) is the most prevalent refractory focal epilepsy and is more likely accompanied by cognitive impairment. The fully understanding of the neuronal activity underlying TLE is of great significance. Objective This study aimed to comprehensively explore the potential brain activity abnormalities affected by TLE and detect whether the changes were associated with cognition. Methods Six static intrinsic brain activity (IBA) indicators [amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo), degree centrality (DC), global signal correlation (GSCorr), and voxel-mirrored homotopic connectivity (VMHC)] and their corresponding dynamic indicators, such as dynamic ALFF (dALFF), dynamic fALFF (dfALFF), dynamic ReHo (dReHo), dynamic DC (dDC), dynamic VMHC (dVMHC), and dynamic GSCorr (dGSCorr), in 57 patients with unilateral TLE and 42 healthy volunteers were compared. Correlation analyses were also performed between these indicators in areas displaying group differences and cognitive function, epilepsy duration, and severity. Results Marked overlap was present among the abnormal brain regions detected using various static and dynamic indicators, primarily including increased ALFF/dALFF/fALFF in the bilateral medial temporal lobe and thalamus, decreased ALFF/dALFF/fALFF in the frontal lobe contralateral to the epileptogenic side, decreased fALFF, ReHo, dReHo, DC, dDC, GSCorr, dGSCorr, and VMHC in the temporal neocortex ipsilateral to the epileptogenic foci, decreased dReHo, dDC, dGSCorr, and dVMHC in the occipital lobe, and increased ALFF, fALFF, dfALFF, ReHo, and DC in the supplementary motor area ipsilateral to the epileptogenic foci. Furthermore, most IBA indicators in the abnormal brain region significantly correlated with the duration of epilepsy and several cognitive scale scores (P < 0.05). Conclusion The combined application of static and dynamic IBA indicators could comprehensively reveal more real abnormal neuronal activity and the impairment and compensatory mechanisms of cognitive function in TLE. Moreover, it might help in the lateralization of epileptogenic foci and exploration of the transmission and inhibition pathways of epileptic activity.
Collapse
Affiliation(s)
- Chengru Song
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Xiaonan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Keran Ma
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Kefan Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Xinyue Mao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Jinxia Zhu
- MR Collaboration, Siemens Healthcare Ltd., Beijing, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| |
Collapse
|
16
|
Chrysanthidis N, Fiebig F, Lansner A, Herman P. Traces of semantization - from episodic to semantic memory in a spiking cortical network model. eNeuro 2022; 9:ENEURO.0062-22.2022. [PMID: 35803714 PMCID: PMC9347313 DOI: 10.1523/eneuro.0062-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/05/2022] [Accepted: 05/28/2022] [Indexed: 11/21/2022] Open
Abstract
Episodic memory is a recollection of past personal experiences associated with particular times and places. This kind of memory is commonly subject to loss of contextual information or" semantization", which gradually decouples the encoded memory items from their associated contexts while transforming them into semantic or gist-like representations. Novel extensions to the classical Remember/Know behavioral paradigm attribute the loss of episodicity to multiple exposures of an item in different contexts. Despite recent advancements explaining semantization at a behavioral level, the underlying neural mechanisms remain poorly understood. In this study, we suggest and evaluate a novel hypothesis proposing that Bayesian-Hebbian synaptic plasticity mechanisms might cause semantization of episodic memory. We implement a cortical spiking neural network model with a Bayesian-Hebbian learning rule called Bayesian Confidence Propagation Neural Network (BCPNN), which captures the semantization phenomenon and offers a mechanistic explanation for it. Encoding items across multiple contexts leads to item-context decoupling akin to semantization. We compare BCPNN plasticity with the more commonly used spike-timing dependent plasticity (STDP) learning rule in the same episodic memory task. Unlike BCPNN, STDP does not explain the decontextualization process. We further examine how selective plasticity modulation of isolated salient events may enhance preferential retention and resistance to semantization. Our model reproduces important features of episodicity on behavioral timescales under various biological constraints whilst also offering a novel neural and synaptic explanation for semantization, thereby casting new light on the interplay between episodic and semantic memory processes.Significance StatementRemembering single episodes is a fundamental attribute of cognition. Difficulties recollecting contextual information is a key sign of episodic memory loss or semantization. Behavioral studies demonstrate that semantization of episodic memory can occur rapidly, yet the neural mechanisms underlying this effect are insufficiently investigated. In line with recent behavioral findings, we show that multiple stimulus exposures in different contexts may advance item-context decoupling. We suggest a Bayesian-Hebbian synaptic plasticity hypothesis of memory semantization and further show that a transient modulation of plasticity during salient events may disrupt the decontextualization process by strengthening memory traces, and thus, enhancing preferential retention. The proposed cortical network-of-networks model thus bridges micro and mesoscale synaptic effects with network dynamics and behavior.
Collapse
Affiliation(s)
- Nikolaos Chrysanthidis
- Division of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Florian Fiebig
- Division of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Anders Lansner
- Division of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
- Department of Mathematics, Stockholm University, 10691 Stockholm, Sweden
| | - Pawel Herman
- Division of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
- Digital Futures, Stockholm, Sweden
- Swedish e-Science Research Centre, Stockholm, Sweden
| |
Collapse
|
17
|
Fenerci C, Gurguryan L, Spreng RN, Sheldon S. Comparing neural activity during autobiographical memory retrieval between younger and older adults: An ALE meta-analysis. Neurobiol Aging 2022; 119:8-21. [DOI: 10.1016/j.neurobiolaging.2022.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022]
|
18
|
Colás-Blanco I, Mioche J, La Corte V, Piolino P. The role of temporal distance of the events on the spatiotemporal dynamics of mental time travel to one's personal past and future. Sci Rep 2022; 12:2378. [PMID: 35149740 PMCID: PMC8837801 DOI: 10.1038/s41598-022-05902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/17/2022] [Indexed: 11/09/2022] Open
Abstract
Mental time travel to personal past and future events shows remarkable cognitive and neural similarities. Both temporalities seem to rely on the same core network involving episodic binding and monitoring processes. However, it is still unclear in what way the temporal distance of the simulated events modulates the recruitment of this network when mental time-travelling to the past and the future. The present study explored the electrophysiological correlates of remembering and imagining personal events at two temporal distances from the present moment (near and far). Temporal distance modulated the late parietal component (LPC) and the late frontal effect (LFE), respectively involved in episodic and monitoring processes. Interestingly, temporal distance modulations differed in the past and future event simulation, suggesting greater episodic processing for near as opposed to far future situations (with no differences on near and far past), and the implementation of greater post-simulation monitoring processes for near past as compared to far past events (with high demands on both near and far future). These findings show that both past and future event simulations are affected by the temporal distance of the events, although not exactly in a mirrored way. They are discussed according to the increasing role of semantic memory in episodic mental time travel to farther temporal distances from the present.
Collapse
Affiliation(s)
- I Colás-Blanco
- Laboratoire Mémoire, Cerveau et Cognition (MC2Lab), UR 7536, Université de Paris, 71 Avenue Edouard Vaillant, Boulogne-Billancourt, Île de France, France.
