1
|
Sperber C, Wiesen D, Karnath H, de Haan B. The neuroanatomy of visual extinction following right hemisphere brain damage: Insights from multivariate and Bayesian lesion analyses in acute stroke. Hum Brain Mapp 2024; 45:e26639. [PMID: 38433712 PMCID: PMC10910281 DOI: 10.1002/hbm.26639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Multi-target attention, that is, the ability to attend and respond to multiple visual targets presented simultaneously on the horizontal meridian across both visual fields, is essential for everyday real-world behaviour. Given the close link between the neuropsychological deficit of extinction and attentional limits in healthy subjects, investigating the anatomy that underlies extinction is uniquely capable of providing important insights concerning the anatomy critical for normal multi-target attention. Previous studies into the brain areas critical for multi-target attention and its failure in extinction patients have, however, produced heterogeneous results. In the current study, we used multivariate and Bayesian lesion analysis approaches to investigate the anatomical substrate of visual extinction in a large sample of 108 acute right hemisphere stroke patients. The use of acute stroke patient data and multivariate/Bayesian lesion analysis approaches allowed us to address limitations associated with previous studies and so obtain a more complete picture of the functional network associated with visual extinction. Our results demonstrate that the right temporo-parietal junction (TPJ) is critically associated with visual extinction. The Bayesian lesion analysis additionally implicated the right intraparietal sulcus (IPS), in line with the results of studies in neurologically healthy participants that highlighted the IPS as the area critical for multi-target attention. Our findings resolve the seemingly conflicting previous findings, and emphasise the urgent need for further research to clarify the precise cognitive role of the right TPJ in multi-target attention and its failure in extinction patients.
Collapse
Affiliation(s)
- Christoph Sperber
- Center of Neurology, Division of NeuropsychologyHertie‐Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Department of NeurologyInselspital, University Hospital BernBernSwitzerland
| | - Daniel Wiesen
- Center of Neurology, Division of NeuropsychologyHertie‐Institute for Clinical Brain Research, University of TübingenTübingenGermany
| | - Hans‐Otto Karnath
- Center of Neurology, Division of NeuropsychologyHertie‐Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Department of PsychologyUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Bianca de Haan
- Centre for Cognitive Neuroscience, College of Health and Life Sciences, Brunel University LondonUxbridgeUK
| |
Collapse
|
2
|
Yu X, Li J, Zhu H, Tian X, Lau E. Electrophysiological hallmarks for event relations and event roles in working memory. Front Neurosci 2024; 17:1282869. [PMID: 38328555 PMCID: PMC10847304 DOI: 10.3389/fnins.2023.1282869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024] Open
Abstract
The ability to maintain events (i.e., interactions between/among objects) in working memory is crucial for our everyday cognition, yet the format of this representation is poorly understood. The current ERP study was designed to answer two questions: How is maintaining events (e.g., the tiger hit the lion) neurally different from maintaining item coordinations (e.g., the tiger and the lion)? That is, how is the event relation (present in events but not coordinations) represented? And how is the agent, or initiator of the event encoded differently from the patient, or receiver of the event during maintenance? We used a novel picture-sentence match-across-delay approach in which the working memory representation was "pinged" during the delay, replicated across two ERP experiments with Chinese and English materials. We found that maintenance of events elicited a long-lasting late sustained difference in posterior-occipital electrodes relative to non-events. This effect resembled the negative slow wave reported in previous studies of working memory, suggesting that the maintenance of events in working memory may impose a higher cost compared to coordinations. Although we did not observe significant ERP differences associated with pinging the agent vs. the patient during the delay, we did find that the ping appeared to dampen the ongoing sustained difference, suggesting a shift from sustained activity to activity silent mechanisms. These results suggest a new method by which ERPs can be used to elucidate the format of neural representation for events in working memory.
Collapse
Affiliation(s)
- Xinchi Yu
- Program of Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
- Department of Linguistics, University of Maryland, College Park, MD, United States
| | - Jialu Li
- Division of Arts and Sciences, New York University Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Hao Zhu
- Division of Arts and Sciences, New York University Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Xing Tian
- Division of Arts and Sciences, New York University Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Ellen Lau
- Program of Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
- Department of Linguistics, University of Maryland, College Park, MD, United States
| |
Collapse
|
3
|
Wen T, Egner T. Context-independent scaling of neural responses to task difficulty in the multiple-demand network. Cereb Cortex 2022; 33:6013-6027. [PMID: 36513365 PMCID: PMC10183747 DOI: 10.1093/cercor/bhac479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
The multiple-demand (MD) network is sensitive to many aspects of cognitive demand, showing increased activation with more difficult tasks. However, it is currently unknown whether the MD network is modulated by the context in which task difficulty is experienced. Using functional magnetic resonance imaging, we examined MD network responses to low, medium, and high difficulty arithmetic problems within 2 cued contexts, an easy versus a hard set. The results showed that MD activity varied reliably with the absolute difficulty of a problem, independent of the context in which the problem was presented. Similarly, MD activity during task execution was independent of the difficulty of the previous trial. Representational similarity analysis further supported that representational distances in the MD network were consistent with a context-independent code. Finally, we identified several regions outside the MD network that showed context-dependent coding, including the inferior parietal lobule, paracentral lobule, posterior insula, and large areas of the visual cortex. In sum, a cognitive effort is processed by the MD network in a context-independent manner. We suggest that this absolute coding of cognitive demand in the MD network reflects the limited range of task difficulty that can be supported by the cognitive apparatus.
Collapse
Affiliation(s)
- Tanya Wen
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States
| | - Tobias Egner
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States.,Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States
| |
Collapse
|
4
|
Cheviet A, Bonnefond A, Bertrand F, Maumy-Bertrand M, Doignon-Camus N. How visual attention span and phonological skills contribute to N170 print tuning: An EEG study in French dyslexic students. BRAIN AND LANGUAGE 2022; 234:105176. [PMID: 36063725 DOI: 10.1016/j.bandl.2022.105176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Developmental dyslexia is a disorder characterized by a sustainable learning deficit in reading. Based on ERP-driven approaches focusing on the visual word form area, electrophysiological studies have pointed a lack of visual expertise for written word recognition in dyslexic readers by contrasting the left-lateralized N170 amplitudes elicited by alphabetic versus non-alphabetic stimuli. Here, we investigated in 22 dyslexic participants and 22 age-matched control subjects how two behavioural abilities potentially affected in dyslexic readers (phonological and visual attention skills) contributed to the N170 expertise during a word detection task. Consistent with literature, dyslexic participants exhibited poorer performance in these both abilities as compared to healthy subjects. At the brain level, we observed (1) an unexpected preservation of the N170 expertise in the dyslexic group suggesting a possible compensatory mechanism and (2) a modulation of this expertise only by phonological skills, providing evidence for the phonological mapping deficit hypothesis.
Collapse
Affiliation(s)
- Alexis Cheviet
- Department of Psychology, Durham University, South Road, Durham DH1 3LE, United Kingdom.
| | - Anne Bonnefond
- Department of Psychiatry, University of Strasbourg, INSERM U1114, Strasbourg, France
| | - Frédéric Bertrand
- LIST3N, Université de Technologie de Troyes, Troyes, France; Institut de Recherche Mathématique Avancée, CNRS UMR 7501, Labex IRMIA, Université de Strasbourg, Strasbourg, France
| | - Myriam Maumy-Bertrand
- LIST3N, Université de Technologie de Troyes, Troyes, France; Institut de Recherche Mathématique Avancée, CNRS UMR 7501, Labex IRMIA, Université de Strasbourg, Strasbourg, France
| | - Nadège Doignon-Camus
- LISEC UR 2310, University of Strasbourg, University of Haute-Alsace, University of Lorraine, Strasbourg, France
| |
Collapse
|
5
|
Sarpal DK, Tarcijonas G, Calabro FJ, Foran W, Haas GL, Luna B, Murty VP. Context-specific abnormalities of the central executive network in first-episode psychosis: relationship with cognition. Psychol Med 2022; 52:2299-2308. [PMID: 33222723 PMCID: PMC9805803 DOI: 10.1017/s0033291720004201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cognitive impairments, which contribute to the profound functional deficits observed in psychotic disorders, have found to be associated with abnormalities in trial-level cognitive control. However, neural tasks operate within the context of sustained cognitive states, which can be assessed with 'background connectivity' following the removal of task effects. To date, little is known about the integrity of brain processes supporting the maintenance of a cognitive state in individuals with psychotic disorders. Thus, here we examine background connectivity during executive processing in a cohort of participants with first-episode psychosis (FEP). METHODS The following fMRI study examined background connectivity of the dorsolateral prefrontal cortex (DLPFC), during working memory engagement in a group of 43 patients with FEP, relative to 35 healthy controls (HC). Findings were also examined in relation to measures of executive function. RESULTS The FEP group relative to HC showed significantly lower background DLPFC connectivity with bilateral superior parietal lobule (SPL) and left inferior parietal lobule. Background connectivity between DLPFC and SPL was also positively associated with overall cognition across all subjects and in our FEP group. In comparison, resting-state frontoparietal connectivity did not differ between groups and was not significantly associated with overall cognition, suggesting that psychosis-related alterations in executive networks only emerged during states of goal-oriented behavior. CONCLUSIONS These results provide novel evidence indicating while frontoparietal connectivity at rest appears intact in psychosis, when engaged during a cognitive state, it is impaired possibly undermining cognitive control capacities in FEP.
