1
|
Cemeljic N, Job X, Kilteni K. Predictions of bimanual self-touch determine the temporal tuning of somatosensory perception. iScience 2025; 28:111643. [PMID: 39898028 PMCID: PMC11787602 DOI: 10.1016/j.isci.2024.111643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/24/2024] [Accepted: 12/17/2024] [Indexed: 02/04/2025] Open
Abstract
We easily distinguish self-touch from the touch of others. This distinction is suggested to arise because the brain predicts the somatosensory consequences of voluntary movements using an efference copy and attenuates the predicted self-touch. However, it remains unclear how these predictions impact somatosensory perception before or after the self-touch occurs. Here, participants discriminated forces applied to their left index finger at different phases of the right hand's reaching movement toward the left hand. We observed that forces felt progressively weaker during the reaching, reached their minimum perceived intensity at the time of self-touch, and recovered after the movement ended. We further demonstrated that this gradual attenuation vanished during similar reaching movements that did not produce expectations of self-touch between the two hands. Our results indicate a temporal tuning of somatosensory perception during movements to self-touch and underscore the role of sensorimotor context in forming predictions that attenuate the self-touch intensity.
Collapse
Affiliation(s)
- Noa Cemeljic
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
| | - Xavier Job
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
| | - Konstantina Kilteni
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500HB, the Netherlands
| |
Collapse
|
2
|
Fritz C, Bayer M, Zimmermann E. The roles of vision and proprioception in spatial tuning of sensory attenuation. Exp Brain Res 2025; 243:42. [PMID: 39798010 PMCID: PMC11724775 DOI: 10.1007/s00221-024-06982-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
When we touch ourselves, the pressure appears weaker compared to when someone else touches us, an effect known as sensory attenuation. Sensory attenuation is spatially tuned and does only occur if the positions of the touching and the touched body-party spatially coincide. Here, we ask about the contribution of visual or proprioceptive signals to determine self-touch. By using a 3D arm model in a virtual reality environment, we dissociated the visual from the proprioceptive arm signal. When a virtual arm was visible indicating self-touch, we found that sensory attenuation generalized across different locations. When no virtual arm was visible, we found sensory attenuation to be strongest when subjects pointed to the position where they felt their arm to be located. We conclude that the spatial tuning of tactile attenuation depends on which signal determines the occurrence of self-touch. When observers can see their hand, the visual signal dominates the proprioceptive determining self-touch in a single visual snapshot. When only the proprioceptive signal is available, the positions of the touching and the touched body-part must be separately estimated and subsequently compared if they overlap in anatomical space.
Collapse
Affiliation(s)
- Clara Fritz
- Institute for Experimental Psychology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Manuel Bayer
- Institute for Experimental Psychology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Eckart Zimmermann
- Institute for Experimental Psychology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
3
|
Job X, Kilteni K. Action does not enhance but attenuates predicted touch. eLife 2023; 12:e90912. [PMID: 38099521 PMCID: PMC10723797 DOI: 10.7554/elife.90912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023] Open
Abstract
Dominant motor control theories propose that the brain predicts and attenuates the somatosensory consequences of actions, referred to as somatosensory attenuation. Support comes from psychophysical and neuroimaging studies showing that touch applied on a passive hand elicits attenuated perceptual and neural responses if it is actively generated by one's other hand, compared to an identical touch from an external origin. However, recent experimental findings have challenged this view by providing psychophysical evidence that the perceived intensity of touch on the passive hand is enhanced if the active hand does not receive touch simultaneously with the passive hand (somatosensory enhancement) and by further attributing attenuation to the double tactile stimulation of the hands upon contact. Here, we directly contrasted the hypotheses of the attenuation and enhancement models regarding how action influences somatosensory perception by manipulating whether the active hand contacts the passive hand. We further assessed somatosensory perception in the absence of any predictive cues in a condition that turned out to be essential for interpreting the experimental findings. In three pre-registered experiments, we demonstrate that action does not enhance the predicted touch (Experiment 1), that the previously reported 'enhancement' effects are driven by the reference condition used (Experiment 2), and that self-generated touch is robustly attenuated regardless of whether the two hands make contact (Experiment 3). Our results provide conclusive evidence that action does not enhance but attenuates predicted touch and prompt a reappraisal of recent experimental findings upon which theoretical frameworks proposing a perceptual enhancement by action prediction are based.
Collapse
Affiliation(s)
- Xavier Job
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| | - Konstantina Kilteni
- Department of Neuroscience, Karolinska InstituteStockholmSweden
- Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenNetherlands
| |
Collapse
|
4
|
Timar L, Job X, Orban de Xivry JJ, Kilteni K. Aging exerts a limited influence on the perception of self-generated and externally generated touch. J Neurophysiol 2023; 130:871-882. [PMID: 37609705 PMCID: PMC10642979 DOI: 10.1152/jn.00145.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023] Open
Abstract
Touch generated by our voluntary movements is attenuated both at the perceptual and neural levels compared with touch of the same intensity delivered to our body by another person or machine. This somatosensory attenuation phenomenon relies on the integration of somatosensory input and predictions about the somatosensory consequences of our actions. Previous studies have reported increased somatosensory attenuation in elderly people, proposing an overreliance on sensorimotor predictions to compensate for age-related declines in somatosensory perception; however, recent results have challenged this direct relationship. In a preregistered study, we used a force-discrimination task to assess whether aging increases somatosensory attenuation and whether this increase is explained by decreased somatosensory precision in elderly individuals. Although 94% of our sample (n = 108, 21-77 yr old) perceived their self-generated touches as weaker than externally generated touches of identical intensity (somatosensory attenuation) regardless of age, we did not find a significant increase in somatosensory attenuation in our elderly participants (65-77 yr old), but a trend when considering only the oldest subset (69-77 yr old). Moreover, we did not observe a significant age-related decline in somatosensory precision or a significant relationship of age with somatosensory attenuation. Together, our results suggest that aging exerts a limited influence on the perception of self-generated and externally generated touch and indicate a less direct relationship between somatosensory precision and attenuation in the elderly individuals than previously proposed.NEW & NOTEWORTHY Self-generated touch is attenuated compared with externally generated touch of identical intensity. This somatosensory attenuation has been previously shown to be increased in elderly participants, but it remains unclear whether it is related to age-related somatosensory decline. In our preregistered study, we observed a trend for increased somatosensory attenuation in our oldest participants (≥69 yr), but we found no evidence of an age-related decline in somatosensory function or a relationship of age with somatosensory attenuation.
Collapse
Affiliation(s)
- Lili Timar
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Xavier Job
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jean-Jacques Orban de Xivry
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Konstantina Kilteni
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Font-Alaminos M, Paraskevoudi N, SanMiguel I. Actions do not clearly impact auditory memory. Front Hum Neurosci 2023; 17:1124784. [PMID: 36923585 PMCID: PMC10009998 DOI: 10.3389/fnhum.2023.1124784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
When memorizing a list of words, those that are read aloud are remembered better than those read silently, a phenomenon known as the production effect. There have been several attempts to understand the production effect, however, actions alone have not been examined as possible contributors. Stimuli that coincide with our own actions are processed differently compared to stimuli presented passively to us. These sensory response modulations may have an impact on how action-revolving inputs are stored in memory. In this study, we investigated whether actions could impact auditory memory. Participants listened to sounds presented either during or in between their actions. We measured electrophysiological responses to the sounds and tested participants' memory of them. Results showed attenuation of sensory responses for action-coinciding sounds. However, we did not find a significant effect on memory performance. The absence of significant behavioral findings suggests that the production effect may be not dependent on the effects of actions per se. We conclude that action alone is not sufficient to improve memory performance, and thus elicit a production effect.
