1
|
Schoeller F, Jain A, Pizzagalli DA, Reggente N. The neurobiology of aesthetic chills: How bodily sensations shape emotional experiences. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:617-630. [PMID: 38383913 PMCID: PMC11233292 DOI: 10.3758/s13415-024-01168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
The phenomenon of aesthetic chills-shivers and goosebumps associated with either rewarding or threatening stimuli-offers a unique window into the brain basis of conscious reward because of their universal nature and simultaneous subjective and physical counterparts. Elucidating the neural mechanisms underlying aesthetic chills can reveal fundamental insights about emotion, consciousness, and the embodied mind. What is the precise timing and mechanism of bodily feedback in emotional experience? How are conscious feelings and motivations generated from interoceptive predictions? What is the role of uncertainty and precision signaling in shaping emotions? How does the brain distinguish and balance processing of rewards versus threats? We review neuroimaging evidence and highlight key questions for understanding how bodily sensations shape conscious feelings. This research stands to advance models of brain-body interactions shaping affect and may lead to novel nonpharmacological interventions for disorders of motivation and pleasure.
Collapse
Affiliation(s)
- Felix Schoeller
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA.
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Abhinandan Jain
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA
| |
Collapse
|
2
|
Mavrovounis G, Skouroliakou A, Kalatzis I, Stranjalis G, Kalamatianos T. Over 30 Years of DiI Use for Human Neuroanatomical Tract Tracing: A Scoping Review. Biomolecules 2024; 14:536. [PMID: 38785943 PMCID: PMC11117484 DOI: 10.3390/biom14050536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
In the present study, we conducted a scoping review to provide an overview of the existing literature on the carbocyanine dye DiI, in human neuroanatomical tract tracing. The PubMed, Scopus, and Web of Science databases were systematically searched. We identified 61 studies published during the last three decades. While studies incorporated specimens across human life from the embryonic stage onwards, the majority of studies focused on adult human tissue. Studies that utilized peripheral nervous system (PNS) tissue were a minority, with the majority of studies focusing on the central nervous system (CNS). The most common topic of interest in previous tract tracing investigations was the connectivity of the visual pathway. DiI crystals were more commonly applied. Nevertheless, several studies utilized DiI in a paste or dissolved form. The maximum tracing distance and tracing speed achieved was, respectively, 70 mm and 1 mm/h. We identified studies that focused on optimizing tracing efficacy by varying parameters such as fixation, incubation temperature, dye re-application, or the application of electric fields. Additional studies aimed at broadening the scope of DiI use by assessing the utility of archival tissue and compatibility of tissue clearing in DiI applications. A combination of DiI tracing and immunohistochemistry in double-labeling studies have been shown to provide the means for assessing connectivity of phenotypically defined human CNS and PNS neuronal populations.
Collapse
Affiliation(s)
- Georgios Mavrovounis
- Department of Neurosurgery, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (G.M.); (G.S.)
| | - Aikaterini Skouroliakou
- Department of Biomedical Engineering, The University of West Attica, 12243 Athens, Greece; (A.S.); (I.K.)
| | - Ioannis Kalatzis
- Department of Biomedical Engineering, The University of West Attica, 12243 Athens, Greece; (A.S.); (I.K.)
| | - George Stranjalis
- Department of Neurosurgery, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (G.M.); (G.S.)
- Hellenic Centre for Neurosurgery Research “Professor Petros S. Kokkalis”, 10675 Athens, Greece
| | - Theodosis Kalamatianos
- Department of Neurosurgery, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (G.M.); (G.S.)
- Hellenic Centre for Neurosurgery Research “Professor Petros S. Kokkalis”, 10675 Athens, Greece
- Clinical and Experimental Neuroscience Research Group, Department of Neurosurgery, National and Kapodistrian University of Athens, 10675 Athens, Greece
| |
Collapse
|
3
|
Henssen DJHA, Pritsch C, Nazari P, Mulleners W, Vissers K. The non-decussating and decussating trigeminothalamic tracts in humans: A combination of connectome-based tractography and histological validation. Cephalalgia 2024; 44:3331024241235168. [PMID: 38613234 DOI: 10.1177/03331024241235168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
BACKGROUND Functional anatomical research proposed the existence of a bilateral trigeminal ascending system although the anatomy trajectories of the trigeminothalamic connections cranial to the pons remain largely elusive. This study therefore aimed to clarify the anatomical distributions of the trigeminothalamic connections in humans. METHODS Advanced deterministic tractography to an averaged template of diffusion tensor imaging data from 1065 subjects from the Human Connectome Project was used. Seedings masks were placed in Montreal Neurological Institute standard space by use of the BigBrain histological dataset. Waypoint masks of the sensory thalamus was obtained from the Brainnetome Atlas. RESULTS Tractography results were validated by use of the BigBrain histological dataset and Polarized Light Imaging microscopy. The trigeminothalamic tract bifurcated into a decussating ventral and a non-decussating dorsal tract. The ventral and dorsal tracts ascended to the contralateral thalamus and ipsilateral thalamus and reflected the ventral trigeminothalamic tract and the dorsal trigeminothalamic tract, respectively. The projection of the ventral trigeminothalamic tract and the dorsal trigeminothalamic tract to both thalami confirm the existence of a bilateral trigeminothalamic system in humans. CONCLUSIONS Because our study is strictly anatomical, no further conclusions can be drawn with regard to physiological functionality. Future research should explore if the dorsal trigeminothalamic tract and the ventral trigeminothalamic tract actually transmit signals from noxious stimuli, this offers potential in understanding and possibly treating neuropathology in the orofacial region.
Collapse
Affiliation(s)
- Dylan J H A Henssen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Cynthia Pritsch
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pouyan Nazari
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wim Mulleners
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kris Vissers
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Liang Z, Arefin TM, Lee CH, Zhang J. Using mesoscopic tract-tracing data to guide the estimation of fiber orientation distributions in the mouse brain from diffusion MRI. Neuroimage 2023; 270:119999. [PMID: 36871795 PMCID: PMC10052941 DOI: 10.1016/j.neuroimage.2023.119999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
Diffusion MRI (dMRI) tractography is the only tool for non-invasive mapping of macroscopic structural connectivity over the entire brain. Although it has been successfully used to reconstruct large white matter tracts in the human and animal brains, the sensitivity and specificity of dMRI tractography remained limited. In particular, the fiber orientation distributions (FODs) estimated from dMRI signals, key to tractography, may deviate from histologically measured fiber orientation in crossing fibers and gray matter regions. In this study, we demonstrated that a deep learning network, trained using mesoscopic tract-tracing data from the Allen Mouse Brain Connectivity Atlas, was able to improve the estimation of FODs from mouse brain dMRI data. Tractography results based on the network generated FODs showed improved specificity while maintaining sensitivity comparable to results based on FOD estimated using a conventional spherical deconvolution method. Our result is a proof-of-concept of how mesoscale tract-tracing data can guide dMRI tractography and enhance our ability to characterize brain connectivity.
Collapse
Affiliation(s)
- Zifei Liang
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, New York, NY 10016, USA
| | - Tanzil Mahmud Arefin
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, New York, NY 10016, USA
| | - Choong H Lee
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, New York, NY 10016, USA
| | - Jiangyang Zhang
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, New York, NY 10016, USA.
| |
Collapse
|
5
|
Avram AV, Saleem KS, Basser PJ. COnstrained Reference frame diffusion TEnsor Correlation Spectroscopic (CORTECS) MRI: A practical framework for high-resolution diffusion tensor distribution imaging. Front Neurosci 2022; 16:1054509. [PMID: 36590291 PMCID: PMC9798222 DOI: 10.3389/fnins.2022.1054509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
High-resolution imaging studies have consistently shown that in cortical tissue water diffuses preferentially along radial and tangential orientations with respect to the cortical surface, in agreement with histology. These dominant orientations do not change significantly even if the relative contributions from microscopic water pools to the net voxel signal vary across experiments that use different diffusion times, b-values, TEs, and TRs. With this in mind, we propose a practical new framework for imaging non-parametric diffusion tensor distributions (DTDs) by constraining the microscopic diffusion tensors of the DTD to be diagonalized using the same orthonormal reference frame of the mesoscopic voxel. In each voxel, the constrained DTD (cDTD) is completely determined by the correlation spectrum of the microscopic principal diffusivities associated with the axes of the voxel reference frame. Consequently, all cDTDs are inherently limited to the domain of positive definite tensors and can be reconstructed efficiently using Inverse Laplace Transform methods. Moreover, the cDTD reconstruction can be performed using only data acquired efficiently with single diffusion encoding, although it also supports datasets with multiple diffusion encoding. In tissues with a well-defined architecture, such as the cortex, we can further constrain the cDTD to contain only cylindrically symmetric diffusion tensors and measure the 2D correlation spectra of principal diffusivities along the radial and tangential orientation with respect to the cortical surface. To demonstrate this framework, we perform numerical simulations and analyze high-resolution dMRI data from a fixed macaque monkey brain. We estimate 2D cDTDs in the cortex and derive, in each voxel, the marginal distributions of the microscopic principal diffusivities, the corresponding distributions of the microscopic fractional anisotropies and mean diffusivities along with their 2D correlation spectra to quantify the cDTD shape-size characteristics. Signal components corresponding to specific bands in these cDTD-derived spectra show high specificity to cortical laminar structures observed with histology. Our framework drastically simplifies the measurement of non-parametric DTDs in high-resolution datasets with mesoscopic voxel sizes much smaller than the radius of curvature of the underlying anatomy, e.g., cortical surface, and can be applied retrospectively to analyze existing diffusion MRI data from fixed cortical tissues.
Collapse
Affiliation(s)
- Alexandru V. Avram
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, United States
| | - Kadharbatcha S. Saleem
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, United States
| | - Peter J. Basser
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Avram AV, Saleem KS, Komlosh ME, Yen CC, Ye FQ, Basser PJ. High-resolution cortical MAP-MRI reveals areal borders and laminar substructures observed with histological staining. Neuroimage 2022; 264:119653. [PMID: 36257490 DOI: 10.1016/j.neuroimage.2022.119653] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
The variations in cellular composition and tissue architecture measured with histology provide the biological basis for partitioning the brain into distinct cytoarchitectonic areas and for characterizing neuropathological tissue alterations. Clearly, there is an urgent need to develop whole-brain neuroradiological methods that can assess cortical cyto- and myeloarchitectonic features non-invasively. Mean apparent propagator (MAP) MRI is a clinically feasible diffusion MRI method that quantifies efficiently and comprehensively the net microscopic displacements of water molecules diffusing in tissues. We investigate the sensitivity of high-resolution MAP-MRI to detecting areal and laminar variations in cortical cytoarchitecture and compare our results with observations from corresponding histological sections in the entire brain of a rhesus macaque monkey. High-resolution images of MAP-derived parameters, in particular the propagator anisotropy (PA), non-gaussianity (NG), and the return-to-axis probability (RTAP) reveal cortical area-specific lamination patterns in good agreement with the corresponding histological stained sections. In a few regions, the MAP parameters provide superior contrast to the five histological stains used in this study, delineating more clearly boundaries and transition regions between cortical areas and laminar substructures. Throughout the cortex, various MAP parameters can be used to delineate transition regions between specific cortical areas observed with histology and to refine areal boundaries estimated using atlas registration-based cortical parcellation. Using surface-based analysis of MAP parameters we quantify the cortical depth dependence of diffusion propagators in multiple regions-of-interest in a consistent and rigorous manner that is largely independent of the cortical folding geometry. The ability to assess cortical cytoarchitectonic features efficiently and non-invasively, its clinical feasibility, and translatability make high-resolution MAP-MRI a promising 3D imaging tool for studying whole-brain cortical organization, characterizing abnormal cortical development, improving early diagnosis of neurodegenerative diseases, identifying targets for biopsies, and complementing neuropathological investigations.
Collapse
Affiliation(s)
- Alexandru V Avram
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health,9000 Rockville Pike,Bethesda 20892, MD, USA; Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road,Bethesda, 20814,MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., 6720A Rockledge Drive, Bethesda, 20814, MD, USA.
| | - Kadharbatcha S Saleem
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health,9000 Rockville Pike,Bethesda 20892, MD, USA; Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road,Bethesda, 20814,MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., 6720A Rockledge Drive, Bethesda, 20814, MD, USA
| | - Michal E Komlosh
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health,9000 Rockville Pike,Bethesda 20892, MD, USA; Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road,Bethesda, 20814,MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., 6720A Rockledge Drive, Bethesda, 20814, MD, USA
| | - Cecil C Yen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Bethesda, 20892, MD, USA
| | - Frank Q Ye
- National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, 20892,MD, USA
| | - Peter J Basser
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health,9000 Rockville Pike,Bethesda 20892, MD, USA
| |
Collapse
|
7
|
Axer M, Amunts K. Scale matters: The nested human connectome. Science 2022; 378:500-504. [DOI: 10.1126/science.abq2599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A comprehensive description of how neurons and entire brain regions are interconnected is fundamental for a mechanistic understanding of brain function and dysfunction. Neuroimaging has shaped the way to approaching the human brain’s connectivity on the basis of diffusion magnetic resonance imaging and tractography. At the same time, polarization, fluorescence, and electron microscopy became available, which pushed spatial resolution and sensitivity to the axonal or even to the synaptic level. New methods are mandatory to inform and constrain whole-brain tractography by regional, high-resolution connectivity data and local fiber geometry. Machine learning and simulation can provide predictions where experimental data are missing. Future interoperable atlases require new concepts, including high-resolution templates and directionality, to represent variants of tractography solutions and estimates of their accuracy.
