1
|
McCann SJH. State Resident Handedness, Ideology, and Political Party Preference: U.S. Presidential Election Outcomes Over the Past 60 Years. Psychol Rep 2024:332941241227521. [PMID: 38214567 DOI: 10.1177/00332941241227521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Pearson correlation, partial correlation, and multiple regression strategies determined the degree to which estimates of the level of left-handedness in each of the 48 contiguous American states related to citizen political ideology and to Democratic-Republican presidential popular vote over the past 60 years. Higher state levels of left-handedness were associated significantly with liberal ideology in each of the presidential election years from 1964 to 2016. Comparable ideology data were not available for 2020. Higher state levels of left-handedness also were associated with a greater degree of Democratic candidate popular vote support in each of the presidential election years from 1964 to 2020 except for 1976. The mean size of these 28 significant Pearson correlations involving the two political criteria was .62 (SD = .12) with a range of .38-.80, indicating handedness alone could account for a mean of 40.1% (SD = 14.9) of the variance in the two political preference variables. Corresponding multiple regressions showed that when state-level Big Five personality, White population percent, urbanization, and income variables were given the opportunity to enter the equations, handedness still emerged with a significant regression coefficient in 26 of the 28 equations. The two exceptions occurred for 1968 with either political preference criterion. It is speculated that such relations are grounded in hypothesized but poorly understood genetic links between handedness, personality, and political beliefs and attitudes, and, that a foundational genetic predisposition to left-handedness in a population may have much greater impact on correlates than overt levels of left-handedness.
Collapse
|
2
|
Morita T, Takemura H, Naito E. Functional and Structural Properties of Interhemispheric Interaction between Bilateral Precentral Hand Motor Regions in a Top Wheelchair Racing Paralympian. Brain Sci 2023; 13:brainsci13050715. [PMID: 37239187 DOI: 10.3390/brainsci13050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Long-term motor training can cause functional and structural changes in the human brain. Assessing how the training of specific movements affects specific parts of the neural circuitry is essential to understand better the underlying mechanisms of motor training-induced plasticity in the human brain. We report a single-case neuroimaging study that investigated functional and structural properties in a professional athlete of wheelchair racing. As wheelchair racing requires bilateral synchronization of upper limb movements, we hypothesized that functional and structural properties of interhemispheric interactions in the central motor system might differ between the professional athlete and controls. Functional and diffusion magnetic resonance imaging (fMRI and dMRI) data were obtained from a top Paralympian (P1) in wheelchair racing. With 23 years of wheelchair racing training starting at age eight, she holds an exceptional competitive record. Furthermore, fMRI and dMRI data were collected from three other paraplegic participants (P2-P4) with long-term wheelchair sports training other than wheelchair racing and 37 able-bodied control volunteers. Based on the fMRI data analyses, P1 showed activation in the bilateral precentral hand sections and greater functional connectivity between these sections during a right-hand unimanual task. In contrast, other paraplegic participants and controls showed activation in the contralateral hemisphere and deactivation in the ipsilateral hemisphere. Moreover, dMRI data analysis revealed that P1 exhibited significantly lower mean diffusivity along the transcallosal pathway connecting the bilateral precentral motor regions than control participants, which was not observed in the other paraplegic participants. These results suggest that long-term training with bilaterally synchronized upper-limb movements may promote bilateral recruitment of the precentral hand sections. Such recruitment may affect the structural circuitry involved in the interhemispheric interaction between the bilateral precentral regions. This study provides valuable evidence of the extreme adaptability of the human brain.
Collapse
Affiliation(s)
- Tomoyo Morita
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita 565-0871, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita 565-0871, Osaka, Japan
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Aichi, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Shonan Village, Hayama 240-0193, Kanagawa, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita 565-0871, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
3
|
Shimizu Y, Tanikawa M, Horiba M, Sahashi K, Kawashima S, Kandori A, Yamanaka T, Nishikawa Y, Matsukawa N, Ueki Y, Mase M. Clinical utility of paced finger tapping assessment in idiopathic normal pressure hydrocephalus. Front Hum Neurosci 2023; 17:1109670. [PMID: 36908708 PMCID: PMC9996087 DOI: 10.3389/fnhum.2023.1109670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Background The Finger Tapping (F-T) test is useful for assessing motor function of the upper limbs in patients with idiopathic normal pressure hydrocephalus (iNPH). However, quantitative evaluation of F-T for iNPH has not yet been established. The purpose of this study was to investigate the usefulness of the quantitative F-T test and optimal measurement conditions as a motor evaluation and screening test for iNPH. Methods Sixteen age-matched healthy controls (mean age 73 ± 5 years; 7/16 male) and fifteen participants with a diagnosis of definitive iNPH (mean age 76 ± 5 years; 8/15 male) completed the study (mean ± standard deviation). F-T performance of the index finger and thumb was quantified using a magnetic sensing device. The performance of repetitive F-T by participants was recorded in both not timing-regulated and timing-regulated conditions. The mean value of the maximum amplitude of F-T was defined as M-Amplitude, and the mean value of the maximum velocity of closure of F-T was defined as cl-Velocity. Results Finger Tapping in the iNPH group, with or without timing control, showed a decrease in M-Amplitude and cl-Velocity compared to the control group. We found the only paced F-T with 2.0 Hz auditory stimuli was found to improve both M-Amplitude and cl-Velocity after shunt surgery. Conclusion The quantitative assessment of F-T with auditory stimuli at the rate of 2.0 Hz may be a useful and potentially supplemental screening method for motor assessment in patients with iNPH.
Collapse
Affiliation(s)
- Yoko Shimizu
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Motoki Tanikawa
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuya Horiba
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kento Sahashi
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shoji Kawashima
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akihiko Kandori
- Hitachi, Ltd., Research and Development Group, Center for Exploratory Research, Tokyo, Japan
| | - Tomoyasu Yamanaka
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yusuke Nishikawa
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Noriyuki Matsukawa
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshino Ueki
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuhito Mase
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
4
|
Grant JH, Parker AJ, Hodgson JC, Hudson JM, Bishop DVM. Testing the relationship between lateralization on sequence-based motor tasks and language laterality using an online battery. Laterality 2023; 28:1-31. [PMID: 36205529 DOI: 10.1080/1357650x.2022.2129668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
ABSTRACTStudies have highlighted an association between motor laterality and speech production laterality. It is thought that common demands for sequential processing may underlie this association. However, most studies in this area have relied on relatively small samples and have infrequently explored the reliability of the tools used to assess lateralization. We, therefore, established the validity and reliability of an online battery measuring sequence-based motor laterality and language laterality before exploring the associations between laterality indices on language and motor tasks. The online battery was completed by 621 participants, 52 of whom returned to complete the battery a second time. The three motor tasks included in the battery showed good between-session reliability (r ≥ .78) and were lateralized in concordance with hand preference. The novel measure of speech production laterality was left lateralized at population level as predicted, but reliability was less satisfactory (r = .62). We found no evidence of an association between sequence-based motor laterality and language laterality. Those with a left-hand preference were more strongly lateralized on motor tasks requiring midline crossing; this effect was not observed in right-handers. We conclude that there is little evidence of the co-lateralization of language and sequence-based motor skill on this battery.
Collapse
Affiliation(s)
- Jack H Grant
- School of Psychology, University of Lincoln, Lincoln, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Adam J Parker
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | | | - John M Hudson
- School of Psychology, University of Lincoln, Lincoln, UK
| | | |
Collapse
|
5
|
Uehara K, Togo H, Hanakawa T. Precise motor rhythmicity relies on motor network responsivity. Cereb Cortex 2022; 33:4432-4447. [PMID: 36218995 DOI: 10.1093/cercor/bhac353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/14/2022] Open
Abstract
Rhythmic movements are the building blocks of human behavior. However, given that rhythmic movements are achieved through complex interactions between neural modules, it remains difficult to clarify how the central nervous system controls motor rhythmicity. Here, using a novel tempo-precision trade-off paradigm, we first modeled interindividual behavioral differences in tempo-dependent rhythmicity for various external tempi. We identified 2 behavioral extremes: conventional and paradoxical tempo-precision trade-off types. We then explored the neural substrates of these behavioral differences using task and resting-state functional magnetic resonance imaging. We found that the responsibility of interhemispheric motor network connectivity to tempi was a key to the behavioral repertoire. In the paradoxical trade-off type, interhemispheric connectivity was low at baseline but increased in response to increasing tempo; in the conventional trade-off type, strong baseline connectivity was coupled with low responsivity. These findings suggest that tunable interhemispheric connectivity underlies tempo-dependent rhythmicity control.
Collapse
Affiliation(s)
- Kazumasa Uehara
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan.,Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi 4448585, Japan.,Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 4448585, Japan
| | - Hiroki Togo
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan.,Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto 6068501, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan.,Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto 6068501, Japan
| |
Collapse
|
6
|
Kasahara K, DaSalla CS, Honda M, Hanakawa T. Basal ganglia-cortical connectivity underlies self-regulation of brain oscillations in humans. Commun Biol 2022; 5:712. [PMID: 35842523 PMCID: PMC9288463 DOI: 10.1038/s42003-022-03665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Brain-computer interfaces provide an artificial link by which the brain can directly interact with the environment. To achieve fine brain-computer interface control, participants must modulate the patterns of the cortical oscillations generated from the motor and somatosensory cortices. However, it remains unclear how humans regulate cortical oscillations, the controllability of which substantially varies across individuals. Here, we performed simultaneous electroencephalography (to assess brain-computer interface control) and functional magnetic resonance imaging (to measure brain activity) in healthy participants. Self-regulation of cortical oscillations induced activity in the basal ganglia-cortical network and the neurofeedback control network. Successful self-regulation correlated with striatal activity in the basal ganglia-cortical network, through which patterns of cortical oscillations were likely modulated. Moreover, basal ganglia-cortical network and neurofeedback control network connectivity correlated with strong and weak self-regulation, respectively. The findings indicate that the basal ganglia-cortical network is important for self-regulation, the understanding of which should help advance brain-computer interface technology. Simultaneous fMRI-EEG in 26 healthy participants indicate that the basal ganglia cortical network and the neurofeedback control network play different roles in self-regulation, providing further insight into the neural correlates for brain-machine interface control and feedback.
Collapse
Affiliation(s)
- Kazumi Kasahara
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan.,Department of Functional Brain Research, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan.,Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8566, Japan
| | - Charles S DaSalla
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan.,Department of Functional Brain Research, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Manabu Honda
- Department of Functional Brain Research, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan. .,Department of Functional Brain Research, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan. .,Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan.
| |
Collapse
|
7
|
Takasawa E, Abe M, Chikuda H, Hanakawa T. A computational model based on corticospinal functional MRI revealed asymmetrically organized motor corticospinal networks in humans. Commun Biol 2022; 5:664. [PMID: 35790815 PMCID: PMC9256686 DOI: 10.1038/s42003-022-03615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Evolution of the direct, monosynaptic connection from the primary motor cortex to the spinal cord parallels acquisition of hand dexterity and lateralization of hand preference. In non-human mammals, the indirect, multi-synaptic connections between the bilateral primary motor cortices and the spinal cord also participates in controlling dexterous hand movement. However, it remains unknown how the direct and indirect corticospinal pathways work in concert to control unilateral hand movement with lateralized preference in humans. Here we demonstrated the asymmetric functional organization of the two corticospinal networks, by combining network modelling and simultaneous functional magnetic resonance imaging techniques of the brain and the spinal cord. Moreover, we also found that the degree of the involvement of the two corticospinal networks paralleled lateralization of hand preference. The present results pointed to the functionally lateralized motor nervous system that underlies the behavioral asymmetry of handedness in humans. MRI and network modelling reveal correlation between the degree of involvement of the two corticospinal networks and the lateralization of handedness in humans.