Collapse
Affiliation(s)
- Marta Font-Alaminos
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Brainlab-Cognitive Neuroscience Research Group, Departament de Psicologia Clinica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain
| | - Nadia Paraskevoudi
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Brainlab-Cognitive Neuroscience Research Group, Departament de Psicologia Clinica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain
| | - Iria SanMiguel
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Brainlab-Cognitive Neuroscience Research Group, Departament de Psicologia Clinica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| |
Collapse
|
6
|
Loyola-Navarro R, Moënne-Loccoz C, Vergara RC, Hyafil A, Aboitiz F, Maldonado PE. Voluntary self-initiation of the stimuli onset improves working memory and accelerates visual and attentional processing. Heliyon 2022; 8:e12215. [PMID: 36578387 PMCID: PMC9791366 DOI: 10.1016/j.heliyon.2022.e12215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/25/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The ability of an organism to voluntarily control the stimuli onset modulates perceptual and attentional functions. Since stimulus encoding is an essential component of working memory (WM), we conjectured that controlling the initiation of the perceptual process would positively modulate WM. To corroborate this proposition, we tested twenty-five healthy subjects in a modified-Sternberg WM task under three stimuli presentation conditions: an automatic presentation of the stimuli, a self-initiated presentation of the stimuli (through a button press), and a self-initiated presentation with random-delay stimuli onset. Concurrently, we recorded the subjects' electroencephalographic signals during WM encoding. We found that the self-initiated condition was associated with better WM accuracy, and earlier latencies of N1, P2 and P3 evoked potential components representing visual, attentional and mental review of the stimuli processes, respectively. Our work demonstrates that self-initiated stimuli enhance WM performance and accelerate early visual and attentional processes deployed during WM encoding. We also found that self-initiated stimuli correlate with an increased attentional state compared to the other two conditions, suggesting a role for temporal stimuli predictability. Our study remarks on the relevance of self-control of the stimuli onset in sensory, attentional and memory updating processing for WM.
Collapse
Affiliation(s)
- Rocio Loyola-Navarro
- Departamento de Neurociencia, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Departamento de Educación Diferencial, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Center for Advanced Research in Education, Institute of Education, Universidad de Chile, Santiago, Chile
| | - Cristóbal Moënne-Loccoz
- Departamento de Ciencias de la Salud, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro Nacional de Inteligencia Artificial (CENIA), Santiago, Chile
| | - Rodrigo C. Vergara
- Departamento de Kinesiología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Centro Nacional de Inteligencia Artificial (CENIA), Santiago, Chile
- Centro de Investigación en Educación, Universidad Metropolitana de Ciencias de la Educación (CIE-UMCE), Santiago, Chile
| | | | - Francisco Aboitiz
- Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro E. Maldonado
- Departamento de Neurociencia, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Centro Nacional de Inteligencia Artificial (CENIA), Santiago, Chile
| |
Collapse
|
7
|
Yagyu K, Toyomaki A, Hashimoto N, Shiraishi H, Kusumi I, Murohashi H. Approach to impaired corollary discharge in patients with schizophrenia: An analysis of self-induced somatosensory evoked potentials and fields. Front Psychol 2022; 13:904995. [PMID: 36059767 PMCID: PMC9428598 DOI: 10.3389/fpsyg.2022.904995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Background Difficulty in distinguishing between self-generated actions and those generated by others is a core feature of schizophrenia. This is thought to be underpinned by the failure of corollary discharge. However, few studies have investigated these events using somatosensory evoked potentials (SEPs) and somatosensory evoked magnetic fields (SEFs). Methods The study included 15 right-handed patients with schizophrenia and 16 healthy controls. SEP and SEF were elicited by electrical stimuli to the left median nerve at intervals of 1–3 s. In the external condition, stimuli were externally induced by a machine. In the self-condition, stimuli were induced by tapping the participants’ own right index finger. Peak amplitude at C4’ in SEP and root mean square in 10 channels on the right primary somatosensory area in SEF were analyzed. Results Although there was a significant main effect of condition at N20m, and a significant main effect of condition and group at P30m, no significant interactions of condition and group were found in either N20m or P30m. The post-hoc Wilcoxon signed-rank test revealed that the peak value of P30m in the external condition was significantly higher than that in the self-condition in the healthy control group only. In addition, there was a significant positive correlation between the peak value of P30m in the self-condition and a positive symptom score. Conclusion In the current study, we did not find abnormalities of corollary discharge in primary sensory areas in patients with schizophrenia. Further investigations with more cases may reveal the possibility of corollary discharge disturbance in the primary sensory cortex.
Collapse
Affiliation(s)
- Kazuyori Yagyu
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Hokkaidō, Japan
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Hokkaidō, Japan
| | - Atsuhito Toyomaki
- Department of Psychiatry, Hokkaido University, Graduate School of Medicine, Sapporo, Hokkaidō, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University, Graduate School of Medicine, Sapporo, Hokkaidō, Japan
- *Correspondence: Naoki Hashimoto,
| | - Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Hokkaidō, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University, Graduate School of Medicine, Sapporo, Hokkaidō, Japan
| | - Harumitsu Murohashi
- Department of Human Development Sciences, Hokkaido University, Graduate School of Education, Sapporo, Hokkaidō, Japan
| |
Collapse
|
8
|
Paraskevoudi N, SanMiguel I. Sensory suppression and increased neuromodulation during actions disrupt memory encoding of unpredictable self-initiated stimuli. Psychophysiology 2022; 60:e14156. [PMID: 35918912 PMCID: PMC10078310 DOI: 10.1111/psyp.14156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022]
Abstract
Actions modulate sensory processing by attenuating responses to self- compared to externally generated inputs, which is traditionally attributed to stimulus-specific motor predictions. Yet, suppression has been also found for stimuli merely coinciding with actions, pointing to unspecific processes that may be driven by neuromodulatory systems. Meanwhile, the differential processing for self-generated stimuli raises the possibility of producing effects also on memory for these stimuli; however, evidence remains mixed as to the direction of the effects. Here, we assessed the effects of actions on sensory processing and memory encoding of concomitant, but unpredictable sounds, using a combination of self-generation and memory recognition task concurrently with EEG and pupil recordings. At encoding, subjects performed button presses that half of the time generated a sound (motor-auditory; MA) and listened to passively presented sounds (auditory-only; A). At retrieval, two sounds were presented and participants had to respond which one was present before. We measured memory bias and memory performance by having sequences where either both or only one of the test sounds were presented at encoding, respectively. Results showed worse memory performance - but no differences in memory bias -, attenuated responses, and larger pupil diameter for MA compared to A sounds. Critically, the larger the sensory attenuation and pupil diameter, the worse the memory performance for MA sounds. Nevertheless, sensory attenuation did not correlate with pupil dilation. Collectively, our findings suggest that sensory attenuation and neuromodulatory processes coexist during actions, and both relate to disrupted memory for concurrent, albeit unpredictable sounds.
Collapse
Affiliation(s)
- Nadia Paraskevoudi
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Brainlab-Cognitive Neuroscience Research Group, Departament de Psicologia Clinica i Psicobiologia, University of Barcelona, Barcelona, Spain
| | - Iria SanMiguel
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Brainlab-Cognitive Neuroscience Research Group, Departament de Psicologia Clinica i Psicobiologia, University of Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| |
Collapse
|
9
|
Jousmäki V. Gratifying Gizmos for Research and Clinical MEG. Front Neurol 2022; 12:814573. [PMID: 35153989 PMCID: PMC8830907 DOI: 10.3389/fneur.2021.814573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Experimental designs are of utmost importance in neuroimaging. Experimental repertoire needs to be designed with the understanding of physiology, clinical feasibility, and constraints posed by a particular neuroimaging method. Innovations in introducing natural, ecologically-relevant stimuli, with successful collaboration across disciplines, correct timing, and a bit of luck may cultivate novel experiments, new discoveries, and open pathways to new clinical practices. Here I introduce some gizmos that I have initiated in magnetoencephalography (MEG) and applied with my collaborators in my home laboratory and in several other laboratories. These gizmos have been applied to address neuronal correlates of audiotactile interactions, tactile sense, active and passive movements, speech processing, and intermittent photic stimulation (IPS) in humans. This review also includes additional notes on the ideas behind the gizmos, their evolution, and results obtained.