Collapse
Affiliation(s)
- Deepak K. Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Goda Tarcijonas
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Finnegan J. Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gretchen L. Haas
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vishnu P. Murty
- Department of Psychology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Yang P, Wang M, Luo C, Ni X, Li L. Dissociable causal roles of the frontal and parietal cortices in the effect of object location on object identity detection: a TMS study. Exp Brain Res 2022; 240:1445-1457. [PMID: 35301574 DOI: 10.1007/s00221-022-06344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
Abstract
According to the spatial congruency advantage, individuals exhibit higher accuracy and shorter reaction times during the visual working memory (VWM) task when VWM test stimuli appear in spatially congruent locations, relative to spatially incongruent locations, during the encoding phase. Functional magnetic resonance imaging studies have revealed changes in right inferior frontal gyrus (rIFG) and right supra-marginal gyrus (rSMG) activity as a function of object location stability. Nevertheless, it remains unclear whether these regions play a role in active object location repositioning or passive early perception of object location stability, and demonstrations of causality are lacking. In this study, we adopted an object identity change-detection task, involving a short train of 10-Hz online repetitive transcranial magnetic stimulations (rTMS) applied at the rIFG or rSMG concurrently with the onset of VWM test stimuli. In two experimental cohorts, we observed an improved accuracy in spatially incongruent high VWM load conditions when the 10 Hz-rTMS was applied at the rIFG compared with that in TMS control conditions, whereas these modulatory effects were not observed for the rSMG. Our results suggest that the rIFG and rSMG play dissociable roles in the spatial congruency effect, whereby the rIFG is engaged in active object location repositioning, while the rSMG is engaged in passive early perception of object location stability.
Collapse
Affiliation(s)
- Ping Yang
- Key Laboratory of Basic Psychological and Cognitive Neuroscience, School of Psychology, Guizhou Normal University, Guiyang, 550025, China.,Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Min Wang
- Bioinformatics and BioMedical Bigdata Mining Laboratory, School of Big Health, Guizhou Medical University, Guiyang, 550004, China
| | - Cimei Luo
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xuejin Ni
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ling Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
7
|
Li YP, Cooper SR, Braver TS. The role of neural load effects in predicting individual differences in working memory function. Neuroimage 2021; 245:118656. [PMID: 34678433 PMCID: PMC8880845 DOI: 10.1016/j.neuroimage.2021.118656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/18/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022] Open
Abstract
Studies of working memory (WM) function have tended to adopt either a within-subject approach, focusing on effects of load manipulations, or a between-subjects approach, focusing on individual differences. This dichotomy extends to WM neuroimaging studies, with different neural correlates being identified for within- and between-subjects variation in WM. Here, we examined this issue in a systematic fashion, leveraging the large-sample Human Connectome Project dataset, to conduct a well-powered, whole-brain analysis of the N-back WM task. We first demonstrate the advantages of parcellation schemes for dimension reduction, in terms of load-related effect sizes. This parcel-based approach is then utilized to directly compare the relationship between load-related (within-subject) and behavioral individual differences (between-subject) effects through both correlational and predictive analyses. The results suggest a strong linkage of within-subject and between-subject variation, with larger load-effects linked to stronger brain-behavior correlations. In frontoparietal cortex no hemispheric biases were found towards one type of variation, but the Dorsal Attention Network did exhibit greater sensitivity to between over within-subjects variation, whereas in the Somatomotor network, the reverse pattern was observed. Cross-validated predictive modeling capitalizing on this tight relationship between the two effects indicated greater predictive power for load-activated than load-deactivated parcels, while also demonstrating that load-related effect size can serve as an effective guide to feature (i.e., parcel) selection, in maximizing predictive power while maintaining interpretability. Together, the findings demonstrate an important consistency across within- and between-subjects approaches to identifying the neural substrates of WM, which can be effectively harnessed to develop more powerful predictive models.
Collapse
Affiliation(s)
- Y Peeta Li
- Department of Psychology, University of Oregon, 1227 University St, Eugene, OR 97403, United States.
| | - Shelly R Cooper
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, United States
| | - Todd S Braver
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, United States
| |
Collapse
|
8
|
The Modulation of Working-Memory Performance Using Gamma-Electroacupuncture and Theta-Electroacupuncture in Healthy Adults. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2062718. [PMID: 34824588 PMCID: PMC8610651 DOI: 10.1155/2021/2062718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/07/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
Working memory (WM), a central component of general cognition, plays an essential role in human beings' daily lives. WM impairments often occur in psychiatric, neurodegenerative, and neurodevelopmental disorders, mainly presenting as loss of high-load WM. In previous research, electroacupuncture (EA) has been shown to be an effective treatment for cognitive impairments. Frequency parameters are an important factor in therapeutic results, but the optimal frequency parameters of EA have not yet been identified. In this study, we chose theta-EA (θ-EA; 6 Hz) and gamma-EA (γ-EA; 40 Hz), corresponding to the transcranial alternating-current stimulation (tACS) frequency parameters at the Baihui (DU20) and Shenting (DU24) acupoints, in order to compare the effects of different EA frequencies on WM. We evaluated WM performance using visual 1-back, 2-back, and 3-back WM tasks involving digits. Each participant (N = 30) attended three different sessions in accordance with a within-subject crossover design. We performed θ-EA, γ-EA, and sham-EA in a counterbalanced order, conducting the WM task both before and after intervention. The results showed that d-prime (d′) under all three stimulation conditions had no significance in the 1-back and 2-back tasks. However, in the 3-back task, there was a significant improvement in d′ after intervention compared to d′ before intervention under θ-EA (F [1, 29] = 22.64; P < 0.001), while we saw no significant difference in the γ-EA and sham-EA groups. Reaction times for hits (RT-hit) under all three stimulation conditions showed decreasing trends in 1-, 2-, and 3-back tasks but without statistically significant differences. These findings suggest that the application of θ-EA might facilitate high-load WM performance.
Collapse
|
9
|
Scrivener CL, Malik A, Lindner M, Roesch EB. Sensing and seeing associated with overlapping occipitoparietal activation in simultaneous EEG-fMRI. Neurosci Conscious 2021; 2021:niab008. [PMID: 34164153 PMCID: PMC8216203 DOI: 10.1093/nc/niab008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 11/14/2022] Open
Abstract
The presence of a change in a visual scene can influence brain activity and behavior, even in the absence of full conscious report. It may be possible for us to sense that such a change has occurred, even if we cannot specify exactly where or what it was. Despite existing evidence from electroencephalogram (EEG) and eye-tracking data, it is still unclear how this partial level of awareness relates to functional magnetic resonance imaging (fMRI) blood oxygen level dependent (BOLD) activation. Using EEG, fMRI, and a change blindness paradigm, we found multi-modal evidence to suggest that sensing a change is distinguishable from being blind to it. Specifically, trials during which participants could detect the presence of a colour change but not identify the location of the change (sense trials), were compared to those where participants could both detect and localise the change (localise or see trials), as well as change blind trials. In EEG, late parietal positivity and N2 amplitudes were larger for localised changes only, when compared to change blindness. However, ERP-informed fMRI analysis found no voxels with activation that significantly co-varied with fluctuations in single-trial late positivity amplitudes. In fMRI, a range of visual (BA17,18), parietal (BA7,40), and mid-brain (anterior cingulate, BA24) areas showed increased fMRI BOLD activation when a change was sensed, compared to change blindness. These visual and parietal areas are commonly implicated as the storage sites of visual working memory, and we therefore argue that sensing may not be explained by a lack of stored representation of the visual display. Both seeing and sensing a change were associated with an overlapping occipitoparietal network of activation when compared to blind trials, suggesting that the quality of the visual representation, rather than the lack of one, may result in partial awareness during the change blindness paradigm.
Collapse
Affiliation(s)
- Catriona L Scrivener
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Earley, Reading, RG6 6BZ, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| | - Asad Malik
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Earley, Reading, RG6 6BZ, UK
| | - Michael Lindner
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Earley, Reading, RG6 6BZ, UK
| | - Etienne B Roesch
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Earley, Reading, RG6 6BZ, UK
| |
Collapse
|
10
|
Piras F, Vecchio D, Kurth F, Piras F, Banaj N, Ciullo V, Luders E, Spalletta G. Corpus callosum morphology in major mental disorders: a magnetic resonance imaging study. Brain Commun 2021; 3:fcab100. [PMID: 34095833 PMCID: PMC8172496 DOI: 10.1093/braincomms/fcab100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 11/14/2022] Open
Abstract
Mental disorders diagnosis is based on specific clinical criteria. However, clinical studies found similarities and overlapping phenomenology across a variety of disorders, which suggests a common neurobiological substrate. Thus, there is a need to measure disease-related neuroanatomical similarities and differences across conditions. While structural alterations of the corpus callosum have been investigated in obsessive-compulsive disorder, schizophrenia, major depressive disorder and bipolar disorder, no study has addressed callosal aberrations in all diseases in a single study. Moreover, results from pairwise comparisons (patients vs. controls) show some inconsistencies, possibly related to the parcellation methods to divide the corpus callosum into subregions. The main aim of the present paper was to uncover highly localized callosal characteristics for each condition (i.e. obsessive-compulsive disorder, schizophrenia, major depressive disorder and bipolar disorder) as compared either to healthy control subjects or to each other. For this purpose, we did not rely on any sub-callosal parcellation method, but applied a well-validated approach measuring callosal thickness at 100 equidistant locations along the whole midline of the corpus callosum. One hundred and twenty patients (30 in each disorder) as well as 30 controls were recruited for the study. All groups were closely matched for age and gender, and the analyses were performed controlling for the impact of antipsychotic treatment and illness duration. There was a significant main effect of group along the whole callosal surface. Pairwise post hoc comparisons revealed that, compared to controls, patients with obsessive-compulsive disorder had the thinnest corpora callosa with significant effects almost on the entire callosal structure. Patients with schizophrenia also showed thinner corpora callosa than controls but effects were confined to the isthmus and the anterior part of the splenium. No significant differences were found in both major depressive disorder and bipolar disorder patients compared to controls. When comparing the disease groups to each other, the corpus callosum was thinner in obsessive-compulsive disorder patients than in any other group. The effect was evident across the entire corpus callosum, with the exception of the posterior body. Altogether, our study suggests that the corpus callosum is highly changed in obsessive-compulsive disorder, selectively changed in schizophrenia and not changed in bipolar disorder and major depressive disorder. These results shed light on callosal similarities and differences among mental disorders providing valuable insights regarding the involvement of the major brain commissural fibre tract in the pathophysiology of each specific mental illness.