Collapse
Affiliation(s)
- Eiji Takasawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Mitsunari Abe
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Hirotaka Chikuda
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan. .,Department of Integrated Neuroanatomy & Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
8
|
Naito E, Morita T, Hirose S, Kimura N, Okamoto H, Kamimukai C, Asada M. Bimanual digit training improves right-hand dexterity in older adults by reactivating declined ipsilateral motor-cortical inhibition. Sci Rep 2021; 11:22696. [PMID: 34811433 PMCID: PMC8608823 DOI: 10.1038/s41598-021-02173-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Improving deteriorated sensorimotor functions in older individuals is a social necessity in a super-aging society. Previous studies suggested that the declined interhemispheric sensorimotor inhibition observed in older adults is associated with their deteriorated hand/finger dexterity. Here, we examined whether bimanual digit exercises, which can train the interhemispheric inhibitory system, improve deteriorated hand/finger dexterity in older adults. Forty-eight healthy, right-handed, older adults (65–78 years old) were divided into two groups, i.e., the bimanual (BM) digit training and right-hand (RH) training groups, and intensive daily training was performed for 2 months. Before and after the training, we evaluated individual right hand/finger dexterity using a peg task, and the individual state of interhemispheric sensorimotor inhibition by analyzing ipsilateral sensorimotor deactivation via functional magnetic resonance imaging when participants experienced a kinesthetic illusory movement of the right-hand without performing any motor tasks. Before training, the degree of reduction/loss of ipsilateral motor-cortical deactivation was associated with dexterity deterioration. After training, the dexterity improved only in the BM group, and the dexterity improvement was correlated with reduction in ipsilateral motor-cortical activity. The capability of the brain to inhibit ipsilateral motor-cortical activity during a simple right-hand sensory-motor task is tightly related to right-hand dexterity in older adults.
Collapse
Affiliation(s)
- Eiichi Naito
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tomoyo Morita
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Hirose
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Otemon Gakuin University, Faculty of Psychology, 2-1-15, Nishiai, Ibaraki, Osaka, Japan
| | - Nodoka Kimura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hideya Okamoto
- Element Technology Research & Development Section, Global Research & Development Department, , Mizuno Corporation, 1-12-35 Nanko-kita, Suminoe-ku, Osaka, Osaka, 559-8510, Japan
| | - Chikako Kamimukai
- Element Technology Research & Development Section, Global Research & Development Department, , Mizuno Corporation, 1-12-35 Nanko-kita, Suminoe-ku, Osaka, Osaka, 559-8510, Japan
| | - Minoru Asada
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,International Professional University of Technology in Osaka, 3-3-1 Umeda, Kita-ku, Osaka, 530-0001, Japan
| |
Collapse
|
9
|
Existence of Interhemispheric Inhibition between Foot Sections of Human Primary Motor Cortices: Evidence from Negative Blood Oxygenation-Level Dependent Signal. Brain Sci 2021; 11:brainsci11081099. [PMID: 34439718 PMCID: PMC8393214 DOI: 10.3390/brainsci11081099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
Interhemispheric inhibition (IHI) between the left and right primary motor cortices (M1) plays an important role when people perform an isolated unilateral limb movement. Moreover, negative blood oxygenation-level dependent signal (deactivation) obtained from the M1 ipsilateral to the limb could be a surrogate IHI marker. Studies have reported deactivation in the hand section of the ipsilateral M1 during simple unilateral hand movement. However, deactivation in the foot section during unilateral foot movement has not been reported. Therefore, IHI between the foot sections of the bilateral M1s has been considered very weak or absent. Thirty-seven healthy adults performed active control of the right foot and also passively received vibration to the tendon of the tibialis anterior muscle of the right foot, which activates the foot section of the contralateral M1, with brain activity being examined through functional magnetic resonance imaging. The vibration and active tasks significantly and non-significantly, respectively, deactivated the foot section of the ipsilateral M1, with a corresponding 86% and 60% of the participants showing decreased activity. Thus, there could be IHI between the foot sections of the bilateral M1s. Further, our findings demonstrate between-task differences and similarities in cross-somatotopic deactivation.
Collapse
|
10
|
Wei HT, Francois-Nienaber A, Deschamps T, Bellana B, Hebscher M, Sivaratnam G, Zadeh M, Meltzer JA. Sensitivity of amplitude and phase based MEG measures of interhemispheric connectivity during unilateral finger movements. Neuroimage 2021; 242:118457. [PMID: 34363959 DOI: 10.1016/j.neuroimage.2021.118457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/03/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Interactions between different brain regions can be revealed by dependencies between their neuronal oscillations. We examined the sensitivity of different oscillatory connectivity measures in revealing interhemispheric interactions between primary motor cortices (M1s) during unilateral finger movements. Based on frequency, amplitude, and phase of the oscillations, a number of metrics have been developed to measure connectivity between brain regions, and each metric has its own strengths, weaknesses, and pitfalls. Taking advantage of the well-known movement-related modulations of oscillatory amplitude in M1s, this study compared and contrasted a number of leading connectivity metrics during distinct phases of oscillatory power changes. Between M1s during unilateral movements, we found that phase-based metrics were effective at revealing connectivity during the beta (15-35 Hz) rebound period linked to movement termination, but not during the early period of beta desynchronization occurring during the movement itself. Amplitude correlation metrics revealed robust connectivity during both periods. Techniques for estimating the direction of connectivity had limited success. Granger Causality was not well suited to studying these connections because it was strongly confounded by differences in signal-to-noise ratio linked to modulation of beta amplitude occurring during the task. Phase slope index was suggestive but not conclusive of a unidirectional influence between motor cortices during the beta rebound. Our findings suggest that a combination of amplitude and phase-based metrics is likely required to fully characterize connectivity during task protocols that involve modulation of oscillatory power, and that amplitude-based metrics appear to be more sensitive despite the lack of directional information.
Collapse
Affiliation(s)
- Hsi T Wei
- Department of Psychology, University of Toronto, Canada; Rotman Research Institute, Baycrest Hospital, Canada.
| | | | | | - Buddhika Bellana
- Rotman Research Institute, Baycrest Hospital, Canada; Department of Psychological and Brain Sciences, Johns Hopkins University, United States
| | - Melissa Hebscher
- Rotman Research Institute, Baycrest Hospital, Canada; Feinberg School of Medicine, Northwestern University, United States
| | | | - Maryam Zadeh
- Rotman Research Institute, Baycrest Hospital, Canada
| | - Jed A Meltzer
- Department of Psychology, University of Toronto, Canada; Rotman Research Institute, Baycrest Hospital, Canada; Department of Speech-Language Pathology, University of Toronto, Canada
| |
Collapse
|
11
|
Naito E, Morita T, Asada M. Importance of the Primary Motor Cortex in Development of Human Hand/Finger Dexterity. Cereb Cortex Commun 2021; 1:tgaa085. [PMID: 34296141 PMCID: PMC8152843 DOI: 10.1093/texcom/tgaa085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/02/2020] [Indexed: 11/18/2022] Open
Abstract
Hand/finger dexterity is well-developed in humans, and the primary motor cortex (M1) is believed to play a particularly important role in it. Here, we show that efficient recruitment of the contralateral M1 and neuronal inhibition of the ipsilateral M1 identified by simple hand motor and proprioceptive tasks are related to hand/finger dexterity and its ontogenetic development. We recruited healthy, right-handed children (n = 21, aged 8–11 years) and adults (n = 23, aged 20–26 years) and measured their brain activity using functional magnetic resonance imaging during active and passive right-hand extension–flexion tasks. We calculated individual active control-related activity (active–passive) to evaluate efficient brain activity recruitment and individual task-related deactivation (neuronal inhibition) during both tasks. Outside the scanner, participants performed 2 right-hand dexterous motor tasks, and we calculated the hand/finger dexterity index (HDI) based on their individual performance. Participants with a higher HDI exhibited less active control-related activity in the contralateral M1 defined by the active and passive tasks, independent of age. Only children with a higher HDI exhibited greater ipsilateral M1 deactivation identified by these tasks. The results imply that hand/finger dexterity can be predicted by recruitment and inhibition styles of the M1 during simple hand sensory–motor tasks.
Collapse
Affiliation(s)
- Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| | - Tomoyo Morita
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| | - Minoru Asada
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Ishibashi K, Ishii D, Yamamoto S, Okamoto Y, Wakatabi M, Kohno Y. Asymmetry of Interhemispheric Connectivity during Rapid Movements of Right and Left Hands: A TMS-EEG Study. J Mot Behav 2021; 54:135-145. [PMID: 34180775 DOI: 10.1080/00222895.2021.1930993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The interhemispheric signal propagation (ISP) obtained by electroencephalography during transcranial magnetic stimulation (TMS) allows for the assessment of the interhemispheric connectivity involved in inhibitory processes. To investigate the functional asymmetry of hemispheres during rapid movement, we compared ISP in the left and right hemispheres during rapid hand movements. In 11 healthy right-handed adults, we delivered TMS to the M1 and recorded ISP from the M1 to the contralateral hemisphere. We found that ISP from the left to right hemisphere during right-hand rapid movement was higher than ISP from the right to left hemisphere during the left-hand rapid movement. These results indicate that the left M1 strongly inhibits the right M1, and that the left hemisphere is dominant for rapid movements as well as sequential movements.
Collapse
Affiliation(s)
- Kiyoshige Ishibashi
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ibaraki, Japan.,Graduate School of Health Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Daisuke Ishii
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan.,Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Satoshi Yamamoto
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Yoshitaka Okamoto
- Department of Rehabilitation, University of Tsukuba Hospital, Ibaraki, Japan
| | - Masahiro Wakatabi
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ibaraki, Japan
| | - Yutaka Kohno
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| |
Collapse
|
13
|
Tisseyre J, Amarantini D, Tallet J. Behavioural and cerebral asymmetries of mirror movements are specific to rhythmic task and related to higher attentional and executive control. Behav Brain Res 2021; 412:113429. [PMID: 34175358 DOI: 10.1016/j.bbr.2021.113429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022]
Abstract
Mirror movements (MM) refer to the involuntary movements or contractions occurring in homologous muscles contralateral to the unilateral voluntary movements. This behavioural manifestation increases in elderly. In right-handed adults, some studies report asymmetry in MM production, with greater MM in the right dominant hand during voluntary movements of the left non-dominant hand than the opposite. However, other studies report contradictory results, suggesting that MM asymmetry could depend on the characteristics of the task. The present study investigates the behavioural asymmetry of MM and its associated cerebral correlates during a rhythmic task and a non-rhythmic task using low-force contractions (i.e., 25 % MVC). We determined the quantity and the intensity of MM using electromyography (EMG) and cerebral correlates through electroencephalography (EEG) in right-handed healthy young and middle-aged adults during unimanual rhythmic vs. non-rhythmic tasks. Overall, results revealed (1) behavioural asymmetry of MM specific to the rhythmic task and irrespective of age, (2) cerebral asymmetry of motor activations specific to the rhythmic task and irrespective of age and (3) greater attentional and executive activations in the rhythmic task compared to the non-rhythmic task. In line with our hypotheses, behavioural and cerebral motor asymmetries of MM seem to be specific to the rhythmic task. Results are discussed in terms of cognitive-motor interactions: greater attentional and executive control required in the rhythmic tasks could contribute to the increased occurrence of involuntary movements in both young and middle-aged adults.