| | - J Mioche
- Laboratoire Mémoire, Cerveau et Cognition (MC2Lab), UR 7536, Université de Paris, 71 Avenue Edouard Vaillant, Boulogne-Billancourt, Île de France, France
| | - V La Corte
- Laboratoire Mémoire, Cerveau et Cognition (MC2Lab), UR 7536, Université de Paris, 71 Avenue Edouard Vaillant, Boulogne-Billancourt, Île de France, France.,Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - P Piolino
- Laboratoire Mémoire, Cerveau et Cognition (MC2Lab), UR 7536, Université de Paris, 71 Avenue Edouard Vaillant, Boulogne-Billancourt, Île de France, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
19
|
Wang X, Li P, Zheng L, Liu Z, Cui G, Li L, Zhang L, Hu Q, Guo Y, Wan L, Li C, Chen Y, Sun Z, Cui H, Meng X, Si Y. The passive recipient: Neural correlates of negative self-view in depression. Brain Behav 2022; 12:e2477. [PMID: 34970857 PMCID: PMC8865143 DOI: 10.1002/brb3.2477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
INTRODCTION Previous studies have argued that people tend to isolate themselves from negative information. This tendency is modulated by the individual's role in social interaction, that is, as an initiative actor (e.g., "I hit Tom") or a passive recipient (e.g., "Paul hits me"). Depressed patients tend to focus on negative aspects of themselves and cope with situations passively. It is still an open question how the actor/recipient role affects the behavioral and neural responses to self in depression. METHODS The present study adopted functional magnetic resonance imaging (fMRI) technology to investigate behavioral and neural responses to self (as an actor/recipient) in depressed patients and the matched healthy controls when attributing negative events. RESULTS Compared with healthy controls, depressed patients showed more self-attribution for negative events. Depressed patients showed increased brain activity in the dorsal medial prefrontal cortex (dmPFC) subsystem of the default mode network (DMN) when they played recipient role in self-related negative events. Activity of the dmPFC subsystem was negatively correlated with depressed patients' self-attribution for negative events in recipient condition. While decreased brain activity in the medial temporal lobe (MTL) subsystem was observed in depressed patients when they played the actor or recipient role in self-related negative events. Activity of the MTL subsystem was negatively correlated with depressed patients' reaction time when they played recipient role in selfrelated negative events. CONCLUSION These results implicated that depressed patients manifested the negative self-view. Actor/recipient role affected their activation patterns in the DMN which were different from the healthy controls. The correlation between the abnormal brain activations of the DMN and the behavioral performances might manifest more easily when depressed patients played recipient role in negative events.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Psychology, Sichuan Normal University, Chengdu, China.,School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.,National Demonstration Center for Experimental Psychology Education, East China Normal University, Shanghai, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Li Zheng
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.,National Demonstration Center for Experimental Psychology Education, East China Normal University, Shanghai, China
| | - Zhiyuan Liu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Guangcheng Cui
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Lin Li
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.,National Demonstration Center for Experimental Psychology Education, East China Normal University, Shanghai, China
| | - Liangtang Zhang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Qiang Hu
- Department of Clinical Psychology, Qiqihar Mental Health Center, Qiqihar, China
| | - Yu Guo
- Department of Clinical Psychology, Qiqihar Mental Health Center, Qiqihar, China
| | - Lu Wan
- Department of Clinical Psychology, Qiqihar Mental Health Center, Qiqihar, China
| | - Chengchong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Yunhui Chen
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Zhenghai Sun
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Hongsheng Cui
- Department of Radiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xin Meng
- Department of Radiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Yu Si
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
20
|
Toward new memory sciences: The Programme 13-Novembre. PROGRESS IN BRAIN RESEARCH 2022; 274:177-201. [DOI: 10.1016/bs.pbr.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Pan N, Zheng K, Zhao Y, Zhang D, Dong C, Xu J, Li X, Zheng Y. Morphometry Difference of the Hippocampal Formation Between Blind and Sighted Individuals. Front Neurosci 2021; 15:715749. [PMID: 34803579 PMCID: PMC8601390 DOI: 10.3389/fnins.2021.715749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022] Open
Abstract
The detailed morphometry alterations of the human hippocampal formation (HF) for blind individuals are still understudied. 50 subjects were recruited from Yantai Affiliated Hospital of Binzhou Medical University, including 16 congenital blindness, 14 late blindness, and 20 sighted controls. Volume and shape analysis were conducted between the blind (congenital or late) and sighted groups to observe the (sub)regional alterations of the HF. No significant difference of the hippocampal volume was observed between the blind and sighted subjects. Rightward asymmetry of the hippocampal volume was found for both congenital and late blind individuals, while no significant hemispheric difference was observed for the sighted controls. Shape analysis showed that the superior and inferior parts of both the hippocampal head and tail expanded, while the medial and lateral parts constrained for the blind individuals as compared to the sighted controls. The morphometry alterations for the congenital blind and late blind individuals are nearly the same. Significant expansion of the superior part of the hippocampal tail for both congenital and late blind groups were observed for the left hippocampi after FDR correction. Current results suggest that the cross-model plastic may occur in both hemispheres of the HF to improve the navigation ability without the stimuli of visual cues, and the alteration is more prominent for the left hemisphere.
Collapse
Affiliation(s)
- Ningning Pan
- School of Information Science and Engineering, Shandong Normal University, Jinan, China.,Master of Public Administration Education Center, Xinjiang Agricultural University, Xinjiang, China
| | - Ke Zheng
- College of Intelligence and Computing, Tianjin Key Lab of Cognitive Computing and Application, Tianjin University, Tianjin, China
| | - Yanna Zhao
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Dan Zhang
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Changxu Dong
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Junhai Xu
- College of Intelligence and Computing, Tianjin Key Lab of Cognitive Computing and Application, Tianjin University, Tianjin, China
| | - Xianglin Li
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| |
Collapse
|
22
|
Falcon C, Navarro-Plaza MC, Gramunt N, Arenaza-Urquijo EM, Grau-Rivera O, Cacciaglia R, González-de-Echavarria JM, Sánchez-Benavides G, Operto G, Knezevic I, Molinuevo JL, Gispert JD. Soundtrack of life: An fMRI study. Behav Brain Res 2021; 418:113634. [PMID: 34710508 DOI: 10.1016/j.bbr.2021.113634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022]
Abstract
Most people have a soundtrack of life, a set of special musical pieces closely linked to certain biographical experiences. Autobiographical memories (AM) and music listening (ML) involve complex mental processes ruled by differentiate brain networks. The aim of the paper was to determine the way both networks interact in linked occurrences. We performed an fMRI experiment on 31 healthy participants (age: 32.4 ± 7.6, 11 men, 4 left-handers). Participants had to recall AMs prompted by music they reported to be associated with personal biographical events (LMM: linked AM-ML events). In the main control task, participants were prompted to recall emotional AMs while listening known tracks from a pool of popular music (UMM: unlinked AM-ML events). We wanted to investigate to what extent LMM network exceeded the overlap of AM and ML networks by contrasting the activation obtained in LMM versus UMM. The contrast LMM>UMM showed the areas (at P < 0.05 FWE corrected at voxel level and cluster size>20): right frontal inferior operculum, frontal middle gyrus, pars triangularis of inferior frontal gyrus, occipital superior gyrus and bilateral basal ganglia (caudate, putamen and pallidum), occipital (middle and inferior), parietal (inferior and superior), precentral and cerebellum (6, 7 L, 8 and vermis 6 and 7). Complementary results were obtained from additional control tasks. Provided part of tLMM>UMM areas might not be related to ML-AM linkage, we assessed LMM brain network by an independent component analysis (ICA) on contrast images. Results from ICA suggest the existence of a cortico-ponto-cerebellar network including left precuneus, bilateral anterior cingulum, parahippocampal gyri, frontal inferior operculum, ventral anterior part of the insula, frontal medial orbital gyri, caudate nuclei, cerebellum 6 and vermis, which might rule the ML-induced retrieval of AM in closely linked AM-ML events. This topography may suggest that the pathway by which ML is linked to AM is attentional and directly related to perceptual processing, involving salience network, instead of the natural way of remembering typically associated with default mode network.