Collapse
Affiliation(s)
- Markus Axer
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Physics, School of Mathematics and Natural Sciences, Bergische Universität Wuppertal, Wuppertal, Germany
| | - Katrin Amunts
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Öztürk NC, Koç T. Testing the suitability of neuroanatomical tracing method in human fetuses with long years of postmortem delay. Surg Radiol Anat 2022; 44:769-783. [PMID: 35476150 DOI: 10.1007/s00276-022-02942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/06/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Human tissues in gross anatomical archives with long years of postmortem delays are considered suboptimal relative to recently fixed materials for neuroanatomical tracing studies, yet efficacy of neuroanatomical tracing on archival fetal tissues largely unexplored. We aimed to explore the suitability of human archival tissue in neuroanatomical tracing with lipophilic carbocyanine dyes. METHODS We used crystal and paste forms 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) and analogues for neuroanatomical tracing on different peripheral nerves in 15-18-year archival old formalin-fixed human fetuses. We employed bright-field, fluorescent and confocal microscopy to visualize the peripheric nerve traces, spinal cord and vibratome cut sections. Fluorescent signal of the dyes on epineurium and on axonal membranes were visualized under fluorescence and confocal microscopes and performance of the dye diffusion was assessed by semi-quantitative image analysis. RESULTS We followed up seven lipophilic dye embeddings in 16-28 gestational week-old human fetuses (n = 4) with 16.75 ± 1.29-year postmortem delay. The mean distance of distally moved carbocyanine dye diffusion measured on epineurium was detected as 25.11 ± 9.1 mm. CONCLUSION Based on the results of 13 distinct studies performed neuroanatomical tracing with human tissues in the immediate postmortem hours or days, average traced distance was 16.32 ± 15.95 mm, and a 95% confidence interval lower limit of 4.9 mm and upper limit of 27.73 mm. The tracing distances we observed in our current study fall entirely within this confidence interval. To our awareness, this is the first report to demonstrate that specific neuroanatomical tracing presented in axonal membrane level on peripheral nerves is possible on gross anatomical repositories.
Collapse
Affiliation(s)
- Nail Can Öztürk
- Department of Anatomy, Faculty of Medicine, Mersin University, Mersin, Turkey. .,Biotechnology Research Center, Mersin University, Mersin, Turkey.
| | - Turan Koç
- Department of Anatomy, Faculty of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
9
|
van Albada SJ, Morales-Gregorio A, Dickscheid T, Goulas A, Bakker R, Bludau S, Palm G, Hilgetag CC, Diesmann M. Bringing Anatomical Information into Neuronal Network Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1359:201-234. [DOI: 10.1007/978-3-030-89439-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Sarwar T, Ramamohanarao K, Zalesky A. A critical review of connectome validation studies. NMR IN BIOMEDICINE 2021; 34:e4605. [PMID: 34516016 DOI: 10.1002/nbm.4605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Diffusion MRI tractography is the most widely used macroscale method for mapping connectomes in vivo. However, tractography is prone to various errors and biases, and thus tractography-derived connectomes require careful validation. Here, we critically review studies that have developed or utilized phantoms and tracer maps to validate tractography-derived connectomes, either quantitatively or qualitatively. We identify key factors impacting connectome reconstruction accuracy, including streamline seeding, propagation and filtering methods, and consider the strengths and limitations of state-of-the-art connectome phantoms and associated validation studies. These studies demonstrate the inherent limitations of current fiber orientation models and tractography algorithms and their impact on connectome reconstruction accuracy. Reconstructing connectomes with both high sensitivity and high specificity is challenging, given that some tractography methods can generate an abundance of spurious connections, while others can overlook genuine fiber bundles. We argue that streamline filtering can minimize spurious connections and potentially improve the biological plausibility of connectomes derived from tractography. We find that algorithmic choices such as the tractography seeding methodology, angular threshold, and streamline propagation method can substantially impact connectome reconstruction accuracy. Hence, careful application of tractography is necessary to reconstruct accurate connectomes. Improvements in diffusion MRI acquisition techniques will not necessarily overcome current tractography limitations without accompanying modeling and algorithmic advances.
Collapse
Affiliation(s)
- Tabinda Sarwar
- School of Computing Technologies, RMIT University, Melbourne, Victoria, Australia
| | - Kotagiri Ramamohanarao
- Department of Computing and Information Systems, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Innocenti GM, Schmidt K, Milleret C, Fabri M, Knyazeva MG, Battaglia-Mayer A, Aboitiz F, Ptito M, Caleo M, Marzi CA, Barakovic M, Lepore F, Caminiti R. The functional characterization of callosal connections. Prog Neurobiol 2021; 208:102186. [PMID: 34780864 PMCID: PMC8752969 DOI: 10.1016/j.pneurobio.2021.102186] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
The functional characterization of callosal connections is informed by anatomical data. Callosal connections play a conditional driving role depending on the brain state and behavioral demands. Callosal connections play a modulatory function, in addition to a driving role. The corpus callosum participates in learning and interhemispheric transfer of sensorimotor habits. The corpus callosum contributes to language processing and cognitive functions.
The brain operates through the synaptic interaction of distant neurons within flexible, often heterogeneous, distributed systems. Histological studies have detailed the connections between distant neurons, but their functional characterization deserves further exploration. Studies performed on the corpus callosum in animals and humans are unique in that they capitalize on results obtained from several neuroscience disciplines. Such data inspire a new interpretation of the function of callosal connections and delineate a novel road map, thus paving the way toward a general theory of cortico-cortical connectivity. Here we suggest that callosal axons can drive their post-synaptic targets preferentially when coupled to other inputs endowing the cortical network with a high degree of conditionality. This might depend on several factors, such as their pattern of convergence-divergence, the excitatory and inhibitory operation mode, the range of conduction velocities, the variety of homotopic and heterotopic projections and, finally, the state-dependency of their firing. We propose that, in addition to direct stimulation of post-synaptic targets, callosal axons often play a conditional driving or modulatory role, which depends on task contingencies, as documented by several recent studies.
Collapse
Affiliation(s)
- Giorgio M Innocenti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale (EPFL), Lausanne, Switzerland
| | - Kerstin Schmidt
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Chantal Milleret
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U 1050, Label Memolife, PSL Research University, Paris, France
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Maria G Knyazeva
- Laboratoire de Recherche en Neuroimagerie (LREN), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Leenaards Memory Centre and Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | - Francisco Aboitiz
- Centro Interdisciplinario de Neurociencias and Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maurice Ptito
- Harland Sanders Chair in Visual Science, École d'Optométrie, Université de Montréal, Montréal, Qc, Canada; Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Qc, Canada; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Caleo
- Department of Biomedical Sciences, University of Padua, Italy; CNR Neuroscience Institute, Pisa, Italy
| | - Carlo A Marzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Muhamed Barakovic
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale (EPFL), Lausanne, Switzerland
| | - Franco Lepore
- Department of Psychology, Centre de Recherche en Neuropsychologie et Cognition, University of Montréal, Montréal, QC, Canada
| | - Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome SAPIENZA, Rome, Italy; Neuroscience and Behavior Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
12
|
Trinkle S, Foxley S, Kasthuri N, Rivière PL. Synchrotron X-ray micro-CT as a validation dataset for diffusion MRI in whole mouse brain. Magn Reson Med 2021; 86:1067-1076. [PMID: 33768633 PMCID: PMC8076078 DOI: 10.1002/mrm.28776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/26/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE To introduce synchrotron X-ray microcomputed tomography (microCT) and demonstrate its use as a natively isotropic, nondestructive, 3D validation modality for diffusion MRI in whole, fixed mouse brain. METHODS Postmortem diffusion MRI and microCT data were acquired of the same whole mouse brain. Diffusion data were processed using constrained spherical deconvolution. Synchrotron data were acquired at an isotropic voxel size of 1.17 μm. Structure tensor analysis was used to calculate fiber orientation distribution functions from the microCT data. A pipeline was developed to spatially register the 2 datasets in order to perform qualitative comparisons of fiber geometries represented by fiber orientation distribution functions. Fiber orientations from both modalities were used to perform whole-brain deterministic tractography to demonstrate validation of long-range white matter pathways. RESULTS Fiber orientation distribution functions were able to be extracted throughout the entire microCT dataset, with spatial registration to diffusion MRI simplified due to the whole brain extent of the microCT data. Fiber orientations and tract pathways showed good agreement between modalities. CONCLUSION Synchrotron microCT is a potentially valuable new tool for future multi-scale diffusion MRI validation studies, providing comparable value to optical histology validation methods while addressing some key limitations in data acquisition and ease of processing.
Collapse
Affiliation(s)
- Scott Trinkle
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Sean Foxley
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
13
|
The Complex Hodological Architecture of the Macaque Dorsal Intraparietal Areas as Emerging from Neural Tracers and DW-MRI Tractography. eNeuro 2021; 8:ENEURO.0102-21.2021. [PMID: 34039649 PMCID: PMC8266221 DOI: 10.1523/eneuro.0102-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 11/21/2022] Open
Abstract
In macaque monkeys, dorsal intraparietal areas are involved in several daily visuomotor actions. However, their border and sources of cortical afferents remain loosely defined. Combining retrograde histologic tracing and MRI diffusion-based tractography, we found a complex hodology of the dorsal bank of the intraparietal sulcus (db-IPS), which can be subdivided into a rostral intraparietal area PEip, projecting to the spinal cord, and a caudal medial intraparietal area MIP lacking such projections. Both include an anterior and a posterior sector, emerging from their ipsilateral, gradient-like connectivity profiles. As tractography estimations, we used the cross-sectional area of the white matter bundles connecting each area with other parietal and frontal regions, after selecting regions of interest (ROIs) corresponding to the injection sites of neural tracers. For most connections, we found a significant correlation between the proportions of cells projecting to all sectors of PEip and MIP along the continuum of the db-IPS and tractography. The latter also revealed “false positive” but plausible connections awaiting histologic validation.
Collapse
|
14
|
Boonstra JT, Michielse S, Roebroeck A, Temel Y, Jahanshahi A. Dedicated container for postmortem human brain ultra-high field magnetic resonance imaging. Neuroimage 2021; 235:118010. [PMID: 33819610 DOI: 10.1016/j.neuroimage.2021.118010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The emerging field of ultra-high field MRI (UHF-MRI, 7 Tesla and higher) provides the opportunity to image human brains at a higher resolution and with higher signal-to-noise ratios compared to the more widely available 1.5 and 3T scanners. Scanning postmortem tissue additionally allows for greatly increased scan times and fewer movement issues leading to improvements in image quality. However, typical postmortem neuroimaging routines involve placing the tissue within plastic bags that leave room for susceptibility artifacts from tissue-air interfaces, inadequate submersion, and leakage issues. To address these challenges in postmortem imaging, a custom-built nonferromagnetic container was developed that allows whole brain hemispheres to be scanned at sub-millimeter resolution within typical head-coils. METHOD The custom-built polymethylmethacrylaat container consists of a cylinder with a hemispheric side and a lid with valves on the adjacent side. This shape fits within common MR head-coils and allows whole hemispheres to be submerged and vacuum sealed within it reducing imaging artifacts that would otherwise arise at air-tissue boundaries. Two hemisphere samples were scanned on a Siemens 9.4T Magnetom MRI scanner. High resolution T2* weighted data was obtained with a custom 3D gradient echo (GRE) sequence and diffusion-weighted imaging (DWI) scans were obtained with a 3D kT-dSTEAM sequence along 48 directions. RESULTS The custom-built container proved to submerge and contain tissue samples effectively and showed no interferences with MR scanning acquisition. The 3D GRE sequence provided high resolution isotropic T2* weighted data at 250 μm which showed a clear visualization of gray and white matter structures. DWI scans allowed for dense reconstruction of structural white matter connections via tractography. CONCLUSION Using this custom-built container worked towards achieving high quality MR images of postmortem brain material. This procedure can have advantages over traditional schemes including utilization of a standardized protocol and the reduced likelihood of leakage. This methodology could be adjusted and used to improve typical postmortem imaging routines.