Collapse
Affiliation(s)
- Joseph Tisseyre
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.
| | - David Amarantini
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jessica Tallet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
14
|
Morita T, Asada M, Naito E. Examination of the development and aging of brain deactivation using a unimanual motor task. Adv Robot 2021. [DOI: 10.1080/01691864.2021.1886168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tomoyo Morita
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan
| | - Minoru Asada
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
15
|
Tzourio-Mazoyer N, Labache L, Zago L, Hesling I, Mazoyer B. Neural support of manual preference revealed by BOLD variations during right and left finger-tapping in a sample of 287 healthy adults balanced for handedness. Laterality 2021; 26:398-420. [PMID: 33403938 DOI: 10.1080/1357650x.2020.1862142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have identified the brain areas involved in Manual Preference (MP) in 143 left-handers (LH) and 144 right-handers (RH). First, we selected the pairs of homotopic regions of interest (hROIs) of the AICHA atlas with significant contralateral activation and asymmetry during the right hand and the left hand Finger-Tapping (FT) both in RH and LH. Thirteen hROIs were selected, including the primary and secondary sensorimotor and premotor cortices, thalamus, dorsal putamen, and cerebellar lobule IV. In both groups, contralateral activations and ipsilateral deactivations were seen, with stronger asymmetries when the preferred hand was used. Comparing with different models for the prediction of MP, we found that the differences in activity during preferred hand minus non-preferred hand movement in 11 contralateral and/or ipsilateral hROIS were best at explaining handedness distribution. Two different mechanisms were identified: 1. Stronger contralateral activity of cortical and cerebellar motor areas during right hand movement, seen in both groups but modulated by handedness; 2. Stronger deactivation in ipsilateral areas during dominant hand movement in both groups, LH here mirroring RH. The present study thus demonstrates that handedness neural support is complex and not simply based on a mirrored organization of hand motor areas.
Collapse
Affiliation(s)
- N Tzourio-Mazoyer
- Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France.,CEA, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - L Labache
- Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France.,CEA, Institut des Maladies Neurodégénératives, Bordeaux, France.,Institut de Mathématiques de Bordeaux, Université de Bordeaux, Bordeaux, France.,Bordeaux INP, Institut de Mathématiques de Bordeaux, Bordeaux, France.,INRIA Bordeaux Sud-Ouest, Institut de Mathématiques de Bordeaux, Talence, France
| | - L Zago
- Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France.,CEA, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - I Hesling
- Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France.,CEA, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - B Mazoyer
- Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France.,CEA, Institut des Maladies Neurodégénératives, Bordeaux, France.,Institut des Maladies Neurodégénératives Clinique, Centre Hospitalier Universitaire, Bordeaux, France
| |
Collapse
|
16
|
Sawamura D, Sakuraba S, Yoshida K, Hasegawa N, Suzuki Y, Yoshida S, Honke T, Sakai S. Chopstick operation training with the left non-dominant hand. Transl Neurosci 2021; 12:385-395. [PMID: 34721894 PMCID: PMC8536892 DOI: 10.1515/tnsci-2020-0189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Background Training a non-dominant hand is important for rehabilitating people who are required to change handedness. However, improving the dexterity in using chopsticks with a non-dominant hand through training remains unclear. This study is aimed to measure whether chopstick training improves non-dominant hand chopstick operation skills and leads to acquisition of skill levels similar to those of the dominant hand. Methods This single-blinded randomized controlled trial enrolled 34 healthy young right-handed subjects who scored >70 points on the Edinburgh Handedness Questionnaire Inventory. They were randomly allocated to training or control groups. The training group participated in a 6-week chopstick training program with the non-dominant left hand, while the control group did not. Asymmetry of chopstick operation skill, perceived psychological stress, and oxygen-hemoglobin concentration as a brain activity measure in each hemisphere were measured before and after training. Results Participants in the training group had significantly lower asymmetry than those in the control group during the post-training assessment (F[1,30] ≥ 5.54, p ≤ 0.03, partial η2 ≥ 0.156). Only perceived psychological stress had a significantly higher asymmetry during the post-training assessment (t[15] = 3.81, p < 0.01). Conclusion Six weeks of chopstick training improved non-dominant chopstick operation skills, and a performance level similar to that of the dominant hand was acquired.
Collapse
Affiliation(s)
- Daisuke Sawamura
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Satoshi Sakuraba
- Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Ishikari-Gun, 061-0293, Japan
| | - Kazuki Yoshida
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Naoya Hasegawa
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Yumi Suzuki
- Department of Occupational Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, 990-2212, Japan
| | - Susumu Yoshida
- Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Ishikari-Gun, 061-0293, Japan
| | - Toshihiro Honke
- Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Ishikari-Gun, 061-0293, Japan
| | - Shinya Sakai
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| |
Collapse
|
17
|
Barany DA, Revill KP, Caliban A, Vernon I, Shukla A, Sathian K, Buetefisch CM. Primary motor cortical activity during unimanual movements with increasing demand on precision. J Neurophysiol 2020; 124:728-739. [PMID: 32727264 PMCID: PMC7509291 DOI: 10.1152/jn.00546.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In functional magnetic resonance imaging (fMRI) studies, performance of unilateral hand movements is associated with primary motor cortex activity ipsilateral to the moving hand (M1ipsi), in addition to contralateral activity (M1contra). The magnitude of M1ipsi activity increases with the demand on precision of the task. However, it is unclear how demand-dependent increases in M1ipsi recruitment relate to the control of hand movements. To address this question, we used fMRI to measure blood oxygenation level-dependent (BOLD) activity during performance of a task that varied in demand on precision. Participants (n = 23) manipulated an MRI-compatible joystick with their right or left hand to move a cursor into targets of different sizes (small, medium, large, extra large). Performance accuracy, movement time, and number of velocity peaks scaled with target size, whereas reaction time, maximum velocity, and initial direction error did not. In the univariate analysis, BOLD activation in M1contra and M1ipsi was higher for movements to smaller targets. Representational similarity analysis, corrected for mean activity differences, revealed multivoxel BOLD activity patterns during movements to small targets were most similar to those for medium targets and least similar to those for extra-large targets. Only models that varied with demand (target size, performance accuracy, and number of velocity peaks) correlated with the BOLD dissimilarity patterns, though differently for right and left hands. Across individuals, M1contra and M1ipsi similarity patterns correlated with each other. Together, these results suggest that increasing demand on precision in a unimanual motor task increases M1 activity and modulates M1 activity patterns.NEW & NOTEWORTHY Contralateral primary motor cortex (M1) predominantly controls unilateral hand movements, but the role of ipsilateral M1 is unclear. We used functional magnetic resonance imaging (fMRI) to investigate how M1 activity is modulated by unimanual movements at different levels of demand on precision. Our results show that task characteristics related to demand on precision influence bilateral M1 activity, suggesting that in addition to contralateral M1, ipsilateral M1 plays a key role in controlling hand movements to meet performance precision requirements.
Collapse
Affiliation(s)
| | | | | | | | - Ashwin Shukla
- Department of Neurology, Emory University, Atlanta, Georgia
| | - K Sathian
- Departments of Neurology and Neural & Behavioral Sciences, Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, Pennsylvania
- Department of Psychology, College of Liberal Arts, The Pennsylvania State University, University Park, Pennsylvania
| | - Cathrin M Buetefisch
- Department of Neurology, Emory University, Atlanta, Georgia
- Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia
- Department of Radiology, Emory University, Atlanta, Georgia
| |
Collapse
|
18
|
Abstract
The development and persistence of laterality is a key feature of human motor behavior, with the asymmetry of hand use being the most prominent. The idea that asymmetrical functions of the hands reflect asymmetries in terms of structural and functional brain organization has been tested many times. However, despite advances in laterality research and increased understanding of this population-level bias, the neural basis of handedness remains elusive. Recent developments in diffusion magnetic resonance imaging enabled the exploration of lateralized motor behavior also in terms of white matter and connectional neuroanatomy. Despite incomplete and partly inconsistent evidence, structural connectivity of both intrahemispheric and interhemispheric white matter seems to differ between left and right-handers. Handedness was related to asymmetry of intrahemispheric pathways important for visuomotor and visuospatial processing (superior longitudinal fasciculus), but not to projection tracts supporting motor execution (corticospinal tract). Moreover, the interindividual variability of the main commissural pathway corpus callosum seems to be associated with handedness. The review highlights the importance of exploring new avenues for the study of handedness and presents the latest state of knowledge that can be used to guide future neuroscientific and genetic research.
Collapse
Affiliation(s)
- Sanja Budisavljevic
- Department of General Psychology, University of Padova, Padova, Italy.,The School of Medicine, University of St. Andrews, St. Andrews, UK
| | - Umberto Castiello
- Department of General Psychology, University of Padova, Padova, Italy
| | - Chiara Begliomini
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
19
|
Cheong D, Zhang F, Kim K, Reid A, Hanan C, Ding L, Yuan H. Task-Related Systemic Artifacts in Functional Near-Infrared Spectroscopy . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:948-951. [PMID: 33018141 DOI: 10.1109/embc44109.2020.9176366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) has the potential to become the next common noninvasive neuroimaging technique for routine clinical use. Compared to the current standard for neuroimaging, functional magnetic resonance imaging (fMRI), fNIRS boasts several advantages which increase its likelihood for clinical adoption. However, fNIRS suffers from an intrinsic interference from the superficial tissues, which the near-infrared light must penetrate before reaching the deeper cerebral cortex. Therefore, the removal of signals captured by SS channels has been proposed to attenuate the systematic interference. This study aimed to investigate the task-related systemic artefacts, in a high-density montage covering the sensorimotor cortex. We compared the association between LS and SS channels over the contralateral motor cortex which was activated by a hand clenching task, with that over the ipsilateral cortex where no task-related activation was expected. Our findings provide important guidelines regarding how to removal SS signals in a high-density whole-head montage.