Collapse
Affiliation(s)
- Veikko Jousmäki
- Aalto NeuroImaging, Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- Cognitive Neuroimaging Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- *Correspondence: Veikko Jousmäki
| |
Collapse
|
10
|
Paraskevoudi N, SanMiguel I. Self-generation and sound intensity interactively modulate perceptual bias, but not perceptual sensitivity. Sci Rep 2021; 11:17103. [PMID: 34429453 PMCID: PMC8385100 DOI: 10.1038/s41598-021-96346-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
The ability to distinguish self-generated stimuli from those caused by external sources is critical for all behaving organisms. Although many studies point to a sensory attenuation of self-generated stimuli, recent evidence suggests that motor actions can result in either attenuated or enhanced perceptual processing depending on the environmental context (i.e., stimulus intensity). The present study employed 2-AFC sound detection and loudness discrimination tasks to test whether sound source (self- or externally-generated) and stimulus intensity (supra- or near-threshold) interactively modulate detection ability and loudness perception. Self-generation did not affect detection and discrimination sensitivity (i.e., detection thresholds and Just Noticeable Difference, respectively). However, in the discrimination task, we observed a significant interaction between self-generation and intensity on perceptual bias (i.e. Point of Subjective Equality). Supra-threshold self-generated sounds were perceived softer than externally-generated ones, while at near-threshold intensities self-generated sounds were perceived louder than externally-generated ones. Our findings provide empirical support to recent theories on how predictions and signal intensity modulate perceptual processing, pointing to interactive effects of intensity and self-generation that seem to be driven by a biased estimate of perceived loudness, rather by changes in detection and discrimination sensitivity.
Collapse
Affiliation(s)
- Nadia Paraskevoudi
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, P. Vall d'Hebron 171, 08035, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Iria SanMiguel
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, P. Vall d'Hebron 171, 08035, Barcelona, Spain. .,Institute of Neurosciences, University of Barcelona, Barcelona, Spain. .,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.
| |
Collapse
|
11
|
Computational approach to understand temporal and spatial tactile transmission processes from mechanical stimuli of the index fingertip to the primary somatosensory cortex. J Neurosci Methods 2021; 359:109215. [PMID: 33957157 DOI: 10.1016/j.jneumeth.2021.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 11/23/2022]
Abstract
Mechanisms of information transmission using tactile sense are one of major concerns in producing simulated experience in virtual or augmented reality as well as in compensating elderly or impaired people with diminished tactile sensory function. However, important mechanism of the difference of peak latency in the primary somatosensory cortex (SI) between electrical and mechanical stimulations of finger skin is not fully understood. We propose a computational approach to fuse a computational model to simulate temporal and spatial transmission processes from mechanical stimuli to the SI and experimental method using a magnetoencephalograph (MEG). In our model, a tactile model that combined a three-dimensional mechanical model of fingertip skin and a neurophysiological model of a slowly adapting type 1 (SA1) mechanoreceptor was integrated with a somatosensory evoked field (SEF) response model. Electrical and mechanical stimulations were applied to the same locations of the right or left index fingertips of three subjects using a MEG. By identifying parameters of the SEF response model using the electrical stimulation test data, predicted first peak latency due to a mechanical stimulus was identical to its average value obtained from the mechanical stimulation test data, while the spatial map predicted at the multiple SA1 receptors qualitatively corresponded to the MEG image map in the timings of peak latency. This suggests that mechanical change in the skin and neurophysiological responses generate the difference of peak latency in SI between electrical and mechanical stimulations. The computational approach has the potential for detailed investigation of mechanisms of tactile information transmission.
Collapse
|
12
|
Kojima S, Otsuru N, Miyaguchi S, Yokota H, Nagasaka K, Saito K, Inukai Y, Shirozu H, Onishi H. The intervention of mechanical tactile stimulation modulates somatosensory evoked magnetic fields and cortical oscillations. Eur J Neurosci 2021; 53:3433-3446. [PMID: 33772899 DOI: 10.1111/ejn.15209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
The different cortical activity evoked by a mechanical tactile stimulus depends on tactile stimulus patterns, which demonstrates that simple stimuli (i.e., global synchronous stimulation the stimulus area) activate the primary somatosensory cortex alone, whereas complex stimuli (i.e., stimulation while moving in the stimulus area) activate not only the primary somatosensory cortex but also the primary motor area. Here, we investigated whether the effects of a repetitive mechanical tactile stimulation (MS) on somatosensory evoked magnetic fields (SEFs) and cortical oscillations depend on MS patterns. This single-blinded study included 15 healthy participants. Two types interventions of MS lasting 20 min were used: a repetitive global tactile stimulation (RGS) was used to stimulate the finger by using 24 pins installed on a finger pad, whereas a sequential stepwise displacement tactile stimulation (SSDS) was used to stimulate the finger by moving a row of six pins between the left and right sides on the finger pad. Each parameter was measured pre- and post-intervention. The P50m amplitude of the SEF was increased by RGS and decreased by SSDS. The modulation of P50m was correlated with its amplitude before RGS and with the modulation of beta band oscillation at the resting state after SSDS. This study showed that the effects of a 20-min MS on SEFs and cortical oscillations depend on mechanical tactile stimulus patterns. Moreover, our results offer potential for the modulation of tactile functions and selection of stimulation patterns according to cortical states.
Collapse
Affiliation(s)
- Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Kazuaki Nagasaka
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Hiroshi Shirozu
- Department of Functional Neurosurgery, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| |
Collapse
|
13
|
Balla VR, Szalóki S, Kilencz T, Dalos VD, Németh R, Csifcsák G. A novel experimental paradigm with improved ecological validity reveals robust action-associated enhancement of the N1 visual event-related potential in healthy adults. Behav Brain Res 2020; 379:112353. [PMID: 31726071 DOI: 10.1016/j.bbr.2019.112353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/18/2019] [Accepted: 11/08/2019] [Indexed: 11/28/2022]
Abstract
The association between an action and its sensory consequence has been linked to our sense of agency (SoA). While ecological validity is crucial in investigating such a complex phenomenon, previous paradigms focusing on the cortical analysis of movement-related images used simplified experimental protocols. Here, we examined the influence of action-associated predictive processes on visual event-related potentials (ERPs) in a paradigm that models everyday actions more precisely, using a commercial gesture control device, ecological stimuli depicting a human hand and a behavioural training to reinforce the sense of control over action outcomes. We assessed whether a more natural setup would result in robust ERP modifications following self-initiated movements relative to passive viewing of the same images. We found no compelling evidence for amplitude modulation for the early occipital C1 and P1 components. Crucially, we observed strong action-associated amplitude enhancement for the posterior N1, an effect that was not present in our previous study that relied on conventional button-presses. We propose that the N1 effect in our ecologically more valid paradigm can either reflect stronger attentional amplification of domain-specific visual processes following self-initiated actions, or indicate that sensory predictions in the visual N1 latency range manifest in larger (rather than reduced) ERPs. Overall, our novel approach utilizing a gesture-control device can be a potent tool for investigating the behavioural and neural manifestations of SoA in the visual modality.