Collapse
Affiliation(s)
- Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona.
| | | | | | - Eider M Arenaza-Urquijo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain; Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - José María González-de-Echavarria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Iva Knezevic
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| |
Collapse
|
23
|
Evidence supporting a time-limited hippocampal role in retrieving autobiographical memories. Proc Natl Acad Sci U S A 2021; 118:2023069118. [PMID: 33723070 PMCID: PMC8000197 DOI: 10.1073/pnas.2023069118] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The hippocampus is central to healthy memory function, yet its necessity for remembering events from the distant past remains unclear. Prominent hypotheses alternatively suggest a time-limited or an indefinite role. fMRI evidence, typically based on silent in-scanner recall, has been equivocal, possibly because it provides sparse information of the content being remembered. Here, we asked fMRI participants to verbally describe recent and remote memories. After accounting for neural activity associated with the moment-to-moment memory content of recalled memories, we observed a temporally graded pattern of activity within the posterior hippocampus and found that recent—but not remote—event recall significantly activated the hippocampus relative to a non-autobiographical control task. Our findings support a time-limited hippocampal role in autobiographical memory. The necessity of the human hippocampus for remote autobiographical recall remains fiercely debated. The standard model of consolidation predicts a time-limited role for the hippocampus, but the competing multiple trace/trace transformation theories posit indefinite involvement. Lesion evidence remains inconclusive, and the inferences one can draw from functional MRI (fMRI) have been limited by reliance on covert (silent) recall, which obscures dynamic, moment-to-moment content of retrieved memories. Here, we capitalized on advances in fMRI denoising to employ overtly spoken recall. Forty participants retrieved recent and remote memories, describing each for approximately 2 min. Details associated with each memory were identified and modeled in the fMRI time-series data using a variant of the Autobiographical Interview procedure, and activity associated with the recall of recent and remote memories was then compared. Posterior hippocampal regions exhibited temporally graded activity patterns (recent events > remote events), as did several regions of frontal and parietal cortex. Consistent with predictions of the standard model, recall-related hippocampal activity differed from a non-autobiographical control task only for recent, and not remote, events. Task-based connectivity between posterior hippocampal regions and others associated with mental scene construction also exhibited a temporal gradient, with greater connectivity accompanying the recall of recent events. These findings support predictions of the standard model of consolidation and demonstrate the potential benefits of overt recall in neuroimaging experiments.
Collapse
|
24
|
Norman Y, Raccah O, Liu S, Parvizi J, Malach R. Hippocampal ripples and their coordinated dialogue with the default mode network during recent and remote recollection. Neuron 2021; 109:2767-2780.e5. [PMID: 34297916 DOI: 10.1016/j.neuron.2021.06.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/13/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
Hippocampal ripples are prominent synchronization events generated by hippocampal neuronal assemblies. To date, ripples have been primarily associated with navigational memory in rodents and short-term episodic recollections in humans. Here, we uncover different profiles of ripple activity in the human hippocampus during the retrieval of recent and remote autobiographical events and semantic facts. We found that the ripple rate increased significantly before reported recall compared to control conditions. Patterns of ripple activity across multiple hippocampal sites demonstrated remarkable specificity for memory type. Intriguingly, these ripple patterns revealed a semantization dimension, in which patterns associated with autobiographical contents become similar to those of semantic memory as a function of memory age. Finally, widely distributed sites across the neocortex exhibited ripple-coupled activations during recollection, with the strongest activation found within the default mode network. Our results thus reveal a key role for hippocampal ripples in orchestrating hippocampal-cortical communication across large-scale networks involved in conscious recollection.
Collapse
Affiliation(s)
- Yitzhak Norman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Omri Raccah
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Su Liu
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Josef Parvizi
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Rafael Malach
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
25
|
Glachet O, El Haj M. Odor is more effective than a visual cue or a verbal cue for the recovery of autobiographical memories in AD. J Clin Exp Neuropsychol 2021; 43:129-143. [PMID: 33685342 DOI: 10.1080/13803395.2021.1882392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Alzheimer's disease (AD) is associated with an impairment of autobiographical memories, leading to the production of nonspecific memories. Recent research has demonstrated that odor can serve as a powerful cue for the retrieval of autobiographical memories in AD. Moreover, studies conducted in young adults have showed that odor-evoked autobiographical memories are evoked with more details compared with memories triggered by other sensory modalities. Building on the latter research, we compared specificity, subjective experience, emotional characteristics and retrieval time of autobiographical memories evoked by odor cue, visual cue and verbal cue. To this end, we invited participants with mild AD and control participants to retrieve autobiographical memories after the presentation of an odor, a visual representation of the odorant, or a verbal label of the odorant. Results showed more specificity, higher arousal and more positive memories after odor exposure compared to the visual cue and verbal cue in AD and control participants. In AD participants, autobiographical were retrieved faster after odor-exposure compared to memories evoked by a visual cue and a verbal cue, suggesting the automatic nature of odor-evoked autobiographical memories. Overall, these findings demonstrate that odor is more effective than visual or verbal cues for autobiographical retrieval in AD.
Collapse
Affiliation(s)
- Ophélie Glachet
- Univ. Lille, CNRS, CHU Lille, SCALab - Sciences Cognitives Et Sciences Affectives, Lille, France.,Institut Universitaire de France, Paris, France
| | - Mohamad El Haj
- Institut Universitaire de France, Paris, France.,Unité De Gériatrie, Centre Hospitalier De Tourcoing, Tourcoing, France.,Nantes Université, Univ Angers, Laboratoire De Psychologie Des Pays De La Loire, Nantes, France
| |
Collapse
|
26
|
Nawa NE, Ando H. Effective connectivity during autobiographical memory search. Brain Behav 2020; 10:e01719. [PMID: 32538553 PMCID: PMC7428471 DOI: 10.1002/brb3.1719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/07/2020] [Accepted: 05/08/2020] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION We used dynamic causal modeling (DCM) to examine effective connectivity during cued autobiographical memory (AM) search in a left-hemispheric network consisting of six major regions within the large network of brain regions recruited during memory retrieval processes. METHODS Functional MRI data were acquired while participants were shown verbal cues describing common life events and requested to search for a personal memory associated with the cue. We examined directed couplings between the ventromedial (vmPFC), dorsomedial (dmPFC), and dorsolateral prefrontal cortices (dlPFC), hippocampus, angular gyrus, and the posterior midline cortex (RSC/PCC/Prec). RESULTS During AM search, the vmPFC, dlPFC, and RSC/PCC/Prec acted as primary drivers of activity in the rest of the network. Moreover, when AM search completed successfully (Hits), the effective connectivity of the hippocampus on the vmPFC and angular gyrus was up-modulated. Likewise, there was an increase in the influence of the RSC/PCC/Prec in the activity of the dlPFC and dmPFC. Further analysis indicated that the modulation observed during Hits is primarily a distributed phenomenon that relies on the interplay between different brain regions. CONCLUSION These results suggest that prefrontal and posterior midline cortical regions together with the dlPFC largely coordinate the processes underlying AM search, setting up the conditions on which the angular gyrus and the hippocampus may act upon when the outcome of the search is successful.
Collapse
Affiliation(s)
- Norberto Eiji Nawa
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan.,Graduate School of Frontiers Biosciences, Osaka University, Osaka, Japan
| | - Hiroshi Ando
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan.,Graduate School of Frontiers Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
27
|
Park JH, Lee SA. Does Episodic Memory Training Improve Episodic Memory of Older Adults with Alzheimer's Disease? BRAIN & NEUROREHABILITATION 2020; 13:e15. [PMID: 36744190 PMCID: PMC9879459 DOI: 10.12786/bn.2020.13.e15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 03/05/2020] [Accepted: 03/26/2020] [Indexed: 11/08/2022] Open
Abstract
To date, it is unclear whether cognitive intervention on episodic memory (EM) is effective in improving all or a subset of EM components in Alzheimer's disease (AD). Therefore, this study investigated effects of EM training on the elderly aged over 65 with AD. For this study, 13 AD patients and 16 healthy older adults were recruited. The pre- and post-test for components of EM was a memory task designed to test memory for object identity ("what"), spatial location ("where"), and temporal order ("when"). Training in the AD group consisted of 16 sessions of practice remembering temporal sequences of different objects being hidden in various locations. At pre-test, accuracy on the "where" and "when" conditions were impaired in the AD patients compared with the healthy elderly (p < 0.01). At post-test, accuracy on the "where" condition was significantly improved (p < 0.05) whereas, there were no significant improvements on the "what" and "when" conditions (p > 0.05). Interestingly, there were no significant improvements in standard neuropsychological measures. These findings suggest that AD, in its early stages, selectively impaired spatial and temporal memory rather than object memory. Additionally, it was observed that EM training in AD had different effects depending on the components of EM.