Collapse
Affiliation(s)
- Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Florian Kurth
- School of Psychology, University of Auckland, Auckland, Private Bag 92019, New Zealand
| | - Federica Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Valentina Ciullo
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Eileen Luders
- School of Psychology, University of Auckland, Auckland, Private Bag 92019, New Zealand.,Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy.,Menninger Department of Psychiatry and Behavioral Sciences, Division of Neuropsychiatry, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
Hu L, Wang C, Talhelm T, Zhang X. Distinguishing the neural mechanism of attentional control and working memory in feature-based attentive tracking. Psychophysiology 2020; 58:e13726. [PMID: 33278041 DOI: 10.1111/psyp.13726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/06/2020] [Accepted: 10/29/2020] [Indexed: 11/29/2022]
Abstract
Surface features are an important component in attentive tracking. However, the neural mechanisms underlying how features affect attentive tracking remain unknown. The present fMRI study addressed this issue by manipulating the intragroup feature complexity and intergroup feature similarity. In particular, this study distinguished the different neural mechanisms of intragroup feature complexity and intergroup feature similarity by investigating the roles of attentional control and working memory in dynamic feature-based attentive tracking. Behavioral and neuroimaging evidence showed that when targets are distinct from distractors, the intragroup feature complexity of the targets, rather than that of the distractors, mainly increases the visual working memory load and significantly activates the frontoparietal cortical circuit. Thus, the involvement of working memory in feature-based attentive tracking is modulated by goal-directed attention control. In addition, when targets are similar to distractors, the intergroup feature similarity (i.e., target-distractor similarity) mainly affects the allocation of attention. Specifically, target-distractor similarity affects the goal-directed attention toward the targets in a stimulus-driven way and induces an interaction between the ventral and dorsal attention networks.
Collapse
Affiliation(s)
- Luming Hu
- Department of Psychology and Research Centre of Aeronautic Psychology and Behavior, Beihang University, Beijing, China.,Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Centre for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Chundi Wang
- Department of Psychology and Research Centre of Aeronautic Psychology and Behavior, Beihang University, Beijing, China
| | - Thomas Talhelm
- Booth School of Business, University of Chicago, Chicago, IL, USA
| | - Xuemin Zhang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Centre for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China.,State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
12
|
Olmos-Solis K, van Loon AM, Olivers CNL. Content or status: Frontal and posterior cortical representations of object category and upcoming task goals in working memory. Cortex 2020; 135:61-77. [PMID: 33360761 DOI: 10.1016/j.cortex.2020.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/13/2020] [Accepted: 11/03/2020] [Indexed: 11/18/2022]
Abstract
To optimize task sequences, the brain must differentiate between current and prospective goals. We previously showed that currently and prospectively relevant object representations in working memory can be dissociated within object-selective cortex. Based on other recent studies indicating that a range of brain areas may be involved in distinguishing between currently relevant and prospectively relevant information in working memory, here we conducted multivoxel pattern analyses of fMRI activity in additional posterior areas (specifically early visual cortex and the intraparietal sulcus) as well as frontal areas (specifically the frontal eye fields and lateral prefrontal cortex). We assessed whether these areas represent the memory content, the current versus prospective status of the memory, or both. On each trial, participants memorized an object drawn from three different categories. The object was the target for either a first task (currently relevant), a second task (prospectively relevant), or for neither task (irrelevant). The results revealed a division of labor across brain regions: While posterior areas preferentially coded for content (i.e., the category), frontal areas carried information about the current versus prospective relevance status of the memory, irrespective of the category. Intraparietal sulcus revealed both strong category- and status-sensitivity, consistent with its hub function of combining stimulus and priority signals. Furthermore, cross-decoding analyses revealed that while current and prospective representations were similar prior to search, they became dissimilar during search, in posterior as well as frontal areas. The findings provide further evidence for a dissociation between content and control networks in working memory.
Collapse
Affiliation(s)
- Katya Olmos-Solis
- Institute for Brain and Behaviour, Vrije Universiteit Amsterdam, the Netherlands
| | - Anouk M van Loon
- Department of General Practice & Elderly Care Medicine, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands
| | | |
Collapse
|
13
|
Mäki-Marttunen V, Hagen T, Laeng B, Espeseth T. Distinct Neural Mechanisms Meet Challenges in Dynamic Visual Attention due to Either Load or Object Spacing. J Cogn Neurosci 2020; 32:65-84. [DOI: 10.1162/jocn_a_01469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
When engaged in dynamic visuospatial tasks, the brain copes with perceptual and cognitive processing challenges. During multiple-object tracking (MOT), the number of objects to be tracked (i.e., load) imposes attentional demands, but so does spatial interference from irrelevant objects (i.e., close encounters). Presently, it is not clear whether the effect of load on accuracy solely depends on the number of close encounters. If so, the same cognitive and physiological mechanisms deal with increasing load by preparing for and dealing with spatial interference. However, this has never been directly tested. Such knowledge is important to understand the neurophysiology of dynamic visual attention and resolve conflicting views within visual cognition concerning sources of capacity limitations. We varied the processing challenge in MOT task in two ways: the number of targets and the minimum spatial proximity between targets and distractors. In a first experiment, we measured task-induced pupil dilations and saccades during MOT. In a separate cohort, we measured fMRI activity. In both cohorts, increased load and close encounters (i.e., close spatial proximity) led to reduced accuracy in an additive manner. Load was associated with pupil dilations, whereas close encounters were not. Activity in dorsal attentional areas and frequency of saccades were proportionally larger both with higher levels of load and close encounters. Close encounters recruited additionally ventral attentional areas that may reflect orienting mechanisms. The activity in two brainstem nuclei, ventral tegmental area/substantia nigra and locus coeruleus, showed clearly dissociated patterns. Our results constitute convergent evidence indicating that different mechanisms underlie processing challenges due to load and object spacing.
Collapse
|
14
|
Wurm MF, Porter KB, Caramazza A. Individuation of parts of a single object and multiple distinct objects relies on a common neural mechanism in inferior intraparietal sulcus. Cortex 2019; 121:1-15. [DOI: 10.1016/j.cortex.2019.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/28/2019] [Accepted: 08/14/2019] [Indexed: 11/29/2022]
|
15
|
Eayrs JO, Lavie N. Individual differences in parietal and frontal cortex structure predict dissociable capacities for perception and cognitive control. Neuroimage 2019; 202:116148. [DOI: 10.1016/j.neuroimage.2019.116148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022] Open
|
16
|
Wen T, Duncan J, Mitchell DJ. The time-course of component processes of selective attention. Neuroimage 2019; 199:396-407. [PMID: 31150787 PMCID: PMC6693528 DOI: 10.1016/j.neuroimage.2019.05.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/09/2019] [Accepted: 05/26/2019] [Indexed: 12/02/2022] Open
Abstract
Attentional selection shapes human perception, enhancing relevant information, according to behavioral goals. While many studies have investigated individual neural signatures of attention, here we used multivariate decoding of electrophysiological brain responses (MEG/EEG) to track and compare multiple component processes of selective attention. Auditory cues instructed participants to select a particular visual target, embedded within a subsequent stream of displays. Combining single and multi-item displays with different types of distractors allowed multiple aspects of information content to be decoded, distinguishing distinct components of attention, as the selection process evolved. Although the task required comparison of items to an attentional "template" held in memory, signals consistent with such a template were largely undetectable throughout the preparatory period but re-emerged after presentation of a non-target choice display. Choice displays evoked strong neural representation of multiple target features, evolving over different timescales. We quantified five distinct processing operations with different time-courses. First, visual properties of the stimulus were strongly represented. Second, the candidate target was rapidly identified and localized in multi-item displays, providing the earliest evidence of modulation by behavioral relevance. Third, the identity of the target continued to be enhanced, relative to distractors. Fourth, only later was the behavioral significance of the target explicitly represented in single-item displays. Finally, if the target was not identified and search was to be resumed, then an attentional template was weakly reactivated. The observation that an item's behavioral relevance directs attention in multi-item displays prior to explicit representation of target/non-target status in single-item displays is consistent with two-stage models of attention.