Collapse
Affiliation(s)
- Jackson Tyler Boonstra
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6202 AZ, the Netherlands; School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6200 MD, the Netherlands.
| | - Stijn Michielse
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6202 AZ, the Netherlands; School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6200 MD, the Netherlands
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, the Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6202 AZ, the Netherlands; School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6200 MD, the Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6202 AZ, the Netherlands; School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6200 MD, the Netherlands
| |
Collapse
|
15
|
Leuze C, Goubran M, Barakovic M, Aswendt M, Tian Q, Hsueh B, Crow A, Weber EMM, Steinberg GK, Zeineh M, Plowey ED, Daducci A, Innocenti G, Thiran JP, Deisseroth K, McNab JA. Comparison of diffusion MRI and CLARITY fiber orientation estimates in both gray and white matter regions of human and primate brain. Neuroimage 2021; 228:117692. [PMID: 33385546 PMCID: PMC7953593 DOI: 10.1016/j.neuroimage.2020.117692] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/30/2022] Open
Abstract
Diffusion MRI (dMRI) represents one of the few methods for mapping brain fiber orientations non-invasively. Unfortunately, dMRI fiber mapping is an indirect method that relies on inference from measured diffusion patterns. Comparing dMRI results with other modalities is a way to improve the interpretation of dMRI data and help advance dMRI technologies. Here, we present methods for comparing dMRI fiber orientation estimates with optical imaging of fluorescently labeled neurofilaments and vasculature in 3D human and primate brain tissue cuboids cleared using CLARITY. The recent advancements in tissue clearing provide a new opportunity to histologically map fibers projecting in 3D, which represents a captivating complement to dMRI measurements. In this work, we demonstrate the capability to directly compare dMRI and CLARITY in the same human brain tissue and assess multiple approaches for extracting fiber orientation estimates from CLARITY data. We estimate the three-dimensional neuronal fiber and vasculature orientations from neurofilament and vasculature stained CLARITY images by calculating the tertiary eigenvector of structure tensors. We then extend CLARITY orientation estimates to an orientation distribution function (ODF) formalism by summing multiple sub-voxel structure tensor orientation estimates. In a sample containing part of the human thalamus, there is a mean angular difference of 19o±15o between the primary eigenvectors of the dMRI tensors and the tertiary eigenvectors from the CLARITY neurofilament stain. We also demonstrate evidence that vascular compartments do not affect the dMRI orientation estimates by showing an apparent lack of correspondence (mean angular difference = 49o±23o) between the orientation of the dMRI tensors and the structure tensors in the vasculature stained CLARITY images. In a macaque brain dataset, we examine how the CLARITY feature extraction depends on the chosen feature extraction parameters. By varying the volume of tissue over which the structure tensor estimates are derived, we show that orientation estimates are noisier with more spurious ODF peaks for sub-voxels below 30 µm3 and that, for our data, the optimal gray matter sub-voxel size is between 62.5 µm3 and 125 µm3. The example experiments presented here represent an important advancement towards robust multi-modal MRI-CLARITY comparisons.
Collapse
Affiliation(s)
- C Leuze
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | - M Goubran
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - M Barakovic
- Department of Radiology, Stanford University, Stanford, CA, USA; Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - M Aswendt
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Q Tian
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - B Hsueh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - A Crow
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - E M M Weber
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - G K Steinberg
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - M Zeineh
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - E D Plowey
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - A Daducci
- Department of Computer Science, University of Verona, Verona, Italy
| | - G Innocenti
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Brain and Mind Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - J-P Thiran
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - K Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - J A McNab
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
16
|
Alkemade A, Pine K, Kirilina E, Keuken MC, Mulder MJ, Balesar R, Groot JM, Bleys RLAW, Trampel R, Weiskopf N, Herrler A, Möller HE, Bazin PL, Forstmann BU. 7 Tesla MRI Followed by Histological 3D Reconstructions in Whole-Brain Specimens. Front Neuroanat 2020; 14:536838. [PMID: 33117133 PMCID: PMC7574789 DOI: 10.3389/fnana.2020.536838] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022] Open
Abstract
Post mortem magnetic resonance imaging (MRI) studies on the human brain are of great interest for the validation of in vivo MRI. It facilitates a link between functional and anatomical information available from MRI in vivo and neuroanatomical knowledge available from histology/immunocytochemistry. However, linking in vivo and post mortem MRI to microscopy techniques poses substantial challenges. Fixation artifacts and tissue deformation of extracted brains, as well as co registration of 2D histology to 3D MRI volumes complicate direct comparison between modalities. Moreover, post mortem brain tissue does not have the same physical properties as in vivo tissue, and therefore MRI approaches need to be adjusted accordingly. Here, we present a pipeline in which whole-brain human post mortem in situ MRI is combined with subsequent tissue processing of the whole human brain, providing a 3-dimensional reconstruction via blockface imaging. To this end, we adapted tissue processing procedures to allow both post mortem MRI and subsequent histological and immunocytochemical processing. For MRI, tissue was packed in a susceptibility matched solution, tailored to fit the dimensions of the MRI coil. Additionally, MRI sequence parameters were adjusted to accommodate T1 and T2∗ shortening, and scan time was extended, thereby benefiting the signal-to-noise-ratio that can be achieved using extensive averaging without motion artifacts. After MRI, the brain was extracted from the skull and subsequently cut while performing optimized blockface imaging, thereby allowing three-dimensional reconstructions. Tissues were processed for Nissl and silver staining, and co-registered with the blockface images. The combination of these techniques allows direct comparisons across modalities.
Collapse
Affiliation(s)
- Anneke Alkemade
- Integrative Model-Based Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands
| | - Kerrin Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Evgeniya Kirilina
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Neurocomputation and Neuroimaging Unit, Department of Psychology and Educational Science, Free University Berlin, Berlin, Germany
| | - Max C Keuken
- Integrative Model-Based Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands
| | - Martijn J Mulder
- Integrative Model-Based Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Psychology, Utrecht University, Utrecht, Netherlands
| | - Rawien Balesar
- Integrative Model-Based Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands.,The Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Josephine M Groot
- Integrative Model-Based Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald L A W Bleys
- Department of Anatomy, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Andreas Herrler
- Department of Anatomy and Embryology, Maastricht University, Maastricht, Netherlands
| | - Harald E Möller
- NMR Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Pierre-Louis Bazin
- Integrative Model-Based Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Birte U Forstmann
- Integrative Model-Based Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Guberinic A, Souverein V, Volkers R, van Cappellen van Walsum AM, Vissers KC, Mollink J, Henssen DJ. Mapping the trigeminal root entry zone and its pontine fibre distribution patterns. Cephalalgia 2020; 40:1645-1656. [PMID: 32962405 PMCID: PMC7691629 DOI: 10.1177/0333102420959796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Introduction Recently, an additional trigeminothalamic tract – the dorsal
trigeminothalamic tract – has been described in human brainstems by our
group next to the known ventral trigeminothalamic tract. As various elements
of the trigeminal system are known to be organised in a somatotopic fashion,
the question arose whether the fibres within the trigeminal root show
specific distributions patterns in their contribution to the ventral
trigeminothalamic tract and dorsal trigeminothalamic tract specifically. Methods This study investigated the arrangement of the fibres in the trigeminal root
by combining various imaging methods in the pons of 11 post-mortem
specimens. The pons were investigated by polarised light imaging (PLI)
(n = 4; to quantify fibre orientation; 100 µm interslice distance),
histochemical staining methods (n = 3; to visualise the internal
myeloarchitecture; 60 µm) and ultra-high field, post-mortem magnetic
resonance imaging (MRI) (n = 4; for tractography; 500 µm interslice
distance). Results This study shows that the fibres, from the point where the trigeminal root
enters the brainstem, are distinctly arranged by their contribution to the
ventral trigeminothalamic tract and dorsal trigeminothalamic tract. This
finding is supported by both post-mortem, ultra-high dMRI and different
light microscopy techniques. Conclusion The data from this study suggest that the fibres in the superior half of the
root contribute mainly to the ventral trigeminothalamic tract, whereas the
fibres in the inferior half mainly contribute to the dorsal
trigeminothalamic tract. Such a somatotopic organisation could possibly
create new insights into the anatomical origin of trigeminal neuralgia and
the clinical relevance of this somatotopic organisation should therefore be
further explored.
Collapse
Affiliation(s)
- Alis Guberinic
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Veerle Souverein
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ruben Volkers
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anne-Marie van Cappellen van Walsum
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Kris Cp Vissers
- Department of Anesthesiology, Pain and Palliative Care, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen Mollink
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Dylan Jha Henssen
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
18
|
Gosar D, Tretnjak V, Bregant T, Neubauer D, Derganc M. Reduced white-matter integrity and lower speed of information processing in adolescents with mild and moderate neonatal hypoxic-ischaemic encephalopathy. Eur J Paediatr Neurol 2020; 28:205-213. [PMID: 32665198 DOI: 10.1016/j.ejpn.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Studies have shown that adolescents with moderate hypoxic-ischaemic encephalopathy (HIE) may have specific cognitive deficits, especially reduced speed of information processing. The aim of our study was to confirm these earlier findings find out whether the degree of impairment in speed of information processing correlates with the degree of white-matter impairment as measured by diffusion tensor imaging (DTI). METHODS Thirty-three participants (mean age 18y 5mo, SD 12mo; 19 male) with mild or moderate HIE and 32 neurotypical adolescents (mean age 17y 10mo, SD 12mo, 18 male) completed a comprehensive neuropsychological battery measuring short-term memory, inhibition, speed of information processing, long-term visual and verbal memory. Fourteen participants also underwent structural MRI and DTI scans. RESULTS After controlling for age, gender and maternal education we found a significant effect of HIE on speed of information processing (F(2, 64) = 3.51, p < .037, η2 = 0.115), but not on other neuropsychological domains. Using tract-based spatial statistics we were also able to confirm a correlation between the degree of impairment in this cognitive domain and fractional anisotropy in several white-matter tracts. CONCLUSIONS The long-term cognitive outcome of moderate HIE includes reduced speed of information processing and is in part mediated by reduced integrity of major white-matter tracts.
Collapse
Affiliation(s)
- David Gosar
- University Children's Hospital, University Medical Centre Ljubljana, Department of Child, Adolescent and Developmental Neurology, Ljubljana, Slovenia.
| | - Vali Tretnjak
- University Children's Hospital, University Medical Centre Ljubljana, Department of Child, Adolescent and Developmental Neurology, Ljubljana, Slovenia
| | - Tina Bregant
- Centre for Education and Rehabilitation of Physically Handicapped Children and Adolescents - CIRIUS Kamnik, Slovenia
| | - David Neubauer
- University Children's Hospital, University Medical Centre Ljubljana, Department of Child, Adolescent and Developmental Neurology, Ljubljana, Slovenia
| | - Metka Derganc
- University Medical Centre Ljubljana, Department of Paediatric Surgery and Intensive Care, Ljubljana, Slovenia
| |
Collapse
|
19
|
Rushmore RJ, Bouix S, Kubicki M, Rathi Y, Yeterian EH, Makris N. How Human Is Human Connectional Neuroanatomy? Front Neuroanat 2020; 14:18. [PMID: 32351367 PMCID: PMC7176274 DOI: 10.3389/fnana.2020.00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/23/2020] [Indexed: 01/16/2023] Open
Abstract
The structure of the human brain has been studied extensively. Despite all the knowledge accrued, direct information about connections, from origin to termination, in the human brain is extremely limited. Yet there is a widespread misperception that human connectional neuroanatomy is well-established and validated. In this article, we consider what is known directly about human structural and connectional neuroanatomy. Information on neuroanatomical connections in the human brain is derived largely from studies in non-human experimental models in which the entire connectional pathway, including origins, course, and terminations, is directly visualized. Techniques to examine structural connectivity in the human brain are progressing rapidly; nevertheless, our present understanding of such connectivity is limited largely to data derived from homological comparisons, particularly with non-human primates. We take the position that an in-depth and more precise understanding of human connectional neuroanatomy will be obtained by a systematic application of this homological approach.
Collapse
Affiliation(s)
- R Jarrett Rushmore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States.,Psychiatric Neuroimaging Laboratory, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Center for Morphometric Analysis, Department of Psychiatry and Neurology, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sylvain Bouix
- Psychiatric Neuroimaging Laboratory, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Marek Kubicki
- Psychiatric Neuroimaging Laboratory, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Center for Morphometric Analysis, Department of Psychiatry and Neurology, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yogesh Rathi
- Psychiatric Neuroimaging Laboratory, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Center for Morphometric Analysis, Department of Psychiatry and Neurology, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Edward H Yeterian
- Psychiatric Neuroimaging Laboratory, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Center for Morphometric Analysis, Department of Psychiatry and Neurology, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Psychology, Colby College, Waterville, ME, United States
| | - Nikos Makris
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States.,Psychiatric Neuroimaging Laboratory, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Center for Morphometric Analysis, Department of Psychiatry and Neurology, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Ultra-high resolution and multi-shell diffusion MRI of intact ex vivo human brains using kT-dSTEAM at 9.4T. Neuroimage 2019; 202:116087. [DOI: 10.1016/j.neuroimage.2019.116087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/08/2019] [Indexed: 01/07/2023] Open
|
21
|
Visualizing the trigeminovagal complex in the human medulla by combining ex-vivo ultra-high resolution structural MRI and polarized light imaging microscopy. Sci Rep 2019; 9:11305. [PMID: 31383932 PMCID: PMC6683146 DOI: 10.1038/s41598-019-47855-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/22/2019] [Indexed: 01/18/2023] Open
Abstract
A trigeminovagal complex, as described in some animals, could help to explain the effect of vagus nerve stimulation as a treatment for headache disorders. However, the existence of a trigeminovagal complex in humans remains unclear. This study, therefore investigated the existence of the trigeminovagal complex in humans. One post-mortem human brainstem was scanned at 11.7T to obtain structural (T1-weighted) and diffusion magnetic resonance images ((d)MR images). Post-processing of dMRI data provided track density imaging (TDI) maps to investigate white matter at a smaller resolution than the imaging resolution. To evaluate the reconstructed tracts, the MR-scanned brainstem and three additional brainstems were sectioned for polarized light imaging (PLI) microscopy. T1-weighted images showed hyperintense vagus medullar striae, coursing towards the dorsomedial aspect of the medulla. dMRI-, TDI- and PLI-images showed these striae to intersect the trigeminal spinal tract (sp5) in the lateral medulla. In addition, PLI images showed that a minority of vagus fibers separated from the vagus trajectory and joined the trigeminal spinal nucleus (Sp5) and the sp5. The course of the vagus tract in the rostral medulla was demonstrated in this study. This study shows that the trigeminal- and vagus systems interconnect anatomically at the level of the rostral medulla where the vagus fibers intersect with the Sp5 and sp5. Physiological and clinical utility of this newly identified interconnection is a topic for further research.
