1
|
Fecik MJ, Nunes PT, Vetreno RP, Savage LM. Voluntary wheel running exercise rescues behaviorally-evoked acetylcholine efflux in the medial prefrontal cortex and epigenetic changes in ChAT genes following adolescent intermittent ethanol exposure. PLoS One 2024; 19:e0311405. [PMID: 39436939 PMCID: PMC11495633 DOI: 10.1371/journal.pone.0311405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Adolescent intermittent ethanol (AIE) exposure, which models heavy binge ethanol intake in adolescence, leads to a variety of deficits that persist into adulthood-including suppression of the cholinergic neuron phenotype within the basal forebrain. This is accompanied by a reduction in acetylcholine (ACh) tone in the medial prefrontal cortex (mPFC). Voluntary wheel running exercise (VEx) has been shown to rescue AIE-induced suppression of the cholinergic phenotype. Therefore, the goal of the current study is to determine if VEx will also rescue ACh efflux in the mPFC during spontaneous alternation, attention set shifting performance, and epigenetic silencing of the cholinergic phenotype following AIE. Male and female rats were subjected to 16 intragastric gavages of 20% ethanol or tap water on a two-day on/two-day off schedule from postnatal day (PD) 25-54, before being assigned to either VEx or stationary control groups. In Experiment 1, rats were tested on a four-arm spontaneous alternation maze with concurrent in vivo microdialysis for ACh in the mPFC. An operant attention set-shifting task was used to measure changes in cognitive and behavioral flexibility. In Experiment 2, a ChIP analysis of choline acetyltransferase (ChAT) genes was performed on basal forebrain tissue. It was found that VEx increased ACh efflux in the mPFC in both AIE and control male and female rats, as well as rescued the AIE-induced epigenetic methylation changes selectively at the Chat promoter CpG island across sexes. Overall, these data support the restorative effects of exercise on damage to the cholinergic projections to the mPFC and demonstrate the plasticity of cholinergic system for recovery after alcohol induced brain damage.
Collapse
Affiliation(s)
- Matthew J. Fecik
- Department of Psychology, Behavioral Neuroscience Area, Binghamton University-State University of New York, Binghamton, NY, United States of America
| | - Polliana T. Nunes
- Department of Psychology, Behavioral Neuroscience Area, Binghamton University-State University of New York, Binghamton, NY, United States of America
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Lisa M. Savage
- Department of Psychology, Behavioral Neuroscience Area, Binghamton University-State University of New York, Binghamton, NY, United States of America
| |
Collapse
|
2
|
Chakraborty S, Haast RAM, Onuska KM, Kanel P, Prado MAM, Prado VF, Khan AR, Schmitz TW. Multimodal gradients of basal forebrain connectivity across the neocortex. Nat Commun 2024; 15:8990. [PMID: 39420185 PMCID: PMC11487139 DOI: 10.1038/s41467-024-53148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Cortical cholinergic projections originate from subregions of the basal forebrain (BF). To examine its organization in humans, we computed multimodal gradients of BF connectivity by combining 7 T diffusion and resting state functional MRI. Moving from anteromedial to posterolateral BF, we observe reduced tethering between structural and functional connectivity gradients, with the lowest tethering in the nucleus basalis of Meynert. In the neocortex, this gradient is expressed by progressively reduced tethering from unimodal sensory to transmodal cortex, with the lowest tethering in the midcingulo-insular network, and is also spatially correlated with the molecular concentration of VAChT, measured by [18F]fluoroethoxy-benzovesamicol (FEOBV) PET. In mice, viral tracing of BF cholinergic projections and [18F]FEOBV PET confirm a gradient of axonal arborization. Altogether, our findings reveal that BF cholinergic neurons vary in their branch complexity, with certain subpopulations exhibiting greater modularity and others greater diffusivity in the functional integration with their cortical targets.
Collapse
Affiliation(s)
- Sudesna Chakraborty
- Neuroscience Graduate Program, Western University, London, Ontario, Canada.