Collapse
Affiliation(s)
- Tanya Wen
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom.
| | - John Duncan
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom; Department of Psychology, University of Oxford, Oxford, UK.
| | - Daniel J Mitchell
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom.
| |
Collapse
|
17
|
Diffusion modeling of interference and decay in auditory short-term memory. Exp Brain Res 2019; 237:1899-1905. [DOI: 10.1007/s00221-019-05533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 03/27/2019] [Indexed: 10/26/2022]
|
18
|
Bays PM. Reassessing the Evidence for Capacity Limits in Neural Signals Related to Working Memory. Cereb Cortex 2019; 28:1432-1438. [PMID: 29329385 PMCID: PMC6093359 DOI: 10.1093/cercor/bhx351] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/19/2017] [Indexed: 02/03/2023] Open
Abstract
In 2004, two landmark studies described the discovery of brain imaging (functional magnetic resonance imaging and electroencephalography) signals that increase with the number of items held in visual working memory (WM). These studies claimed that the signals leveled off (plateaued) once the number of memoranda reached the capacity of WM, as estimated by the prevailing model of the time. However, alternative models were not considered, and changing concepts of WM in the more than a decade since these studies were published necessitate a re-evaluation of their findings; newer models that provide the most accurate account of behavioral data do not incorporate a fixed limit on the number of items stored. Furthermore, an important claim made about the original studies, that signals plateau at each individual's estimated capacity, has never been tested. Here, we pit the plateau model of signal strength against an alternative, saturation model, a biophysically plausible account in which signals increase continuously without plateau. We show that the saturation model provides a better description of the original data, challenging the assumption that imaging results provide evidence for a fixed item limit in WM.
Collapse
Affiliation(s)
- Paul M Bays
- Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, UK
| |
Collapse
|
19
|
Praß M, de Haan B. Multi-target attention and visual short-term memory capacity are closely linked in the intraparietal sulcus. Hum Brain Mapp 2019; 40:3589-3605. [PMID: 31056819 PMCID: PMC6767774 DOI: 10.1002/hbm.24618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 11/06/2022] Open
Abstract
The existing literature suggests a critical role for both the right intraparietal sulcus (IPS) and the right temporo‐parietal junction (TPJ) in our ability to attend to multiple simultaneously‐presented lateralized targets (multi‐target attention), and the failure of this ability in extinction patients. Currently, however, the precise role of each of these areas in multi‐target attention is unclear. In this study, we combined the theory of visual attention (TVA) with functional magnetic resonance imaging (fMRI) guided continuous theta burst stimulation (cTBS) in neurologically healthy subjects to directly investigate the role of the right IPS and TPJ in multi‐target attention. Our results show that cTBS at an area of the right IPS associated with multi‐target attention elicits a reduction of visual short‐term memory capacity. This suggests that the right IPS is associated with a general capacity‐limited encoding mechanism that is engaged regardless of whether targets have to be attended or remembered. Curiously, however, cTBS to the right IPS failed to elicit extinction‐like behavior in our study, supporting previous suggestions that different areas of the right IPS may provide different contributions to multi‐target attention. CTBS to the right TPJ failed to induce a change in either TVA parameters or extinction‐like behavior.
Collapse
Affiliation(s)
- Maren Praß
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Bianca de Haan
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Division of Psychology, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
20
|
Posterior Parietal Cortex Dysfunction Is Central to Working Memory Storage and Broad Cognitive Deficits in Schizophrenia. J Neurosci 2018; 38:8378-8387. [PMID: 30104335 DOI: 10.1523/jneurosci.0913-18.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/09/2018] [Accepted: 08/06/2018] [Indexed: 01/09/2023] Open
Abstract
PFC dysfunction is widely believed to underlie working memory (WM) deficits in people with schizophrenia (PSZ), but few studies have focused on measures of WM storage devoid of manipulation. Research in neurotypical individuals has shown that storage capacity is more closely related to posterior parietal cortex (PPC) than PFC, suggesting that reductions in WM storage capacity in schizophrenia that are associated with broad cognitive deficits may be related to neural activity in PPC. In the present human neuroimaging study, 37 PSZ and 37 matched healthy control subjects of either sex completed a change detection task with varying set sizes while undergoing fMRI. The task was designed to emphasize WM storage with minimal top-down control demands. Whole-brain analysis identified areas in which BOLD activity covaried with the number of items maintained in WM (K), as derived from task performance at a given set size. Across groups, K values independent of set size predicted BOLD activity in PPC, including superior and inferior parietal lobules and intraparietal sulcus, and middle occipital gyrus. Whole-brain interaction analysis found significantly less K-dependent signal modulation in PSZ than healthy control subjects in left PPC, a phenomenon that could not be explained by a narrower K value range. The slope between K and PPC activation statistically accounted for 43.4% of the between-group differences in broad cognitive function. These results indicate that PPC dysfunction is central to WM storage deficits in PSZ and may play a key role in the broad cognitive deficits associated with schizophrenia.SIGNIFICANCE STATEMENT People with schizophrenia exhibit cognitive deficits across a wide range of tasks. Explaining these impairments in terms of a small number of core deficits with clearly defined neural correlates would advance the understanding of the disorder and promote treatment development. We show that a substantial portion of broad cognitive deficits in schizophrenia can be explained by a failure to flexibly modulate posterior parietal cortex activity as a function of the amount of information currently stored in working memory. Working memory deficits have long been considered central to schizophrenia-related cognitive deficits, but the focus has been on paradigms involving some form of top-down control rather than pure storage of information, which may have unduly narrowed the focus on prefrontal dysfunction.
Collapse
|
21
|
Wen T, Mitchell DJ, Duncan J. Response of the multiple-demand network during simple stimulus discriminations. Neuroimage 2018; 177:79-87. [PMID: 29753108 PMCID: PMC6019735 DOI: 10.1016/j.neuroimage.2018.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/24/2018] [Accepted: 05/07/2018] [Indexed: 11/25/2022] Open
Abstract
The multiple-demand (MD) network is sensitive to many aspects of task difficulty, including such factors as rule complexity, memory load, attentional switching and inhibition. Many accounts link MD activity to top-down task control, raising the question of response when performance is limited by the quality of sensory input, and indeed, some prior results suggest little effect of sensory manipulations. Here we examined judgments of motion direction, manipulating difficulty by either motion coherence or salience of irrelevant dots. We manipulated each difficulty type across six levels, from very easy to very hard, and additionally manipulated whether difficulty level was blocked, and thus known in advance, or randomized. Despite the very large manipulations employed, difficulty had little effect on MD activity, especially for the coherence manipulation. Contrasting with these small or absent effects, we observed the usual increase of MD activity with increased rule complexity. We suggest that, for simple sensory discriminations, it may be impossible to compensate for reduced stimulus information by increased top-down control.
Collapse
Affiliation(s)
- Tanya Wen
- Medical Research Council, Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom.
| | - Daniel J Mitchell
- Medical Research Council, Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom.
| | - John Duncan
- Medical Research Council, Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom.
| |
Collapse
|
22
|
Parietal-Occipital Interactions Underlying Control- and Representation-Related Processes in Working Memory for Nonspatial Visual Features. J Neurosci 2018; 38:4357-4366. [PMID: 29636395 DOI: 10.1523/jneurosci.2747-17.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 11/21/2022] Open
Abstract
Although the manipulation of load is popular in visual working memory research, many studies confound general attentional demands with context binding by drawing memoranda from the same stimulus category. In this fMRI study of human observers (both sexes), we created high- versus low-binding conditions, while holding load constant, by comparing trials requiring memory for the direction of motion of one random dot kinematogram (RDK; 1M trials) versus for three RDKs (3M), or versus one RDK and two color patches (1M2C). Memory precision was highest for 1M trials and comparable for 3M and 1M2C trials. And although delay-period activity in occipital cortex did not differ between the three conditions, returning to baseline for all three, multivariate pattern analysis decoding of a remembered RDK from occipital cortex was also highest for 1M trials and comparable for 3M and 1M2C trials. Delay-period activity in intraparietal sulcus (IPS), although elevated for all three conditions, displayed more sensitivity to demands on context binding than to load per se. The 1M-to-3M increase in IPS signal predicted the 1M-to-3M declines in both behavioral and neural estimates of working memory precision. These effects strengthened along a caudal-to-rostral gradient, from IPS0 to IPS5. Context binding-independent load sensitivity was observed when analyses were lateralized and extended into PFC, with trend-level effects evident in left IPS and strong effects in left lateral PFC. These findings illustrate how visual working memory capacity limitations arise from multiple factors that each recruit dissociable brain systems.SIGNIFICANCE STATEMENT Visual working memory capacity predicts performance on a wide array of cognitive and real-world outcomes. At least two theoretically distinct factors are proposed to influence visual working memory capacity limitations: an amodal attentional resource that must be shared across remembered items; and the demands on context binding. We unconfounded these two factors by varying load with items drawn from the same stimulus category ("high demands on context binding") versus items drawn from different stimulus categories ("low demands on context binding"). The results provide evidence for the dissociability, and the neural bases, of these two theorized factors, and they specify that the functions of intraparietal sulcus may relate more strongly to the control of representations than to the general allocation of attention.
Collapse
|
23
|
Pahor A, Jaušovec N. The Effects of Theta and Gamma tACS on Working Memory and Electrophysiology. Front Hum Neurosci 2018; 11:651. [PMID: 29375347 PMCID: PMC5767723 DOI: 10.3389/fnhum.2017.00651] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
A single blind sham-controlled study was conducted to explore the effects of theta and gamma transcranial alternating current stimulation (tACS) on offline performance on working memory tasks. In order to systematically investigate how specific parameters of tACS affect working memory, we manipulated the frequency of stimulation (theta frequency vs. gamma frequency), the type of task (n-back vs. change detection task) and the content of the tasks (verbal vs. figural stimuli). A repeated measures design was used that consisted of three sessions: theta tACS, gamma tACS and sham tACS. In total, four experiments were conducted which differed only with respect to placement of tACS electrodes (bilateral frontal, bilateral parietal, left fronto-parietal and right-fronto parietal). Healthy female students (N = 72) were randomly assigned to one of these groups, hence we were able to assess the efficacy of theta and gamma tACS applied over different brain areas, contrasted against sham stimulation. The pre-post/sham resting electroencephalogram (EEG) analysis showed that theta tACS significantly affected theta amplitude, whereas gamma tACS had no significant effect on EEG amplitude in any of the frequency bands of interest. Gamma tACS did not significantly affect working memory performance compared to sham, and theta tACS led to inconsistent changes in performance on the n-back tasks. Active theta tACS significantly affected P3 amplitude and latency during performance on the n-back tasks in the bilateral parietal and right-fronto parietal protocols.