Collapse
|
22
|
Wang Y, Xu C, Park JH, Lee S, Stern Y, Yoo S, Kim JH, Kim HS, Cha J. Diagnosis and prognosis of Alzheimer's disease using brain morphometry and white matter connectomes. Neuroimage Clin 2019; 23:101859. [PMID: 31150957 PMCID: PMC6541902 DOI: 10.1016/j.nicl.2019.101859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 05/02/2019] [Accepted: 05/11/2019] [Indexed: 01/05/2023]
Abstract
Accurate, reliable prediction of risk for Alzheimer's disease (AD) is essential for early, disease-modifying therapeutics. Multimodal MRI, such as structural and diffusion MRI, is likely to contain complementary information of neurodegenerative processes in AD. Here we tested the utility of the multimodal MRI (T1-weighted structure and diffusion MRI), combined with high-throughput brain phenotyping-morphometry and structural connectomics-and machine learning, as a diagnostic tool for AD. We used, firstly, a clinical cohort at a dementia clinic (National Health Insurance Service-Ilsan Hospital [NHIS-IH]; N = 211; 110 AD, 64 mild cognitive impairment [MCI], and 37 cognitively normal with subjective memory complaints [SMC]) to test the diagnostic models; and, secondly, Alzheimer's Disease Neuroimaging Initiative (ADNI)-2 to test the generalizability. Our machine learning models trained on the morphometric and connectome estimates (number of features = 34,646) showed optimal classification accuracy (AD/SMC: 97% accuracy, MCI/SMC: 83% accuracy; AD/MCI: 97% accuracy) in NHIS-IH cohort, outperforming a benchmark model (FLAIR-based white matter hyperintensity volumes). In ADNI-2 data, the combined connectome and morphometry model showed similar or superior accuracies (AD/HC: 96%; MCI/HC: 70%; AD/MCI: 75% accuracy) compared with the CSF biomarker model (t-tau, p-tau, and Amyloid β, and ratios). In predicting MCI to AD progression in a smaller cohort of ADNI-2 (n = 60), the morphometry model showed similar performance with 69% accuracy compared with CSF biomarker model with 70% accuracy. Our comparisons of the classifiers trained on structural MRI, diffusion MRI, FLAIR, and CSF biomarkers showed the promising utility of the white matter structural connectomes in classifying AD and MCI in addition to the widely used structural MRI-based morphometry, when combined with machine learning.
Collapse
Affiliation(s)
- Yun Wang
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Chenxiao Xu
- Department of Applied Mathematics, Stony Brook University, Stony Brook, NY, USA
| | - Ji-Hwan Park
- Department of Applied Mathematics, Stony Brook University, Stony Brook, NY, USA
| | - Seonjoo Lee
- Department of Biostatistics, School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Yaakov Stern
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Shinjae Yoo
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, USA
| | - Jong Hun Kim
- Department of Neurology, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Hyoung Seop Kim
- Department of Physical Medicine and Rehabilitation, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea.
| | - Jiook Cha
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Data Science Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
23
|
Caspers S, Axer M. Decoding the microstructural correlate of diffusion MRI. NMR IN BIOMEDICINE 2019; 32:e3779. [PMID: 28858413 DOI: 10.1002/nbm.3779] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Diffusion imaging has evolved considerably over the past decade. While it provides valuable information about the structural connectivity at the macro- and mesoscopic scale, bridging the gap to the microstructure at the level of single nerve fibers poses an enormous challenge. This is particularly true for the human brain with its large size, its large white-matter volume and availability of histological techniques for studying human whole-brain sections and subsequent 3D reconstruction. Classic post-mortem techniques for studying the fiber architecture of the brain, such as myeloarchitectonic staining or dye tracing, are complemented by novel histological approaches, such as 3D polarized light imaging or optical coherence tomography, enabling unique insight into the fiber architecture from large fiber bundles within deep white matter to single nerve fibers in the cortex. The present review discusses the benefits and challenges of these latest developments in comparison with the classic techniques, with particular focus on the mutual exchange between in vivo and post-mortem diffusion imaging and post-mortem microstructural approaches for understanding the wiring of the brain across different scales.
Collapse
Affiliation(s)
- Svenja Caspers
- C. and O. Vogt Institute for Brain Research, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Markus Axer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
24
|
Nath V, Schilling KG, Remedios S, Bayrak RG, Gao Y, Blaber JA, Huo Y, Landman BA, Anderson AW. LEARNING 3D WHITE MATTER MICROSTRUCTURE FROM 2D HISTOLOGY. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2019; 2019:186-190. [PMID: 32211122 PMCID: PMC7092618 DOI: 10.1109/isbi.2019.8759388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Histological analysis is typically the gold standard for validating measures of tissue microstructure derived from magnetic resonance imaging (MRI) contrasts. However, most histological investigations are inherently 2-dimensional (2D), due to increased field-of-view, higher in-plane resolutions, ease of acquisition, decreased costs, and a large number of available contrasts compared to 3-dimensional (3D) analysis. Because of this, it would be of great interest to be able to learn the 3D tissue microstructure from 2D histology. In this study, we use diffusion MRI (dMRI) of a squirrel monkey brain and corresponding myelin stained sections in combination with a convolution neural network to learn the relationship between the 3D diffusion estimated axonal fiber orientation distributions and the 2D myelin stain. We find that we are able to estimate the 3D fiber distribution with moderate to high angular agreement with the ground truth (median angular correlation coefficients of 0.48 across the unseen slices). This network could be used to validate dMRI neuronal structural measurements in 3D, even if only 2D histology is available for validation. Generalization is possible to transfer this network to human stained sections to infer the 3D fiber distribution at resolutions currently unachievable with dMRI, which would allow diffusion fiber tractography at unprecedented resolutions. We envision the use of similar networks to learn other 3D microstructural measures from an array of potential common 2D histology contrasts.
Collapse
Affiliation(s)
- Vishwesh Nath
- Department of Computer Science, Vanderbilt University, Nashville, TN
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN
| | - Samuel Remedios
- Department of Computer Science, Vanderbilt University, Nashville, TN
| | - Roza G Bayrak
- Department of Computer Science, Vanderbilt University, Nashville, TN
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN
| | - Justin A Blaber
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN
| | - Yuankai Huo
- Department of Computer Science, Vanderbilt University, Nashville, TN
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN
- Department of Computer Science, Vanderbilt University, Nashville, TN
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN
| | - A W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN
| |
Collapse
|
25
|
Roebroeck A, Miller KL, Aggarwal M. Ex vivo diffusion MRI of the human brain: Technical challenges and recent advances. NMR IN BIOMEDICINE 2019; 32:e3941. [PMID: 29863793 PMCID: PMC6492287 DOI: 10.1002/nbm.3941] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 05/23/2023]
Abstract
This review discusses ex vivo diffusion magnetic resonance imaging (dMRI) as an important research tool for neuroanatomical investigations and the validation of in vivo dMRI techniques, with a focus on the human brain. We review the challenges posed by the properties of post-mortem tissue, and discuss state-of-the-art tissue preparation methods and recent advances in pulse sequences and acquisition techniques to tackle these. We then review recent ex vivo dMRI studies of the human brain, highlighting the validation of white matter orientation estimates and the atlasing and mapping of large subcortical structures. We also give particular emphasis to the delineation of layered gray matter structure with ex vivo dMRI, as this application illustrates the strength of its mesoscale resolution over large fields of view. We end with a discussion and outlook on future and potential directions of the field.
Collapse
Affiliation(s)
- Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | | | - Manisha Aggarwal
- Department of RadiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
26
|
Jonkman LE, Kenkhuis B, Geurts JJG, van de Berg WDJ. Post-Mortem MRI and Histopathology in Neurologic Disease: A Translational Approach. Neurosci Bull 2019; 35:229-243. [PMID: 30790214 DOI: 10.1007/s12264-019-00342-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/29/2018] [Indexed: 01/28/2023] Open
Abstract
In this review, combined post-mortem brain magnetic resonance imaging (MRI) and histology studies are highlighted, illustrating the relevance of translational approaches to define novel MRI signatures of neuropathological lesions in neuroinflammatory and neurodegenerative disorders. Initial studies combining post-mortem MRI and histology have validated various MRI sequences, assessing their sensitivity and specificity as diagnostic biomarkers in neurologic disease. More recent studies have focused on defining new radiological (bio)markers and implementing them in the clinical (research) setting. By combining neurological and neuroanatomical expertise with radiological development and pathological validation, a cycle emerges that allows for the discovery of novel MRI biomarkers to be implemented in vivo. Examples of this cycle are presented for multiple sclerosis, Alzheimer's disease, Parkinson's disease, and traumatic brain injury. Some applications have been shown to be successful, while others require further validation. In conclusion, there is much to explore with post-mortem MRI and histology studies, which can eventually be of high relevance for clinical practice.
Collapse
Affiliation(s)
- Laura E Jonkman
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| | - Boyd Kenkhuis
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Dusek P, Madai VI, Huelnhagen T, Bahn E, Matej R, Sobesky J, Niendorf T, Acosta-Cabronero J, Wuerfel J. The choice of embedding media affects image quality, tissue R 2 * , and susceptibility behaviors in post-mortem brain MR microscopy at 7.0T. Magn Reson Med 2018; 81:2688-2701. [PMID: 30506939 DOI: 10.1002/mrm.27595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/19/2018] [Accepted: 10/14/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE The quality and precision of post-mortem MRI microscopy may vary depending on the embedding medium used. To investigate this, our study evaluated the impact of 5 widely used media on: (1) image quality, (2) contrast of high spatial resolution gradient-echo (T1 and T2 * -weighted) MR images, (3) effective transverse relaxation rate (R2 * ), and (4) quantitative susceptibility measurements (QSM) of post-mortem brain specimens. METHODS Five formaldehyde-fixed brain slices were scanned using 7.0T MRI in: (1) formaldehyde solution (formalin), (2) phosphate-buffered saline (PBS), (3) deuterium oxide (D2 O), (4) perfluoropolyether (Galden), and (5) agarose gel. SNR and contrast-to-noise ratii (SNR/CNR) were calculated for cortex/white matter (WM) and basal ganglia/WM regions. In addition, median R2 * and QSM values were extracted from caudate nucleus, putamen, globus pallidus, WM, and cortical regions. RESULTS PBS, Galden, and agarose returned higher SNR/CNR compared to formalin and D2 O. Formalin fixation, and its use as embedding medium for scanning, increased tissue R2 * . Imaging with agarose, D2 O, and Galden returned lower R2 * values than PBS (and formalin). No major QSM offsets were observed, although spatial variance was increased (with respect to R2 * behaviors) for formalin and agarose. CONCLUSIONS Embedding media affect gradient-echo image quality, R2 * , and QSM in differing ways. In this study, PBS embedding was identified as the most stable experimental setup, although by a small margin. Agarose and Galden were preferred to formalin or D2 O embedding. Formalin significantly increased R2 * causing noisier data and increased QSM variance.