Collapse
|
20
|
Mayer AR, Hanlon FM, Shaff NA, Stephenson DD, Ling JM, Dodd AB, Hogeveen J, Quinn DK, Ryman SG, Pirio-Richardson S. Evidence for asymmetric inhibitory activity during motor planning phases of sensorimotor synchronization. Cortex 2020; 129:314-328. [PMID: 32554227 DOI: 10.1016/j.cortex.2020.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/15/2020] [Accepted: 04/19/2020] [Indexed: 01/11/2023]
Abstract
Sensorimotor synchronization (SMS) is frequently dependent on coordination of excitatory and inhibitory activity across hemispheres, as well as the cognitive control over environmental distractors. However, the timing (motor planning versus execution) and cortical regions involved in these processes remain actively debated. Functional magnetic resonance imaging data were therefore analyzed from 34 strongly right-handed healthy adults performing a cued (to initiate motor planning) SMS task with either their right or left hand (motor execution phase) based on spatially congruent or incongruent visual stimuli. Behavioral effects of incongruent stimuli were limited to the first stimulus. Functionally, greater activation was observed in left sensorimotor cortex (SMC) and right cerebellar Lobule V for congruent versus incongruent stimuli. A negative blood-oxygen level dependent response, a putative marker of neural inhibition, was present in bilateral SMC, right supplemental motor area (SMA) and bilateral cerebellar Lobule V during the motor planning, but not execution phase. The magnitude of the inhibitory response was greater in right cortical regions and cerebellar Lobule V. Homologue connectivity was associated with inhibitory activity in the right SMA, suggesting that individual differences in intrinsic connectivity may mediate transcallosal inhibition. In summary, results suggest increased inhibition (i.e., greater negative BOLD response) within the right relative to left hemisphere, which was released once motor programs were executed. Both task and intrinsic functional connectivity results highlight a critical role of the left SMA in interhemispheric inhibition and motor planning.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/LBERI, Albuquerque, NM, USA; Departments of Psychology, University of New Mexico, Albuquerque, NM, USA; Department of Neurology, University of New Mexico, Albuquerque, NM, USA; Departments of Psychiatry, University of New Mexico, Albuquerque, NM, USA.
| | | | | | | | - Josef M Ling
- The Mind Research Network/LBERI, Albuquerque, NM, USA
| | - Andrew B Dodd
- The Mind Research Network/LBERI, Albuquerque, NM, USA
| | - Jeremy Hogeveen
- Departments of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Davin K Quinn
- Departments of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | | | | |
Collapse
|
21
|
Schlaffke L, Friedrich S, Tegenthoff M, Güntürkün O, Genç E, Ocklenburg S. Boom Chack Boom-A multimethod investigation of motor inhibition in professional drummers. Brain Behav 2020; 10:e01490. [PMID: 31801182 PMCID: PMC6955843 DOI: 10.1002/brb3.1490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Our hands are the primary means for motor interaction with the environment, and their neural organization is fundamentally asymmetric: While most individuals can perform easy motor tasks with two hands equally well, only very few individuals can perform complex fine motor tasks with both hands at a similar level of performance. The reason why this phenomenon is so rare is not well understood. Professional drummers represent a unique population to study it, as they have remarkable abilities to perform complex motor tasks with their two limbs independently. METHODS Here, we used a multimethod neuroimaging approach to investigate the structural, functional, and biochemical correlates of fine motor behavior in professional drummers (n = 20) and nonmusical controls (n = 24). RESULTS Our results show that drummers have higher microstructural diffusion properties in the corpus callosum than controls. This parameter also predicts drumming performance and GABA levels in the motor cortex. Moreover, drummers show less activation in the motor cortex when performing a finger-tapping task than controls. CONCLUSION In conclusion, professional drumming is associated with a more efficient neuronal design of cortical motor areas as well as a stronger link between commissural structure and biochemical parameters associated with motor inhibition.
Collapse
Affiliation(s)
- Lara Schlaffke
- Department of Neurology, BG-Kliniken Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Sarah Friedrich
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG-Kliniken Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Erhan Genç
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany.,Department of Psychology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
22
|
Shironouchi F, Ohtaka C, Mizuguchi N, Kato K, Kakigi R, Nakata H. Remote effects on corticospinal excitability during motor execution and motor imagery. Neurosci Lett 2019; 707:134284. [PMID: 31125583 DOI: 10.1016/j.neulet.2019.134284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 10/26/2022]
Abstract
We investigated the remote effect on corticospinal excitability of resting left and right hand muscles during motor execution and motor imagery when performing left or right foot plantar flexion. Fifteen right-handed subjects performed two conditions with three tasks: Condition (Motor Execution (ME) vs. Motor Imagery (MI)): Task (Control, Ipsilateral, and Contralateral). From the left and right first dorsal interosseous, motor evoked potentials (MEPs) elicited by a single-pulse transcranial magnetic stimulation (TMS) to the left or right primary motor cortices (M1) were recorded under all six trials. MEP amplitudes were significantly larger under the ME than MI condition, irrespective of hands and tasks. MEP amplitudes were also the largest during the Contralateral tasks, irrespective of the condition and hands. The correlation analysis showed that MEP amplitudes were significantly correlated between ME and MI conditions with both left and right hands. Our results indicate that the magnitude of the remote effect on corticospinal excitability of hand muscles differs between motor execution and motor imagery, and between ipsi- and contralateral limbs, when performing foot plantar flexion.
Collapse
Affiliation(s)
- Fuka Shironouchi
- Faculty of Human Life and Environment, Nara Women's University, Nara City, Japan
| | - Chiaki Ohtaka
- Faculty of Human Life and Environment, Nara Women's University, Nara City, Japan
| | - Nobuaki Mizuguchi
- The Japan Society for the Promotion of Science, Tokyo, Japan; Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Kouki Kato
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Hiroki Nakata
- Faculty of Human Life and Environment, Nara Women's University, Nara City, Japan.
| |
Collapse
|
23
|
Handedness Side and Magnetization Transfer Ratio in the Primary Sensorimotor Cortex Central Sulcus. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5610849. [PMID: 31467897 PMCID: PMC6699472 DOI: 10.1155/2019/5610849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/24/2019] [Accepted: 07/21/2019] [Indexed: 11/17/2022]
Abstract
Left-handers show lower asymmetry in manual ability when compared to right-handers. Unlike right-handers, left-handers do not show larger deactivation of the ipsilateral primary sensorimotor (SM1) cortex on functional magnetic resonance imaging when moving their dominant than their nondominant hand. However, it should be noted that morphometric MRI studies have reported no differences between right-handers and left-handers in volume, thickness, or surface area of the SM1 cortex. In this regard, magnetization transfer (MT) imaging is a technique with the potential to provide information on microstructural organization and macromolecular content of tissue. In particular, MT ratio index of the brain gray matter is assumed to reflect the variable content of afferent or efferent myelinated fibers, with higher MT ratio values being associated with increased fibers number or degree of myelination. The aim of this study was hence to assess, for the first time, through quantitative MT ratio measurements, potential differences in microstructural organization/characteristics of SM1 cortex between left- and right-handers, which could underlay handedness side. Nine left-handed and 9 right-handed healthy subjects, as determined by the Edinburgh handedness inventory, were examined with T1-weighted and MT-weighted imaging on a 3 T scanner. The hands of subjects were kept still during all acquisitions. Using FreeSurfer suite and the automatic anatomical labeling parcellations defined by the Destrieux atlas, we measured MT ratio, as well as cortical thickness, in three regions of interests corresponding to the precentral gyrus, the central sulcus, and the postcentral gyrus in the bilateral SM1 cortex. No significant difference between left- and right-handers was revealed in the thickness of the three partitions of the SM1 cortex. However, left-handers showed a significantly (p = 0.007) lower MT ratio (31.92% ± 0.96%) in the right SM1 central sulcus (i.e., the hand representation area for left-handers) as compared to right-handers (33.28% ± 0.94%). The results of this preliminary study indicate that quantitative MT imaging, unlike conventional morphometric MRI measurements, can be a useful tool to reveal, in SM1 cortex, potential microstructural correlates of handedness side.
Collapse
|
24
|
Niu R, Yu Y, Li Y, Liu Y. Use of fNIRS to Characterize the Neural Mechanism of Inter-Individual Rhythmic Movement Coordination. Front Physiol 2019; 10:781. [PMID: 31333478 PMCID: PMC6621928 DOI: 10.3389/fphys.2019.00781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/04/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Inter-individual rhythmic movement coordination plays an important role in daily life, particularly in competitive sports. Behaviorally, it is more challenging to coordinate alternating movements than symmetrical movements. The neural activity underlying these different movement coordination modes remains to be clarified, particularly considering complex inter-individual coordination differences. Methods: To further test the neural basis of inter-individual rhythmic movement coordination, a revised experimental paradigm of inter-individual coordination was adopted. Participants were asked to perform symmetric, alternate, or single movements (swinging the lower part of the leg) in the same rhythm. A multi-channel, continuous wave, functional near-infrared spectral (fNIRS) imaging instrument was used to monitor hemodynamic activity while 40 volunteers (9 male pairs and 11 female pairs) performed the task. Multivariate analyses of variance were conducted to compare mean oxy-hemoglobin concentration ([HbO]) across experimental conditions. Results: A significant three-way interaction (leg-swing condition × ROI × laterality) on mean [HbO] was observed. Post hoc analysis revealed a significant main effect of leg-swing condition only in brain regions of interest [right inferior parietal lobule (IPL)] contralateral to movement execution. Activation in brain regions of interest [right inferior parietal lobule (IPL)] was much stronger in alternate mode compared with symmetric or single modes, and the differences between symmetric and single mode were not statistically significant. This result suggests that the alternate mode of movement coordination was more likely to be supported by the IPL region than the other modes. Conclusion: The present findings provide neural evidence relevant to the theory of self-organization of movement coordination, in which an alternating movement mode appeared to be a more demanding condition than symmetrical movement.
Collapse
Affiliation(s)
- Ruoyu Niu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yanglan Yu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yanan Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Ying Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Key Lab of Cognitive Evaluation and Regulation in Sport, General Administration of Sport of China, Shanghai, China
| |
Collapse
|
25
|
Yokoyama N, Ohtaka C, Kato K, Kubo H, Nakata H. The difference in hemodynamic responses between dominant and non-dominant hands during muscle contraction and relaxation: An fNIRS study. PLoS One 2019; 14:e0220100. [PMID: 31323051 PMCID: PMC6641204 DOI: 10.1371/journal.pone.0220100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/08/2019] [Indexed: 11/18/2022] Open
Abstract
The present study used functional near-infrared spectroscopy (fNIRS), and investigated the differences in neural activation of ipsi- or contralateral hemispheres between right dominant and left non-dominant hands among right-handed subjects using consecutive motor tasks with muscle contraction and relaxation. The subjects performed tasks under four conditions: (1) right hand up (R-Up), (2) left hand up (L-Up), (3) right hand down (R-Down), and (4) left hand down (L-Down). The peak amplitude of oxy-Hb was significantly larger at the contralateral than ipsilateral hemisphere in the premotor area (PM) under the R-Up condition, and no significant differences were observed between contra- and ipsilateral hemispheres under the L-Up condition. In addition, the peak amplitude was more negative at the contra- than ipsilateral hemisphere in the PM under the R-Down condition, while the peak amplitude was significantly more negative at the ipsi- than contralateral hemisphere in the PM under the L-Down condition. These results suggest that the PM of the left hemisphere among right-handed subjects plays an important role in muscle contraction and relaxation with force control.
Collapse
Affiliation(s)
- Naoko Yokoyama
- Faculty of Human Life and Environment, Nara Women’s University, Nara City, Japan
| | - Chiaki Ohtaka
- Faculty of Human Life and Environment, Nara Women’s University, Nara City, Japan
| | - Kouki Kato
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Hiroko Kubo
- Faculty of Human Life and Environment, Nara Women’s University, Nara City, Japan
| | - Hiroki Nakata
- Faculty of Human Life and Environment, Nara Women’s University, Nara City, Japan
- * E-mail:
| |
Collapse
|
26
|
Morita T, Asada M, Naito E. Developmental Changes in Task-Induced Brain Deactivation in Humans Revealed by a Motor Task. Dev Neurobiol 2019; 79:536-558. [PMID: 31136084 PMCID: PMC6771882 DOI: 10.1002/dneu.22701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/09/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
Performing tasks activates relevant brain regions in adults while deactivating task-irrelevant regions. Here, using a well-controlled motor task, we explored how deactivation is shaped during typical human development and whether deactivation is related to task performance. Healthy right-handed children (8-11 years), adolescents (12-15 years), and young adults (20-24 years; 20 per group) underwent functional magnetic resonance imaging with their eyes closed while performing a repetitive button-press task with their right index finger in synchronization with a 1-Hz sound. Deactivation in the ipsilateral sensorimotor cortex (SM1), bilateral visual and auditory (cross-modal) areas, and bilateral default mode network (DMN) progressed with development. Specifically, ipsilateral SM1 and lateral occipital deactivation progressed prominently between childhood and adolescence, while medial occipital (including primary visual) and DMN deactivation progressed from adolescence to adulthood. In adults, greater cross-modal deactivation in the bilateral primary visual cortices was associated with higher button-press timing accuracy relative to the sound. The region-specific deactivation progression in a developmental period may underlie the gradual promotion of sensorimotor function segregation required in the task. Task-induced deactivation might have physiological significance regarding suppressed activity in task-irrelevant regions. Furthermore, cross-modal deactivation develops to benefit some aspects of task performance in adults.