Collapse
Affiliation(s)
- Viktória Roxána Balla
- Department of Cognitive and Neuropsychology, Institute of Psychology, Faculty of Humanities and Social Sciences, University of Szeged, Hungary; Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland.
| | - Szilvia Szalóki
- Department of Cognitive and Neuropsychology, Institute of Psychology, Faculty of Humanities and Social Sciences, University of Szeged, Hungary; Department of Psychiatry, Faculty of Medicine, University of Szeged, Hungary
| | - Tünde Kilencz
- Department of Cognitive and Neuropsychology, Institute of Psychology, Faculty of Humanities and Social Sciences, University of Szeged, Hungary; Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Vera Daniella Dalos
- Department of Cognitive and Neuropsychology, Institute of Psychology, Faculty of Humanities and Social Sciences, University of Szeged, Hungary
| | - Roland Németh
- Department of Cognitive and Neuropsychology, Institute of Psychology, Faculty of Humanities and Social Sciences, University of Szeged, Hungary
| | - Gábor Csifcsák
- Department of Cognitive and Neuropsychology, Institute of Psychology, Faculty of Humanities and Social Sciences, University of Szeged, Hungary; Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
14
|
Congruency of intervening events and self-induced action influence prediction of final results. Exp Brain Res 2020; 238:575-586. [PMID: 31993684 PMCID: PMC7142040 DOI: 10.1007/s00221-020-05735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 01/16/2020] [Indexed: 11/26/2022]
Abstract
Predicting self-induced stimuli is easier than predicting externally produced ones and the amplitude of event-related brain potentials (ERP) elicited by self-induced stimuli is smaller than that elicited by externally produced ones. Previous studies reported that these phenomena occurred strong when stimuli were presented immediately after self-induced action. To be able to adapt to changes, however, it is necessary to predict not only an event that follows a self-induced action but also a subsequent final result. We investigated whether congruency among self-induced actions, intervening events, and final results influences the processing of final results. The congruency of an intervening event with self-induced action was task-irrelevant information for the required response to a final result. The results showed that the P1 amplitude elicited by the final result (i.e., somatosensory stimulus) when an intervening event was congruent with self-induced action was smaller than other elicited amplitudes. This suggests that the congruency of an intervening event and self-induced action may facilitate prediction of a final result, even when this congruency is irrelevant to the ongoing task.
Collapse
|
15
|
Distinction of self-produced touch and social touch at cortical and spinal cord levels. Proc Natl Acad Sci U S A 2019; 116:2290-2299. [PMID: 30670645 PMCID: PMC6369791 DOI: 10.1073/pnas.1816278116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The earliest way humans can learn what their body is and where the outside world begins is through the tactile sense, especially through touch between parent and baby. In this study, we demonstrated differential processing of touch from self and others at cortical and spinal levels. Our results support top-down modulation of dorsal horn somatosensory processing, as recently shown in animal studies. We provide evidence that the individual self-concept relates to differential self- vs. other-processing in the tactile domain. Self- vs. other-distinction is necessary for successful social interaction with others and for establishing a coherent self. Our results suggest an association between impaired somatosensory processing and a dysfunctional self-concept, as seen in many psychiatric disorders. Differentiation between self-produced tactile stimuli and touch by others is necessary for social interactions and for a coherent concept of “self.” The mechanisms underlying this distinction are unknown. Here, we investigated the distinction between self- and other-produced light touch in healthy volunteers using three different approaches: fMRI, behavioral testing, and somatosensory-evoked potentials (SEPs) at spinal and cortical levels. Using fMRI, we found self–other differentiation in somatosensory and sociocognitive areas. Other-touch was related to activation in several areas, including somatosensory cortex, insula, superior temporal gyrus, supramarginal gyrus, striatum, amygdala, cerebellum, and prefrontal cortex. During self-touch, we instead found deactivation in insula, anterior cingulate cortex, superior temporal gyrus, amygdala, parahippocampal gyrus, and prefrontal areas. Deactivation extended into brain areas encoding low-level sensory representations, including thalamus and brainstem. These findings were replicated in a second cohort. During self-touch, the sensorimotor cortex was functionally connected to the insula, and the threshold for detection of an additional tactile stimulus was elevated. Differential encoding of self- vs. other-touch during fMRI correlated with the individual self-concept strength. In SEP, cortical amplitudes were reduced during self-touch, while latencies at cortical and spinal levels were faster for other-touch. We thus demonstrated a robust self–other distinction in brain areas related to somatosensory, social cognitive, and interoceptive processing. Signs of this distinction were evident at the spinal cord. Our results provide a framework for future studies in autism, schizophrenia, and emotionally unstable personality disorder, conditions where symptoms include social touch avoidance and poor self-vs.-other discrimination.
Collapse
|
16
|
Nava E, Gamberini C, Berardis A, Bolognini N. Action Shapes the Sense of Body Ownership Across Human Development. Front Psychol 2018; 9:2507. [PMID: 30618937 PMCID: PMC6304390 DOI: 10.3389/fpsyg.2018.02507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/26/2018] [Indexed: 12/30/2022] Open
Abstract
In this study we investigated, both in childhood and adulthood, the role of action in promoting and shaping the sense of body ownership, which is traditionally viewed as dependent on multisensory integration. By means of a novel action-based version of the rubber hand illusion (RHI), in which participants could actively self-stroke the rubber hand, with (Version 1) or without visual feedback (Version 2) of their own actions, we showed that self-generated actions promote the emergence of a sense of ownership over the rubber hand in children, while it interferes with the embodiment of the rubber hand in adults. When the movement is missing (Version 3, i.e., mere view of the rubber hand being stroked concurrently with one's own hand), the pattern of results is reversed, with adults showing embodiment of the rubber hand, but children lacking to do so. Our novel findings reveal a dynamic and plastic contribution of the motor system to the emergence of a coherent bodily self, suggesting that the development of the sense of body ownership is shaped by motor experience, rather than being purely sensory.
Collapse
Affiliation(s)
- Elena Nava
- Department of Psychology and NeuroMi - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Chiara Gamberini
- Department of Psychology and NeuroMi - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Agnese Berardis
- Department of Psychology and NeuroMi - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology and NeuroMi - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.,Laboratory of Neuropsychology, IRCSS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
17
|
Affiliation(s)
- Roy Salomon
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
18
|
Hari R, Parkkonen L. The brain timewise: how timing shapes and supports brain function. Philos Trans R Soc Lond B Biol Sci 2015; 370:rstb.2014.0170. [PMID: 25823867 PMCID: PMC4387511 DOI: 10.1098/rstb.2014.0170] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.
Collapse
Affiliation(s)
- Riitta Hari
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-AALTO 00076, Espoo, Finland
| | - Lauri Parkkonen
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-AALTO 00076, Espoo, Finland
| |
Collapse
|
19
|
Brown M, Kuperberg GR. A Hierarchical Generative Framework of Language Processing: Linking Language Perception, Interpretation, and Production Abnormalities in Schizophrenia. Front Hum Neurosci 2015; 9:643. [PMID: 26640435 PMCID: PMC4661240 DOI: 10.3389/fnhum.2015.00643] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 11/12/2015] [Indexed: 12/27/2022] Open
Abstract
Language and thought dysfunction are central to the schizophrenia syndrome. They are evident in the major symptoms of psychosis itself, particularly as disorganized language output (positive thought disorder) and auditory verbal hallucinations (AVHs), and they also manifest as abnormalities in both high-level semantic and contextual processing and low-level perception. However, the literatures characterizing these abnormalities have largely been separate and have sometimes provided mutually exclusive accounts of aberrant language in schizophrenia. In this review, we propose that recent generative probabilistic frameworks of language processing can provide crucial insights that link these four lines of research. We first outline neural and cognitive evidence that real-time language comprehension and production normally involve internal generative circuits that propagate probabilistic predictions to perceptual cortices - predictions that are incrementally updated based on prediction error signals as new inputs are encountered. We then explain how disruptions to these circuits may compromise communicative abilities in schizophrenia by reducing the efficiency and robustness of both high-level language processing and low-level speech perception. We also argue that such disruptions may contribute to the phenomenology of thought-disordered speech and false perceptual inferences in the language system (i.e., AVHs). This perspective suggests a number of productive avenues for future research that may elucidate not only the mechanisms of language abnormalities in schizophrenia, but also promising directions for cognitive rehabilitation.