Collapse
Affiliation(s)
- Anja Pahor
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Norbert Jaušovec
- Department of Psychology, Faculty of Arts, University of Maribor, Maribor, Slovenia
| |
Collapse
|
24
|
Superior Intraparietal Sulcus Controls the Variability of Visual Working Memory Precision. J Neurosci 2017; 36:5623-35. [PMID: 27194340 DOI: 10.1523/jneurosci.1596-15.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 04/14/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Limitations of working memory (WM) capacity depend strongly on the cognitive resources that are available for maintaining WM contents in an activated state. Increasing the number of items to be maintained in WM was shown to reduce the precision of WM and to increase the variability of WM precision over time. Although WM precision was recently associated with neural codes particularly in early sensory cortex, we have so far no understanding of the neural bases underlying the variability of WM precision, and how WM precision is preserved under high load. To fill this gap, we combined human fMRI with computational modeling of behavioral performance in a delayed color-estimation WM task. Behavioral results replicate a reduction of WM precision and an increase of precision variability under high loads (5 > 3 > 1 colors). Load-dependent BOLD signals in primary visual cortex (V1) and superior intraparietal sulcus (IPS), measured during the WM task at 2-4 s after sample onset, were modulated by individual differences in load-related changes in the variability of WM precision. Although stronger load-related BOLD increase in superior IPS was related to lower increases in precision variability, thus stabilizing WM performance, the reverse was observed for V1. Finally, the detrimental effect of load on behavioral precision and precision variability was accompanied by a load-related decline in the accuracy of decoding the memory stimuli (colors) from left superior IPS. We suggest that the superior IPS may contribute to stabilizing visual WM performance by reducing the variability of memory precision in the face of higher load. SIGNIFICANCE STATEMENT This study investigates the neural bases of capacity limitations in visual working memory by combining fMRI with cognitive modeling of behavioral performance, in human participants. It provides evidence that the superior intraparietal sulcus (IPS) is a critical brain region that influences the variability of visual working memory precision between and within individuals (Fougnie et al., 2012; van den Berg et al., 2012) under increased memory load, possibly in cooperation with perceptual systems of the occipital cortex. These findings substantially extend our understanding of the nature of capacity limitations in visual working memory and their neural bases. Our work underlines the importance of integrating cognitive modeling with univariate and multivariate methods in fMRI research, thus improving our knowledge of brain-behavior relationships.
Collapse
|
25
|
Galeano Weber EM, Hahn T, Hilger K, Fiebach CJ. Distributed patterns of occipito-parietal functional connectivity predict the precision of visual working memory. Neuroimage 2017; 146:404-418. [DOI: 10.1016/j.neuroimage.2016.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/15/2016] [Accepted: 10/02/2016] [Indexed: 11/26/2022] Open
|
26
|
Brigadoi S, Cutini S, Meconi F, Castellaro M, Sessa P, Marangon M, Bertoldo A, Jolicœur P, Dell'Acqua R. On the Role of the Inferior Intraparietal Sulcus in Visual Working Memory for Lateralized Single-feature Objects. J Cogn Neurosci 2017; 29:337-351. [DOI: 10.1162/jocn_a_01042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
A consolidated practice in cognitive neuroscience is to explore the properties of human visual working memory through the analysis of electromagnetic signals using cued change detection tasks. Under these conditions, EEG/MEG activity increments in the posterior parietal cortex scaling with the number of memoranda are often reported in the hemisphere contralateral to the objects' position in the memory array. This highly replicable finding clashes with several reported failures to observe compatible hemodynamic activity modulations using fMRI or fNIRS in comparable tasks. Here, we reconcile this apparent discrepancy by acquiring fMRI data on healthy participants and employing a cluster analysis to group voxels in the posterior parietal cortex based on their functional response. The analysis identified two distinct subpopulations of voxels in the intraparietal sulcus (IPS) showing a consistent functional response among participants. One subpopulation, located in the superior IPS, showed a bilateral response to the number of objects coded in visual working memory. A different subpopulation, located in the inferior IPS, showed an increased unilateral response when the objects were displayed contralaterally. The results suggest that a cluster of neurons in the inferior IPS is a candidate source of electromagnetic contralateral responses to working memory load in cued change detection tasks.
Collapse
|
27
|
Dimitriadis SI, Sun Y, Thakor NV, Bezerianos A. Causal Interactions between Frontal(θ) - Parieto-Occipital(α2) Predict Performance on a Mental Arithmetic Task. Front Hum Neurosci 2016; 10:454. [PMID: 27683547 PMCID: PMC5022172 DOI: 10.3389/fnhum.2016.00454] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/26/2016] [Indexed: 12/01/2022] Open
Abstract
Many neuroimaging studies have demonstrated the different functional contributions of spatially distinct brain areas to working memory (WM) subsystems in cognitive tasks that demand both local information processing and interregional coordination. In WM cognitive task paradigms employing electroencephalography (EEG), brain rhythms such as θ and α have been linked to specific functional roles over given brain areas, but their functional coupling has not been extensively studied. Here we analyzed an arithmetic task with five cognitive workload levels (CWLs) and demonstrated functional/effective coupling between the two WM subsystems: the central executive located over frontal (F) brain areas that oscillates on the dominant θ rhythm (Frontalθ/Fθ) and the storage buffer located over parieto-occipital (PO) brain areas that operates on the α2 dominant brain rhythm (Parieto-Occipitalα2/POα2). We focused on important differences between and within WM subsystems in relation to behavioral performance. A repertoire of brain connectivity estimators was employed to elucidate the distinct roles of amplitude, phase within and between frequencies, and the hierarchical role of functionally specialized brain areas related to the task. Specifically, for each CWL, we conducted a) a conventional signal power analysis within both frequency bands at Fθ and POα2, b) the intra- and inter-frequency phase interactions between Fθ and POα2, and c) their causal phase and amplitude relationship. We found no significant statistical difference of signal power or phase interactions between correct and wrong answers. Interestingly, the study of causal interactions between Fθ and POα2 revealed frontal brain region(s) as the leader, while the strength differentiated between correct and wrong responses in every CWL with absolute accuracy. Additionally, zero time-lag between bilateral Fθ and right POa2 could serve as an indicator of mental calculation failure. Overall, our study highlights the significant role of coordinated activity between Fθ and POα2 via their causal interactions and the timing for arithmetic performance.
Collapse
Affiliation(s)
- Stavros I Dimitriadis
- Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of MedicineCardiff, UK; Cardiff University Brain Research Imaging Center, School of Psychology, Cardiff UniversityCardiff, UK; Artificial Intelligence and Information Analysis Laboratory, Department of Informatics, Aristotle University of ThessalonikiThessaloniki, Greece; Neuroinformatics.Group, Department of Informatics, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Yu Sun
- Singapore Institute for Neurotechnology, Centre for Life Sciences, National University of Singapore Singapore, Singapore
| | - Nitish V Thakor
- Singapore Institute for Neurotechnology, Centre for Life Sciences, National University of Singapore Singapore, Singapore
| | - Anastasios Bezerianos
- Singapore Institute for Neurotechnology, Centre for Life Sciences, National University of Singapore Singapore, Singapore
| |
Collapse
|
28
|
Torralbo A, Kelley TA, Rees G, Lavie N. Attention induced neural response trade-off in retinotopic cortex under load. Sci Rep 2016; 6:33041. [PMID: 27625311 PMCID: PMC5021995 DOI: 10.1038/srep33041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/12/2016] [Indexed: 11/30/2022] Open
Abstract
The effects of perceptual load on visual cortex response to distractors are well established and various phenomena of ‘inattentional blindness’ associated with elimination of visual cortex response to unattended distractors, have been documented in tasks of high load. Here we tested an account for these effects in terms of a load-induced trade-off between target and distractor processing in retinotopic visual cortex. Participants were scanned using fMRI while performing a visual-search task and ignoring distractor checkerboards in the periphery. Retinotopic responses to target and distractors were assessed as a function of search load (comparing search set-sizes two, three and five). We found that increased load not only increased activity in frontoparietal network, but also had opposite effects on retinotopic responses to target and distractors. Target-related signals in areas V2–V3 linearly increased, while distractor response linearly decreased, with increased load. Critically, the slopes were equivalent for both load functions, thus demonstrating resource trade-off. Load effects were also found in displays with the same item number in the distractor hemisphere across different set sizes, thus ruling out local intrahemispheric interactions as the cause. Our findings provide new evidence for load theory proposals of attention resource sharing between target and distractor leading to inattentional blindness.