Collapse
Affiliation(s)
- Tomoyo Morita
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Minoru Asada
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
27
|
Hamidian S, Vachha B, Jenabi M, Karimi S, Young RJ, Holodny AI, Peck KK. Resting-State Functional Magnetic Resonance Imaging and Probabilistic Diffusion Tensor Imaging Demonstrate That the Greatest Functional and Structural Connectivity in the Hand Motor Homunculus Occurs in the Area of the Thumb. Brain Connect 2019; 8:371-379. [PMID: 29987948 DOI: 10.1089/brain.2018.0589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The primary hand motor region is classically believed to be in the "hand knob" area in the precentral gyrus (PCG). However, hand motor task-based activation is often localized outside this area. The purpose of this study is to investigate the structural and functional connectivity driven by different seed locations corresponding to the little, index, and thumb in the PCG using probabilistic diffusion tractography (PDT) and resting-state functional magnetic resonance imaging (rfMRI). Twelve healthy subjects had three regions of interest (ROIs) placed in the left PCG: lateral to the hand knob (thumb area), within the hand knob (index finger area), and medial to the hand knob (little finger area). Connectivity maps were generated using PDT and rfMRI. Individual and group level analyses were performed. Results show that the greatest hand motor connectivity between both hemispheres was obtained using the ROI positioned just lateral to the hand knob in the PCG (the thumb area). The number of connected voxels in the PCG between the two hemispheres was greatest in the lateral-most ROI (the thumb area): 279 compared with 13 for the medial-most ROI and 9 for the central hand knob ROI. Similarly, the highest white matter connectivity between the two hemispheres resulted from the ROI placed in the lateral portion of PCG (p < 0.003). The maximal functional and structural connectivity of the hand motor area between hemispheres occurs in the thumb area, located laterally at the "hand knob." Thus, this location appears maximal for rfMRI and PDT seeding of the motor area.
Collapse
Affiliation(s)
- Shaminta Hamidian
- 1 Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Behroze Vachha
- 1 Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Mehrnaz Jenabi
- 1 Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Sasan Karimi
- 1 Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Robert J Young
- 1 Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Andrei I Holodny
- 1 Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Kyung K Peck
- 1 Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York.,2 Department of Medical Physics, Memorial Sloan-Kettering Cancer Center , New York, New York
| |
Collapse
|
28
|
The neurophysiological correlates of handedness: Insights from the lateralized readiness potential. Behav Brain Res 2019; 364:114-122. [DOI: 10.1016/j.bbr.2019.02.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/30/2019] [Accepted: 02/12/2019] [Indexed: 12/21/2022]
|
29
|
Nakata H, Domoto R, Mizuguchi N, Sakamoto K, Kanosue K. Negative BOLD responses during hand and foot movements: An fMRI study. PLoS One 2019; 14:e0215736. [PMID: 31002697 PMCID: PMC6474656 DOI: 10.1371/journal.pone.0215736] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/08/2019] [Indexed: 11/18/2022] Open
Abstract
The present study employed functional magnetic resonance imaging (fMRI) to examine the characteristics of negative blood oxygen level-dependent (Negative BOLD) signals during motor execution. Subjects repeated extension and flexion of one of the following: the right hand, left hand, right ankle, or left ankle. Negative BOLD responses during hand movements were observed in the ipsilateral hemisphere of the hand primary sensorimotor area (SMI), medial frontal gyrus (MeFG), middle frontal gyrus (MFG), and superior frontal gyrus (SFG). Negative BOLD responses during foot movements were also noted in the bilateral hand SMI, MeFG, MFG, SFG, inferior frontal gyrus, middle temporal gyrus, parahippocampal gyrus, anterior cingulate cortex, cingulate gyrus (CG), fusiform gyrus, and precuneus. A conjunction analysis showed that portions of the MeFG and CG involving similar regions to those of the default mode network were commonly deactivated during voluntary movements of the right/left hand or foot. The present results suggest that three mechanisms are involved in the Negative BOLD responses observed during voluntary movements: (1) transcallosal inhibition from the contralateral to ipsilateral hemisphere in the SMI, (2) the deactivated neural network with several brain regions, and (3) the default mode network in the MeFG and CG.
Collapse
Affiliation(s)
- Hiroki Nakata
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan.,Health Sciences, Faculty of Human Life and Environment, Nara Women's University, Nara City, Japan
| | - Ryo Domoto
- School of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Nobuaki Mizuguchi
- The Japan Society for the Promotion of Science, Tokyo, Japan.,Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Kiwako Sakamoto
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | | |
Collapse
|
30
|
Witkowski M, Tomczak M, Karpowicz K, Solnik S, Przybyla A. Effects of Fencing Training on Motor Performance and Asymmetry Vary With Handedness. J Mot Behav 2019; 52:50-57. [PMID: 30849297 DOI: 10.1080/00222895.2019.1579167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies showed that motor asymmetries are reduced in left-handers and after a long-term fencing training in right-handers. Interestingly, left-handed athletes are substantially over-represented in elite fencing. These findings have been speculatively explained by imbalance in experience of fighting opposite handedness opponents resulted from skewed distribution of handedness, i.e. lefties encounter more righties than righties encounter lefties. Whereas these assumptions could be accurate, the underlying mechanisms remain ambiguous. In this study, we investigated effects of fencing training on motor performance and asymmetry with respect to handedness. We compared fencing performance of left- and right-handed fencers in both training and combat conditions. In the combat condition, left-handers won seven out of twelve matches consisted of twelve bouts each. They also showed a significantly longer hit detection time, a measure indicating better quality of fencing attack. In the training condition, left-handed fencers completed fencing board tests significantly faster than right-handers. These findings provide additional factor of superior motor performance to be considered when interpreting over-representation of lefties in elite fencing. Furthermore, our left-handers were less lateralized, which could explain that superior motor performance. This idea is consistent with previous findings of reduced asymmetry in right-handed fencers when comparing to non-athletes.
Collapse
Affiliation(s)
- Mateusz Witkowski
- School of Physical Education and Sport, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Maciej Tomczak
- Department of Psychology, Poznan University of Physical Education, Poznan, Poland
| | - Krzysztof Karpowicz
- Department of Theory of Sport, Poznan University of Physical Education, Poznan, Poland
| | - Stanislaw Solnik
- Department of Team Sports Games, University School of Physical Education, Wroclaw, Poland.,Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA
| | - Andrzej Przybyla
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA
| |
Collapse
|
31
|
Activations in gray and white matter are modulated by uni-manual responses during within and inter-hemispheric transfer: effects of response hand and right-handedness. Brain Imaging Behav 2019; 12:942-961. [PMID: 28808866 DOI: 10.1007/s11682-017-9750-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Because the visual cortices are contra-laterally organized, inter-hemispheric transfer tasks have been used to behaviorally probe how information briefly presented to one hemisphere of the visual cortex is integrated with responses resulting from the ipsi- or contra-lateral motor cortex. By forcing rapid information exchange across diverse regions, these tasks robustly activate not only gray matter regions, but also white matter tracts. It is likely that the response hand itself (dominant or non-dominant) modulates gray and white matter activations during within and inter-hemispheric transfer. Yet the role of uni-manual responses and/or right hand dominance in modulating brain activations during such basic tasks is unclear. Here we investigated how uni-manual responses with either hand modulated activations during a basic visuo-motor task (the established Poffenberger paradigm) alternating between inter- and within-hemispheric transfer conditions. In a large sample of strongly right-handed adults (n = 49), we used a factorial combination of transfer condition [Inter vs. Within] and response hand [Dominant(Right) vs. Non-Dominant (Left)] to discover fMRI-based activations in gray matter, and in narrowly defined white matter tracts. These tracts were identified using a priori probabilistic white matter atlases. Uni-manual responses with the right hand strongly modulated activations in gray matter, and notably in white matter. Furthermore, when responding with the left hand, activations during inter-hemispheric transfer were strongly predicted by the degree of right-hand dominance, with increased right-handedness predicting decreased fMRI activation. Finally, increasing age within the middle-aged sample was associated with a decrease in activations. These results provide novel evidence of complex relationships between uni-manual responses in right-handed subjects, and activations during within- and inter-hemispheric transfer suggest that the organization of the motor system exerts sophisticated functional effects. Moreover, our evidence of activation in white matter tracts is consistent with prior studies, confirming fMRI-detectable white matter activations which are systematically modulated by experimental condition.
Collapse
|
32
|
McCann SJH. Handedness predicts Conservative-Republican preference and eliminates relations of Big Five personality to political orientation using the 48 contiguous American states as analytical units. Laterality 2018; 24:289-319. [PMID: 30080438 DOI: 10.1080/1357650x.2018.1508214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The two present nomothetic studies focused on the period from 1996 to 2012 to determine relations between handedness and political orientation using the 48 contiguous American states as analytical units. The estimated percentage of left-handers in each state operationally defined handedness. A composite measure of Conservative-Republican preference was created from CBS/New York Times/Gallup polls of state resident conservatism and the percent in each state voting Republican in each presidential election from 1996 to 2012. Study 1 showed that state levels of left-handedness correlated to an extremely high degree with Conservative-Republican preference (r = -.80). As well, with common demographic differences between states reflected in socioeconomic status, White population percent, and urban population percent controlled through multiple regression, handedness still accounted for an additional 37.2% of the variance in Conservative-Republican preference. Study 2 found that each of the Big Five personality variables correlated significantly with handedness and with Conservative-Republican preference, but in the opposite direction. Furthermore, Study 2 demonstrated quite surprisingly that all Big Five personality relations to Conservative-Republican preference were eliminated when handedness was controlled in multiple regression equations. For all regression equations, the global Moran's I test specifically developed for detecting residual spatial autocorrelation indicated no significant spatial autocorrelation.
Collapse
|
33
|
Jurkiewicz MT, Crawley AP, Mikulis DJ. Is Rest Really Rest? Resting-State Functional Connectivity During Rest and Motor Task Paradigms. Brain Connect 2018; 8:268-275. [DOI: 10.1089/brain.2017.0495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Adrian Philip Crawley
- Department of Medical Imaging, University of Toronto, Toronto, Canada
- Joint Department of Medical Imaging, Toronto Western Research Institute, University Health Network, Toronto, Canada
| | - David John Mikulis
- Department of Medical Imaging, University of Toronto, Toronto, Canada
- Joint Department of Medical Imaging, Toronto Western Research Institute, University Health Network, Toronto, Canada
| |
Collapse
|
34
|
Turesky TK, Olulade OA, Luetje MM, Eden GF. An fMRI study of finger tapping in children and adults. Hum Brain Mapp 2018; 39:3203-3215. [PMID: 29611256 DOI: 10.1002/hbm.24070] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/08/2018] [Accepted: 03/22/2018] [Indexed: 11/09/2022] Open
Abstract
Functional brain imaging studies have characterized the neural bases of voluntary movement for finger tapping in adults, but equivalent information for children is lacking. When contrasted to adults, one would expect children to have relatively greater activation, reflecting compensation for an underdeveloped motor system combined with less experience in the execution of voluntary movement. To test this hypothesis, we acquired functional magnetic resonance imaging (fMRI) data on 17 healthy right-handed children (7.48 ± 0.66 years) and 15 adults (24.9 ± 2.9 years) while they performed an irregularly paced finger-tapping task in response to a visual cue (left- and right-hand examined separately). Whole-brain within-group analyses revealed that finger tapping in either age group and for either hand activated contralateral SM1, SMA, ipsilateral anterior cerebellum, and occipital cortices. We used an ANOVA factorial design to test for main effects of Age Group (children vs adults), Hand (left vs. right), and their interactions. For main effects of Age Group, children showed relatively greater activity in left SM1 (extending into bilateral SMA), and, surprisingly, adults exhibited relatively greater activity in right pre-SMA/SMA (extending into left pre-SMA/SMA), right lateral globus pallidus, left putamen, and right anterior cerebellum. The interaction of Age Group × Hand revealed that while both groups activated right SM1 during left finger tapping and exhibited signal decreases (i.e., below fixation baseline) during right finger tapping, both these responses were attenuated in children relative to adults. These data provide an important foundation by which to study children with motor disorders.