Collapse
Affiliation(s)
- Meredith Brown
- Department of Psychiatry–Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, CharlestownMA, USA
- Department of Psychology, Tufts University, MedfordMA, USA
| | - Gina R. Kuperberg
- Department of Psychiatry–Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, CharlestownMA, USA
- Department of Psychology, Tufts University, MedfordMA, USA
| |
Collapse
|
20
|
Stenner MP, Bauer M, Haggard P, Heinze HJ, Dolan R. Enhanced Alpha-oscillations in Visual Cortex during Anticipation of Self-generated Visual Stimulation. J Cogn Neurosci 2014; 26:2540-51. [DOI: 10.1162/jocn_a_00658] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The perceived intensity of sensory stimuli is reduced when these stimuli are caused by the observer's actions. This phenomenon is traditionally explained by forward models of sensory action–outcome, which arise from motor processing. Although these forward models critically predict anticipatory modulation of sensory neural processing, neurophysiological evidence for anticipatory modulation is sparse and has not been linked to perceptual data showing sensory attenuation. By combining a psychophysical task involving contrast discrimination with source-level time–frequency analysis of MEG data, we demonstrate that the amplitude of alpha-oscillations in visual cortex is enhanced before the onset of a visual stimulus when the identity and onset of the stimulus are controlled by participants' motor actions. Critically, this prestimulus enhancement of alpha-amplitude is paralleled by psychophysical judgments of a reduced contrast for this stimulus. We suggest that alpha-oscillations in visual cortex preceding self-generated visual stimulation are a likely neurophysiological signature of motor-induced sensory anticipation and mediate sensory attenuation. We discuss our results in relation to proposals that attribute generic inhibitory functions to alpha-oscillations in prioritizing and gating sensory information via top–down control.
Collapse
|
21
|
Emmorey K, McCullough S, Mehta S, Grabowski TJ. How sensory-motor systems impact the neural organization for language: direct contrasts between spoken and signed language. Front Psychol 2014; 5:484. [PMID: 24904497 PMCID: PMC4033845 DOI: 10.3389/fpsyg.2014.00484] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/03/2014] [Indexed: 11/24/2022] Open
Abstract
To investigate the impact of sensory-motor systems on the neural organization for language, we conducted an H215O-PET study of sign and spoken word production (picture-naming) and an fMRI study of sign and audio-visual spoken language comprehension (detection of a semantically anomalous sentence) with hearing bilinguals who are native users of American Sign Language (ASL) and English. Directly contrasting speech and sign production revealed greater activation in bilateral parietal cortex for signing, while speaking resulted in greater activation in bilateral superior temporal cortex (STC) and right frontal cortex, likely reflecting auditory feedback control. Surprisingly, the language production contrast revealed a relative increase in activation in bilateral occipital cortex for speaking. We speculate that greater activation in visual cortex for speaking may actually reflect cortical attenuation when signing, which functions to distinguish self-produced from externally generated visual input. Directly contrasting speech and sign comprehension revealed greater activation in bilateral STC for speech and greater activation in bilateral occipital-temporal cortex for sign. Sign comprehension, like sign production, engaged bilateral parietal cortex to a greater extent than spoken language. We hypothesize that posterior parietal activation in part reflects processing related to spatial classifier constructions in ASL and that anterior parietal activation may reflect covert imitation that functions as a predictive model during sign comprehension. The conjunction analysis for comprehension revealed that both speech and sign bilaterally engaged the inferior frontal gyrus (with more extensive activation on the left) and the superior temporal sulcus, suggesting an invariant bilateral perisylvian language system. We conclude that surface level differences between sign and spoken languages should not be dismissed and are critical for understanding the neurobiology of language.
Collapse
Affiliation(s)
- Karen Emmorey
- Laboratory for Language and Cognitive Neuroscience, School of Speech, Language, and Hearing Sciences, San Diego State University San Diego, CA, USA
| | - Stephen McCullough
- Laboratory for Language and Cognitive Neuroscience, School of Speech, Language, and Hearing Sciences, San Diego State University San Diego, CA, USA
| | - Sonya Mehta
- Department of Psychology, University of Washington Seattle, WA, USA ; Department of Radiology, University of Washington Seattle, WA, USA
| | | |
Collapse
|
22
|
Brooks JX, Cullen KE. Early vestibular processing does not discriminate active from passive self-motion if there is a discrepancy between predicted and actual proprioceptive feedback. J Neurophysiol 2014; 111:2465-78. [PMID: 24671531 DOI: 10.1152/jn.00600.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Most of our sensory experiences are gained by active exploration of the world. While the ability to distinguish sensory inputs resulting of our own actions (termed reafference) from those produced externally (termed exafference) is well established, the neural mechanisms underlying this distinction are not fully understood. We have previously proposed that vestibular signals arising from self-generated movements are inhibited by a mechanism that compares the internal prediction of the proprioceptive consequences of self-motion to the actual feedback. Here we directly tested this proposal by recording from single neurons in monkey during vestibular stimulation that was externally produced and/or self-generated. We show for the first time that vestibular reafference is equivalently canceled for self-generated sensory stimulation produced by activation of the neck musculature (head-on-body motion), or axial musculature (combined head and body motion), when there is no discrepancy between the predicted and actual proprioceptive consequences of self-motion. However, if a discrepancy does exist, central vestibular neurons no longer preferentially encode vestibular exafference. Specifically, when simultaneous active and passive motion resulted in activation of the same muscle proprioceptors, neurons robustly encoded the total vestibular input (i.e., responses to vestibular reafference and exafference were equally strong), rather than exafference alone. Taken together, our results show that the cancellation of vestibular reafference in early vestibular processing requires an explicit match between expected and actual proprioceptive feedback. We propose that this vital neuronal computation, necessary for both accurate sensory perception and motor control, has important implications for a variety of sensory systems that suppress self-generated signals.
Collapse
Affiliation(s)
- Jessica X Brooks
- Aerospace Medical Research Unit, Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Kathleen E Cullen
- Aerospace Medical Research Unit, Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Remijn GB, Kikuchi M, Shitamichi K, Ueno S, Yoshimura Y, Nagao K, Tsubokawa T, Kojima H, Higashida H, Minabe Y. Somatosensory evoked field in response to visuotactile stimulation in 3- to 4-year-old children. Front Hum Neurosci 2014; 8:170. [PMID: 24715860 PMCID: PMC3970025 DOI: 10.3389/fnhum.2014.00170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/07/2014] [Indexed: 12/12/2022] Open
Abstract
A child-customized magnetoencephalography system was used to investigate somatosensory evoked field (SEF) in 3- to 4-year-old children. Three stimulus conditions were used in which the children received tactile-only stimulation to their left index finger or visuotactile stimulation. In the two visuotactile conditions, the children received tactile stimulation to their finger while they watched a video of tactile stimulation applied either to someone else’s finger (the finger-touch condition) or to someone else’s toe (the toe-touch condition). The latencies and source strengths of equivalent current dipoles (ECDs) over contralateral (right) somatosensory cortex were analyzed. In the preschoolers who provided valid ECDs, the stimulus conditions induced an early-latency ECD occurring between 60 and 68 ms mainly with an anterior direction. We further identified a middle-latency ECD between 97 and 104 ms, which predominantly had a posterior direction. Finally, initial evidence was found for a late-latency ECD at about 139–151 ms again more often with an anterior direction. Differences were found in the source strengths of the middle-latency ECDs among the stimulus conditions. For the paired comparisons that could be formed, ECD source strength was more pronounced in the finger-touch condition than in the tactile-only and the toe-touch conditions. Although more research is necessary to expand the data set, this suggests that visual information modulated preschool SEF. The finding that ECD source strength was higher when seen and felt touch occurred to the same body part, as compared to a different body part, might further indicate that connectivity between visual and tactile information is indexed in preschool somatosensory cortical activity, already in a somatotopic way.