Collapse
Affiliation(s)
- Ana Torralbo
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Todd A Kelley
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Geraint Rees
- Institute of Cognitive Neuroscience, University College London, London, UK.,Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK
| | - Nilli Lavie
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
29
|
Emrich SM, Johnson JS, Sutterer DW, Postle BR. Comparing the Effects of 10-Hz Repetitive TMS on Tasks of Visual STM and Attention. J Cogn Neurosci 2016; 29:286-297. [PMID: 27626224 DOI: 10.1162/jocn_a_01043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Numerous studies have demonstrated that visual STM (VSTM) and attention are tightly linked processes that share a number of neuroanatomical substrates. Here, we used repetitive TMS (rTMS) along with simultaneous EEG to examine the causal relationship between intraparietal sulcus functioning and performance on tasks of attention and VSTM. Participants performed two tasks in which they were required to attend to or remember colored items over a brief interval, with 10-Hz rTMS applied on some of the trials. Although no overall behavioral changes were observed across either task, rTMS did affect individual performance on both the attention and VSTM tasks in a manner that was predicted by individual differences in baseline performance. Furthermore, rTMS also affected ongoing oscillations in the alpha and beta bands, and these changes were related to the observed change in behavioral performance. The results reveal a causal relationship between intraparietal sulcus activity and tasks measuring both visual attention and VSTM.
Collapse
|
30
|
Ambrose JP, Wijeakumar S, Buss AT, Spencer JP. Feature-Based Change Detection Reveals Inconsistent Individual Differences in Visual Working Memory Capacity. Front Syst Neurosci 2016; 10:33. [PMID: 27147986 PMCID: PMC4835449 DOI: 10.3389/fnsys.2016.00033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/29/2016] [Indexed: 11/17/2022] Open
Abstract
Visual working memory (VWM) is a key cognitive system that enables people to hold visual information in mind after a stimulus has been removed and compare past and present to detect changes that have occurred. VWM is severely capacity limited to around 3–4 items, although there are robust individual differences in this limit. Importantly, these individual differences are evident in neural measures of VWM capacity. Here, we capitalized on recent work showing that capacity is lower for more complex stimulus dimension. In particular, we asked whether individual differences in capacity remain consistent if capacity is shifted by a more demanding task, and, further, whether the correspondence between behavioral and neural measures holds across a shift in VWM capacity. Participants completed a change detection (CD) task with simple colors and complex shapes in an fMRI experiment. As expected, capacity was significantly lower for the shape dimension. Moreover, there were robust individual differences in behavioral estimates of VWM capacity across dimensions. Similarly, participants with a stronger BOLD response for color also showed a strong neural response for shape within the lateral occipital cortex, intraparietal sulcus (IPS), and superior IPS. Although there were robust individual differences in the behavioral and neural measures, we found little evidence of systematic brain-behavior correlations across feature dimensions. This suggests that behavioral and neural measures of capacity provide different views onto the processes that underlie VWM and CD. Recent theoretical approaches that attempt to bridge between behavioral and neural measures are well positioned to address these findings in future work.
Collapse
Affiliation(s)
- Joseph P Ambrose
- Department of Applied Mathematics and Computational Sciences, University of Iowa, Iowa City IA, USA
| | | | - Aaron T Buss
- Department of Psychology, University of Tennessee, Knoxville TN, USA
| | - John P Spencer
- School of Psychology, University of East Anglia Norwich, UK
| |
Collapse
|
31
|
Chander BS, Witkowski M, Braun C, Robinson SE, Born J, Cohen LG, Birbaumer N, Soekadar SR. tACS Phase Locking of Frontal Midline Theta Oscillations Disrupts Working Memory Performance. Front Cell Neurosci 2016; 10:120. [PMID: 27199669 PMCID: PMC4858529 DOI: 10.3389/fncel.2016.00120] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/25/2016] [Indexed: 12/26/2022] Open
Abstract
Background: Frontal midline theta (FMT) oscillations (4–8 Hz) are strongly related to cognitive and executive control during mental tasks such as memory processing, arithmetic problem solving or sustained attention. While maintenance of temporal order information during a working memory (WM) task was recently linked to FMT phase, a positive correlation between FMT power, WM demand and WM performance was shown. However, the relationship between these measures is not well understood, and it is unknown whether purposeful FMT phase manipulation during a WM task impacts FMT power and WM performance. Here we present evidence that FMT phase manipulation mediated by transcranial alternating current stimulation (tACS) can block WM demand-related FMT power increase (FMTΔpower) and disrupt normal WM performance. Methods: Twenty healthy volunteers were assigned to one of two groups (group A, group B) and performed a 2-back task across a baseline block (block 1) and an intervention block (block 2) while 275-sensor magnetoencephalography (MEG) was recorded. After no stimulation was applied during block 1, participants in group A received tACS oscillating at their individual FMT frequency over the prefrontal cortex (PFC) while group B received sham stimulation during block 2. After assessing and mapping phase locking values (PLV) between the tACS signal and brain oscillatory activity across the whole brain, FMT power and WM performance were assessed and compared between blocks and groups. Results: During block 2 of group A but not B, FMT oscillations showed increased PLV across task-related cortical areas underneath the frontal tACS electrode. While WM task-related FMTΔpower and WM performance were comparable across groups in block 1, tACS resulted in lower FMTΔpower and WM performance compared to sham stimulation in block 2. Conclusion: tACS-related manipulation of FMT phase can disrupt WM performance and influence WM task-related FMTΔpower. This finding may have important implications for the treatment of brain disorders such as depression and attention deficit disorder associated with abnormal regulation of FMT activity or disorders characterized by dysfunctional coupling of brain activity, e.g., epilepsy, Alzheimer’s or Parkinson’s disease (AD/PD).
Collapse
Affiliation(s)
- Bankim S Chander
- Applied Neurotechnology Lab, Department of Psychiatry and Psychotherapy, University Hospital of Tübingen Tübingen, Germany
| | - Matthias Witkowski
- Applied Neurotechnology Lab, Department of Psychiatry and Psychotherapy, University Hospital of Tübingen Tübingen, Germany
| | - Christoph Braun
- MEG Center, University Hospital of TübingenTübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of TrentoTrento, Italy
| | - Stephen E Robinson
- National Institute of Mental Health (NIMH), MEG Core Facility Bethesda, MD, USA
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Leonardo G Cohen
- National Institute of Neurological Disorders and Stroke (NINDS) Bethesda, MD, USA
| | - Niels Birbaumer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Surjo R Soekadar
- Applied Neurotechnology Lab, Department of Psychiatry and Psychotherapy, University Hospital of TübingenTübingen, Germany; MEG Center, University Hospital of TübingenTübingen, Germany
| |
Collapse
|
32
|
How Do Visual and Parietal Cortex Contribute to Visual Short-Term Memory? eNeuro 2016; 3:eN-COM-0041-16. [PMID: 27294194 PMCID: PMC4901147 DOI: 10.1523/eneuro.0041-16.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 11/27/2022] Open
|
33
|
Lee SH, Baker CI. Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory. Front Syst Neurosci 2016; 10:2. [PMID: 26912997 PMCID: PMC4753308 DOI: 10.3389/fnsys.2016.00002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/08/2016] [Indexed: 01/04/2023] Open
Abstract
The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis (MVPA) that demonstrate decoding of the maintained content in visual cortex, providing support for a “sensory recruitment” model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance.
Collapse
Affiliation(s)
- Sue-Hyun Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST)Daejeon, South Korea; Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of HealthBethesda, MD, USA
| | - Chris I Baker
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
34
|
Mitchell DJ, Cusack R. Semantic and emotional content of imagined representations in human occipitotemporal cortex. Sci Rep 2016; 6:20232. [PMID: 26839123 PMCID: PMC4738308 DOI: 10.1038/srep20232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/29/2015] [Indexed: 11/17/2022] Open
Abstract
Mental imagery is a critical cognitive function, clinically important, but poorly understood. When visual objects are perceived, many of their sensory, semantic and emotional properties are represented in occipitotemporal cortex. Visual imagery has been found to activate some of the same brain regions, but it was not known what properties are re-created in these regions during imagery. We therefore examined the representation during imagery for two stimuli in depth, by comparing the pattern of fMRI response to the patterns evoked by the perception of 200 diverse objects chosen to de-correlate their properties. Real-time, adaptive stimulus selection allowed efficient sampling of this broad stimulus space. Our experiments show that occipitotemporal cortex, which encoded sensory, semantic and emotional properties during perception, can robustly represent semantic and emotional properties during imagery, but that these representations depend on the object being imagined and on individual differences in style and reported vividness of imagery.