Collapse
Affiliation(s)
- Petr Dusek
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Praha, Czech Republic.,Department of Radiology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Praha, Czech Republic
| | - Vince Istvan Madai
- Department of Neurology and Center for Stroke Research Berlin (CSB), Charité-Universitaetsmedizin, Berlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Erik Bahn
- Institute of Neuropathology, University Medicine Göttingen, Göttingen, Germany
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Thomayer Hospital, Praha, Czech Republic.,Department of Pathology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Praha, Czech Republic
| | - Jan Sobesky
- Department of Neurology and Center for Stroke Research Berlin (CSB), Charité-Universitaetsmedizin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Charité-Universitaetsmedizin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Charité-Universitaetsmedizin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Julio Acosta-Cabronero
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Jens Wuerfel
- NeuroCure Clinical Research Center, Charité-Universitaetsmedizin, Berlin, Germany.,Medical Imaging Analysis Center AG, Basel, Switzerland.,Department of Biomedical Engineering, University Basel, Switzerland
| |
Collapse
|
28
|
Zhang T, Kong J, Jing K, Chen H, Jiang X, Li L, Guo L, Lu J, Hu X, Liu T. Optimization of macaque brain DMRI connectome by neuron tracing and myelin stain data. Comput Med Imaging Graph 2018; 69:9-20. [PMID: 30170273 PMCID: PMC6176488 DOI: 10.1016/j.compmedimag.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/26/2018] [Accepted: 06/18/2018] [Indexed: 12/11/2022]
Abstract
Accurate assessment of connectional anatomy of primate brains can be an important avenue to better understand the structural and functional organization of brains. To this end, numerous connectome projects have been initiated to create a comprehensive map of the connectional anatomy over a large spatial expanse. Tractography based on diffusion MRI (dMRI) data has been used as a tool by many connectome projects in that it is widely used to visualize axonal pathways and reveal microstructural features on living brains. However, the measures obtained from dMRI are indirect inference of microstructures. This intrinsic limitation reduces the reliability of dMRI in constructing connectomes for brains. In this work, we proposed a framework to increase the accuracy of constructing a dMRI-based connectome on macaque brains by integrating meso-scale connective information from tract-tracing data and micro-scale axonal orientation information from myelin stain data. Our results suggest that this integrative framework could advance the mapping accuracy of dMRI based connections and axonal pathways, and demonstrate the prospect of the proposed framework in constructing a large-scale connectome on living primate brains.
Collapse
Affiliation(s)
- Tuo Zhang
- School of Automation and Brain Decoding Research Center, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jun Kong
- Emory University, Atlanta, GA, United States
| | - Ke Jing
- Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Hanbo Chen
- Cortical Architecture Imaging and Discovery Lab, The University of Georgia, Athens, GA, United States
| | - Xi Jiang
- Cortical Architecture Imaging and Discovery Lab, The University of Georgia, Athens, GA, United States
| | - Longchuan Li
- Marcus Autism Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, United States
| | - Lei Guo
- School of Automation and Brain Decoding Research Center, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jianfeng Lu
- Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Xiaoping Hu
- University of California, Riverside, CA, United States
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, The University of Georgia, Athens, GA, United States.
| |
Collapse
|
29
|
Ex vivo visualization of the trigeminal pathways in the human brainstem using 11.7T diffusion MRI combined with microscopy polarized light imaging. Brain Struct Funct 2018; 224:159-170. [PMID: 30293214 PMCID: PMC6373363 DOI: 10.1007/s00429-018-1767-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/02/2018] [Indexed: 01/12/2023]
Abstract
Classic anatomical atlases depict a contralateral hemispheral representation of each side of the face. Recently, however, a bilateral projection of each hemiface was hypothesized, based on animal studies that showed the coexistence of an additional trigeminothalamic tract sprouting from the trigeminal principal sensory nucleus that ascends ipsilaterally. This study aims to provide an anatomical substrate for the hypothesized bilateral projection. Three post-mortem human brainstems were scanned for anatomical and diffusion magnetic resonance imaging at 11.7T. The trigeminal tracts were delineated in each brainstem using track density imaging (TDI) and tractography. To evaluate the reconstructed tracts, the same brainstems were sectioned for polarized light imaging (PLI). Anatomical 11.7T MRI shows a dispersion of the trigeminal tract (tt) into a ventral and dorsal portion. This bifurcation was also seen on the TDI maps, tractography results and PLI images of all three specimens. Referring to a similar anatomic feature in primate brains, the dorsal and ventral tracts were named the dorsal and ventral trigeminothalamic tract (dtt and vtt), respectively. This study shows that both the dtt and vtt are present in humans, indicating that each hemiface has a bilateral projection, although the functional relevance of these tracts cannot be determined by the present anatomical study. If both tracts convey noxious stimuli, this could open up new insights into and treatments for orofacial pain in patients.
Collapse
|
30
|
Aydogan DB, Jacobs R, Dulawa S, Thompson SL, Francois MC, Toga AW, Dong H, Knowles JA, Shi Y. When tractography meets tracer injections: a systematic study of trends and variation sources of diffusion-based connectivity. Brain Struct Funct 2018; 223:2841-2858. [PMID: 29663135 PMCID: PMC5997540 DOI: 10.1007/s00429-018-1663-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/08/2018] [Indexed: 12/23/2022]
Abstract
Tractography is a powerful technique capable of non-invasively reconstructing the structural connections in the brain using diffusion MRI images, but the validation of tractograms is challenging due to lack of ground truth. Owing to recent developments in mapping the mouse brain connectome, high-resolution tracer injection-based axonal projection maps have been created and quickly adopted for the validation of tractography. Previous studies using tracer injections mainly focused on investigating the match in projections and optimal tractography protocols. Being a complicated technique, however, tractography relies on multiple stages of operations and parameters. These factors introduce large variabilities in tractograms, hindering the optimization of protocols and making the interpretation of results difficult. Based on this observation, in contrast to previous studies, in this work we focused on quantifying and ranking the amount of performance variation introduced by these factors. For this purpose, we performed over a million tractography experiments and studied the variability across different subjects, injections, anatomical constraints and tractography parameters. By using N-way ANOVA analysis, we show that all tractography parameters are significant and importantly performance variations with respect to the differences in subjects are comparable to the variations due to tractography parameters, which strongly underlines the importance of fully documenting the tractography protocols in scientific experiments. We also quantitatively show that inclusion of anatomical constraints is the most significant factor for improving tractography performance. Although this critical factor helps reduce false positives, our analysis indicates that anatomy-informed tractography still fails to capture a large portion of axonal projections.
Collapse
Affiliation(s)
- Dogu Baran Aydogan
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA.
| | - Russell Jacobs
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Stephanie Dulawa
- Department of Psychiatry, University of California at San Diego, San Diego, CA, 90089, USA
| | - Summer L Thompson
- Department of Psychiatry, University of California at San Diego, San Diego, CA, 90089, USA
- Committee on Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Maite Christi Francois
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Hongwei Dong
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - James A Knowles
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yonggang Shi
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| |
Collapse
|
31
|
Sydnor VJ, Rivas-Grajales AM, Lyall AE, Zhang F, Bouix S, Karmacharya S, Shenton ME, Westin CF, Makris N, Wassermann D, O'Donnell LJ, Kubicki M. A comparison of three fiber tract delineation methods and their impact on white matter analysis. Neuroimage 2018; 178:318-331. [PMID: 29787865 DOI: 10.1016/j.neuroimage.2018.05.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 05/18/2018] [Indexed: 12/20/2022] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) is an important method for studying white matter connectivity in the brain in vivo in both healthy and clinical populations. Improvements in dMRI tractography algorithms, which reconstruct macroscopic three-dimensional white matter fiber pathways, have allowed for methodological advances in the study of white matter; however, insufficient attention has been paid to comparing post-tractography methods that extract white matter fiber tracts of interest from whole-brain tractography. Here we conduct a comparison of three representative and conceptually distinct approaches to fiber tract delineation: 1) a manual multiple region of interest-based approach, 2) an atlas-based approach, and 3) a groupwise fiber clustering approach, by employing methods that exemplify these approaches to delineate the arcuate fasciculus, the middle longitudinal fasciculus, and the uncinate fasciculus in 10 healthy male subjects. We enable qualitative comparisons across methods, conduct quantitative evaluations of tract volume, tract length, mean fractional anisotropy, and true positive and true negative rates, and report measures of intra-method and inter-method agreement. We discuss methodological similarities and differences between the three approaches and the major advantages and drawbacks of each, and review research and clinical contexts for which each method may be most apposite. Emphasis is given to the means by which different white matter fiber tract delineation approaches may systematically produce variable results, despite utilizing the same input tractography and reliance on similar anatomical knowledge.
Collapse
Affiliation(s)
- Valerie J Sydnor
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana María Rivas-Grajales
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Fan Zhang
- Laboratory for Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarina Karmacharya
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Carl-Fredrik Westin
- Laboratory for Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Demian Wassermann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Athena, Université Cote d'Azur, Inria, France; Parietal, CEA, Université Paris-Saclay, INRIA Saclay Île-de-France, France
| | - Lauren J O'Donnell
- Laboratory for Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Gao Y, Schilling KG, Stepniewska I, Plassard AJ, Choe AS, Li X, Landman BA, Anderson AW. Tests of cortical parcellation based on white matter connectivity using diffusion tensor imaging. Neuroimage 2018; 170:321-331. [PMID: 28235566 PMCID: PMC5568504 DOI: 10.1016/j.neuroimage.2017.02.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/23/2017] [Accepted: 02/18/2017] [Indexed: 10/20/2022] Open
Abstract
The cerebral cortex is conventionally divided into a number of domains based on cytoarchitectural features. Diffusion tensor imaging (DTI) enables noninvasive parcellation of the cortex based on white matter connectivity patterns. However, the correspondence between DTI-connectivity-based and cytoarchitectural parcellation has not been systematically established. In this study, we compared histological parcellation of New World monkey neocortex to DTI- connectivity-based classification and clustering in the same brains. First, we used supervised classification to parcellate parieto-frontal cortex based on DTI tractograms and the cytoarchitectural prior (obtained using Nissl staining). We performed both within and across sample classification, showing reasonable classification performance in both conditions. Second, we used unsupervised clustering to parcellate the cortex and compared the clusters to the cytoarchitectonic standard. We then explored the similarities and differences with several post-hoc analyses, highlighting underlying principles that drive the DTI-connectivity-based parcellation. The differences in parcellation between DTI-connectivity and Nissl histology probably represent both DTI's bias toward easily-tracked bundles and true differences between cytoarchitectural and connectivity defined domains. DTI tractograms appear to cluster more according to functional networks, rather than mapping directly onto cytoarchitectonic domains. Our results show that caution should be used when DTI-tractography classification, based on data from another brain, is used as a surrogate for cytoarchitectural parcellation.
Collapse
Affiliation(s)
- Yurui Gao
- Institute of Imaging Science, Vanderbilt University, United States; Department of Biomedical Engineering, Vanderbilt University, United States
| | - Kurt G Schilling
- Institute of Imaging Science, Vanderbilt University, United States; Department of Biomedical Engineering, Vanderbilt University, United States
| | | | - Andrew J Plassard
- Department of Computer Science, Vanderbilt University, United States
| | - Ann S Choe
- Institute of Imaging Science, Vanderbilt University, United States; Department of Biomedical Engineering, Vanderbilt University, United States
| | - Xia Li
- Institute of Imaging Science, Vanderbilt University, United States; Department of Radiology and Radiological Science, Vanderbilt University, United States
| | - Bennett A Landman
- Institute of Imaging Science, Vanderbilt University, United States; Department of Biomedical Engineering, Vanderbilt University, United States; Department of Computer Science, Vanderbilt University, United States; Department of Electrical Engineering, Vanderbilt University, United States
| | - Adam W Anderson
- Institute of Imaging Science, Vanderbilt University, United States; Department of Biomedical Engineering, Vanderbilt University, United States; Department of Radiology and Radiological Science, Vanderbilt University, United States
| |
Collapse
|
33
|
Tittgemeyer M, Rigoux L, Knösche TR. Cortical parcellation based on structural connectivity: A case for generative models. Neuroimage 2018; 173:592-603. [PMID: 29407457 DOI: 10.1016/j.neuroimage.2018.01.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/14/2022] Open
Abstract
One of the major challenges in systems neuroscience is to identify brain networks and unravel their significance for brain function -this has led to the concept of the 'connectome'. Connectomes are currently extensively studied in large-scale international efforts at multiple scales, and follow different definitions with respect to their connections as well as their elements. Perhaps the most promising avenue for defining the elements of connectomes originates from the notion that individual brain areas maintain distinct (long-range) connection profiles. These connectivity patterns determine the areas' functional properties and also allow for their anatomical delineation and mapping. This rationale has motivated the concept of connectivity-based cortex parcellation. In the past ten years, non-invasive mapping of human brain connectivity has led to immense advances in the development of parcellation techniques and their applications. Unfortunately, many of these approaches primarily aim for confirmation of well-known, existing architectonic maps and, to that end, unsuitably incorporate prior knowledge and frequently build on circular argumentation. Often, current approaches also tend to disregard the specific apertures of connectivity measurements, as well as the anatomical specificities of cortical areas, such as spatial compactness, regional heterogeneity, inter-subject variability, the multi-scaling nature of connectivity information, and potential hierarchical organisation. From a methodological perspective, however, a useful framework that regards all of these aspects in an unbiased way is technically demanding. In this commentary, we first outline the concept of connectivity-based cortex parcellation and discuss its prospects and limitations in particular with respect to structural connectivity. To improve reliability and efficiency, we then strongly advocate for connectivity-based cortex parcellation as a modelling approach; that is, an approximation of the data based on (model) parameter inference. As such, a parcellation algorithm can be formally tested for robustness -the precision of its predictions can be quantified and statistics about potential generalization of the results can be derived. Such a framework also allows the question of model constraints to be reformulated in terms of hypothesis testing through model selection and offers a formative way to integrate anatomical knowledge in terms of prior distributions.