Collapse
Affiliation(s)
- Gerard B Remijn
- International Education Center, Kyushu University , Fukuoka , Japan ; Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University , Kanazawa , Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University , Kanazawa , Japan
| | - Kiyomi Shitamichi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University , Kanazawa , Japan
| | - Sanae Ueno
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University , Kanazawa , Japan
| | - Yuko Yoshimura
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University , Kanazawa , Japan ; Higher Brain Functions and Autism Research, Department of Child Development, United Graduate School of Child Development, Osaka University , Osaka , Japan
| | - Kikuko Nagao
- Research Center for Child Mental Development, Kanazawa University , Kanazawa , Japan ; Higher Brain Functions and Autism Research, Department of Child Development, United Graduate School of Child Development, Osaka University , Osaka , Japan
| | | | - Haruyuki Kojima
- Department of Psychology, Kanazawa University , Kanazawa , Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University , Kanazawa , Japan
| | - Yoshio Minabe
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University , Kanazawa , Japan
| |
Collapse
|
24
|
Onishi H, Sugawara K, Yamashiro K, Sato D, Suzuki M, Kirimoto H, Tamaki H, Murakami H, Kameyama S. Effect of the number of pins and inter-pin distance on somatosensory evoked magnetic fields following mechanical tactile stimulation. Brain Res 2013; 1535:78-88. [DOI: 10.1016/j.brainres.2013.08.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 11/26/2022]
|
25
|
Sanmiguel I, Saupe K, Schröger E. I know what is missing here: electrophysiological prediction error signals elicited by omissions of predicted "what" but not "when". Front Hum Neurosci 2013; 7:407. [PMID: 23908618 PMCID: PMC3725431 DOI: 10.3389/fnhum.2013.00407] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/10/2013] [Indexed: 11/13/2022] Open
Abstract
In the present study we investigated the neural code of sensory predictions. Grounded on a variety of empirical findings, we set out from the proposal that sensory predictions are coded via the top-down modulation of the sensory units whose response properties match the specific characteristics of the predicted stimulus (Albright, 2012; Arnal and Giraud, 2012). From this proposal, we derive the hypothesis that when the specific physical characteristics of the predicted stimulus cannot be advanced, the sensory system should not be able to formulate such predictions, as it would lack the means to represent them. In different conditions, participant's self-paced button presses predicted either only the precise time when a random sound would be presented (random sound condition) or both the timing and the identity of the sound (single sound condition). To isolate prediction-related activity, we inspected the event-related potential (ERP) elicited by rare omissions of the sounds following the button press (see SanMiguel et al., 2013). As expected, in the single sound condition, omissions elicited a complex response in the ERP, reflecting the presence of sound prediction and the violation of this prediction. In contrast, in the random sound condition, sound omissions were not followed by any significant responses in the ERP. These results confirmed our hypothesis, and provide support to current proposals advocating that sensory systems rely on the top-down modulation of stimulus-specific sensory representations as the neural code for prediction. In light of these findings, we discuss the significance of the omission ERP as an electrophysiological marker of predictive processing and we address the paradox that no indicators of violations of temporal prediction alone were found in the present paradigm.
Collapse
Affiliation(s)
- Iria Sanmiguel
- BioCog, Institute for Psychology, University of Leipzig Leipzig, Germany
| | | | | |
Collapse
|
26
|
Chen Z, Jones JA, Liu P, Li W, Huang D, Liu H. Dynamics of vocalization-induced modulation of auditory cortical activity at mid-utterance. PLoS One 2013; 8:e60039. [PMID: 23555876 PMCID: PMC3610706 DOI: 10.1371/journal.pone.0060039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/20/2013] [Indexed: 11/19/2022] Open
Abstract
Background Recent research has addressed the suppression of cortical sensory responses to altered auditory feedback that occurs at utterance onset regarding speech. However, there is reason to assume that the mechanisms underlying sensorimotor processing at mid-utterance are different than those involved in sensorimotor control at utterance onset. The present study attempted to examine the dynamics of event-related potentials (ERPs) to different acoustic versions of auditory feedback at mid-utterance. Methodology/Principal findings Subjects produced a vowel sound while hearing their pitch-shifted voice (100 cents), a sum of their vocalization and pure tones, or a sum of their vocalization and white noise at mid-utterance via headphones. Subjects also passively listened to playback of what they heard during active vocalization. Cortical ERPs were recorded in response to different acoustic versions of feedback changes during both active vocalization and passive listening. The results showed that, relative to passive listening, active vocalization yielded enhanced P2 responses to the 100 cents pitch shifts, whereas suppression effects of P2 responses were observed when voice auditory feedback was distorted by pure tones or white noise. Conclusion/Significance The present findings, for the first time, demonstrate a dynamic modulation of cortical activity as a function of the quality of acoustic feedback at mid-utterance, suggesting that auditory cortical responses can be enhanced or suppressed to distinguish self-produced speech from externally-produced sounds.
Collapse
Affiliation(s)
- Zhaocong Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jeffery A. Jones
- Department of Psychology and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Weifeng Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Dongfeng Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
- * E-mail:
| |
Collapse
|
27
|
Sanmiguel I, Todd J, Schröger E. Sensory suppression effects to self-initiated sounds reflect the attenuation of the unspecific N1 component of the auditory ERP. Psychophysiology 2013; 50:334-43. [DOI: 10.1111/psyp.12024] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/07/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Iria Sanmiguel
- Institute for Psychology; University of Leipzig; Leipzig; Germany
| | | | - Erich Schröger
- Institute for Psychology; University of Leipzig; Leipzig; Germany
| |
Collapse
|
28
|
Shergill SS, White TP, Joyce DW, Bays PM, Wolpert DM, Frith CD. Modulation of somatosensory processing by action. Neuroimage 2012; 70:356-62. [PMID: 23277112 DOI: 10.1016/j.neuroimage.2012.12.043] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/29/2012] [Accepted: 12/18/2012] [Indexed: 11/28/2022] Open
Abstract
Psychophysical evidence suggests that sensations arising from our own movements are diminished when predicted by motor forward models and that these models may also encode the timing and intensity of movement. Here we report a functional magnetic resonance imaging study in which the effects on sensation of varying the occurrence, timing and force of movements were measured. We observed that tactile-related activity in a region of secondary somatosensory cortex is reduced when sensation is associated with movement and further that this reduction is maximal when movement and sensation occur synchronously. Motor force is not represented in the degree of attenuation but rather in the magnitude of this region's response. These findings provide neurophysiological correlates of previously-observed behavioural forward-model phenomena, and advocate the adopted approach for the study of clinical conditions in which forward-model deficits have been posited to play a crucial role.
Collapse
Affiliation(s)
- Sukhwinder S Shergill
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK.
| | | | | | | | | | | |
Collapse
|
29
|
Knolle F, Schröger E, Kotz SA. Prediction errors in self- and externally-generated deviants. Biol Psychol 2012; 92:410-6. [PMID: 23246535 DOI: 10.1016/j.biopsycho.2012.11.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 11/22/2012] [Accepted: 11/22/2012] [Indexed: 11/27/2022]
Abstract
Sounds generated by one's own action elicit attenuated brain responses compared to brain responses to identical sounds that are externally-generated. The present study tested whether the suppression effect indexed by the N1- and P2-components of the event-related potential (ERP) is larger when self-generated sounds are correctly predicted than when they are not. Furthermore, sounds violating a prediction lead to a particular prediction error signal (i.e., N2b, P3a). Thus, we tested whether these error signals increase for self-generated sounds (i.e., enhanced N2b, P3a). We compared ERPs elicited by self- and externally-generated sounds that were of frequent standard and of infrequent deviant pitch. The results confirmed an N1- and P2-suppression effect elicited by self-generated standard sounds. The N1-suppression was smaller in response to self-initiated deviant sounds, indicating the specificity of predictions for self-generated sounds. In addition, an enhancement of N2b and P3a for self-generated deviants revealed the saliency of prediction error signals.