Collapse
Affiliation(s)
- Jin-Hyuck Park
- Department of Occupational Therapy, Soonchunhyang University, Asan, Korea
| | - Sang Ah Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
28
|
Miller TD, Chong TTJ, Aimola Davies AM, Johnson MR, Irani SR, Husain M, Ng TWC, Jacob S, Maddison P, Kennard C, Gowland PA, Rosenthal CR. Human hippocampal CA3 damage disrupts both recent and remote episodic memories. eLife 2020; 9:e41836. [PMID: 31976861 PMCID: PMC6980860 DOI: 10.7554/elife.41836] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/05/2019] [Indexed: 12/31/2022] Open
Abstract
Neocortical-hippocampal interactions support new episodic (event) memories, but there is conflicting evidence about the dependence of remote episodic memories on the hippocampus. In line with systems consolidation and computational theories of episodic memory, evidence from model organisms suggests that the cornu ammonis 3 (CA3) hippocampal subfield supports recent, but not remote, episodic retrieval. In this study, we demonstrated that recent and remote memories were susceptible to a loss of episodic detail in human participants with focal bilateral damage to CA3. Graph theoretic analyses of 7.0-Tesla resting-state fMRI data revealed that CA3 damage disrupted functional integration across the medial temporal lobe (MTL) subsystem of the default network. The loss of functional integration in MTL subsystem regions was predictive of autobiographical episodic retrieval performance. We conclude that human CA3 is necessary for the retrieval of episodic memories long after their initial acquisition and functional integration of the default network is important for autobiographical episodic memory performance.
Collapse
Affiliation(s)
- Thomas D Miller
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
- Department of NeurologyRoyal Free HospitalLondonUnited Kingdom
| | - Trevor T-J Chong
- Monash Institute of Cognitive and Clinical NeurosciencesMonash UniversityClaytonAustralia
| | - Anne M Aimola Davies
- Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
- Research School of PsychologyAustralian National UniversityCanberraAustralia
| | - Michael R Johnson
- Division of Brain SciencesImperial College LondonLondonUnited Kingdom
| | - Sarosh R Irani
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Masud Husain
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
- Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
| | - Tammy WC Ng
- Department of AnaesthesticsRoyal Free HospitalLondonUnited Kingdom
| | - Saiju Jacob
- Neurology Department, Queen Elizabeth Neuroscience CentreUniversity Hospitals of BirminghamBirminghamUnited Kingdom
| | - Paul Maddison
- Neurology DepartmentQueen’s Medical CentreNottinghamUnited Kingdom
| | - Christopher Kennard
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Penny A Gowland
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUnited Kingdom
| | - Clive R Rosenthal
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
29
|
Du X, Zhan L, Chen G, Guo D, Li C, Moscovitch M, Yang J. Differential activation of the medial temporal lobe during item and associative memory across time. Neuropsychologia 2019; 135:107252. [PMID: 31698009 DOI: 10.1016/j.neuropsychologia.2019.107252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/26/2019] [Accepted: 11/01/2019] [Indexed: 11/26/2022]
Abstract
Studies have shown that the hippocampus plays a crucial role in associative memory. One central issue is whether the involvement of the hippocampus in associative memory remains stable or declines with the passage of time. In the majority of studies, memory performance declines with delay, confounding attempts at interpreting differences in hippocampal activation over time. To address this issue, we tried to equate behavioral performance as much as possible across time for memory of items and associations separately. After encoding words and word pairs, participants were tested for item and associative memories at four time intervals: 20-min, 1-day, 1-week, and 1-month. The results revealed that MTL activation differed over time for associative and item memories. For associative memory, the activation of the anterior hippocampus decreased from 20-min to 1-day then remained stable, whereas in the posterior hippocampus, the activation was comparable for different time intervals when old pairs were correctly retrieved. The hippocampal activation also remained stable when recombined pairs were correctly rejected. As this condition controls for familiarity of the individual items, correct performance depends only on associative memory. For item memory, hippocampal activation declined progressively from 20-min to 1-week and remained stable afterwards. By contrast, the activation in the perirhinal/entorhinal cortex increased over time irrespective of item and associative memories. Drawing on Tulving's distinction between recollection and familiarity, we interpret this pattern of results in accordance with Trace Transformation Theory, which states that as memories are transformed with time and experience, the neural structures mediating item and associative memories will vary according to the underlying representations to which the memories have been transformed.
Collapse
Affiliation(s)
- Xiaoya Du
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, PR China
| | - Lexia Zhan
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, PR China
| | - Gang Chen
- Scientific and Statistical Computing Core, NIMH/NIH, Bethesda, MD, USA
| | - Dingrong Guo
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, PR China
| | - Cuihong Li
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, PR China
| | - Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, Canada; Rotman Research Institute, Baycrest Centre, Toronto, Canada.
| | - Jiongjiong Yang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, PR China.
| |
Collapse
|
30
|
van Schie CC, Chiu CD, Rombouts SARB, Heiser WJ, Elzinga BM. When I relive a positive me: Vivid autobiographical memories facilitate autonoetic brain activation and enhance mood. Hum Brain Mapp 2019; 40:4859-4871. [PMID: 31348599 PMCID: PMC6852129 DOI: 10.1002/hbm.24742] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/21/2019] [Accepted: 07/16/2019] [Indexed: 01/30/2023] Open
Abstract
Autobiographical memory is vital for our well‐being and therefore used in therapeutic interventions. However, not much is known about the (neural) processes by which reliving memories can have beneficial effects. This study investigates what brain activation patterns and memory characteristics facilitate the effectiveness of reliving positive autobiographical memories for mood and sense of self. Particularly, the role of vividness and autonoetic consciousness is studied. Participants (N = 47) with a wide range of trait self‐esteem relived neutral and positive memories while their bold responses, experienced vividness of the memory, mood, and state self‐esteem were recorded. More vivid memories related to better mood and activation in amygdala, hippocampus and insula, indicative of increased awareness of oneself (i.e., prereflective aspect of autonoetic consciousness). Lower vividness was associated with increased activation in the occipital lobe, PCC, and precuneus, indicative of a more distant mode of reliving. While individuals with lower trait self‐esteem increased in state self‐esteem, they showed less deactivation of the lateral occipital cortex during positive memories. In sum, the vividness of the memory seemingly distinguished a more immersed and more distant manner of memory reliving. In particular, when reliving positive memories higher vividness facilitated increased prereflective autonoetic consciousness, which likely is instrumental in boosting mood.
Collapse
Affiliation(s)
- Charlotte C van Schie
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden, The Netherlands.,Illawarra health and medical research institute and school of psychology, University of Wollongong, Wollongong, Australia
| | - Chui-De Chiu
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Serge A R B Rombouts
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden, The Netherlands.,Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Willem J Heiser
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Bernet M Elzinga
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
31
|
Yonelinas AP, Ranganath C, Ekstrom AD, Wiltgen BJ. A contextual binding theory of episodic memory: systems consolidation reconsidered. Nat Rev Neurosci 2019; 20:364-375. [PMID: 30872808 PMCID: PMC7233541 DOI: 10.1038/s41583-019-0150-4] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Episodic memory reflects the ability to recollect the temporal and spatial context of past experiences. Episodic memories depend on the hippocampus but have been proposed to undergo rapid forgetting unless consolidated during offline periods such as sleep to neocortical areas for long-term storage. Here, we propose an alternative to this standard systems consolidation theory (SSCT) - a contextual binding account - in which the hippocampus binds item-related and context-related information. We compare these accounts in light of behavioural, lesion, neuroimaging and sleep studies of episodic memory and contend that forgetting is largely due to contextual interference, episodic memory remains dependent on the hippocampus across time, contextual drift produces post-encoding activity and sleep benefits memory by reducing contextual interference.
Collapse
Affiliation(s)
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, CA, USA
| | - Arne D Ekstrom
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Brian J Wiltgen
- Center for Neuroscience, University of California, Davis, CA, USA
| |
Collapse
|
32
|
Gurguryan L, Sheldon S. Retrieval orientation alters neural activity during autobiographical memory recollection. Neuroimage 2019; 199:534-544. [PMID: 31152842 DOI: 10.1016/j.neuroimage.2019.05.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/06/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022] Open
Abstract
When an autobiographical memory is retrieved, the underlying memory representation is constructed by flexibly activating a broad neural network. As such, the content used to reconstruct a memory can bias activity within this neural network. Here, we tested the hypothesis that focusing on the conceptual and contextual aspects of a memory to construct a memory representation will recruit distinct neural subsystems. To test this hypothesis, we measured neural activity as participants retrieved memories under retrieval orientations that biased remembering towards these elements of a past autobiographical experience. In an MRI scanner, participants first retrieved autobiographical memories and then were re-oriented towards the conceptual or contextual elements of that memory. They then used this re-oriented content (conceptual or contextual elements) to access and elaborate upon a new autobiographical memory. Confirming our hypothesis, we found a neural dissociation between these retrieval orientation conditions that aligned with established models of memory. We also found evidence that this neural dissociation was most prominent when the re-oriented mnemonic content was used to access a new memory. Altogether, the reported results provide critical insight into how and when retrieval orientations alter neural support for autobiographical memory retrieval and inform on the neural organization of autobiographical knowledge.