- Robarts Research Institute, Western University, London, Ontario, Canada.
- Department of Integrated Information Technology, Aoyama Gakuin University, Sagamihara, Kanagawa, Japan.
| | - Roy A M Haast
- Robarts Research Institute, Western University, London, Ontario, Canada
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Kate M Onuska
- Neuroscience Graduate Program, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
- Lawson Health Research Institute, Western University, London, Ontario, Canada
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Morris K.Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA
| | - Marco A M Prado
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
| | - Vania F Prado
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
| | - Ali R Khan
- Neuroscience Graduate Program, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Taylor W Schmitz
- Neuroscience Graduate Program, Western University, London, Ontario, Canada.
- Robarts Research Institute, Western University, London, Ontario, Canada.
- Lawson Health Research Institute, Western University, London, Ontario, Canada.
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.
| |
Collapse
|
3
|
Slater NM, Melzer TR, Myall DJ, Anderson TJ, Dalrymple-Alford JC. Cholinergic Basal Forebrain Integrity and Cognition in Parkinson's Disease: A Reappraisal of Magnetic Resonance Imaging Evidence. Mov Disord 2024. [PMID: 39360864 DOI: 10.1002/mds.30023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Cognitive impairment is a well-recognized and debilitating symptom of Parkinson's disease (PD). Degradation in the cortical cholinergic system is thought to be a key contributor. Both postmortem and in vivo cholinergic positron emission tomography (PET) studies have provided valuable evidence of cholinergic system changes in PD, which are pronounced in PD dementia (PDD). A growing body of literature has employed magnetic resonance imaging (MRI), a noninvasive, more cost-effective alternative to PET, to examine cholinergic system structural changes in PD. This review provides a comprehensive discussion of the methodologies and findings of studies that have focused on the relationship between cholinergic basal forebrain (cBF) integrity, based on T1- and diffusion-weighted MRI, and cognitive function in PD. Nucleus basalis of Meynert (Ch4) volume has been consistently reduced in cognitively impaired PD samples and has shown potential utility as a prognostic indicator for future cognitive decline. However, the extent of structural changes in Ch4, especially in early stages of cognitive decline in PD, remains unclear. In addition, evidence for structural change in anterior cBF regions in PD has not been well established. This review underscores the importance of continued cross-sectional and longitudinal research to elucidate the role of cholinergic dysfunction in the cognitive manifestations of PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nicola M Slater
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Tracy R Melzer
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Daniel J Myall
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Tim J Anderson
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
- Department of Neurology, Christchurch Hospital, Te Whatu Ora Waitaha Canterbury, Christchurch, New Zealand
| | - John C Dalrymple-Alford
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
4
|
Shanazz K, Xie K, Oliver T, Bogan J, Vale F, Sword J, Kirov SA, Terry A, O'Herron P, Blake DT. Cortical Acetylcholine Response to Deep Brain Stimulation of the Basal Forebrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605828. [PMID: 39131297 PMCID: PMC11312592 DOI: 10.1101/2024.07.30.605828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Background Deep brain stimulation (DBS), the direct electrical stimulation of neuronal tissue in the basal forebrain to enhance release of the neurotransmitter acetylcholine, is under consideration as a method to improve executive function in patients with dementia. While some small studies indicate a positive response in the clinical setting, the relationship between DBS and acetylcholine pharmacokinetics is incompletely understood. Objective We examined the cortical acetylcholine response to different stimulation parameters of the basal forebrain. Methods 2-photon imaging was combined with deep brain stimulation. Stimulating electrodes were implanted in the subpallidal basal forebrain, and the ipsilateral somatosensory cortex was imaged. Acetylcholine activity was determined using the GRABACh-3.0 muscarinic acetylcholine receptor sensor, and blood vessels were imaged with Texas red. Results Experiments manipulating pulse train frequency demonstrated that integrated acetylcholine induced fluorescence was insensitive to frequency, and that peak levels were achieved with frequencies from 60 to 130 Hz. Altering pulse train length indicated that longer stimulation resulted in higher peaks and more activation with sublinear summation. The acetylcholinesterase inhibitor donepezil increased the peak response to 10s of stimulation at 60Hz, and the integrated response increased 57% with the 2 mg/kg dose, and 126% with the 4 mg/kg dose. Acetylcholine levels returned to baseline with a time constant of 14 to 18 seconds in all experiments. Conclusions These data demonstrate that acetylcholine receptor activation is insensitive to frequency between 60 and 130 Hz. High peak responses are achieved with up to 900 pulses. Donepezil increases total acetylcholine receptor activation associated with DBS but did not change temporal kinetics. The long time constants observed in the cerebral cortex add to the evidence supporting volume in addition to synaptic transmission.