Collapse
Affiliation(s)
| | - Lionel Rigoux
- Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Thomas R Knösche
- Max-Planck-Institute for Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
34
|
Zhao X, Yang R, Wang K, Zhang Z, Wang J, Tan X, Zhang J, Mei Y, Chan Q, Xu J, Feng Q, Xu Y. Connectivity-based parcellation of the nucleus accumbens into core and shell portions for stereotactic target localization and alterations in each NAc subdivision in mTLE patients. Hum Brain Mapp 2017; 39:1232-1245. [PMID: 29266652 DOI: 10.1002/hbm.23912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/18/2017] [Accepted: 11/30/2017] [Indexed: 01/01/2023] Open
Abstract
The nucleus accumbens (NAc), an important target of deep brain stimulation for some neuropsychiatric disorders, is thought to be involved in epileptogenesis, especially the shell portion. However, little is known about the exact parcellation within the NAc, and its structural abnormalities or connections alterations of each NAc subdivision in temporal lobe epilepsy (TLE) patients. Here, we used diffusion probabilistic tractography to subdivide the NAc into core and shell portions in individual TLE patients to guide stereotactic localization of NAc shell. The structural and connection abnormalities in each NAc subdivision in the groups were then estimated. We successfully segmented the NAc in 24 of 25 controls, 14 of 16 left TLE patients, and 14 of 18 right TLE patients. Both left and right TLE patients exhibited significantly decreased fractional anisotropy (FA) and increased radial diffusivity (RD) in the shell, while there was no significant alteration in the core. Moreover, relatively distinct structural connectivity of each NAc subdivision was demonstrated. More extensive connection abnormalities were detected in the NAc shell in TLE patients. Our results indicate that neuronal degeneration and damage caused by seizure mainly exists in NAc shell and provide anatomical evidence to support the role of NAc shell in epileptogenesis. Remarkably, those NAc shell tracts with increased connectivities in TLE patients were found decreased in FA, which indicates disruption of fiber integrity. This finding suggests the regeneration of aberrant connections, a compensatory and repair process ascribed to recurrent seizures that constitutes part of the characteristic changes in the epileptic network.
Collapse
Affiliation(s)
- Xixi Zhao
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ru Yang
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China
| | - Kewan Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | | | - Junling Wang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiangliang Tan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiajun Zhang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yingjie Mei
- Philips Healthcare, Guangzhou, Guangdong, 510055, China
| | | | - Jun Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qianjin Feng
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
35
|
Maier-Hein KH, Neher PF, Houde JC, Côté MA, Garyfallidis E, Zhong J, Chamberland M, Yeh FC, Lin YC, Ji Q, Reddick WE, Glass JO, Chen DQ, Feng Y, Gao C, Wu Y, Ma J, He R, Li Q, Westin CF, Deslauriers-Gauthier S, González JOO, Paquette M, St-Jean S, Girard G, Rheault F, Sidhu J, Tax CMW, Guo F, Mesri HY, Dávid S, Froeling M, Heemskerk AM, Leemans A, Boré A, Pinsard B, Bedetti C, Desrosiers M, Brambati S, Doyon J, Sarica A, Vasta R, Cerasa A, Quattrone A, Yeatman J, Khan AR, Hodges W, Alexander S, Romascano D, Barakovic M, Auría A, Esteban O, Lemkaddem A, Thiran JP, Cetingul HE, Odry BL, Mailhe B, Nadar MS, Pizzagalli F, Prasad G, Villalon-Reina JE, Galvis J, Thompson PM, Requejo FDS, Laguna PL, Lacerda LM, Barrett R, Dell'Acqua F, Catani M, Petit L, Caruyer E, Daducci A, Dyrby TB, Holland-Letz T, Hilgetag CC, Stieltjes B, Descoteaux M. The challenge of mapping the human connectome based on diffusion tractography. Nat Commun 2017; 8:1349. [PMID: 29116093 PMCID: PMC5677006 DOI: 10.1038/s41467-017-01285-x] [Citation(s) in RCA: 749] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 09/01/2017] [Indexed: 01/14/2023] Open
Abstract
Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international tractography challenge, which resulted in 96 distinct submissions from 20 research groups. Here, we report the encouraging finding that most state-of-the-art algorithms produce tractograms containing 90% of the ground truth bundles (to at least some extent). However, the same tractograms contain many more invalid than valid bundles, and half of these invalid bundles occur systematically across research groups. Taken together, our results demonstrate and confirm fundamental ambiguities inherent in tract reconstruction based on orientation information alone, which need to be considered when interpreting tractography and connectivity results. Our approach provides a novel framework for estimating reliability of tractography and encourages innovation to address its current limitations. Though tractography is widely used, it has not been systematically validated. Here, authors report results from 20 groups showing that many tractography algorithms produce both valid and invalid bundles.
Collapse
Affiliation(s)
- Klaus H Maier-Hein
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
| | - Peter F Neher
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Jean-Christophe Houde
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Marc-Alexandre Côté
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Eleftherios Garyfallidis
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada.,Department of Intelligent Systems Engineering, School of Informatics and Computing, Indiana University, Bloomington, IN 47408, USA
| | - Jidan Zhong
- Krembil Research Institute, University Health Network, Toronto, Canada, M5G 2C4
| | - Maxime Chamberland
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ying-Chia Lin
- IMT-Institute for Advanced Studies, Lucca, 55100, Italy
| | - Qing Ji
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wilburn E Reddick
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John O Glass
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David Qixiang Chen
- University of Toronto Institute of Medical Science, Toronto, Canada, M5S 1A8
| | - Yuanjing Feng
- Institute of Information Processing and Automation, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| | - Chengfeng Gao
- Institute of Information Processing and Automation, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| | - Ye Wu
- Institute of Information Processing and Automation, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| | - Jieyan Ma
- United Imaging Healthcare Co., Shanghai, 201807, China
| | - Renjie He
- United Imaging Healthcare Co., Shanghai, 201807, China
| | - Qiang Li
- United Imaging Healthcare Co., Shanghai, 201807, China.,Shanghai Advanced Research Institute, Shanghai, 201210, China
| | - Carl-Fredrik Westin
- Laboratory of Mathematics in Imaging, Harvard Medical School, Boston, MA, 02215, USA
| | | | | | - Michael Paquette
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Samuel St-Jean
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Gabriel Girard
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - François Rheault
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Jasmeen Sidhu
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Chantal M W Tax
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, 3508, The Netherlands.,Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Fenghua Guo
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, 3508, The Netherlands
| | - Hamed Y Mesri
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, 3508, The Netherlands
| | - Szabolcs Dávid
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, 3508, The Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, 3508, The Netherlands
| | - Anneriet M Heemskerk
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, 3508, The Netherlands
| | - Alexander Leemans
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, 3508, The Netherlands
| | - Arnaud Boré
- Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM), Université de Montréal, Montreal, QC, Canada, H3W 1W5
| | - Basile Pinsard
- Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM), Université de Montréal, Montreal, QC, Canada, H3W 1W5.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), 75013, Paris, France
| | - Christophe Bedetti
- Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM), Université de Montréal, Montreal, QC, Canada, H3W 1W5.,Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada, H4J 1C5
| | - Matthieu Desrosiers
- Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM), Université de Montréal, Montreal, QC, Canada, H3W 1W5
| | - Simona Brambati
- Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM), Université de Montréal, Montreal, QC, Canada, H3W 1W5
| | - Julien Doyon
- Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM), Université de Montréal, Montreal, QC, Canada, H3W 1W5
| | - Alessia Sarica
- Neuroimaging Unit, Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council (CNR), Policlinico Magna Graecia, Germaneto, 88100, CZ, Italy
| | - Roberta Vasta
- Neuroimaging Unit, Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council (CNR), Policlinico Magna Graecia, Germaneto, 88100, CZ, Italy
| | - Antonio Cerasa
- Neuroimaging Unit, Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council (CNR), Policlinico Magna Graecia, Germaneto, 88100, CZ, Italy
| | - Aldo Quattrone
- Neuroimaging Unit, Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council (CNR), Policlinico Magna Graecia, Germaneto, 88100, CZ, Italy.,Institute of Neurology, University Magna Graecia, Germaneto, 88100, CZ, Italy
| | - Jason Yeatman
- Institute for Learning & Brain Sciences and Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Ali R Khan
- Departments of Medical Biophysics & Medical Imaging, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St N, London, ON, Canada, N6A 5C1
| | - Wes Hodges
- Synaptive Medical Inc., MaRS Discovery District, 101 College Street, Suite 200, Toronto, ON, Canada, M5V 3B1
| | - Simon Alexander
- Synaptive Medical Inc., MaRS Discovery District, 101 College Street, Suite 200, Toronto, ON, Canada, M5V 3B1
| | - David Romascano
- Signal Processing Lab (LTS5), Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland
| | - Muhamed Barakovic
- Signal Processing Lab (LTS5), Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland
| | - Anna Auría
- Signal Processing Lab (LTS5), Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland
| | - Oscar Esteban
- Biomedical Image Technologies (BIT), ETSI Telecom., U. Politécnica de Madrid and CIBER-BBN, Madrid, 28040, Spain
| | - Alia Lemkaddem
- Signal Processing Lab (LTS5), Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Lab (LTS5), Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland.,Department of Radiology, University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, 1011, Switzerland
| | - H Ertan Cetingul
- Medical Imaging Technologies, Siemens Healthcare, Princeton, NJ, 08540, USA
| | - Benjamin L Odry
- Medical Imaging Technologies, Siemens Healthcare, Princeton, NJ, 08540, USA
| | - Boris Mailhe
- Medical Imaging Technologies, Siemens Healthcare, Princeton, NJ, 08540, USA
| | - Mariappan S Nadar
- Medical Imaging Technologies, Siemens Healthcare, Princeton, NJ, 08540, USA
| | - Fabrizio Pizzagalli
- Imaging Genetics Center, Stevens Neuro Imaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, 90033, USA
| | - Gautam Prasad
- Imaging Genetics Center, Stevens Neuro Imaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, 90033, USA
| | - Julio E Villalon-Reina
- Imaging Genetics Center, Stevens Neuro Imaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, 90033, USA
| | - Justin Galvis
- Imaging Genetics Center, Stevens Neuro Imaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, 90033, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuro Imaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, 90033, USA
| | | | - Pedro Luque Laguna
- NatBrainLab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Luis Miguel Lacerda
- NatBrainLab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Rachel Barrett
- NatBrainLab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Flavio Dell'Acqua
- NatBrainLab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Marco Catani
- NatBrainLab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Laurent Petit
- Groupe d'imagerie Neurofonctionnelle-Institut des Maladies Neurodégénératives (GIN-IMN), UMR5293 CNRS, CEA, University of Bordeaux, Bordeaux, 33000, France
| | - Emmanuel Caruyer
- Centre national de la recherche scientifique (CNRS), Institute for Research in IT and Random Systems (IRISA), UMR 6074 VISAGES Project-Team, Rennes, 35042, France
| | - Alessandro Daducci
- Signal Processing Lab (LTS5), Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland.,Department of Radiology, University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, 1011, Switzerland
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, 2650, Denmark.,Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Tim Holland-Letz
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Claus C Hilgetag
- Department of Computational Neuroscience, University Medical Center Eppendorf, Hamburg, 20246, Germany
| | - Bram Stieltjes
- University Hospital Basel, Radiology & Nuclear Medicine Clinic, Basel, 4031, Switzerland
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada.
| |
Collapse
|
36
|
Abstract
The ability to map brain networks in living individuals is fundamental in efforts to chart the relation between human behavior, health and disease. Advances in network neuroscience may benefit from developing new frameworks for mapping brain connectomes. We present a framework to encode structural brain connectomes and diffusion-weighted magnetic resonance (dMRI) data using multidimensional arrays. The framework integrates the relation between connectome nodes, edges, white matter fascicles and diffusion data. We demonstrate the utility of the framework for in vivo white matter mapping and anatomical computing by evaluating 1,490 connectomes, thirteen tractography methods, and three data sets. The framework dramatically reduces storage requirements for connectome evaluation methods, with up to 40x compression factors. Evaluation of multiple, diverse datasets demonstrates the importance of spatial resolution in dMRI. We measured large increases in connectome resolution as function of data spatial resolution (up to 52%). Moreover, we demonstrate that the framework allows performing anatomical manipulations on white matter tracts for statistical inference and to study the white matter geometrical organization. Finally, we provide open-source software implementing the method and data to reproduce the results.
Collapse
Affiliation(s)
- Cesar F Caiafa
- Department of Psychological and, Brain Sciences Indiana University Bloomington, IN, 47405, USA
- Instituto Argentino de Radioastronomía (IAR), CONICET CCT, La Plata Villa Elisa, 1894, Argentina
- Facultad de Ingeniería - Departamento de Computación, UBA Buenos Aires, C1063ACV, Argentina
| | - Franco Pestilli
- Department of Psychological and, Brain Sciences Indiana University Bloomington, IN, 47405, USA.
- Department of Intelligent Systems, Engineering Indiana University Bloomington, IN, 47405, USA.
- Department of Computer Science, Indiana University Bloomington, IN, 47405, USA.
- Program in Neuroscience Indiana University Bloomington, IN, 47405, USA.
- Program in Cognitive Science Indiana University Bloomington, IN, 47405, USA.
- School of Optometry Indiana University Bloomington, IN, 47405, USA.