Collapse
Affiliation(s)
- Ted K Turesky
- Center for the Study of Learning, Georgetown University Medical Center, Washington, Washington D.C.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, Washington D.C
| | - Olumide A Olulade
- Center for the Study of Learning, Georgetown University Medical Center, Washington, Washington D.C
| | - Megan M Luetje
- Center for the Study of Learning, Georgetown University Medical Center, Washington, Washington D.C
| | - Guinevere F Eden
- Center for the Study of Learning, Georgetown University Medical Center, Washington, Washington D.C
| |
Collapse
|
35
|
A Common Function of Basal Ganglia-Cortical Circuits Subserving Speed in Both Motor and Cognitive Domains. eNeuro 2017; 4:eN-NWR-0200-17. [PMID: 29379873 PMCID: PMC5783269 DOI: 10.1523/eneuro.0200-17.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 11/26/2022] Open
Abstract
Distinct regions of the frontal cortex connect with their basal ganglia and thalamic counterparts, constituting largely segregated basal ganglia-thalamo-cortical (BTC) circuits. However, any common role of the BTC circuits in different behavioral domains remains unclear. Indeed, whether dysfunctional motor and cognitive BTC circuits are responsible for motor slowing and cognitive slowing, respectively, in Parkinson’s disease (PD) is a matter of debate. Here, we used an effortful behavioral paradigm in which the effects of task rate on accuracy were tested in movement, imagery, and calculation tasks in humans. Using nonlinear fitting, we separated baseline accuracy (Abase) and “agility” (ability to function quickly) components of performance in healthy participants and then confirmed reduced agility and preserved Abase for the three tasks in PD. Using functional magnetic resonance imaging (fMRI) and diffusion tractography, we explored the neural substrates underlying speeded performance of the three tasks in healthy participants, suggesting the involvement of distinct BTC circuits in cognitive and motor agility. Language and motor BTC circuits were specifically active during speeded performance of the calculation and movement tasks, respectively, whereas premotor BTC circuits revealed activity for speeded performance of all tasks. Finally, PD showed reduced task rate-correlated activity in the language BTC circuits for speeded calculation, in the premotor BTC circuit for speeded imagery, and in the motor BTC circuits for speeded movement, as compared with controls. The present study casts light on the anatomo-functional organization of the BTC circuits and their parallel roles in invigorating movement and cognition through a function of dopamine.
Collapse
|
36
|
Gompf F, Pflug A, Laufs H, Kell CA. Non-linear Relationship between BOLD Activation and Amplitude of Beta Oscillations in the Supplementary Motor Area during Rhythmic Finger Tapping and Internal Timing. Front Hum Neurosci 2017; 11:582. [PMID: 29249950 PMCID: PMC5714933 DOI: 10.3389/fnhum.2017.00582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/17/2017] [Indexed: 11/13/2022] Open
Abstract
Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region.
Collapse
Affiliation(s)
- Florian Gompf
- Cognitive Neuroscience Group, Department of Neurology, Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anja Pflug
- Cognitive Neuroscience Group, Department of Neurology, Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Helmut Laufs
- Cognitive Neuroscience Group, Department of Neurology, Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Christian-Albrechts- Universität zu Kiel, Kiel, Germany
| | - Christian A Kell
- Cognitive Neuroscience Group, Department of Neurology, Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
37
|
Fujimoto S, Tanaka S, Laakso I, Yamaguchi T, Kon N, Nakayama T, Kondo K, Kitada R. The Effect of Dual-Hemisphere Transcranial Direct Current Stimulation Over the Parietal Operculum on Tactile Orientation Discrimination. Front Behav Neurosci 2017; 11:173. [PMID: 28979197 PMCID: PMC5611440 DOI: 10.3389/fnbeh.2017.00173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/04/2017] [Indexed: 12/11/2022] Open
Abstract
The parietal operculum (PO) often shows ipsilateral activation during tactile object perception in neuroimaging experiments. However, the relative contribution of the PO to tactile judgment remains unclear. Here, we examined the effect of transcranial direct current stimulation (tDCS) over bilateral PO to test the relative contributions of the ipsilateral PO to tactile object processing. Ten healthy adults participated in this study, which had a double-blind, sham-controlled, cross-over design. Participants discriminated grating orientation during three tDCS and sham conditions. In the dual-hemisphere tDCS conditions, anodal and cathodal electrodes were placed over the left and right PO. In the uni-hemisphere tDCS condition, anodal and cathodal electrodes were applied over the left PO and contralateral orbit, respectively. In the tDCS and sham conditions, we applied 2 mA for 15 min and for 15 s, respectively. Computational models of electric fields (EFs) during tDCS indicated that the strongest electric fields were located in regions in and around the PO. Compared with the sham condition, dual-hemisphere tDCS improved the discrimination threshold of the index finger contralateral to the anodal electrode. Importantly, dual-hemisphere tDCS with the anodal electrode over the left PO yielded a decreased threshold in the right finger compared with the uni-hemisphere tDCS condition. These results suggest that the ipsilateral PO inhibits tactile processing of grating orientation, indicating interhemispheric inhibition (IHI) of the PO.
Collapse
Affiliation(s)
- Shuhei Fujimoto
- Tokyo Bay Rehabilitation HospitalChiba, Japan.,Department of Public Health, Kyoto University Graduate School of MedicineKyoto, Japan.,Link & Communication Inc.Tokyo, Japan.,Laboratory of Psychology, Hamamatsu University School of MedicineShizuoka, Japan
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of MedicineShizuoka, Japan
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto UniversityEspoo, Finland
| | - Tomofumi Yamaguchi
- Department of Rehabilitation Medicine, Keio University School of MedicineTokyo, Japan.,Department of Neuroscience and Pharmacology, University of CopenhagenCopenhagen, Denmark.,Department of Physical Therapy, Yamagata Prefectural University of Health SciencesYamagata, Japan
| | - Noriko Kon
- Department of Therapy, Kawakita Rehabilitation HospitalTokyo, Japan
| | - Takeo Nakayama
- Department of Public Health, Kyoto University Graduate School of MedicineKyoto, Japan
| | | | - Ryo Kitada
- Division of Psychology, School of Social Sciences (SSS), College of Humanities, Arts, & Social Sciences, Nanyang Technological UniversitySingapore, Singapore
| |
Collapse
|
38
|
Burns MK, Patel V, Florescu I, Pochiraju KV, Vinjamuri R. Low-Dimensional Synergistic Representation of Bilateral Reaching Movements. Front Bioeng Biotechnol 2017; 5:2. [PMID: 28239605 PMCID: PMC5300986 DOI: 10.3389/fbioe.2017.00002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 01/12/2017] [Indexed: 11/13/2022] Open
Abstract
Kinematic and neuromuscular synergies have been found in numerous aspects of human motion. This study aims to determine how effectively kinematic synergies in bilateral upper arm movements can be used to replicate complex activities of daily living (ADL) tasks using a sparse optimization algorithm. Ten right-handed subjects executed 18 rapid and 11 natural-paced ADL tasks requiring bimanual coordination while sitting at a table. A position tracking system was used to track the subjects’ arms in space, and angular velocities over time for shoulder abduction, shoulder flexion, shoulder internal rotation, and elbow flexion for each arm were computed. Principal component analysis (PCA) was used to generate kinematic synergies from the rapid-paced task set for each subject. The first three synergies accounted for 80.3 ± 3.8% of variance, while the first eight accounted for 94.8 ± 0.85%. The first and second synergies appeared to encode symmetric reaching motions which were highly correlated across subjects. The first three synergies were correlated between left and right arms within subjects, whereas synergies four through eight were not, indicating asymmetries between left and right arms in only the higher order synergies. The synergies were then used to reconstruct each natural-paced task using the l1-norm minimization algorithm. Temporal dilations of the synergies were introduced in order to model the temporal scaling of movement patterns achieved by the cerebellum and basal ganglia as reported previously in the literature. Reconstruction error was reduced by introducing synergy dilations, and cumulative recruitment of several synergies was significantly reduced in the first 10% of training task time by introducing temporal dilations. The outcomes of this work could open new scenarios for the applications of postural synergies to the control of robotic systems, with potential applications in rehabilitation. These synergies not only help in providing near-natural control but also provide simplified strategies for design and control of artificial limbs. Potential applications of these bilateral synergies were discussed and future directions were proposed.
Collapse
Affiliation(s)
- Martin K Burns
- Sensorimotor Control Laboratory, Department of Biomedical Engineering, Chemistry, and Biological Sciences, Stevens Institute of Technology , Hoboken, NJ , USA
| | - Vrajeshri Patel
- Sensorimotor Control Laboratory, Department of Biomedical Engineering, Chemistry, and Biological Sciences, Stevens Institute of Technology , Hoboken, NJ , USA
| | - Ionut Florescu
- Sensorimotor Control Laboratory, Department of Biomedical Engineering, Chemistry, and Biological Sciences, Stevens Institute of Technology , Hoboken, NJ , USA
| | - Kishore V Pochiraju
- Sensorimotor Control Laboratory, Department of Biomedical Engineering, Chemistry, and Biological Sciences, Stevens Institute of Technology , Hoboken, NJ , USA
| | - Ramana Vinjamuri
- Sensorimotor Control Laboratory, Department of Biomedical Engineering, Chemistry, and Biological Sciences, Stevens Institute of Technology , Hoboken, NJ , USA
| |
Collapse
|
39
|
Hayashi T, Nozaki D. Improving a Bimanual Motor Skill Through Unimanual Training. Front Integr Neurosci 2016; 10:25. [PMID: 27471452 PMCID: PMC4944083 DOI: 10.3389/fnint.2016.00025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/28/2016] [Indexed: 11/27/2022] Open
Abstract
When we learn a bimanual motor skill (e.g., rowing a boat), we often break it down into unimanual practices (e.g., a rowing drill with the left or right arm). Such unimanual practice is thought to be useful for learning bimanual motor skills efficiently because the learner can concentrate on learning to perform a simpler component. However, it is not so straightforward to assume that unimanual training (UT) improves bimanual performance. We have previously demonstrated that motor memories for reaching movements consist of three different parts: unimanual-specific, bimanual-specific, and overlapping parts. According to this scheme, UT appears to be less effective, as its training effect is only partially transferred to the same limb for bimanual movement. In the present study, counter-intuitively, we demonstrate that, even after the bimanual skill is almost fully learned by means of bimanual training (BT), additional UT could further improve bimanual skill. We hypothesized that this effect occurs because UT increases the memory content in the overlapping part, which might contribute to an increase in the memory for bimanual movement. To test this hypothesis, we examined whether the UT performed after sufficient BT could improve the bimanual performance. Participants practiced performing bimanual reaching movements (BM) in the presence of a novel force-field imposed only on their left arm. As an index for the motor performance, we used the error-clamp method (i.e., after-effect of the left arm) to evaluate the force output to compensate for the force-field during the reaching movement. After sufficient BT, the training effect reached a plateau. However, UT performed subsequently improved the bimanual performance significantly. In contrast, when the same amount of BT was continued, the bimanual performance remained unchanged, highlighting the beneficial effect of UT on bimanual performance. Considering memory structure, we also expected that BT could improve unimanual performance, which was confirmed by another experiment. These results provide a new interpretation of why UT was useful for improving a bimanual skill, and propose a practical strategy for enhancing performance by performing training in various contexts.