Collapse
Affiliation(s)
- Franziska Knolle
- Research Group Subcortical Contributions to Comprehension, Dept of Neuropsychology, Max Planck Institute of Human Cognition and Brain Science, Leipzig, Germany.
| | | | | |
Collapse
|
30
|
Weiss C, Schütz-Bosbach S. Vicarious action preparation does not result in sensory attenuation of auditory action effects. Conscious Cogn 2012; 21:1654-61. [DOI: 10.1016/j.concog.2012.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/16/2012] [Accepted: 08/25/2012] [Indexed: 10/27/2022]
|
31
|
Wasaka T, Kakigi R. The effect of unpredicted visual feedback on activation in the secondary somatosensory cortex during movement execution. BMC Neurosci 2012; 13:138. [PMID: 23126264 PMCID: PMC3508609 DOI: 10.1186/1471-2202-13-138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/25/2012] [Indexed: 11/10/2022] Open
Abstract
Background A mechanism that monitors the congruence between sensory inputs and motor outputs is necessary to control voluntary movement. The representation of limb position is constantly updated on the basis of somatosensory and visual information and efference copy from motor areas. However, the cortical mechanism underlying detection of limb position using somatosensory and visual information has not been elucidated. This study investigated the influence of visual feedback on information processing in somatosensory areas during movement execution using magnetoencephalography. We used an experimental condition in which the visual information was incongruent despite the motor execution and somatosensory feedback being congruent. Subjects performed self-paced bimanual movements of both thumbs, either symmetric or asymmetric, under normal visual and mirrored conditions. The mirror condition provided a visual feedback by showing a reflection of the subject’s right hand in place of the left hand. Therefore, in the Asymmetric task of the Mirror condition, subjects saw symmetric movements despite performing asymmetric movements. Results Activation in the primary somatosensory area (SI) revealed inhibition of neural activity and that in the secondary somatosensory area (SII) showed enhancement with voluntary movement. In addition, the SII contralateral to the side of stimulation was significantly enhanced in the Asymmetric task of the Mirror condition, which provided non-veridical visual feedback. Conclusions These results suggested that visual information influenced the neuronal activity concerning sensorimotor interaction in the SII during motor execution. The SII contributes to the detection of unpredicted visual feedback of movement execution.
Collapse
Affiliation(s)
- Toshiaki Wasaka
- Department of Integrative Physiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 4448585, Japan.
| | | |
Collapse
|
32
|
Ackerley R, Hassan E, Curran A, Wessberg J, Olausson H, McGlone F. An fMRI study on cortical responses during active self-touch and passive touch from others. Front Behav Neurosci 2012; 6:51. [PMID: 22891054 PMCID: PMC3412995 DOI: 10.3389/fnbeh.2012.00051] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/20/2012] [Indexed: 11/13/2022] Open
Abstract
Active, self-touch and the passive touch from an external source engage comparable afferent mechanoreceptors on the touched skin site. However, touch directed to glabrous skin compared to hairy skin will activate different types of afferent mechanoreceptors. Despite perceptual similarities between touch to different body sites, it is likely that the touch information is processed differently. In the present study, we used functional magnetic resonance imaging (fMRI) to elucidate the cortical differences in the neural signal of touch representations during active, self-touch and passive touch from another, to both glabrous (palm) and hairy (arm) skin, where a soft brush was used as the stimulus. There were two active touch conditions, where the participant used the brush in their right hand to stroke either their left palm or arm. There were two similar passive, touch conditions where the experimenter used an identical brush to stroke the same palm and arm areas on the participant. Touch on the left palm elicited a large, significant, positive blood-oxygenation level dependence (BOLD) signal in right sensorimotor areas. Less extensive activity was found for touch to the arm. Separate somatotopical palm and arm representations were found in Brodmann area (BA) 3 of the right primary somatosensory cortex (SI) and in both these areas, active stroking gave significantly higher signals than passive stroking. Active, self-touch elicited a positive BOLD signal in a network of sensorimotor cortical areas in the left hemisphere, compared to the resting baseline. In contrast, during passive touch, a significant negative BOLD signal was found in the left SI. Thus, each of the four conditions had a unique cortical signature despite similarities in afferent signaling or evoked perception. It is hypothesized that attentional mechanisms play a role in the modulation of the touch signal in the right SI, accounting for the differences found between active and passive touch.
Collapse
Affiliation(s)
- Rochelle Ackerley
- Department of Physiology, University of Gothenburg Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
33
|
Bischoff M, Zentgraf K, Lorey B, Pilgramm S, Balser N, Baumgartner E, Hohmann T, Stark R, Vaitl D, Munzert J. Motor familiarity: Brain activation when watching kinematic displays of one's own movements. Neuropsychologia 2012; 50:2085-92. [DOI: 10.1016/j.neuropsychologia.2012.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/22/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
|
34
|
Chen Z, Chen X, Liu P, Huang D, Liu H. Effect of temporal predictability on the neural processing of self-triggered auditory stimulation during vocalization. BMC Neurosci 2012; 13:55. [PMID: 22646514 PMCID: PMC3444957 DOI: 10.1186/1471-2202-13-55] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/27/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sensory consequences of our own actions are perceived differently from the sensory stimuli that are generated externally. The present event-related potential (ERP) study examined the neural responses to self-triggered stimulation relative to externally-triggered stimulation as a function of delays between the motor act and the stimulus onset. While sustaining a vowel phonation, subjects clicked a mouse and heard pitch-shift stimuli (PSS) in voice auditory feedback at delays of either 0 ms (predictable) or 500-1000 ms (unpredictable). The motor effect resulting from the mouse click was corrected in the data analyses. For the externally-triggered condition, PSS were delivered by a computer with a delay of 500-1000 ms after the vocal onset. RESULTS As compared to unpredictable externally-triggered PSS, P2 responses to predictable self-triggered PSS were significantly suppressed, whereas an enhancement effect for P2 responses was observed when the timing of self-triggered PSS was unpredictable. CONCLUSIONS These findings demonstrate the effect of the temporal predictability of stimulus delivery with respect to the motor act on the neural responses to self-triggered stimulation. Responses to self-triggered stimulation were suppressed or enhanced compared with the externally-triggered stimulation when the timing of stimulus delivery was predictable or unpredictable. Enhancement effect of unpredictable self-triggered stimulation in the present study supports the idea that sensory suppression of self-produced action may be primarily caused by an accurate prediction of stimulus timing, rather than a movement-related non-specific suppression.
Collapse
Affiliation(s)
- Zhaocong Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | | | | | | | | |
Collapse
|
35
|
Fiorio M, Recchia S, Corrà F, Simonetto S, Garcia-Larrea L, Tinazzi M. Enhancing non-noxious perception: behavioural and neurophysiological correlates of a placebo-like manipulation. Neuroscience 2012; 217:96-104. [PMID: 22569155 DOI: 10.1016/j.neuroscience.2012.04.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/27/2012] [Accepted: 04/28/2012] [Indexed: 10/28/2022]
Abstract
Sensory perception can be influenced by cognitive functions like attention and expectation. An emblematic case of this is the placebo effect, where a reduction in pain perception can be obtained by inducing expectation of benefit following a treatment. The current study assessed the behavioural and brain activity correlates of a placebo procedure inducing an enhancement of non-noxious somatic sensation. An experimental group was verbally suggested and surreptitiously conditioned about the effect of an inert cream in enhancing tactile perception, while a control group was informed about the actual inefficacy of the cream. Both groups received non-noxious electric shocks activating A-Beta fibres on the right index finger, before and after application of the cream in the same site. The behavioural and neurophysiological effects of this procedure were measured by a numerical rating scale of subjective perception and by recording cortical and subcortical somatosensory-evoked potentials (SEPs). Although the intensity of stimulation was physically identical in the two sessions, the experimental group reported stronger tactile sensation after cream treatment than before. In parallel, the experimental group showed enhanced somatosensory cortical responses (N140, P200) after treatment, whereas subcortical and early-cortical SEP components did not change. We suggest that these findings reflect top-down modulation on tactile perception probably due to an interplay between expectation and attention and might rely on interactions between prefrontal and parietal brain regions.