Collapse
Affiliation(s)
- Khadijah Shanazz
- Dept of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Kun Xie
- Dept of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Tucker Oliver
- Dept of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jamal Bogan
- Dept of Science and Mathematics, Augusta University, Augusta, GA
| | - Fernando Vale
- Dept of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jeremy Sword
- Dept of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Sergei A Kirov
- Dept of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
- Dept of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA
| | - Alvin Terry
- Dept of Pharmacology and Toxicology , Medical College of Georgia, Augusta University, Augusta, GA
| | - Philip O'Herron
- Dept of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - David T Blake
- Dept of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| |
Collapse
|
5
|
Barabás B, Reéb Z, Papp OI, Hájos N. Functionally linked amygdala and prefrontal cortical regions are innervated by both single and double projecting cholinergic neurons. Front Cell Neurosci 2024; 18:1426153. [PMID: 39049824 PMCID: PMC11266109 DOI: 10.3389/fncel.2024.1426153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Cholinergic cells have been proposed to innervate simultaneously those cortical areas that are mutually interconnected with each other. To test this hypothesis, we investigated the cholinergic innervation of functionally linked amygdala and prefrontal cortical regions. First, using tracing experiments, we determined that cholinergic cells located in distinct basal forebrain (BF) areas projected to the different nuclei of the basolateral amygdala (BLA). Specifically, cholinergic cells in the ventral pallidum/substantia innominata (VP/SI) innervated the basal nucleus (BA), while the horizontal limb of the diagonal band of Broca (HDB) projected to its basomedial nucleus (BMA). In addition, cholinergic neurons in these two BF areas gave rise to overlapping innervation in the medial prefrontal cortex (mPFC), yet their axons segregated in the dorsal and ventral regions of the PFC. Using retrograde-anterograde viral tracing, we demonstrated that a portion of mPFC-projecting cholinergic neurons also innervated the BLA, especially the BA. By injecting retrograde tracers into the mPFC and BA, we found that 28% of retrogradely labeled cholinergic cells were double labeled, which typically located in the VP/SI. In addition, we found that vesicular glutamate transporter type 3 (VGLUT3)-expressing neurons within the VP/SI were also cholinergic and projected to the mPFC and BA, implicating that a part of the cholinergic afferents may release glutamate. In contrast, we uncovered that GABA is unlikely to be a co-transmitter molecule in HDB and VP/SI cholinergic neurons in adult mice. The dual innervation strategy, i.e., the existence of cholinergic cell populations with single as well as simultaneous projections to the BLA and mPFC, provides the possibility for both synchronous and independent control of the operation in these cortical areas, a structural arrangement that may maximize computational support for functionally linked regions. The presence of VGLUT3 in a portion of cholinergic afferents suggests more complex functional effects of cholinergic system in cortical structures.