Collapse
Affiliation(s)
| | - Signy Sheldon
- Department of Psychology, McGill University, Canada.
| |
Collapse
|
33
|
Wirt RA, Hyman JM. ACC Theta Improves Hippocampal Contextual Processing during Remote Recall. Cell Rep 2019; 27:2313-2327.e4. [DOI: 10.1016/j.celrep.2019.04.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/18/2019] [Accepted: 04/17/2019] [Indexed: 12/27/2022] Open
|
34
|
Li J, Duan X, Cui Q, Chen H, Liao W. More than just statics: temporal dynamics of intrinsic brain activity predicts the suicidal ideation in depressed patients. Psychol Med 2019; 49:852-860. [PMID: 29909788 DOI: 10.1017/s0033291718001502] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is associated with high risk of suicide. Conventional neuroimaging works showed abnormalities of static brain activity and connectivity in MDD with suicidal ideation (SI). However, little is known regarding alterations of brain dynamics. More broadly, it remains unclear whether temporal dynamics of the brain activity could predict the prognosis of SI. METHODS We included MDD patients (n = 48) with and without SI and age-, gender-, and education-matched healthy controls (n = 30) who underwent resting-state functional magnetic resonance imaging. We first assessed dynamic amplitude of low-frequency fluctuation (dALFF) - a proxy for intrinsic brain activity (iBA) - using sliding-window analysis. Furthermore, the temporal variability (dynamics) of iBA was quantified as the variance of dALFF over time. In addition, the prediction of the severity of SI from temporal variability was conducted using a general linear model. RESULTS Compared with MDD without SI, the SI group showed decreased brain dynamics (less temporal variability) in the dorsal anterior cingulate cortex, the left orbital frontal cortex, the left inferior temporal gyrus, and the left hippocampus. Importantly, these temporal variabilities could be used to predict the severity of SI (r = 0.43, p = 0.03), whereas static ALFF could not in the current data set. CONCLUSIONS These findings suggest that alterations of temporal variability in regions involved in executive and emotional processing are associated with SI in MDD patients. This novel predictive model using the dynamics of iBA could be useful in developing neuromarkers for clinical applications.
Collapse
Affiliation(s)
- Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China,Chengdu 610054,P.R. China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China,Chengdu 610054,P.R. China
| | - Qian Cui
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China,Chengdu 610054,P.R. China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China,Chengdu 610054,P.R. China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China,Chengdu 610054,P.R. China
| |
Collapse
|
35
|
Viard A, Mutlu J, Chanraud S, Guenolé F, Egler PJ, Gérardin P, Baleyte JM, Dayan J, Eustache F, Guillery-Girard B. Altered default mode network connectivity in adolescents with post-traumatic stress disorder. NEUROIMAGE-CLINICAL 2019; 22:101731. [PMID: 30831461 PMCID: PMC6402428 DOI: 10.1016/j.nicl.2019.101731] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 11/22/2022]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by intrusions, re-experiencing, avoidance and hyperarousal. These symptoms might be linked to dysfunction in core neurocognitive networks subserving self-referential mental processing (default mode network, DMN), detection of salient stimuli (salience network, SN) and cognitive dysfunction (central executive network, CEN). Resting state studies in adolescent PTSD are scarce and findings are inconsistent, probably due to differences in patient symptom severity. Resting state brain activity was measured in 14 adolescents with severe PTSD and 24 age-matched controls. Seed-based connectivity analyses were used to examine connectivity between the DMN and the whole brain, including regions from other networks (SN and CEN). The relationships of network properties with symptom dimensions (severity, anxiety and depression) and episodic memory were also examined. Analyses revealed decreased within-DMN connectivity (between PCC and occipital cortex) in patients compared to controls. Furthermore, within-DMN connectivity (between PCC and hippocampus) correlated negatively with symptom dimensions (severity and anxiety), while increased connectivity (DMN-SN and DMN-CEN) correlated positively with episodic memory measures. These abnormal network properties found in adolescent PTSD corroborate those previously reported in adult PTSD. Decreased within-DMN connectivity and disrupted DMN-SN and DMN-CEN coupling could form the basis for intrusive trauma recollection and impaired episodic autobiographical recall in PTSD. Adolescent PTSD is linked to dysfunction in core neurocognitive networks. Results show decreased within-DMN connectivity in patients compared to controls. Within-DMN connectivity correlates negatively with severity and anxiety. Increased DMN-SN connectivity correlates positively with episodic memory. Disrupted connectivity may form the basis for intrusive trauma recollection in PTSD.
Collapse
Affiliation(s)
- Armelle Viard
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France.
| | - Justine Mutlu
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
| | - Sandra Chanraud
- INCIA CNRS UMR 5287, PSL Research University, EPHE, Université Bordeaux, Bordeaux, France
| | - Fabian Guenolé
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France; CHU de Caen, Service de Psychiatrie de l'Enfant et de l'Adolescent, Caen, France
| | - Pierre-Jean Egler
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France; CHU de Caen, Service de Psychiatrie de l'Enfant et de l'Adolescent, Caen, France
| | - Priscille Gérardin
- CHU de Rouen, Fédération hospitalo-universitaire de psychiatrie de l'enfant et de l'adolescent, Rouen, France
| | - Jean-Marc Baleyte
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France; CHU de Caen, Service de Psychiatrie de l'Enfant et de l'Adolescent, Caen, France
| | - Jacques Dayan
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France; CHGR Rennes-I, Service de Psychiatrie de l'Enfant et de l'Adolescent, Rennes, France
| | - Francis Eustache
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
| | - Bérengère Guillery-Girard
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
| |
Collapse
|
36
|
Nawa NE, Ando H. Effective connectivity within the ventromedial prefrontal cortex-hippocampus-amygdala network during the elaboration of emotional autobiographical memories. Neuroimage 2019; 189:316-328. [PMID: 30665009 DOI: 10.1016/j.neuroimage.2019.01.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/08/2019] [Accepted: 01/17/2019] [Indexed: 11/18/2022] Open
Abstract
Autobiographical memories (AMs) are often colored by emotions experienced during an event or those arising following further appraisals. However, how affective components of memories affect the brain-wide network recruited during the recollection of AMs remains largely unknown. Here, we examined effective connectivity during the elaboration of AMs - when retrieved episodic details are integrated to form a vivid construct - in the network composed by ventromedial prefrontal cortex (vmPFC), hippocampus and amygdala, three key regions associated with memory and affective processes. Functional MRI data was collected while volunteers recollected personal events of different types of valence and emotional intensity. Using dynamic causal modeling, we characterized the connections within the triadic network, and examined how they were modulated by the emotional intensity experienced during an event, and the valence of the affect evoked when recollecting the associated memory. Results primarily indicated the existence of a vmPFC to hippocampus effective connectivity during memory elaboration. Furthermore, the strength of the connectivity increased when participants relived memories of highly emotionally arousing events or that elicited stronger positive affect. These results indicate that the vmPFC drives hippocampal activity during memory elaboration, and plays a critical role in shaping affective responses that emanate from AMs.