Collapse
Affiliation(s)
- Takuji Hayashi
- Division of Physical and Health Education, Graduate School of Education, The University of TokyoTokyo, Japan; Japan Society for the Promotion of ScienceTokyo, Japan
| | - Daichi Nozaki
- Division of Physical and Health Education, Graduate School of Education, The University of TokyoTokyo, Japan; Center for Barrier-Free Education, Graduate School of Education, The University of TokyoTokyo, Japan
| |
Collapse
|
40
|
Klein PA, Duque J, Labruna L, Ivry RB. Comparison of the two cerebral hemispheres in inhibitory processes operative during movement preparation. Neuroimage 2015; 125:220-232. [PMID: 26458519 DOI: 10.1016/j.neuroimage.2015.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 11/17/2022] Open
Abstract
Neuroimaging and neuropsychological studies suggest that in right-handed individuals, the left hemisphere plays a dominant role in praxis, relative to the right hemisphere. However hemispheric asymmetries assessed with transcranial magnetic stimulation (TMS) has not shown consistent differences in corticospinal (CS) excitability of the two hemispheres during movements. In the current study, we systematically explored hemispheric asymmetries in inhibitory processes that are manifest during movement preparation and initiation. Single-pulse TMS was applied over the left or right primary motor cortex (M1LEFT and M1RIGHT, respectively) to elicit motor-evoked potentials (MEPs) in the contralateral hand while participants performed a two-choice reaction time task requiring a cued movement of the left or right index finger. In Experiments 1 and 2, TMS probes were obtained during a delay period following the presentation of the preparatory cue that provided partial or full information about the required response. MEPs were suppressed relative to baseline regardless of whether they were elicited in a cued or uncued hand. Importantly, the magnitude of these inhibitory changes in CS excitability was similar when TMS was applied over M1LEFT or M1RIGHT, irrespective of the amount of information carried by the preparatory cue. In Experiment 3, there was no preparatory cue and TMS was applied at various time points after the imperative signal. When CS excitability was probed in the cued effector, MEPs were initially inhibited and then rose across the reaction time interval. This function was similar for M1LEFT and M1RIGHT TMS. When CS excitability was probed in the uncued effector, MEPs remained inhibited throughout the RT interval. However, MEPs in right FDI became more inhibited during selection and initiation of a left hand movement, whereas MEPs in left FDI remained relatively invariant across RT interval for the right hand. In addition to these task-specific effects, there was a global difference in CS excitability across experiments between the two hemispheres. When the intensity of stimulation was set to 115% of the resting threshold, MEPs were larger when the TMS probe was applied over the M1LEFT than over M1RIGHT. In summary, while the latter result suggests that M1LEFT is more excitable than M1RIGHT, the recruitment of preparatory inhibitory mechanisms is similar within the two cerebral hemispheres.
Collapse
Affiliation(s)
- Pierre-Alexandre Klein
- Department of Psychology, University of CA, Berkeley, USA; Helen Wills Neuroscience Institute, University of CA, Berkeley, USA; Institute of Neuroscience, Cognition and Actions Lab, Université catholique de Louvain, Brussels, Belgium
| | - Julie Duque
- Institute of Neuroscience, Cognition and Actions Lab, Université catholique de Louvain, Brussels, Belgium.
| | - Ludovica Labruna
- Department of Psychology, University of CA, Berkeley, USA; Helen Wills Neuroscience Institute, University of CA, Berkeley, USA
| | - Richard B Ivry
- Department of Psychology, University of CA, Berkeley, USA; Helen Wills Neuroscience Institute, University of CA, Berkeley, USA
| |
Collapse
|
41
|
Auer T, Schweizer R, Frahm J. Training Efficiency and Transfer Success in an Extended Real-Time Functional MRI Neurofeedback Training of the Somatomotor Cortex of Healthy Subjects. Front Hum Neurosci 2015; 9:547. [PMID: 26500521 PMCID: PMC4598802 DOI: 10.3389/fnhum.2015.00547] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/17/2015] [Indexed: 11/19/2022] Open
Abstract
This study investigated the level of self-regulation of the somatomotor cortices (SMCs) attained by an extended functional magnetic resonance imaging (fMRI) neurofeedback training. Sixteen healthy subjects performed 12 real-time functional magnetic resonance imaging neurofeedback training sessions within 4 weeks, involving motor imagery of the dominant right as well as the non-dominant left hand. Target regions of interests in the SMC were individually localized prior to the training by overt finger movements. The feedback signal (FS) was defined as the difference between fMRI activation in the contra- and ipsilateral SMC and visually presented to the subjects. Training efficiency was determined by an off-line general linear model analysis determining the fMRI percent signal changes in the SMC target areas accomplished during the neurofeedback training. Transfer success was assessed by comparing the pre- and post-training transfer task, i.e., the neurofeedback paradigm without the presentation of the FS. Group results show a distinct increase in feedback performance (FP) in the transfer task for the trained group compared to a matched untrained control group, as well as an increase in the time course of the training, indicating an efficient training and a successful transfer. Individual analysis revealed that the training efficiency was not only highly correlated to the transfer success but also predictive. Trainings with at least 12 efficient training runs were associated with a successful transfer outcome. A group analysis of the hemispheric contributions to the FP showed that it is mainly driven by increased fMRI activation in the contralateral SMC, although some individuals relied on ipsilateral deactivation. Training and transfer results showed no difference between left- and right-hand imagery, with a slight indication of more ipsilateral deactivation in the early right-hand trainings.
Collapse
Affiliation(s)
- Tibor Auer
- MRC Cognition and Brain Sciences Unit , Cambridge , UK ; Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie , Göttingen , Germany
| | - Renate Schweizer
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie , Göttingen , Germany
| | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie , Göttingen , Germany
| |
Collapse
|
42
|
Osborne NR, Owen AM, Fernández-Espejo D. The dissociation between command following and communication in disorders of consciousness: an fMRI study in healthy subjects. Front Hum Neurosci 2015; 9:493. [PMID: 26441593 PMCID: PMC4569885 DOI: 10.3389/fnhum.2015.00493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/24/2015] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging studies have identified a subgroup of patients with a Disorder of Consciousness (DOC) who, while being behaviorally non-responsive, are nevertheless able to follow commands by modulating their brain activity in motor imagery (MI) tasks. These techniques have even allowed for binary communication in a small number of DOC patients. However, the majority of patients who can follow commands are unable to use their responses to communicate. A similar dissociation between present command following (CF) and absent communication abilities has been reported in overt behavioral assessments. However, the neural correlates of this dissociation in both overt and covert modalities are unknown. Here, we used functional magnetic resonance imaging (fMRI) to explore the neural mechanisms underlying CF and selection of responses for binary communication using either executed or imagined movements. Fifteen healthy participants executed or imagined two different types of arm movements that were either pre-determined by the experimenters (CF) or decided by them (action selection, AS). Action selection involved greater activity in high-level associative areas in frontal and parietal regions than CF. Additionally, motor execution (ME), as compared to MI, activated contralateral motor cortex, while the opposite contrast revealed activation in the ipsilateral sensorimotor cortex and the left inferior frontal gyrus. Importantly, there was no interaction between the task (CF/AS) and modality (MI/ME). Our results suggest that the neural processes involved in following a motor command or selecting between two motor actions are not dependent on how the response is expressed (via ME/MI). They also suggest a potential neural basis for the distinction in cognitive abilities seen in DOC patients.
Collapse
Affiliation(s)
- Natalie R Osborne
- The Brain and Mind Institute, University of Western Ontario London, ON, Canada ; Department of Psychology, University of Western Ontario London, ON, Canada
| | - Adrian M Owen
- The Brain and Mind Institute, University of Western Ontario London, ON, Canada ; Department of Psychology, University of Western Ontario London, ON, Canada
| | - Davinia Fernández-Espejo
- The Brain and Mind Institute, University of Western Ontario London, ON, Canada ; Department of Psychology, University of Western Ontario London, ON, Canada
| |
Collapse
|
43
|
Rigoux L, Daunizeau J. Dynamic causal modelling of brain–behaviour relationships. Neuroimage 2015; 117:202-21. [DOI: 10.1016/j.neuroimage.2015.05.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 10/23/2022] Open
|
44
|
Genç E, Ocklenburg S, Singer W, Güntürkün O. Abnormal interhemispheric motor interactions in patients with callosal agenesis. Behav Brain Res 2015; 293:1-9. [PMID: 26187690 DOI: 10.1016/j.bbr.2015.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 01/31/2023]
Abstract
During unilateral hand movements the activity of the contralateral primary motor cortex (cM1) is increased while the activity of the ipsilateral M1 (iM1) is decreased. A potential explanation for this asymmetric activity pattern is transcallosal cM1-to-iM1 inhibitory control. To test this hypothesis, we examined interhemispheric motor inhibition in acallosal patients. We measured fMRI activity in iM1 and cM1 in acallosal patients during unilateral hand movements and compared their motor activity pattern to that of healthy controls. In controls, fMRI activation in cM1 was significantly higher than in iM1, reflecting a normal differential task-related M1 activity. Additional functional connectivity analysis revealed that iM1 activity was strongly suppressed by cM1. Furthermore, DTI analysis indicated that this contralaterally induced suppression was mediated by microstructural properties of specific callosal fibers interconnecting both M1s. In contrast, acallosal patients did not show a clear differential activity pattern between cM1 and iM1. The more symmetric pattern was due to an elevated task-related iM1 activity in acallosal patients, which was significantly higher than iM1 activity in a subgroup of gender and age-matched controls. Also, interhemispheric motor suppression was completely absent in acallosal patients. These findings suggest that absence of callosal connections reduces inhibitory interhemispheric motor interactions between left and right M1. This effect may reveal novel aspects of mechanisms in communication of two hemispheres and establishment of brain asymmetries in general.
Collapse
Affiliation(s)
- Erhan Genç
- Ruhr University Bochum, Biopsychology, GAFO 05/620, D-44780 Bochum, Germany; Department of Neurophysiology, Max Planck Institute for Brain Research, Deutschordenstr. 46, D-60528 Frankfurt am Main, Germany; Brain Imaging Center Frankfurt, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstr. 46, Frankfurt am Main D-60528, Germany.
| | | | - Wolf Singer
- Department of Neurophysiology, Max Planck Institute for Brain Research, Deutschordenstr. 46, D-60528 Frankfurt am Main, Germany; Brain Imaging Center Frankfurt, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstr. 46, Frankfurt am Main D-60528, Germany; Frankfurt Institute for Advanced Studies, Goethe University, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main, Germany
| | - Onur Güntürkün
- Ruhr University Bochum, Biopsychology, GAFO 05/620, D-44780 Bochum, Germany
| |
Collapse
|
45
|
Ulmer JL, Klein AP, Mark LP, Tuna I, Agarwal M, DeYoe E. Functional and Dysfunctional Sensorimotor Anatomy and Imaging. Semin Ultrasound CT MR 2015; 36:220-33. [PMID: 26233857 DOI: 10.1053/j.sult.2015.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The sensorimotor system of the human brain and body is fundamental only in its central role in our daily lives. On further examination, it is a system with intricate and complex anatomical, physiological, and functional relationships. Sensorimotor areas including primary sensorimotor, premotor, supplementary motor, and higher order somatosensory cortices are critical for function and can be localized at routine neuroimaging with a familiarity of sulcal and gyral landmarks. Likewise, a thorough understanding of the functions and dysfunctions of these areas can empower the neuroradiologist and lead to superior imaging search patterns, diagnostic considerations, and patient care recommendations in daily clinical practice. Presurgical functional brain mapping of the sensorimotor system may be necessary in scenarios with distortion of anatomical landmarks, multiplanar localization, homunculus localization, congenital brain anomalies, informing diffusion tensor imaging interpretations, and localizing nonvisible targets.