- Indiana Network Science Institute Indiana University Bloomington, IN, 47405, USA.
| |
Collapse
|
37
|
Abstract
BACKGROUND Deterministic diffusion tractography obtained from high angular resolution diffusion imaging (HARDI) requires user-defined quantitative anisotropy (QA) thresholds. Most studies employ a common threshold across all subjects even though there is a strong degree of individual variation within groups. We sought to explore whether it would be beneficial to use individual thresholds in order to accommodate individual variance. To do this, we conducted two independent experiments. METHOD First, tractography of the arcuate fasciculus and network connectivity measures were examined in a sample of 14 healthy participants. Second, we assessed the effects of QA threshold on group differences in network connectivity measures between healthy young (n=19) and old (n=14) individuals. RESULTS The results of both experiments were significantly influenced by QA threshold. Common thresholds set too high failed to produce sufficient reconstructions in most subjects, thus decreasing the likelihood of detecting meaningful group differences. On the other hand, common thresholds set too low resulted in spurious reconstructions, providing deleterious results. COMPARISON WITH EXISTING METHODS Subject specific thresholds acquired using our QA threshold selection method (QATS) appeared to provide the most meaningful networks while ensuring that data from all subjects contributed to the analyses. CONCLUSIONS Together, these results support the use of a subject-specific threshold to ensure that data from all subjects are included in the analyses being conducted.
Collapse
|
38
|
Baur ADJ, Daqqaq T, Collettini F, Denecke T, Hamm B, Durmus T, Scheel M. Influence of fractional anisotropy thresholds on diffusion tensor imaging tractography of the periprostatic neurovascular bundle and selected pelvic tissues: do visualized tracts really represent nerves? Acta Radiol 2017; 58:472-480. [PMID: 27235453 DOI: 10.1177/0284185116651004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Diffusion tensor imaging (DTI) tractography has recently been shown to successfully visualize periprostatic tracts allegedly representing the neurovascular bundle. Purpose To examine the impact of different fractional anisotropy (FA) thresholds on the results of DTI tractography in the male pelvis as well as to evaluate the resulting specificity for nerve tracts. Material and Methods Ten healthy male volunteers were examined at 3 Tesla. DTI tractography was performed based on seed points placed circularly around the prostate, in the rectoprostatic angle, the peripheral zone of the prostate, the sciatic nerve, and in addition the urinary bladder using FA thresholds of 0.20, 0.05, and 0.01. DTI tract number and DTI tract length measured with different FA thresholds were compared. ANOVA with repeated measures was used for statistics. Results DTI tract number and tract length were significantly dependent on FA thresholds. While a FA threshold of 0.20 visualized the typical distribution of DTI tracts in the sciatic nerve, a FA threshold of ≤0.05 was necessary to yield results visually mimicking the distribution of nerve tracts in the NVB. However, with such low FA thresholds even in the filled urinary bladder DTI tracts could be visualized. With FA thresholds of 0.20, the number and length of periprostatic DTI tracts did not differ from those measured within the prostate. Conclusion DTI tractography can be used to visualize DTI tracts periprostatically. However, one may doubt that these DTI tracts represent nerve tracts and that the periprostatic neurovascular bundle can be evaluated in a meaningful way with the current methods available.
Collapse
Affiliation(s)
- Alexander DJ Baur
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Tareef Daqqaq
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Federico Collettini
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Timm Denecke
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Tahir Durmus
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Scheel
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
39
|
Sengupta S, Fritz FJ, Harms RL, Hildebrand S, Tse DHY, Poser BA, Goebel R, Roebroeck A. High resolution anatomical and quantitative MRI of the entire human occipital lobe ex vivo at 9.4T. Neuroimage 2017; 168:162-171. [PMID: 28336427 PMCID: PMC5862655 DOI: 10.1016/j.neuroimage.2017.03.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 11/06/2022] Open
Abstract
Several magnetic resonance imaging (MRI) contrasts are sensitive to myelin content in gray matter in vivo which has ignited ambitions of MRI-based in vivo cortical histology. Ultra-high field (UHF) MRI, at fields of 7 T and beyond, is crucial to provide the resolution and contrast needed to sample contrasts over the depth of the cortex and get closer to layer resolved imaging. Ex vivo MRI of human post mortem samples is an important stepping stone to investigate MRI contrast in the cortex, validate it against histology techniques applied in situ to the same tissue, and investigate the resolutions needed to translate ex vivo findings to in vivo UHF MRI. Here, we investigate key technology to extend such UHF studies to large human brain samples while maintaining high resolution, which allows investigation of the layered architecture of several cortical areas over their entire 3D extent and their complete borders where architecture changes. A 16 channel cylindrical phased array radiofrequency (RF) receive coil was constructed to image a large post mortem occipital lobe sample (~80×80×80 mm3) in a wide-bore 9.4 T human scanner with the aim of achieving high-resolution anatomical and quantitative MR images. Compared with a human head coil at 9.4 T, the maximum Signal-to-Noise ratio (SNR) was increased by a factor of about five in the peripheral cortex. Although the transmit profile with a circularly polarized transmit mode at 9.4 T is relatively inhomogeneous over the large sample, this challenge was successfully resolved with parallel transmit using the kT-points method. Using this setup, we achieved 60μm anatomical images for the entire occipital lobe showing increased spatial definition of cortical details compared to lower resolutions. In addition, we were able to achieve sufficient control over SNR, B0 and B1 homogeneity and multi-contrast sampling to perform quantitative T2* mapping over the same volume at 200 μm. Markov Chain Monte Carlo sampling provided maximum posterior estimates of quantitative T2* and their uncertainty, allowing delineation of the stria of Gennari over the entire length and width of the calcarine sulcus. We discuss how custom RF receive coil arrays built to specific large post mortem sample sizes can provide a platform for UHF cortical layer-specific quantitative MRI over large fields of view. Custom-built 16 channel 9.4 T RF-coil to image large post mortem samples at high resolution. Parallel transmit techniques allow homogenization of B1+ for 3D GRE imaging at UHF. 60 μm anatomical MRI of the entire human occipital lobe. 200 μm isotropic quantitative T2* mapping of the entire human occipital lobe. A platform for future UHF cortical layer specific qMRI over large FoVs.
Collapse
Affiliation(s)
- S Sengupta
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - F J Fritz
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - R L Harms
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - S Hildebrand
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - D H Y Tse
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - B A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - R Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - A Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
40
|
The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread. Neuroimage 2017; 145:377-388. [DOI: 10.1016/j.neuroimage.2016.04.049] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/16/2016] [Accepted: 04/20/2016] [Indexed: 12/27/2022] Open
|
41
|
Bastiani M, Oros-Peusquens AM, Seehaus A, Brenner D, Möllenhoff K, Celik A, Felder J, Bratzke H, Shah NJ, Galuske R, Goebel R, Roebroeck A. Automatic Segmentation of Human Cortical Layer-Complexes and Architectural Areas Using Ex vivo Diffusion MRI and Its Validation. Front Neurosci 2016; 10:487. [PMID: 27891069 PMCID: PMC5102896 DOI: 10.3389/fnins.2016.00487] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/11/2016] [Indexed: 11/14/2022] Open
Abstract
Recently, several magnetic resonance imaging contrast mechanisms have been shown to distinguish cortical substructure corresponding to selected cortical layers. Here, we investigate cortical layer and area differentiation by automatized unsupervised clustering of high-resolution diffusion MRI data. Several groups of adjacent layers could be distinguished in human primary motor and premotor cortex. We then used the signature of diffusion MRI signals along cortical depth as a criterion to detect area boundaries and find borders at which the signature changes abruptly. We validate our clustering results by histological analysis of the same tissue. These results confirm earlier studies which show that diffusion MRI can probe layer-specific intracortical fiber organization and, moreover, suggests that it contains enough information to automatically classify architecturally distinct cortical areas. We discuss the strengths and weaknesses of the automatic clustering approach and its appeal for MR-based cortical histology.
Collapse
Affiliation(s)
- Matteo Bastiani
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, Netherlands; Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4)Jülich, Germany
| | | | - Arne Seehaus
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, Netherlands; Department of Biology, TU DarmstadtDarmstadt, Germany
| | - Daniel Brenner
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4) Jülich, Germany
| | - Klaus Möllenhoff
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4) Jülich, Germany
| | - Avdo Celik
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4) Jülich, Germany
| | - Jörg Felder
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4) Jülich, Germany
| | - Hansjürgen Bratzke
- Department of Forensic Medicine, Faculty of Medicine, Goethe University Frankfurt Frankfurt, Germany
| | - Nadim J Shah
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4)Jülich, Germany; Department of Neurology, Faculty of Medicine, Jülich Aachen Research Alliance, RWTH Aachen UniversityAachen, Germany
| | - Ralf Galuske
- Department of Biology, TU Darmstadt Darmstadt, Germany
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, Netherlands; Department of Neuroimaging and Neuromodeling, Netherlands Institute for Neuroscience - KNAWAmsterdam, Netherlands
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University Maastricht, Netherlands
| |
Collapse
|
42
|
Pieterman K, Batalle D, Dudink J, Tournier JD, Hughes EJ, Barnett M, Benders MJ, Edwards AD, Hoebeek FE, Counsell SJ. Cerebello-cerebral connectivity in the developing brain. Brain Struct Funct 2016; 222:1625-1634. [PMID: 27573027 PMCID: PMC5406415 DOI: 10.1007/s00429-016-1296-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 08/22/2016] [Indexed: 01/28/2023]
Abstract
Disrupted cerebellar development and injury is associated with impairments in both motor and non-motor domains. Methods to non-invasively characterize cerebellar afferent and efferent connections during early development are lacking. The aim of this study was to assess the feasibility of delineating cortico-ponto-cerebellar (CPC) and cerebello-thalamo-cortical (CTC) white matter tracts during brain development using high angular resolution diffusion imaging (HARDI). HARDI data were obtained in 24 infants born between 24+6 and 39 weeks gestational age (median 33+4 weeks) and scanned between 29+1 and 44 weeks postmenstrual age (PMA) (median 37+1 weeks). Probabilistic tractography of CPC and CTC fibers was performed using constrained spherical deconvolution. Connections between cerebellum and contralateral cerebral hemisphere were identified in all infants studied. Fractional anisotropy (FA) values of CTC and CPC pathways increased with increasing PMA at scan (p < 0.001). The supratentorial regions connecting to contralateral cerebellum in most subjects, irrespective of PMA at scan, included the precentral cortex, superior frontal cortex, supplementary motor area, insula, postcentral cortex, precuneus, and paracentral lobule. This study demonstrates the feasibility of assessing CTC and CPC white matter connectivity in vivo during the early stages of development. The ability to assess cerebellar connectivity during this critical developmental period may help improve our understanding of the role of the cerebellum in a wide range of neuromotor and neurocognitive disorders.
Collapse
Affiliation(s)
- Kay Pieterman
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK.,Department of Neonatology, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Radiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Dafnis Batalle
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Jeroen Dudink
- Department of Neonatology, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Radiology, Erasmus Medical Centre, Rotterdam, The Netherlands.,Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - J-Donald Tournier
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK.,Division of Imaging Sciences and Biomedical Engineering, Department of Biomedical Engineering, King's College London, London, SE1 7EH, UK
| | - Emer J Hughes
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Madeleine Barnett
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Manon J Benders
- Department of Perinatology, Wilhelmina Children's Hospital and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A David Edwards
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands.
| | - Serena J Counsell
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| |
Collapse
|
43
|
van de Vijver I, Ridderinkhof KR, Harsay H, Reneman L, Cavanagh JF, Buitenweg JIV, Cohen MX. Frontostriatal anatomical connections predict age- and difficulty-related differences in reinforcement learning. Neurobiol Aging 2016; 46:1-12. [PMID: 27460144 DOI: 10.1016/j.neurobiolaging.2016.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Abstract
Reinforcement learning (RL) is supported by a network of striatal and frontal cortical structures that are connected through white-matter fiber bundles. With age, the integrity of these white-matter connections declines. The role of structural frontostriatal connectivity in individual and age-related differences in RL is unclear, although local white-matter density and diffusivity have been linked to individual differences in RL. Here we show that frontostriatal tract counts in young human adults (aged 18-28), as assessed noninvasively with diffusion-weighted magnetic resonance imaging and probabilistic tractography, positively predicted individual differences in RL when learning was difficult (70% valid feedback). In older adults (aged 63-87), in contrast, learning under both easy (90% valid feedback) and difficult conditions was predicted by tract counts in the same frontostriatal network. Furthermore, network-level analyses showed a double dissociation between the task-relevant networks in young and older adults, suggesting that older adults relied on different frontostriatal networks than young adults to obtain the same task performance. These results highlight the importance of successful information integration across striatal and frontal regions during RL, especially with variable outcomes.