Collapse
Affiliation(s)
- Daniel J Mitchell
- MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 7EF, UK
| | - Rhodri Cusack
- MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 7EF, UK.,Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
35
|
Zhang D, Zhao H, Bai W, Tian X. Functional connectivity among multi-channel EEGs when working memory load reaches the capacity. Brain Res 2016; 1631:101-12. [DOI: 10.1016/j.brainres.2015.11.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 10/14/2015] [Accepted: 11/22/2015] [Indexed: 10/22/2022]
|
36
|
Hakun JG, Ravizza SM. Ventral fronto-parietal contributions to the disruption of visual working memory storage. Neuroimage 2016; 124:783-793. [DOI: 10.1016/j.neuroimage.2015.09.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/28/2015] [Accepted: 09/26/2015] [Indexed: 10/23/2022] Open
|
37
|
Killebrew K, Mruczek R, Berryhill ME. Intraparietal regions play a material general role in working memory: Evidence supporting an internal attentional role. Neuropsychologia 2015; 73:12-24. [PMID: 25940098 DOI: 10.1016/j.neuropsychologia.2015.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 10/23/2022]
Abstract
Determining the role of intraparietal sulcus (IPS) regions in working memory (WM) remains a topic of considerable interest and lack of clarity. One group of hypotheses, the internal attention view, proposes that the IPS plays a material general role in maintaining information in WM. An alternative viewpoint, the pure storage account, proposes that the IPS in each hemisphere maintains material specific (e.g., left--phonological; right--visuospatial) information. Yet, adjudication between competing theoretical perspectives is complicated by divergent findings from different methodologies and their use of different paradigms, perhaps most notably between functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). For example, fMRI studies typically use full field stimulus presentations and report bilateral IPS activation, whereas EEG studies direct attention to a single hemifield and report a contralateral bias in both hemispheres. Here, we addressed this question by applying a regions-of-interest fMRI approach to elucidate IPS contributions to WM. Importantly, we manipulated stimulus type (verbal, visuospatial) and the cued hemifield to assess the degree to which IPS activations reflect stimulus specific or stimulus general processing consistent with the pure storage or internal attention hypotheses. These data revealed significant contralateral bias along regions IPS0-5 regardless of stimulus type. Also present was a weaker stimulus-based bias apparent in stronger left lateralized activations for verbal stimuli and stronger right lateralized activations for visuospatial stimuli. However, there was no consistent stimulus-based lateralization of activity. Thus, despite the observation of stimulus-based modulation of spatial lateralization this pattern was bilateral. As such, although it is quantitatively underspecified, our results are overall more consistent with an internal attention view that the IPS plays a material general role in refreshing the contents of WM.
Collapse
Affiliation(s)
| | - Ryan Mruczek
- University of Nevada, Reno, NV 89557, USA; Worcester State University, Worcester, MA 01602, USA
| | | |
Collapse
|
38
|
Abstract
Recent findings suggest the existence of a frontoparietal control system consisting of flexible hubs that regulate distributed systems (e.g., visual, limbic, motor) according to current task goals. A growing number of studies are reporting alterations of this control system across a striking range of mental diseases. We suggest this may reflect a critical role for the control system in promoting and maintaining mental health. Specifically, we propose that this system implements feedback control to regulate symptoms as they arise (e.g., excessive anxiety reduced via regulation of amygdala), such that an intact control system is protective against a variety of mental illnesses. Consistent with this possibility, recent results indicate that several major mental illnesses involve altered brain-wide connectivity of the control system, likely altering its ability to regulate symptoms. These results suggest that this "immune system of the mind" may be an especially important target for future basic and clinical research.
Collapse
Affiliation(s)
- Michael W Cole
- Center for Molecular & Behavioral Neuroscience, Rutgers University, Newark, NJ, USA Psychology Department, Washington University, St. Louis, MO, USA
| | - Grega Repovš
- Department of Psychology, University of Ljubljana, Ljubljana, Slovenia
| | - Alan Anticevic
- Department of Psychiatry, Psychology and the Abraham Ribicoff Research Facilities, Yale University, New Haven, CT, USA
| |
Collapse
|
39
|
Domain-general and domain-specific functional networks in working memory. Neuroimage 2014; 102 Pt 2:646-56. [PMID: 25178986 DOI: 10.1016/j.neuroimage.2014.08.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 07/15/2014] [Accepted: 08/18/2014] [Indexed: 11/24/2022] Open
Abstract
Working memory (WM) is a latent cognitive structure that serves to store and manipulate a limited amount of information over a short time period. How information is maintained in WM remains a debated issue: it is unclear whether stimuli from different sensory domains are maintained under distinct mechanisms or maintained under the same mechanism. Previous neuroimaging research on this issue to date has focused on individual brain regions and has not provided a comprehensive view of the functional networks underlying multi-domain WM. To study the functional networks involved in visual and auditory WM, we applied constrained principal component analysis (CPCA) to a functional magnetic resonance imaging (fMRI) dataset acquired when participants performed a change-detection task requiring them to remember only visual, only auditory, or both visual and auditory stimuli. Analysis revealed evidence of both [1] domain-specific networks responsive to either visual or auditory WM (but not both), and [2] domain-general networks responsive to both visual and auditory WM. The domain-specific networks showed load-dependent activations during only encoding, whereas a domain-general network was sensitive to WM load across encoding, maintenance, and retrieval. The latter domain-general network likely reflected attentional processes involved in WM encoding, retrieval, and possibly maintenance as well. These results do not support the domain-specific account of WM maintenance but instead favor the domain-general theory that items from different sensory domains are maintained under the same mechanism.
Collapse
|
40
|
Lobier MA, Peyrin C, Pichat C, Le Bas JF, Valdois S. Visual processing of multiple elements in the dyslexic brain: evidence for a superior parietal dysfunction. Front Hum Neurosci 2014; 8:479. [PMID: 25071509 PMCID: PMC4083222 DOI: 10.3389/fnhum.2014.00479] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 06/13/2014] [Indexed: 11/13/2022] Open
Abstract
The visual attention (VA) span deficit hypothesis of developmental dyslexia posits that impaired multiple element processing can be responsible for poor reading outcomes. In VA span impaired dyslexic children, poor performance on letter report tasks is associated with reduced parietal activations for multiple letter processing. While this hints towards a non-specific, attention-based dysfunction, it is still unclear whether reduced parietal activity generalizes to other types of stimuli. Furthermore, putative links between reduced parietal activity and reduced ventral occipito-temporal (vOT) in dyslexia have yet to be explored. Using functional magnetic resonance imaging, we measured brain activity in 12 VA span impaired dyslexic adults and 12 adult skilled readers while they carried out a categorization task on single or multiple alphanumeric or non-alphanumeric characters. While healthy readers activated parietal areas more strongly for multiple than single element processing (right-sided for alphanumeric and bilateral for non-alphanumeric), similar stronger multiple element right parietal activations were absent for dyslexic participants. Contrasts between skilled and dyslexic readers revealed significantly reduced right superior parietal lobule (SPL) activity for dyslexic readers regardless of stimuli type. Using a priori anatomically defined regions of interest, we showed that neural activity was reduced for dyslexic participants in both SPL and vOT bilaterally. Finally, we used multiple regressions to test whether SPL activity was related to vOT activity in each group. In the left hemisphere, SPL activity covaried with vOT activity for both normal and dyslexic readers. In contrast, in the right hemisphere, SPL activity covaried with vOT activity only for dyslexic readers. These results bring critical support to the VA interpretation of the VA Span deficit. In addition, they offer a new insight on how deficits in automatic vOT based word recognition could arise in developmental dyslexia.
Collapse
Affiliation(s)
- Muriel A Lobier
- Laboratoire de Psychologie et NeuroCognition, Université Grenoble Alpes Grenoble, France ; Neuroscience Center, University of Helsinki Helsinki, Finland
| | - Carole Peyrin
- Laboratoire de Psychologie et NeuroCognition, Université Grenoble Alpes Grenoble, France ; CNRS, Laboratoire de Psychologie et NeuroCognition UMR5105, Grenoble, France
| | - Cédric Pichat
- Laboratoire de Psychologie et NeuroCognition, Université Grenoble Alpes Grenoble, France ; CNRS, Laboratoire de Psychologie et NeuroCognition UMR5105, Grenoble, France
| | - Jean-François Le Bas
- INSERM U836/Université Joseph Fourier - Institut des Neurosciences Grenoble, France
| | - Sylviane Valdois
- Laboratoire de Psychologie et NeuroCognition, Université Grenoble Alpes Grenoble, France ; CNRS, Laboratoire de Psychologie et NeuroCognition UMR5105, Grenoble, France
| |
Collapse
|
41
|
Ishii R, Canuet L, Ishihara T, Aoki Y, Ikeda S, Hata M, Katsimichas T, Gunji A, Takahashi H, Nakahachi T, Iwase M, Takeda M. Frontal midline theta rhythm and gamma power changes during focused attention on mental calculation: an MEG beamformer analysis. Front Hum Neurosci 2014; 8:406. [PMID: 24966825 PMCID: PMC4052629 DOI: 10.3389/fnhum.2014.00406] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/21/2014] [Indexed: 11/13/2022] Open
Abstract
Frontal midline theta rhythm (Fmθ) appears widely distributed over medial prefrontal areas in EEG recordings, indicating focused attention. Although mental calculation is often used as an attention-demanding task, little has been reported on calculation-related activation in Fmθ experiments. In this study we used spatially filtered MEG and permutation analysis to precisely localize cortical generators of the magnetic counterpart of Fmθ, as well as other sources of oscillatory activity associated with mental calculation processing (i.e., arithmetic subtraction). Our results confirmed and extended earlier EEG/MEG studies indicating that Fmθ during mental calculation is generated in the dorsal anterior cingulate and adjacent medial prefrontal cortex. Mental subtraction was also associated with gamma event-related synchronization, as an index of activation, in right parietal regions subserving basic numerical processing and number-based spatial attention. Gamma event-related desynchronization appeared in the right lateral prefrontal cortex, likely representing a mechanism to interrupt neural activity that can interfere with the ongoing cognitive task.