Collapse
Affiliation(s)
- Bence Barabás
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
- The Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Bloomington, IN, United States
| | - Zsófia Reéb
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Orsolya I. Papp
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Norbert Hájos
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- The Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Bloomington, IN, United States
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
6
|
Taylor NL, Whyte CJ, Munn BR, Chang C, Lizier JT, Leopold DA, Turchi JN, Zaborszky L, Műller EJ, Shine JM. Causal evidence for cholinergic stabilization of attractor landscape dynamics. Cell Rep 2024; 43:114359. [PMID: 38870015 PMCID: PMC11255396 DOI: 10.1016/j.celrep.2024.114359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/24/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
There is substantial evidence that neuromodulatory systems critically influence brain state dynamics; however, most work has been purely descriptive. Here, we quantify, using data combining local inactivation of the basal forebrain with simultaneous measurement of resting-state fMRI activity in the macaque, the causal role of long-range cholinergic input to the stabilization of brain states in the cerebral cortex. Local inactivation of the nucleus basalis of Meynert (nbM) leads to a decrease in the energy barriers required for an fMRI state transition in cortical ongoing activity. Moreover, the inactivation of particular nbM sub-regions predominantly affects information transfer in cortical regions known to receive direct anatomical projections. We demonstrate these results in a simple neurodynamical model of cholinergic impact on neuronal firing rates and slow hyperpolarizing adaptation currents. We conclude that the cholinergic system plays a critical role in stabilizing macroscale brain state dynamics.
Collapse
Affiliation(s)
- Natasha L Taylor
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| | - Christopher J Whyte
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| | - Brandon R Munn
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| | - Catie Chang
- Vanderbilt School of Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joseph T Lizier
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - David A Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, Washington DC, USA; Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda MD, USA
| | - Janita N Turchi
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda MD, USA
| | - Laszlo Zaborszky
- Centre for Molecular & Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Eli J Műller
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| | - James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Zaborszky L, Varsanyi P, Alloway K, Chavez C, Gielow M, Gombkoto P, Kondo H, Nadasdy Z. Functional architecture of the forebrain cholinergic system in rodents. RESEARCH SQUARE 2024:rs.3.rs-4504727. [PMID: 38947053 PMCID: PMC11213185 DOI: 10.21203/rs.3.rs-4504727/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The basal forebrain cholinergic system (BFCS) participates in functions that are global across the brain, such as sleep-wake cycles, but also participates in capacities that are more behaviorally and anatomically specific, including sensory perception. To better understand the underlying organization principles of the BFCS, more and higher quality anatomical data and analysis is needed. Here, we created a "virtual Basal Forebrain", combining data from numerous rats with cortical retrograde tracer injections into a common 3D reference coordinate space and developed a "spatial density correlation" methodology to analyze patterns in BFCS cortical projection targets, revealing that the BFCS is organized into three principal networks: somatosensory-motor, auditory, and visual. Within each network, clusters of cholinergic cells with increasing complexity innervate cortical targets. These networks represent hierarchically organized building blocks that may enable the BFCS to coordinate spatially selective signaling, including parallel modulation of multiple functionally interconnected yet diverse groups of cortical areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter Gombkoto
- Swiss Federal Institute of Technology in Zurich (ETH Zurich)
| | | | | |
Collapse
|
8
|
Hegedüs P, Király B, Schlingloff D, Lyakhova V, Velencei A, Szabó Í, Mayer MI, Zelenak Z, Nyiri G, Hangya B. Parvalbumin-expressing basal forebrain neurons mediate learning from negative experience. Nat Commun 2024; 15:4768. [PMID: 38849336 PMCID: PMC11161511 DOI: 10.1038/s41467-024-48755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/11/2024] [Indexed: 06/09/2024] Open
Abstract
Parvalbumin (PV)-expressing GABAergic neurons of the basal forebrain (BFPVNs) were proposed to serve as a rapid and transient arousal system, yet their exact role in awake behaviors remains unclear. We performed bulk calcium measurements and electrophysiology with optogenetic tagging from the horizontal limb of the diagonal band of Broca (HDB) while male mice were performing an associative learning task. BFPVNs responded with a distinctive, phasic activation to punishment, but showed slower and delayed responses to reward and outcome-predicting stimuli. Optogenetic inhibition during punishment impaired the formation of cue-outcome associations, suggesting a causal role of BFPVNs in associative learning. BFPVNs received strong inputs from the hypothalamus, the septal complex and the median raphe region, while they synapsed on diverse cell types in key limbic structures, where they broadcasted information about aversive stimuli. We propose that the arousing effect of BFPVNs is recruited by aversive stimuli to serve crucial associative learning functions.