Collapse
Affiliation(s)
- Irene van de Vijver
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands; Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands.
| | | | - Helga Harsay
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands; Nieuw Unicum, Zandvoort, The Netherlands
| | - Liesbeth Reneman
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - James F Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | | | - Michael X Cohen
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Current computational neuroanatomy based on MRI focuses on morphological measures of the brain. We present recent methodological developments in quantitative MRI (qMRI) that provide standardized measures of the brain, which go beyond morphology. We show how biophysical modelling of qMRI data can provide quantitative histological measures of brain tissue, leading to the emerging field of in-vivo histology using MRI (hMRI). RECENT FINDINGS qMRI has greatly improved the sensitivity and specificity of computational neuroanatomy studies. qMRI metrics can also be used as direct indicators of the mechanisms driving observed morphological findings. For hMRI, biophysical models of the MRI signal are being developed to directly access histological information such as cortical myelination, axonal diameters or axonal g-ratio in white matter. Emerging results indicate promising prospects for the combined study of brain microstructure and function. SUMMARY Non-invasive brain tissue characterization using qMRI or hMRI has significant implications for both research and clinics. Both approaches improve comparability across sites and time points, facilitating multicentre/longitudinal studies and standardized diagnostics. hMRI is expected to shed new light on the relationship between brain microstructure, function and behaviour, both in health and disease, and become an indispensable addition to computational neuroanatomy.
Collapse
|
45
|
Schilling K, Janve V, Gao Y, Stepniewska I, Landman BA, Anderson AW. Comparison of 3D orientation distribution functions measured with confocal microscopy and diffusion MRI. Neuroimage 2016; 129:185-197. [PMID: 26804781 DOI: 10.1016/j.neuroimage.2016.01.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 01/30/2023] Open
Abstract
The ability of diffusion MRI (dMRI) fiber tractography to non-invasively map three-dimensional (3D) anatomical networks in the human brain has made it a valuable tool in both clinical and research settings. However, there are many assumptions inherent to any tractography algorithm that can limit the accuracy of the reconstructed fiber tracts. Among them is the assumption that the diffusion-weighted images accurately reflect the underlying fiber orientation distribution (FOD) in the MRI voxel. Consequently, validating dMRI's ability to assess the underlying fiber orientation in each voxel is critical for its use as a biomedical tool. Here, using post-mortem histology and confocal microscopy, we present a method to perform histological validation of orientation functions in 3D, which has previously been limited to two-dimensional analysis of tissue sections. We demonstrate the ability to extract the 3D FOD from confocal z-stacks, and quantify the agreement between the MRI estimates of orientation information obtained using constrained spherical deconvolution (CSD) and the true geometry of the fibers. We find an orientation error of approximately 6° in voxels containing nearly parallel fibers, and 10-11° in crossing fiber regions, and note that CSD was unable to resolve fibers crossing at angles below 60° in our dataset. This is the first time that the 3D white matter orientation distribution is calculated from histology and compared to dMRI. Thus, this technique serves as a gold standard for dMRI validation studies - providing the ability to determine the extent to which the dMRI signal is consistent with the histological FOD, and to establish how well different dMRI models can predict the ground truth FOD.
Collapse
Affiliation(s)
- Kurt Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Vaibhav Janve
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Electrical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
46
|
Ghosh A, Deriche R. A survey of current trends in diffusion MRI for structural brain connectivity. J Neural Eng 2015; 13:011001. [PMID: 26695367 DOI: 10.1088/1741-2560/13/1/011001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this paper, we review the state of the art in diffusion magnetic resonance imaging (dMRI) and we present current trends in modelling the brain's tissue microstructure and the human connectome. dMRI is today the only tool that can probe the brain's axonal architecture in vivo and non-invasively, and has grown in leaps and bounds in the last two decades since its conception. A plethora of models with increasing complexity and better accuracy have been proposed to characterise the integrity of the cerebral tissue, to understand its microstructure and to infer its connectivity. Here, we discuss a wide range of the most popular, important and well-established local microstructure models and biomarkers that have been proposed from these models. Finally, we briefly present the state of the art in tractography techniques that allow us to understand the architecture of the brain's connectivity.
Collapse
Affiliation(s)
- Aurobrata Ghosh
- Project Team Athena, INRIA Sophia Antipolis-Méditerranée, 2004 Route des Lucioles-BP 93, 06902 Sophia Antipolis Cedex, France
| | | |
Collapse
|
47
|
Neher PF, Descoteaux M, Houde JC, Stieltjes B, Maier-Hein KH. Strengths and weaknesses of state of the art fiber tractography pipelines--A comprehensive in-vivo and phantom evaluation study using Tractometer. Med Image Anal 2015; 26:287-305. [PMID: 26599155 DOI: 10.1016/j.media.2015.10.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 01/11/2023]
Abstract
Many different tractography approaches and corresponding isolated evaluation attempts have been presented over the last years, but a comparative and quantitative evaluation of tractography algorithms still remains a challenge, particularly in-vivo. The recently presented evaluation framework Tractometer is the first attempt to approach this challenge in a quantitative, comparative, persistent and open-access way. Tractometer is currently based on the evaluation of several global connectivity and tract-overlap metrics on hardware phantom data. The work presented in this paper focuses on extending Tractometer with a metric that enables the assessment of the local consistency of tractograms with the underlying image data that is not only applicable to phantom dataset but allows the quantitative and purely data-driven evaluation of in-vivo tractography. We furthermore present an extensive reference-based evaluation study of 25,000 tractograms obtained on phantom and in-vivo datasets using the presented local metric as well as all the methods already established in Tractometer. The experiments showed that the presented local metric successfully reflects the behavior of in-vivo tractography under different conditions and that it is consistent with the results of previous studies. Additionally our experiments enabled a multitude of conclusions with implications for fiber tractography in general, including recommendations regarding optimal choice of a local modeling technique, tractography algorithm, and parameterization, confirming and complementing the results of earlier studies.
Collapse
Affiliation(s)
- Peter F Neher
- Junior Group Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Jean-Christophe Houde
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Bram Stieltjes
- Quantitative Image-based Disease Characterization, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Klaus H Maier-Hein
- Junior Group Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany; Quantitative Image-based Disease Characterization, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
48
|
Palesi F, Tournier JD, Calamante F, Muhlert N, Castellazzi G, Chard D, D'Angelo E, Wheeler-Kingshott CAM. Contralateral cerebello-thalamo-cortical pathways with prominent involvement of associative areas in humans in vivo. Brain Struct Funct 2015; 220:3369-84. [PMID: 25134682 PMCID: PMC4575696 DOI: 10.1007/s00429-014-0861-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/21/2014] [Indexed: 12/26/2022]
Abstract
In addition to motor functions, it has become clear that in humans the cerebellum plays a significant role in cognition too, through connections with associative areas in the cerebral cortex. Classical anatomy indicates that neo-cerebellar regions are connected with the contralateral cerebral cortex through the dentate nucleus, superior cerebellar peduncle, red nucleus and ventrolateral anterior nucleus of the thalamus. The anatomical existence of these connections has been demonstrated using virus retrograde transport techniques in monkeys and rats ex vivo. In this study, using advanced diffusion MRI tractography we show that it is possible to calculate streamlines to reconstruct the pathway connecting the cerebellar cortex with contralateral cerebral cortex in humans in vivo. Corresponding areas of the cerebellar and cerebral cortex encompassed similar proportion (about 80%) of the tract, suggesting that the majority of streamlines passing through the superior cerebellar peduncle connect the cerebellar hemispheres through the ventrolateral thalamus with contralateral associative areas. This result demonstrates that this kind of tractography is a useful tool to map connections between the cerebellum and the cerebral cortex and moreover could be used to support specific theories about the abnormal communication along these pathways in cognitive dysfunctions in pathologies ranging from dyslexia to autism.
Collapse
Affiliation(s)
- Fulvia Palesi
- Department of Physics, University of Pavia, Via Bassi 6, 27100, Pavia, Italy.
- Brain Connectivity Center, C. Mondino National Neurological Institute, Via Mondino 2, 27100, Pavia, Italy.
| | - Jacques-Donald Tournier
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia.
- Department of Medicine, Austin Health and Northern Health, University of Melbourne, Studley Road, Heidelberg, Australia.
| | - Fernando Calamante
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia.
- Department of Medicine, Austin Health and Northern Health, University of Melbourne, Studley Road, Heidelberg, Australia.
| | - Nils Muhlert
- Department of Neuroinflammation, NMR Research Unit, Queen Square MS Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
- Department of Psychology, Cardiff University, Cardiff, CF10 2AT, UK.
| | - Gloria Castellazzi
- Brain Connectivity Center, C. Mondino National Neurological Institute, Via Mondino 2, 27100, Pavia, Italy.
- Department of Industrial and Information Engineering, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Declan Chard
- Department of Neuroinflammation, NMR Research Unit, Queen Square MS Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
- National Institute for Health Research, University College London Hospitals Biomedical Research Centre, 149 Tottenham Court Road, London, W1T 7DN, UK.
| | - Egidio D'Angelo
- Brain Connectivity Center, C. Mondino National Neurological Institute, Via Mondino 2, 27100, Pavia, Italy.
- Department of Brain and Behavioural Sciences, University of Pavia, Via Forlanini 6, 27100, Pavia, Italy.
| | - Claudia A M Wheeler-Kingshott
- Department of Neuroinflammation, NMR Research Unit, Queen Square MS Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
49
|
In vivo mapping of macroscopic neuronal projections in the mouse hippocampus using high-resolution diffusion MRI. Neuroimage 2015; 125:84-93. [PMID: 26499812 DOI: 10.1016/j.neuroimage.2015.10.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 10/08/2015] [Accepted: 10/18/2015] [Indexed: 11/21/2022] Open
Abstract
Recent developments in diffusion magnetic resonance imaging (MRI) make it a promising tool for non-invasive mapping of the spatial organization of axonal and dendritic networks in gray matter regions of the brain. Given the complex cellular environments, in which these networks reside, evidence on the capability of diffusion MRI-based tractography to study these networks is still lacking. In this study, we used a localized diffusion MRI approach to acquire high spatial and angular resolution images of the live mouse hippocampus. The diffusion MRI and tractography results were compared with histology and the Allen mouse brain connectivity atlas using a multi-step image registration pipeline. The results demonstrated that in vivo diffusion MRI data at 0.1mm isotropic resolution revealed the organization of axonal and dendritic networks in the hippocampus and the tractography results shared remarkable similarity with the viral tracer data in term of their spatial projection patterns. Quantitative analysis showed significant correlations between tractography- and tracer-based projection density measurements in the mouse hippocampus. These findings suggest that high-resolution diffusion MRI and tractography can reveal macroscopic neuronal projections in the mouse hippocampus and are important for future development of advanced tractography methods.
Collapse
|
50
|
Mollink J, van Baarsen KM, Dederen PJWC, Foxley S, Miller KL, Jbabdi S, Slump CH, Grotenhuis JA, Kleinnijenhuis M, van Cappellen van Walsum AM. Dentatorubrothalamic tract localization with postmortem MR diffusion tractography compared to histological 3D reconstruction. Brain Struct Funct 2015; 221:3487-501. [PMID: 26438333 PMCID: PMC5009171 DOI: 10.1007/s00429-015-1115-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022]
Abstract
Diffusion-weighted imaging (DWI) tractography is a technique with great potential to characterize the in vivo anatomical position and integrity of white matter tracts. Tractography, however, remains an estimation of white matter tracts, and false-positive and false-negative rates are not available. The goal of the present study was to compare postmortem tractography of the dentatorubrothalamic tract (DRTT) by its 3D histological reconstruction, to estimate the reliability of the tractography algorithm in this specific tract. Recent studies have shown that the cerebellum is involved in cognitive, language and emotional functions besides its role in motor control. However, the exact working mechanism of the cerebellum is still to be elucidated. As the DRTT is the main output tract it is of special interest for the neuroscience and clinical community. A postmortem human brain specimen was scanned on a 7T MRI scanner using a diffusion-weighted steady-state free precession sequence. Tractography was performed with PROBTRACKX. The specimen was subsequently serially sectioned and stained for myelin using a modified Heidenhain–Woelke staining. Image registration permitted the 3D reconstruction of the histological sections and comparison with MRI. The spatial concordance between the two modalities was evaluated using ROC analysis and a similarity index (SI). ROC curves showed a high sensitivity and specificity in general. Highest measures were observed in the superior cerebellar peduncle with an SI of 0.72. Less overlap was found in the decussation of the DRTT at the level of the mesencephalon. The study demonstrates high spatial accuracy of postmortem probabilistic tractography of the DRTT when compared to a 3D histological reconstruction. This gives hopeful prospect for studying structure–function correlations in patients with cerebellar disorders using tractography of the DRTT.
Collapse
Affiliation(s)
- J Mollink
- Nuffield Department of Clinical Neurosciences, FMRIB Centre, University of Oxford, Oxford, UK. .,Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - K M van Baarsen
- Department of Neurosurgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - P J W C Dederen
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - S Foxley
- Nuffield Department of Clinical Neurosciences, FMRIB Centre, University of Oxford, Oxford, UK
| | - K L Miller
- Nuffield Department of Clinical Neurosciences, FMRIB Centre, University of Oxford, Oxford, UK
| | - S Jbabdi
- Nuffield Department of Clinical Neurosciences, FMRIB Centre, University of Oxford, Oxford, UK
| | - C H Slump
- MIRA Institute for Biomedical and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - J A Grotenhuis
- Department of Neurosurgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - M Kleinnijenhuis
- Nuffield Department of Clinical Neurosciences, FMRIB Centre, University of Oxford, Oxford, UK
| | - A M van Cappellen van Walsum
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|