Collapse
Affiliation(s)
- John L Ulmer
- Department of Radiology, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 53226.
| | - Andrew P Klein
- Department of Radiology, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 53226
| | - Leighton P Mark
- Department of Radiology, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 53226
| | - Ibrahim Tuna
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI
| | - Mohit Agarwal
- Department of Radiology, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 53226
| | - Edgar DeYoe
- Department of Radiology, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 53226
| |
Collapse
|
46
|
Li H, Chen Y, Li Y, Yin B, Tang W, Yu X, Huang W, Geng D, Zhang B. Altered cortical activation during action observation in amyotrophic lateral sclerosis patients: a parametric functional MRI study. Eur Radiol 2015; 25:2584-92. [DOI: 10.1007/s00330-015-3671-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/19/2015] [Accepted: 02/13/2015] [Indexed: 11/30/2022]
|
47
|
Kamson DO, Juhász C, Chugani HT, Jeong JW. Novel diffusion tensor imaging technique reveals developmental streamline volume changes in the corticospinal tract associated with leg motor control. Brain Dev 2015; 37:370-5. [PMID: 25027193 PMCID: PMC4291315 DOI: 10.1016/j.braindev.2014.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) has expanded our knowledge of corticospinal tract (CST) anatomy and development. However, previous developmental DTI studies assessed the CST as a whole, overlooking potential differences in development of its components related to control of the upper and lower extremities. The present cross-sectional study investigated age-related changes, side and gender differences in streamline volume of the leg- and hand-related segments of the CST in children. SUBJECTS AND METHODS DTI data of 31 children (1-14 years; mean age: 6±4 years; 17 girls) with normal conventional MRI were analyzed. Leg- and hand-related CST streamline volumes were quantified separately, using a recently validated novel tractography approach. CST streamline volumes on both sides were compared between genders and correlated with age. RESULTS Higher absolute streamline volumes were found in the left leg-related CST compared to the right (p=0.001) without a gender effect (p=0.4), whereas no differences were found in the absolute hand-related CST volumes (p>0.4). CST leg-related streamline volumes, normalized to hemispheric white matter volumes, declined with age in the right hemisphere only (R=-.51; p=0.004). Absolute leg-related CST streamline volumes showed similar, but slightly weaker correlations. Hand-related absolute or normalized CST streamline volumes showed no age-related variations on either side. CONCLUSION These results suggest differential development of CST segments controlling hand vs. leg movements. Asymmetric volume changes in the lower limb motor pathway may be secondary to gradually strengthening left hemispheric dominance and is consistent with previous data suggesting that footedness is a better predictor of hemispheric lateralization than handedness.
Collapse
Affiliation(s)
- David O. Kamson
- Translational Imaging Laboratory, Children’s Hospital of Michigan
| | - Csaba Juhász
- Translational Imaging Laboratory, Children’s Hospital of Michigan,Department of Neurology, Wayne State University,Department of Pediatrics, Wayne State University
| | - Harry T. Chugani
- Translational Imaging Laboratory, Children’s Hospital of Michigan,Department of Neurology, Wayne State University,Department of Pediatrics, Wayne State University
| | - Jeong-Won Jeong
- Translational Imaging Laboratory, Children's Hospital of Michigan, United States; Department of Neurology, Wayne State University, United States; Department of Pediatrics, Wayne State University, United States.
| |
Collapse
|
48
|
Transcranial direct current stimulation improves ipsilateral selective muscle activation in a frequency dependent manner. PLoS One 2015; 10:e0122434. [PMID: 25816204 PMCID: PMC4376864 DOI: 10.1371/journal.pone.0122434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/13/2015] [Indexed: 11/24/2022] Open
Abstract
Failure to suppress antagonist muscles can lead to movement dysfunction, such as the abnormal muscle synergies often seen in the upper limb after stroke. A neurophysiological surrogate of upper limb synergies, the selectivity ratio (SR), can be determined from the ratio of biceps brachii (BB) motor evoked potentials to transcranial magnetic stimulation prior to forearm pronation versus elbow flexion. Surprisingly, cathodal transcranial direct current stimulation (c-TDCS) over ipsilateral primary motor cortex (M1) reduces (i.e. improves) the SR in healthy adults, and chronic stroke patients. The ability to suppress antagonist muscles may be exacerbated at high movement rates. The aim of the present study was to investigate whether the selective muscle activation of the biceps brachii (BB) is dependent on altering frequency demands, and whether the c-tDCS improvement of SR is dependent on task frequency. Seventeen healthy participants performed repetitive isometric elbow flexion and forearm pronation at three rates, before and after c-tDCS or sham delivered to ipsilateral left M1. Ipsilateral c-tDCS improved the SR in a frequency dependent manner by selectively suppressing BB antagonist excitability. Our findings confirm that c-tDCS is an effective tool for improving selective muscle activation, and provide novel evidence for its efficacy at rates of movement where it is most likely to benefit task performance.
Collapse
|
49
|
Tzourio-Mazoyer N, Petit L, Zago L, Crivello F, Vinuesa N, Joliot M, Jobard G, Mellet E, Mazoyer B. Between-hand difference in ipsilateral deactivation is associated with hand lateralization: fMRI mapping of 284 volunteers balanced for handedness. Front Hum Neurosci 2015; 9:5. [PMID: 25705184 PMCID: PMC4319399 DOI: 10.3389/fnhum.2015.00005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/04/2015] [Indexed: 11/13/2022] Open
Abstract
In right-handers (RH), an increase in the pace of dominant hand movement results in increased ipsilateral deactivation of the primary motor cortex (M1). By contrast, an increase in non-dominant hand movement frequency is associated with reduced ipsilateral deactivation. This pattern suggests that inhibitory processes support right hand dominance in right-handers and raises the issues of whether this phenomenon also supports left hand preference in left-handers (LH), and/or whether it relates to asymmetry of manual ability in either group. Thanks to the BIL&GIN, a database dedicated to the investigation of hemispheric specialization (HS), we studied the variation in M1 activity during right and left finger tapping tasks (FTT) in a sample of 284 healthy participants balanced for handedness. An M1 fMRI localizer was defined for each participant as an 8 mm diameter sphere centered on the motor activation peak. RH exhibited significantly larger deactivation of the ipsilateral M1 when moving their dominant hand than their non-dominant hand. In contrast, LH exhibited comparable ipsilateral M1 deactivation during either hand movement, reflecting a bilateral cortical specialization. This pattern is likely related to left-handers’ good performances with their right hand and consequent lower asymmetry in manual ability compared with RH. Finally, inter-individual analyses over the whole sample demonstrated that the larger the difference in manual skill across hands, the larger the difference in ipsilateral deactivation. Overall, we propose that difference in ipsilateral deactivation is a marker of difference in manual ability asymmetry reflecting differences in the strength of transcallosal inhibition when a given hand is moving.
Collapse
Affiliation(s)
| | - L Petit
- GIN UMR5296, CNRS CEA Université de Bordeaux Bordeaux, France
| | - L Zago
- GIN UMR5296, CNRS CEA Université de Bordeaux Bordeaux, France
| | - F Crivello
- GIN UMR5296, CNRS CEA Université de Bordeaux Bordeaux, France
| | - N Vinuesa
- GIN UMR5296, CNRS CEA Université de Bordeaux Bordeaux, France
| | - M Joliot
- GIN UMR5296, CNRS CEA Université de Bordeaux Bordeaux, France
| | - G Jobard
- GIN UMR5296, CNRS CEA Université de Bordeaux Bordeaux, France
| | - E Mellet
- GIN UMR5296, CNRS CEA Université de Bordeaux Bordeaux, France
| | - B Mazoyer
- GIN UMR5296, CNRS CEA Université de Bordeaux Bordeaux, France
| |
Collapse
|
50
|
Gess JL, Fausett JS, Kearney-Ramos TE, Kilts CD, James GA. Task-dependent recruitment of intrinsic brain networks reflects normative variance in cognition. Brain Behav 2014; 4:650-64. [PMID: 25328842 PMCID: PMC4107383 DOI: 10.1002/brb3.243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/05/2014] [Accepted: 05/29/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Functional neuroimaging has great potential to inform clinical decisions, whether by identifying neural biomarkers of illness progression and severity, predicting therapeutic response, or selecting suitable patients for surgical interventions. Yet a persisting barrier to functional neuroimaging's clinical translation is our incomplete understanding of how normative variance in cognition, personality, and behavior shape the brain's structural and functional organization. We propose that modeling individual differences in these brain-behavior relationships is crucial for improving the accuracy of neuroimaging biomarkers for neurologic and psychiatric disorders. METHODS We addressed this goal by initiating the Cognitive Connectome Project, which bridges neuropsychology and neuroimaging by pairing nine cognitive domains typically assessed by clinically validated neuropsychological measures with those tapped by canonical neuroimaging tasks (motor, visuospatial perception, attention, language, memory, affective processing, decision making, working memory, and executive function). To date, we have recruited a diverse sample of 53 participants (mean [SD], age = 32 [9.7] years, 31 females). RESULTS As a proof of concept, we first demonstrate that our neuroimaging task battery can replicate previous findings that task performance recruits intrinsic brain networks identified during wakeful rest. We then expand upon these previous findings by showing that the extent to which these networks are recruited by task reflects individual differences in cognitive ability. Specifically, performance on the Judgment of Line Orientation task (a clinically validated measure of visuospatial perception) administered outside of the MRI scanner predicts the magnitude of task-induced activity of the dorsal visual network when performing a direct replication of this task within the MRI scanner. Other networks (such as default mode and right frontoparietal) showed task-induced changes in activity that were unrelated to task performance, suggesting these networks to not be involved in visuospatial perception. CONCLUSION These findings establish a methodological framework by which clinical neuropsychology and functional neuroimaging may mutually inform one another, thus enhancing the translation of functional neuroimaging into clinical decision making.
Collapse
Affiliation(s)
- Jennifer L Gess
- Psychiatric Research Institute, University of Arkansas for Medical Sciences Little Rock, Arkansas, 72205-7199
| | - Jennifer S Fausett
- Psychiatric Research Institute, University of Arkansas for Medical Sciences Little Rock, Arkansas, 72205-7199
| | - Tonisha E Kearney-Ramos
- Psychiatric Research Institute, University of Arkansas for Medical Sciences Little Rock, Arkansas, 72205-7199
| | - Clinton D Kilts
- Psychiatric Research Institute, University of Arkansas for Medical Sciences Little Rock, Arkansas, 72205-7199
| | - George Andrew James
- Psychiatric Research Institute, University of Arkansas for Medical Sciences Little Rock, Arkansas, 72205-7199
| |
Collapse
|