Collapse
Affiliation(s)
- Panna Hegedüs
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, H-1085, Budapest, Hungary
| | - Bálint Király
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Dániel Schlingloff
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Victoria Lyakhova
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, H-1085, Budapest, Hungary
| | - Anna Velencei
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Írisz Szabó
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Márton I Mayer
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Zsofia Zelenak
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary.
| |
Collapse
|
9
|
Björklund A, Barker RA. The basal forebrain cholinergic system as target for cell replacement therapy in Parkinson's disease. Brain 2024; 147:1937-1952. [PMID: 38279949 PMCID: PMC11146424 DOI: 10.1093/brain/awae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024] Open
Abstract
In recent years there has been a renewed interest in the basal forebrain cholinergic system as a target for the treatment of cognitive impairments in patients with Parkinson's disease, due in part to the need to explore novel approaches to treat the cognitive symptoms of the disease and in part to the development of more refined imaging tools that have made it possible to monitor the progressive changes in the structure and function of the basal forebrain system as they evolve over time. In parallel, emerging technologies allowing the derivation of authentic basal forebrain cholinergic neurons from human pluripotent stem cells are providing new powerful tools for the exploration of cholinergic neuron replacement in animal models of Parkinson's disease-like cognitive decline. In this review, we discuss the rationale for cholinergic cell replacement as a potential therapeutic strategy in Parkinson's disease and how this approach can be explored in rodent models of Parkinson's disease-like cognitive decline, building on insights gained from the extensive animal experimental work that was performed in rodent and primate models in the 1980s and 90s. Although therapies targeting the cholinergic system have so far been focused mainly on patients with Alzheimer's disease, Parkinson's disease with dementia may be a more relevant condition. In Parkinson's disease with dementia, the basal forebrain system undergoes progressive degeneration and the magnitude of cholinergic cell loss has been shown to correlate with the level of cognitive impairment. Thus, cell therapy aimed to replace the lost basal forebrain cholinergic neurons represents an interesting strategy to combat some of the major cognitive impairments in patients with Parkinson's disease dementia.
Collapse
Affiliation(s)
- Anders Björklund
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Roger A Barker
- Wellcome MRC Cambridge Stem Cell Institute and John van Geest Centre for Brain Repair Department of Clinical Neuroscience, University of Cambridge, Cambridge CB2 0PY, UK
| |
Collapse
|
10
|
Nodal FR, Leach ND, Keating P, Dahmen JC, Zhao D, King AJ, Bajo VM. Neural processing in the primary auditory cortex following cholinergic lesions of the basal forebrain in ferrets. Hear Res 2024; 447:109025. [PMID: 38733712 PMCID: PMC11265294 DOI: 10.1016/j.heares.2024.109025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Cortical acetylcholine (ACh) release has been linked to various cognitive functions, including perceptual learning. We have previously shown that cortical cholinergic innervation is necessary for accurate sound localization in ferrets, as well as for their ability to adapt with training to altered spatial cues. To explore whether these behavioral deficits are associated with changes in the response properties of cortical neurons, we recorded neural activity in the primary auditory cortex (A1) of anesthetized ferrets in which cholinergic inputs had been reduced by making bilateral injections of the immunotoxin ME20.4-SAP in the nucleus basalis (NB) prior to training the animals. The pattern of spontaneous activity of A1 units recorded in the ferrets with cholinergic lesions (NB ACh-) was similar to that in controls, although the proportion of burst-type units was significantly lower. Depletion of ACh also resulted in more synchronous activity in A1. No changes in thresholds, frequency tuning or in the distribution of characteristic frequencies were found in these animals. When tested with normal acoustic inputs, the spatial sensitivity of A1 neurons in the NB ACh- ferrets and the distribution of their preferred interaural level differences also closely resembled those found in control animals, indicating that these properties had not been altered by sound localization training with one ear occluded. Simulating the animals' previous experience with a virtual earplug in one ear reduced the contralateral preference of A1 units in both groups, but caused azimuth sensitivity to change in slightly different ways, which may reflect the modest adaptation observed in the NB ACh- group. These results show that while ACh is required for behavioral adaptation to altered spatial cues, it is not required for maintenance of the spectral and spatial response properties of A1 neurons.