Collapse
Affiliation(s)
- Ryouhei Ishii
- Department of Psychiatry, Osaka University Graduate School of Medicine Suita, Japan
| | - Leonides Canuet
- Department of Cognitive and Computational Neuroscience, Centre for Biomedical Technology, Complutense University of Madrid, UPM Madrid, Spain
| | - Tsutomu Ishihara
- Department of Psychiatry, Osaka University Graduate School of Medicine Suita, Japan
| | - Yasunori Aoki
- Department of Psychiatry, Osaka University Graduate School of Medicine Suita, Japan
| | - Shunichiro Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine Suita, Japan ; Osaka Psychiatric Medical Center Hirakata, Japan
| | - Masahiro Hata
- Department of Psychiatry, Osaka University Graduate School of Medicine Suita, Japan
| | | | - Atsuko Gunji
- Faculty of Education and Human Sciences, Course of School Education, Yokohama National University Yokohama, Japan
| | - Hidetoshi Takahashi
- Department of Child and Adolescent Mental Health, National Center for Neurology and Psychiatry, National Institute of Mental Health Kodaira, Japan
| | - Takayuki Nakahachi
- Department of Child and Adolescent Mental Health, National Center for Neurology and Psychiatry, National Institute of Mental Health Kodaira, Japan
| | - Masao Iwase
- Department of Psychiatry, Osaka University Graduate School of Medicine Suita, Japan
| | - Masatoshi Takeda
- Department of Psychiatry, Osaka University Graduate School of Medicine Suita, Japan
| |
Collapse
|
42
|
Rahm B, Kaiser J, Unterrainer JM, Simon J, Bledowski C. fMRI characterization of visual working memory recognition. Neuroimage 2014; 90:413-22. [DOI: 10.1016/j.neuroimage.2013.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/06/2013] [Accepted: 12/11/2013] [Indexed: 11/25/2022] Open
|
43
|
de Haan B, Bither M, Brauer A, Karnath HO. Neural Correlates of Spatial Attention and Target Detection in a Multi-Target Environment. Cereb Cortex 2014; 25:2321-31. [PMID: 24642422 DOI: 10.1093/cercor/bhu046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our ability to attend and respond in a multi-target environment is an essential and distinct human skill, as is dramatically demonstrated in stroke patients suffering from extinction. We performed a functional magnetic resonance imaging study to determine the neural anatomy associated with attending and responding to simultaneously presented targets. In healthy subjects, we tested the hypothesis that the right intraparietal sulcus (IPS) is associated both with the top-down direction of attention to multiple target locations and the bottom-up detection of multiple targets, whereas the temporo-parietal junction (TPJ) is predominantly associated with the bottom-up detection of multiple targets. We used a cued target detection task with a high proportion of catch trials to separately estimate top-down cue-related and bottom-up target-related neural activity. Both cues and targets could be presented unilaterally or bilaterally. We found no evidence of target-related neural activation specific to bilateral situations in the TPJ, but observed both cue-related and target-related neural activation specific to bilateral situations in the right IPS and target-related neural activity specific to bilateral situations in the right inferior frontal gyrus (IFG). We conclude that the IPS and the IFG of the right hemisphere underlie our ability to attend and respond in a multi-target environment.
Collapse
Affiliation(s)
- Bianca de Haan
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Maria Bither
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anne Brauer
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hans-Otto Karnath
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany Department of Psychology, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
44
|
Ester EF, Fukuda K, May LM, Vogel EK, Awh E. Evidence for a fixed capacity limit in attending multiple locations. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2014; 14:62-77. [PMID: 24217849 PMCID: PMC3972270 DOI: 10.3758/s13415-013-0222-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A classic question concerns whether humans can attend multiple locations or objects at once. Although it is generally agreed that the answer to this question is "yes," the limits on this ability are subject to extensive debate. According to one view, attentional resources can be flexibly allocated to a variable number of locations, with an inverse relationship between the number of selected locations and the quality of information processing at each location. Alternatively, these resources might be quantized in a "discrete" fashion that enables concurrent access to a small number of locations. Here, we report a series of experiments comparing these alternatives. In each experiment, we cued participants to attend a variable number of spatial locations and asked them to report the orientation of a single, briefly presented target. In all experiments, participants' orientation report errors were well-described by a model that assumes a fixed upper limit in the number of locations that can be attended. Conversely, report errors were poorly described by a flexible-resource model that assumes no fixed limit on the number of locations that can be attended. Critically, we showed that these discrete limits were predicted by cue-evoked neural activity elicited before the onset of the target array, suggesting that performance was limited by selection processes that began prior to subsequent encoding and memory storage. Together, these findings constitute novel evidence supporting the hypothesis that human observers can attend only a small number of discrete locations at an instant.
Collapse
Affiliation(s)
- Edward F Ester
- Department of Psychology, University of California San Diego, La Jolla, CA, USA,
| | | | | | | | | |
Collapse
|
45
|
Ihssen N, Linden DEJ, Miller CE, Shapiro KL. Neural Mechanisms Underlying Visual Short-Term Memory Gain for Temporally Distinct Objects. Cereb Cortex 2014; 25:2149-59. [DOI: 10.1093/cercor/bhu021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
46
|
Buss AT, Fox N, Boas DA, Spencer JP. Probing the early development of visual working memory capacity with functional near-infrared spectroscopy. Neuroimage 2014; 85 Pt 1:314-25. [PMID: 23707803 PMCID: PMC3859697 DOI: 10.1016/j.neuroimage.2013.05.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/01/2013] [Accepted: 05/04/2013] [Indexed: 12/21/2022] Open
Abstract
Visual working memory (VWM) is a core cognitive system with a highly limited capacity. The present study is the first to examine VWM capacity limits in early development using functional neuroimaging. We recorded optical neuroimaging data while 3- and 4-year-olds completed a change detection task where they detected changes in the shapes of objects after a brief delay. Near-infrared sources and detectors were placed over the following 10-20 positions: F3 and F5 in left frontal cortex, F4 and F6 in right frontal cortex, P3 and P5 in left parietal cortex, and P4 and P6 in right parietal cortex. The first question was whether we would see robust task-specific activation of the frontal-parietal network identified in the adult fMRI literature. This was indeed the case: three left frontal channels and 11 of 12 parietal channels showed a statistically robust difference between the concentration of oxygenated and deoxygenated hemoglobin following the presentation of the sample array. Moreover, four channels in the left hemisphere near P3, P5, and F5 showed a robust increase as the working memory load increased from 1 to 3 items. Notably, the hemodynamic response did not asymptote at 1-2 items as expected from previous fMRI studies with adults. Finally, 4-year-olds showed a more robust parietal response relative to 3-year-olds, and an increasing sensitivity to the memory load manipulation. These results demonstrate that fNIRS is an effective tool to study the neural processes that underlie the early development of VWM capacity.
Collapse
Affiliation(s)
- Aaron T. Buss
- Department of Psychology and Delta Center, University of Iowa
| | - Nicholas Fox
- Department of Psychology and Delta Center, University of Iowa
| | - David A. Boas
- Massachusetts General Hospital and Harvard Medical School
| | - John P. Spencer
- Department of Psychology and Delta Center, University of Iowa
| |
Collapse
|
47
|
Ziegler G, Dahnke R, Winkler A, Gaser C. Partial least squares correlation of multivariate cognitive abilities and local brain structure in children and adolescents. Neuroimage 2013; 82:284-94. [DOI: 10.1016/j.neuroimage.2013.05.088] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/02/2013] [Accepted: 05/21/2013] [Indexed: 11/25/2022] Open
|
48
|
Spencer JP, Buss AT. The Emerging Executive: Using Dynamic Neural Fields to Understand the Development of Cognitive Control. MINNESOTA SYMPOSIA ON CHILD PSYCHOLOGY 2013. [DOI: 10.1002/9781118732373.ch4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Burke MR, Barnes GR. In pursuit of delay-related brain activity for anticipatory eye movements. PLoS One 2013; 8:e73326. [PMID: 24039911 PMCID: PMC3767777 DOI: 10.1371/journal.pone.0073326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/29/2013] [Indexed: 12/04/2022] Open
Abstract
How the brain stores motion information and subsequently uses it to follow a moving target is largely unknown. This is mainly due to previous fMRI studies using paradigms in which the eye movements cannot be segregated from the storage of this motion information. To avoid this problem we used a novel paradigm designed in our lab in which we interlaced a delay (2, 4 or 6 seconds) between the 1st and 2nd presentation of a moving stimulus. Using this design we could examine brain activity during a delay period using fMRI and have subsequently found a number of brain areas that reveal sustained activity during predictive pursuit. These areas include, the V5 complex and superior parietal lobe. This study provides new evidence for the network involved in the storage of visual information to generate early motor responses in pursuit.
Collapse
Affiliation(s)
- Melanie R. Burke
- Institute of Psychological Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
- * E-mail:
| | - Graham R. Barnes
- Faculty of Life Sciences, University of Manchester, Manchester, Lancashire, United Kingdom
| |
Collapse
|
50
|
Bourke P, Brown S, Ngan E, Liotti M. Functional brain organization of preparatory attentional control in visual search. Brain Res 2013; 1530:32-43. [PMID: 23892109 DOI: 10.1016/j.brainres.2013.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 11/27/2022]
Abstract
Looking for an object that may be present in a cluttered visual display requires an advanced specification of that object to be created and then matched against the incoming visual input. Here, fast event-related fMRI was used to identify the brain networks that are active when preparing to search for a visual target. By isolating the preparation phase of the task it has been possible to show that for an identical stimulus, different patterns of cortical activation occur depending on whether participants anticipate a 'feature' or a 'conjunction' search task. When anticipating a conjunction search task, there was more robust activation in ventral occipital areas, new activity in the transverse occipital sulci and right posterior intraparietal sulcus. In addition, preparing for either type of search activated ventral striatum and lateral cerebellum. These results suggest that when participants anticipate a demanding search task, they develop a different advanced representation of a visually identical target stimulus compared to when they anticipate a nondemanding search.
Collapse
Affiliation(s)
- Patrick Bourke
- Department of Psychology, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, United Kingdom.
| | | | | | | |
Collapse
|