Collapse
Affiliation(s)
- Norberto Eiji Nawa
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Japan; Graduate School of Frontiers Biosciences, Osaka University, Japan.
| | - Hiroshi Ando
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Japan; Graduate School of Frontiers Biosciences, Osaka University, Japan
| |
Collapse
|
37
|
Sreekumar V, Nielson DM, Smith TA, Dennis SJ, Sederberg PB. The experience of vivid autobiographical reminiscence is supported by subjective content representations in the precuneus. Sci Rep 2018; 8:14899. [PMID: 30297824 PMCID: PMC6175904 DOI: 10.1038/s41598-018-32879-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/17/2018] [Indexed: 11/09/2022] Open
Abstract
The human posteromedial cortex, which includes core regions of the default mode network (DMN), is thought to play an important role in episodic memory. However, the nature and functional role of representations in these brain regions remain unspecified. Nine participants (all female) wore smartphone devices to record episodes from their daily lives for multiple weeks, each night indicating the personally-salient attributes of each episode. Participants then relived their experiences in an fMRI scanner cued by images from their own lives. Representational Similarity Analysis revealed a broad network, including parts of the DMN, that represented personal semantics during autobiographical reminiscence. Within this network, activity in the right precuneus reflected more detailed representations of subjective contents during vivid relative to non-vivid, recollection. Our results suggest a more specific mechanism underlying the phenomenology of vivid autobiographical reminiscence, supported by rich subjective content representations in the precuneus, a hub of the DMN previously implicated in metacognitive evaluations during memory retrieval.
Collapse
Affiliation(s)
- Vishnu Sreekumar
- Department of Psychology, The Ohio State University, Columbus, OH, USA.,Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dylan M Nielson
- Department of Psychology, The Ohio State University, Columbus, OH, USA.,Data Science and Sharing Team, Section on Functional Imaging Methods, Laboratory of Brain and Cognition, NIMH, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Troy A Smith
- Department of Psychological Science, University of North Georgia, Oakwood, GA, 30566, USA
| | - Simon J Dennis
- School of Psychology, University of Melbourne, Melbourne, VIC, Australia
| | - Per B Sederberg
- Department of Psychology, The Ohio State University, Columbus, OH, USA. .,Department of Psychology, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
38
|
Ramirez-Mahaluf JP, Perramon J, Otal B, Villoslada P, Compte A. Subgenual anterior cingulate cortex controls sadness-induced modulations of cognitive and emotional network hubs. Sci Rep 2018; 8:8566. [PMID: 29867204 PMCID: PMC5986810 DOI: 10.1038/s41598-018-26317-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 05/10/2018] [Indexed: 01/07/2023] Open
Abstract
The regulation of cognitive and emotional processes is critical for proper executive functions and social behavior, but its specific mechanisms remain unknown. Here, we addressed this issue by studying with functional magnetic resonance imaging the changes in network topology that underlie competitive interactions between emotional and cognitive networks in healthy participants. Our behavioral paradigm contrasted periods with high emotional and cognitive demands by including a sadness provocation task followed by a spatial working memory task. The sharp contrast between successive tasks was designed to enhance the separability of emotional and cognitive networks and reveal areas that regulate the flow of information between them (hubs). By applying graph analysis methods on functional connectivity between 20 regions of interest in 22 participants we identified two main brain network modules, one dorsal and one ventral, and their hub areas: the left dorsolateral prefrontal cortex (dlPFC) and the left medial frontal pole (mFP). These hub areas did not modulate their mutual functional connectivity following sadness but they did so through an interposed area, the subgenual anterior cingulate cortex (sACC). Our results identify dlPFC and mFP as areas regulating interactions between emotional and cognitive networks, and suggest that their modulation by sadness experience is mediated by sACC.
Collapse
Affiliation(s)
- Juan P Ramirez-Mahaluf
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Psychiatry, School of Medicine, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joan Perramon
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Begonya Otal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo Villoslada
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Compte
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
39
|
Borg C, Faillenot I, Peyron R, Laurent B. Retrieving autobiographical experience of painful events in a phantom limb: brain concomitants in a case report. Neurocase 2018; 24:41-48. [PMID: 29388508 DOI: 10.1080/13554794.2018.1429636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report the case of a patient who had an important experience with painful events, allowing the investigation of brain concomitants to painful (P) memories in fMRI. The patient had to recall P events that were contrasted with non-painful (NP) memories. Painful memories of the right lower limb activated the left paracentral lobule,fronto-insular operculum and superior parietal cortex. Additionally, whilst the recall of non-painful events activated the hippocampus, the recall of painful events did not enhance the hippocampal signal to significant levels. These suggest that brain activations differ for the autobiographical recall of painful and non-painful memories.
Collapse
Affiliation(s)
- Céline Borg
- a Neurology/Neuropsychology CMRR Unit , CHU Nord Saint-Etienne , Saint-Priest-en-Jarez , France.,b Psychology Department , University of Lyon , Lyon , France.,c Study of Cognitive Mechanisms Laboratory , University of Lyon , Bron , France
| | - Isabelle Faillenot
- a Neurology/Neuropsychology CMRR Unit , CHU Nord Saint-Etienne , Saint-Priest-en-Jarez , France.,d CNRL, INSERM U1028; UCB Lyon1 , University Jean Monnet , Saint-Etienne , France
| | - Roland Peyron
- d CNRL, INSERM U1028; UCB Lyon1 , University Jean Monnet , Saint-Etienne , France.,e Pain Center , CHU Nord Saint-Etienne , Saint Priest-en-Jarez , France
| | - Bernard Laurent
- a Neurology/Neuropsychology CMRR Unit , CHU Nord Saint-Etienne , Saint-Priest-en-Jarez , France.,d CNRL, INSERM U1028; UCB Lyon1 , University Jean Monnet , Saint-Etienne , France.,e Pain Center , CHU Nord Saint-Etienne , Saint Priest-en-Jarez , France
| |
Collapse
|
40
|
Sheldon S, Levine B. The medial temporal lobe functional connectivity patterns associated with forming different mental representations. Hippocampus 2018; 28:269-280. [PMID: 29341344 DOI: 10.1002/hipo.22829] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 11/09/2022]
Abstract
The medial temporal lobes (MTL), and more specifically the hippocampus, are critical for forming mental representations of past experiences-autobiographical memories-and for forming other "nonexperienced" types of mental representations, such as imagined scenarios. How the MTL coordinate with other brain areas to create these different types of representations is not well understood. To address this issue, we performed a task-based functional connectivity analysis on a previously published dataset in which fMRI data were collected as participants created different types of mental representations under three conditions. One condition required forming and relating together details from a past event (autobiographical task), another required forming and relating together details of a spatial context (spatial task) and another condition required relating together conceptual/perceptual features of an object (conceptual task). We contrasted the connectivity patterns associated with a functionally defined region in the parahippocampal cortex (PHC) and anatomically defined anterior and posterior hippocampal segments across these tasks. Examining PHC connectivity patterns revealed that the PHC seed was distinctly connected to other MTL structures during the autobiographical task, to posterior parietal regions during the spatial task and to a distributed network of regions for the conceptual task. Examining hippocampal connectivity patterns revealed that the anterior hippocampus was preferentially connected to regions of default mode network during the autobiographical task and to areas implicated in semantic processing for the conceptual task whereas the posterior hippocampus was preferentially connected to medial-posterior regions of the brain during the spatial task. We interpret our findings as evidence that there are MTL-guided networks for forming distinct types of mental representations that align with functional distinctions within the hippocampus.
Collapse
Affiliation(s)
- Signy Sheldon
- Department of Psychology, McGill University, Montreal, Québec, Canada
| | - Brian Levine
- Rotman Research Institute, Baycrest Health Sciences Centre, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Ge Y, Pan W, Wang T. Brain Mechanisms of College Students’ Social Adjustment: Evidence from Multimodal Magnetic Resonance Imaging (MRI). Health (London) 2018. [DOI: 10.4236/health.2018.104036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Tompary A, Davachi L. Consolidation Promotes the Emergence of Representational Overlap in the Hippocampus and Medial Prefrontal Cortex. Neuron 2017; 96:228-241.e5. [PMID: 28957671 DOI: 10.1016/j.neuron.2017.09.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/10/2017] [Accepted: 09/07/2017] [Indexed: 02/08/2023]
Abstract
Structured knowledge is thought to form, in part, through the extraction and representation of regularities across overlapping experiences. However, little is known about how consolidation processes may transform novel episodic memories to reflect such regularities. In a multi-day fMRI study, participants encoded trial-unique associations that shared features with other trials. Multi-variate pattern analyses were used to measure neural similarity across overlapping and non-overlapping memories during immediate and 1-week retrieval of these associations. We found that neural patterns in the hippocampus and medial prefrontal cortex represented the featural overlap across memories, but only after a week. Furthermore, after a week, the strength of a memory's unique episodic reinstatement during retrieval was inversely related to its representation of overlap, suggesting a trade-off between the integration of related memories and recovery of episodic details. These findings suggest that consolidation-related changes in neural representations support the gradual organization of discrete episodes into structured knowledge.