Collapse
Affiliation(s)
- M Fiorio
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, I-37131 Verona, Italy.
| | | | | | | | | | | |
Collapse
|
36
|
Effect of complete stimulus predictability on P3 and N2 components: an electroencephalographic study. Neuroreport 2011; 22:459-63. [PMID: 21558969 DOI: 10.1097/wnr.0b013e3283476bdb] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In everyday life one may encounter both unpredictable and self-initiated, hence anticipated, events. Here, we analyzed the effects of self-initiated auditory stimulus presentation on P3 and N2 components in an oddball paradigm. If the stimulus sequence was fully self-determined, both components were attenuated in comparison with computer-controlled representation. In contrast, both components were increased when only the stimulus onset was self-initiated, yet the forthcoming stimulus type was unknown. We hypothesize that predictive forward models offer an unifying explanation for the modulation of both P3 and N2 through: (a) attenuation of neuronal responses to anticipated stimuli contingent on one's own motor action and (b) enhancement of responses in case of incongruity between an anticipated action effect and the actual perceptual consequences.
Collapse
|
37
|
Weiss C, Herwig A, Schütz-Bosbach S. The self in action effects: selective attenuation of self-generated sounds. Cognition 2011; 121:207-18. [PMID: 21784422 DOI: 10.1016/j.cognition.2011.06.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 06/01/2011] [Accepted: 06/19/2011] [Indexed: 11/16/2022]
Abstract
The immediate experience of self-agency, that is, the experience of generating and controlling our actions, is thought to be a key aspect of selfhood. It has been suggested that this experience is intimately linked to internal motor signals associated with the ongoing actions. These signals should lead to an attenuation of the sensory consequences of one's own actions and thereby allow classifying them as self-generated. The discovery of shared representations of actions between self and other, however, challenges this idea and suggests similar attenuation of one's own and other's sensory action effects. Here, we tested these assumptions by comparing sensory attenuation of self-generated and observed sensory effects. More specifically, we compared the loudness perception of sounds that were either self-generated, generated by another person or a computer. In two experiments, we found a reduced perception of loudness intensity specifically related to self-generation. Furthermore, the perception of sounds generated by another person and a computer did not differ from each other. These findings indicate that one's own agentive influence upon the outside world has a special perceptual quality which distinguishes it from any sort of external influence, including human and non-human sources. This suggests that a real sense of self-agency is not a socially shared but rather a unique and private experience.
Collapse
Affiliation(s)
- Carmen Weiss
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
38
|
Abstract
Spina bifida meningomyelocele (SBM), a congenital neurodevelopmental disorder, involves dysmorphology of the cerebellum, and its most obvious manifestations are motor deficits. This paper reviews cerebellar neuropathology and motor function across several motor systems well studied in SBM in relation to current models of cerebellar motor and timing function. Children and adults with SBM have widespread motor deficits in trunk, upper limbs, eyes, and speech articulators that are broadly congruent with those observed in adults with cerebellar lesions. The structure and function of the cerebellum are correlated with a range of motor functions. While motor learning is generally preserved in SBM, those motor functions requiring predictive signals and precise calibration of the temporal features of movement are impaired, resulting in deficits in smooth movement coordination as well as in the classical cerebellar triad of dysmetria, ataxia, and dysarthria. That motor function in individuals with SBM is disordered in a manner phenotypically similar to that in adult cerebellar lesions, and appears to involve similar deficits in predictive cerebellar motor control, suggests that age-based cerebellar motor plasticity is limited in individuals with this neurodevelopmental disorder.
Collapse
|
39
|
Kammers MPM, de Vignemont F, Haggard P. Cooling the thermal grill illusion through self-touch. Curr Biol 2010; 20:1819-22. [PMID: 20869246 DOI: 10.1016/j.cub.2010.08.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 07/25/2010] [Accepted: 08/18/2010] [Indexed: 11/24/2022]
Abstract
Acute peripheral pain is reduced by multisensory interactions at the spinal level [1]. Central pain is reduced by reorganization of cortical body representations [2, 3]. We show here that acute pain can also be reduced by multisensory integration through self-touch, which provides proprioceptive, thermal, and tactile input forming a coherent body representation [4, 5]. We combined self-touch with the thermal grill illusion (TGI) [6]. In the traditional TGI, participants press their fingers on two warm objects surrounding one cool object. The warm surround unmasks pain pathways, which paradoxically causes the cool object to feel painfully hot. Here, we warmed the index and ring fingers of each hand while cooling the middle fingers. Immediately after, these three fingers of the right hand were touched against the same three fingers on the left hand. This self-touch caused a dramatic 64% reduction in perceived heat. We show that this paradoxical release from paradoxical heat cannot be explained by low-level touch-temperature interactions alone. To reduce pain, we often clutch a painful hand with the other hand. We show here that self-touch not only gates pain signals reaching the brain [7-9] but also, via multisensory integration, increases coherence of cognitive body representations to which pain afferents project [10].
Collapse
Affiliation(s)
- Marjolein P M Kammers
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London, UK.
| | | | | |
Collapse
|
40
|
Bubic A, von Cramon DY, Schubotz RI. Prediction, cognition and the brain. Front Hum Neurosci 2010; 4:25. [PMID: 20631856 PMCID: PMC2904053 DOI: 10.3389/fnhum.2010.00025] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 03/07/2010] [Indexed: 12/03/2022] Open
Abstract
The term “predictive brain” depicts one of the most relevant concepts in cognitive neuroscience which emphasizes the importance of “looking into the future”, namely prediction, preparation, anticipation, prospection or expectations in various cognitive domains. Analogously, it has been suggested that predictive processing represents one of the fundamental principles of neural computations and that errors of prediction may be crucial for driving neural and cognitive processes as well as behavior. This review discusses research areas which have recognized the importance of prediction and introduces the relevant terminology and leading theories in the field in an attempt to abstract some generative mechanisms of predictive processing. Furthermore, we discuss the process of testing the validity of postulated expectations by matching these to the realized events and compare the subsequent processing of events which confirm to those which violate the initial predictions. We conclude by suggesting that, although a lot is known about this type of processing, there are still many open issues which need to be resolved before a unified theory of predictive processing can be postulated with regard to both cognitive and neural functioning.
Collapse
Affiliation(s)
- Andreja Bubic
- Department of Cognitive Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | | | | |
Collapse
|
41
|
Affiliation(s)
- Riitta Hari
- Brain Research Unit, Low Temperature Laboratory, Aalto University School of Science and Technology, AALTO, Espoo, Finland.
| | | | | |
Collapse
|
42
|
Caetano G, Olausson H, Cole J, Jousmäki V, Hari R. Cortical responses to Aδ-fiber stimulation: magnetoencephalographic recordings in a subject lacking large myelinated afferents. Cereb Cortex 2009; 20:1898-903. [PMID: 19959562 PMCID: PMC2901021 DOI: 10.1093/cercor/bhp260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Controversy persists over the role of the primary somatosensory cortex (SI) in processing small-fiber peripheral afferent input. We therefore examined subject I.W, who, due to sensory neuronopathy syndrome, has no large-fiber afferents below C3 level. Cortical evoked responses were recorded with a whole-scalp neuromagnetometer to high-intensity electrical stimulation of the distal right radial, median, and tibial nerves and skin over the forearm and mechanical stimulation of (neurologically intact) lip. The responses to electrical stimulation in the Aβ-denervated limbs peaked at 110–140 ms in contralateral SI and at 140–220 ms in contralateral secondary somatosensory cortex (SII), consistent with Aδ-mediated input. I.W. was able to localize pin-prick stimuli with 4 cm accuracy. Responses to laser stimuli on the radial dorsum of the hand peaked in contralateral SII cortex at 215 ms, also compatible with Aδ-mediated input. These results support the role of the SI cortex in processing the sensory discriminative aspects of Aδ-mediated input.
Collapse
Affiliation(s)
- Gina Caetano
- Brain Research Unit, Low Temperature Laboratory, Helsinki University of Technology, FIN-02015 Espoo, Finland
| | | | | | | | | |
Collapse
|