Collapse
Affiliation(s)
- Alexa Tompary
- Department of Psychology, New York University, New York, NY, 10003, USA
| | - Lila Davachi
- Department of Psychology, New York University, New York, NY, 10003, USA; Center for Neural Science, New York University, New York, NY, 10003, USA.
| |
Collapse
|
43
|
Xu R, Yang J, Feng C, Wu H, Huang R, Yang Q, Li Z, Xu P, Gu R, Luo YJ. Time is nothing: emotional consistency of autobiographical memory and its neural basis. Brain Imaging Behav 2017; 12:1053-1066. [PMID: 28980133 DOI: 10.1007/s11682-017-9778-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The emotional aspect of autobiographical memories (AMs) is associated with self-related processing, which plays an important role in mental health. However, the emotional consistency dimension of AMs and its neural underpinnings remain largely unexplored. Twenty-five healthy participants were involved in this study. Participants were first asked to recall important AMs and assess the emotional ratings of each AM. Four weeks later, they were asked to retrieve the details of both positive and negative AMs during functional magnetic resonance imaging (fMRI) scanning. Behavioral results showed that the emotional valence of negative memories changed more strongly than positive memories over time (i.e., lower consistency). fMRI data showed that the activation level of the precuneus was positively correlated with self-rating valence consistency in the positive AM condition. Additionally, the precuneus connected to a key region of the self-referential network, the medial prefrontal cortex, in both the positive and negative AM conditions. Finally, the precuneus showed stronger connections with the inferior parietal lobule when comparing the positive with the negative AM conditions. Our results suggest that the precuneus is a key area of emotional consistency in positive AMs; this brain area may be involved in the maintenance of a positive self-image by strengthening positive AMs.
Collapse
Affiliation(s)
- Rui Xu
- National Key Laboratory of Cognitive Neuroscience and Leaning, Beijing Normal University, Beijing, 100875, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Juan Yang
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Chunliang Feng
- National Key Laboratory of Cognitive Neuroscience and Leaning, Beijing Normal University, Beijing, 100875, China
| | - Haiyan Wu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruiwang Huang
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Qiuli Yang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhihao Li
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Shenzhen University, Shenzhen, 518060, China.,Center for Emotion and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518057, China
| | - Pengfei Xu
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Shenzhen University, Shenzhen, 518060, China.,Center for Emotion and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518057, China
| | - Ruolei Gu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yue-Jia Luo
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Shenzhen University, Shenzhen, 518060, China. .,Center for Emotion and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518057, China.
| |
Collapse
|
44
|
A neuroanatomical account of mental time travelling in schizophrenia: A meta-analysis of functional and structural neuroimaging data. Neurosci Biobehav Rev 2017; 80:211-222. [DOI: 10.1016/j.neubiorev.2017.05.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 05/29/2017] [Indexed: 01/29/2023]
|
45
|
El Haj M, Kapogiannis D, Antoine P. Phenomenological Reliving and Visual Imagery During Autobiographical Recall in Alzheimer's Disease. J Alzheimers Dis 2017; 52:421-31. [PMID: 27003216 DOI: 10.3233/jad-151122] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Multiple studies have shown compromise of autobiographical memory and phenomenological reliving in Alzheimer's disease (AD). We investigated various phenomenological features of autobiographical memory to determine their relative vulnerability in AD. To this aim, participants with early AD and cognitively normal older adult controls were asked to retrieve an autobiographical event and rate on a five-point scale metacognitive judgments (i.e., reliving, back in time, remembering, and realness), component processes (i.e., visual imagery, auditory imagery, language, and emotion), narrative properties (i.e., rehearsal and importance), and spatiotemporal specificity (i.e., spatial details and temporal details). AD participants showed lower general autobiographical recall than controls, and poorer reliving, travel in time, remembering, realness, visual imagery, auditory imagery, language, rehearsal, and spatial detail-a decrease that was especially pronounced for visual imagery. Yet, AD participants showed high rating for emotion and importance. Early AD seems to compromise many phenomenological features, especially visual imagery, but also seems to preserve some other features.
Collapse
Affiliation(s)
- Mohamad El Haj
- Laboratoire SCALab UMR CNRS 9193 - University of Lille, France
| | | | - Pascal Antoine
- Laboratoire SCALab UMR CNRS 9193 - University of Lille, France
| |
Collapse
|
46
|
St-Laurent M, Moscovitch M, McAndrews MP. The retrieval of perceptual memory details depends on right hippocampal integrity and activation. Cortex 2016; 84:15-33. [DOI: 10.1016/j.cortex.2016.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/28/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022]
|
47
|
Philippi N, Noblet V, Duron E, Cretin B, Boully C, Wisniewski I, Seux ML, Martin-Hunyadi C, Chaussade E, Demuynck C, Kremer S, Lehéricy S, Gounot D, Armspach JP, Hanon O, Blanc F. Exploring anterograde memory: a volumetric MRI study in patients with mild cognitive impairment. ALZHEIMERS RESEARCH & THERAPY 2016; 8:26. [PMID: 27473839 PMCID: PMC4967326 DOI: 10.1186/s13195-016-0190-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/29/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND The aim of this volumetric study was to explore the neuroanatomical correlates of the Free and Cued Selective Reminding Test (FCSRT) and the Delayed Matching-to-Sample-48 items (DMS-48), two tests widely used in France to assess verbal and visual anterograde memory. We wanted to determine to what extent the two tests rely on the medial temporal lobe, and could therefore be predictive of Alzheimer's disease, in which pathological changes typically start in this region. METHODS We analysed data from a cohort of 138 patients with mild cognitive impairment participating in a longitudinal multicentre clinical research study. Verbal memory was assessed using the FCSRT and visual recognition memory was evaluated using the DMS-48. Performances on these two tests were correlated to local grey matter atrophy via structural MRI using voxel-based morphometry. RESULTS Our results confirm the existence of a positive correlation between the volume of the medial temporal lobe and the performance on the FCSRT, prominently on the left, and the performance on the DMS-48, on the right, for the whole group of patients (family-wise error, P < 0.05). Interestingly, this region remained implicated only in the subgroup of patients who had deficient scores on the cued recall of the FCSRT, whereas the free recall was associated with prefrontal aspects. For the DMS-48, it was only implicated for the group of patients whose performances declined between the immediate and delayed trial. Conversely, temporo-parietal cortices were implicated when no decline was observed. Within the medial temporal lobe, the parahippocampal gyrus was prominently involved for the FCSRT and the immediate trial of the DMS-48, whereas the hippocampus was solely involved for the delayed trial of the DMS-48. CONCLUSIONS The two tests are able to detect an amnestic profile of the medial temporal type, under the condition that the scores remain deficient after the cued recall of the FCSRT or decline on the delayed recognition trial of the DMS-48. Strategic retrieval as well as perceptual/attentional processes, supported by prefrontal and temporo-parietal cortices, were also found to have an impact on the performances. Finally, the implication of the hippocampus appears time dependent, triggered by a longer delay than the parahippocampus, rather than determined by the sense of recollection or the encoding strength associated with the memory trace.
Collapse
Affiliation(s)
- N Philippi
- Department of Neurology, University Hospital of Strasbourg, Neuropsychology Unit, Strasbourg, France. .,University of Strasbourg, CNRS, ICube laboratory, FMTS, Strasbourg, France. .,University Hospital of Strasbourg, Centre Mémoire Ressources et Recherche, Strasbourg, France. .,Department of Geriatrics, University Hospital of Strasbourg, Strasbourg, France.
| | - V Noblet
- University of Strasbourg, CNRS, ICube laboratory, FMTS, Strasbourg, France
| | - E Duron
- Department of Geriatrics, Broca Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - B Cretin
- Department of Neurology, University Hospital of Strasbourg, Neuropsychology Unit, Strasbourg, France.,University Hospital of Strasbourg, Centre Mémoire Ressources et Recherche, Strasbourg, France
| | - C Boully
- Department of Geriatrics, Broca Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - I Wisniewski
- University of Strasbourg, CNRS, ICube laboratory, FMTS, Strasbourg, France
| | - M L Seux
- Department of Geriatrics, Broca Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - C Martin-Hunyadi
- University Hospital of Strasbourg, Centre Mémoire Ressources et Recherche, Strasbourg, France.,Department of Geriatrics, University Hospital of Strasbourg, Strasbourg, France
| | - E Chaussade
- Department of Geriatrics, Broca Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - C Demuynck
- University Hospital of Strasbourg, Centre Mémoire Ressources et Recherche, Strasbourg, France.,Department of Geriatrics, University Hospital of Strasbourg, Strasbourg, France
| | - S Kremer
- University of Strasbourg, CNRS, ICube laboratory, FMTS, Strasbourg, France.,Department of Radiology, University Hospital of Strasbourg, Strasbourg, France
| | - S Lehéricy
- Department of Neuroradiology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,UPMC Paris 6-Inserm U1127, CNRS 7225, Institut du Cerveau et de la Moelle (ICM), Centre de NeuroImagerie de Recherche (CENIR), Paris, France
| | - D Gounot
- University of Strasbourg, CNRS, ICube laboratory, FMTS, Strasbourg, France
| | - J P Armspach
- University of Strasbourg, CNRS, ICube laboratory, FMTS, Strasbourg, France
| | - O Hanon
- Department of Geriatrics, Broca Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, EA4468, Paris, France
| | - F Blanc
- Department of Neurology, University Hospital of Strasbourg, Neuropsychology Unit, Strasbourg, France.,University of Strasbourg, CNRS, ICube laboratory, FMTS, Strasbourg, France.,University Hospital of Strasbourg, Centre Mémoire Ressources et Recherche, Strasbourg, France.,Department of Geriatrics, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
48
|
La Corte V, Piolino P. On the Role of Personal Semantic Memory and Temporal Distance in Episodic Future Thinking: The TEDIFT Model. Front Hum Neurosci 2016; 10:385. [PMID: 27524964 PMCID: PMC4965476 DOI: 10.3389/fnhum.2016.00385] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 07/14/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Valentina La Corte
- Institute of Psychology, University Paris DescartesParis, France; Memory and Cognition Laboratory, Center of Psychiatry and Neurosciences, Institut National de la Santé et de la Recherche Médicale UMR 894Paris, France; Initiatives d'excellence (IDEX) 'Dynamique du Vieillir', Université Paris DiderotParis, France
| | - Pascale Piolino
- Institute of Psychology, University Paris DescartesParis, France; Memory and Cognition Laboratory, Center of Psychiatry and Neurosciences, Institut National de la Santé et de la Recherche Médicale UMR 894Paris, France; Initiatives d'excellence (IDEX) 'Dynamique du Vieillir', Université Paris DiderotParis, France; University Institute of FranceParis, France
| |
Collapse
|
49
|
Eustache F, Viard A, Desgranges B. The MNESIS model: Memory systems and processes, identity and future thinking. Neuropsychologia 2016; 87:96-109. [DOI: 10.1016/j.neuropsychologia.2016.05.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 12/30/2022]
|
50
|
Compère L, Sperduti M, Gallarda T, Anssens A, Lion S, Delhommeau M, Martinelli P, Devauchelle AD, Oppenheim C, Piolino P. Sex Differences in the Neural Correlates of Specific and General Autobiographical Memory. Front Hum Neurosci 2016; 10:285. [PMID: 27378884 PMCID: PMC4913091 DOI: 10.3389/fnhum.2016.00285] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 05/26/2016] [Indexed: 11/13/2022] Open
Abstract
Autobiographical memory (AM) underlies the formation and temporal continuity over time of personal identity. The few studies on sex-related differences in AM suggest that men and women adopt different cognitive or emotional strategies when retrieving AMs. However, none of the previous works has taken into account the distinction between episodic autobiographical memory (EAM), consisting in the retrieval of specific events by means of mental time travel, and semantic autobiographical memory (SAM), which stores general personal events. Thus, it remains unclear whether differences in these strategies depend on the nature of the memory content to be retrieved. In the present study we employed functional MRI to examine brain activity underlying potential sex differences in EAM and SAM retrieval focusing on the differences in strategies related to the emotional aspects of memories while controlling for basic cognitive strategies. On the behavioral level, there was no significant sex difference in memory performances or subjective feature ratings of either type of AM. Activations common to men and women during AM retrieval were observed in a typical bilateral network comprising medial and lateral temporal regions, precuneus, occipital cortex as well as prefrontal cortex. Contrast analyses revealed that there was no difference between men and women in the EAM condition. In the SAM condition, women showed an increased activity, compared to men, in the dorsal anterior cingulate cortex, inferior parietal and precentral gyrus. Overall, these findings suggest that differential neural activations reflect sex-specific strategies related to emotional aspects of AMs, particularly regarding SAM. We propose that this pattern of activation during SAM retrieval reflects the cognitive cost linked to emotion regulation strategies recruited by women compared to men. These sex-related differences have interesting implications for understanding psychiatric disorders with differential sex prevalence and in which one of key features is overgenerality in AM.
Collapse
Affiliation(s)
- Laurie Compère
- Laboratory of Memory and Cognition, Institut de Psychologie, Université Paris Descartes, Sorbonne Paris CitéBoulogne-Billancourt, France
- Center of Psychiatry and Neurosciences, Institut National de la Santé et de la Recherche Médicale UMR S894, Université Paris DescartesParis, France
| | - Marco Sperduti
- Laboratory of Memory and Cognition, Institut de Psychologie, Université Paris Descartes, Sorbonne Paris CitéBoulogne-Billancourt, France
- Center of Psychiatry and Neurosciences, Institut National de la Santé et de la Recherche Médicale UMR S894, Université Paris DescartesParis, France
| | - Thierry Gallarda
- Center of Psychiatry and Neurosciences, Institut National de la Santé et de la Recherche Médicale UMR S894, Université Paris DescartesParis, France
- Laboratory of Physiopathology of Psychiatric Diseases, Centre Hospitalier Sainte AnneParis, France
| | - Adèle Anssens
- Laboratory of Memory and Cognition, Institut de Psychologie, Université Paris Descartes, Sorbonne Paris CitéBoulogne-Billancourt, France
- Center of Psychiatry and Neurosciences, Institut National de la Santé et de la Recherche Médicale UMR S894, Université Paris DescartesParis, France
| | - Stéphanie Lion
- Department of Radiology, Centre de Psychiatrie et Neuroscience, Institut National de la Santé et de la Recherche Médicale U894, Université Paris DescartesParis, France
| | - Marion Delhommeau
- Laboratory of Memory and Cognition, Institut de Psychologie, Université Paris Descartes, Sorbonne Paris CitéBoulogne-Billancourt, France
- Center of Psychiatry and Neurosciences, Institut National de la Santé et de la Recherche Médicale UMR S894, Université Paris DescartesParis, France
| | - Pénélope Martinelli
- Laboratory of Memory and Cognition, Institut de Psychologie, Université Paris Descartes, Sorbonne Paris CitéBoulogne-Billancourt, France
- Center of Psychiatry and Neurosciences, Institut National de la Santé et de la Recherche Médicale UMR S894, Université Paris DescartesParis, France
| | - Anne-Dominique Devauchelle
- Department of Radiology, Centre de Psychiatrie et Neuroscience, Institut National de la Santé et de la Recherche Médicale U894, Université Paris DescartesParis, France
| | - Catherine Oppenheim
- Department of Radiology, Centre de Psychiatrie et Neuroscience, Institut National de la Santé et de la Recherche Médicale U894, Université Paris DescartesParis, France
| | - Pascale Piolino
- Laboratory of Memory and Cognition, Institut de Psychologie, Université Paris Descartes, Sorbonne Paris CitéBoulogne-Billancourt, France
- Center of Psychiatry and Neurosciences, Institut National de la Santé et de la Recherche Médicale UMR S894, Université Paris DescartesParis, France
- Institut Universitaire de FranceParis, France
| |
Collapse
|