Collapse
Affiliation(s)
- Fernando R Nodal
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom.
| | | | - Peter Keating
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, United Kingdom
| | - Johannes C Dahmen
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Dylan Zhao
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
11
|
Sanda P, Hlinka J, van den Berg M, Skoch A, Bazhenov M, Keliris GA, Krishnan GP. Cholinergic modulation supports dynamic switching of resting state networks through selective DMN suppression. PLoS Comput Biol 2024; 20:e1012099. [PMID: 38843298 PMCID: PMC11185486 DOI: 10.1371/journal.pcbi.1012099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 06/18/2024] [Accepted: 04/23/2024] [Indexed: 06/19/2024] Open
Abstract
Brain activity during the resting state is widely used to examine brain organization, cognition and alterations in disease states. While it is known that neuromodulation and the state of alertness impact resting-state activity, neural mechanisms behind such modulation of resting-state activity are unknown. In this work, we used a computational model to demonstrate that change in excitability and recurrent connections, due to cholinergic modulation, impacts resting-state activity. The results of such modulation in the model match closely with experimental work on direct cholinergic modulation of Default Mode Network (DMN) in rodents. We further extended our study to the human connectome derived from diffusion-weighted MRI. In human resting-state simulations, an increase in cholinergic input resulted in a brain-wide reduction of functional connectivity. Furthermore, selective cholinergic modulation of DMN closely captured experimentally observed transitions between the baseline resting state and states with suppressed DMN fluctuations associated with attention to external tasks. Our study thus provides insight into potential neural mechanisms for the effects of cholinergic neuromodulation on resting-state activity and its dynamics.
Collapse
Affiliation(s)
- Pavel Sanda
- Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Hlinka
- Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
| | - Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Antonin Skoch
- National Institute of Mental Health, Klecany, Czech Republic
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Georgios A. Keliris
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Giri P. Krishnan
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
12
|
Chakraborty S, Haast RAM, Onuska KM, Kanel P, Prado MAM, Prado VF, Khan AR, Schmitz TW. Multimodal gradients of basal forebrain connectivity across the neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.26.541324. [PMID: 37292595 PMCID: PMC10245994 DOI: 10.1101/2023.05.26.541324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cholinergic innervation of the cortex originates almost entirely from populations of neurons in the basal forebrain (BF). Structurally, the ascending BF cholinergic projections are highly branched, with individual cells targeting multiple different cortical regions. However, it is not known whether the structural organization of basal forebrain projections reflects their functional integration with the cortex. We therefore used high-resolution 7T diffusion and resting state functional MRI in humans to examine multimodal gradients of BF cholinergic connectivity with the cortex. Moving from anteromedial to posterolateral BF, we observed reduced tethering between structural and functional connectivity gradients, with the most pronounced dissimilarity localized in the nucleus basalis of Meynert (NbM). The cortical expression of this structure-function gradient revealed progressively weaker tethering moving from unimodal to transmodal cortex, with the lowest tethering in midcingulo-insular cortex. We used human [ 18 F] fluoroethoxy-benzovesamicol (FEOBV) PET to demonstrate that cortical areas with higher concentrations of cholinergic innervation tend to exhibit lower tethering between BF structural and functional connectivity, suggesting a pattern of increasingly diffuse axonal arborization. Anterograde viral tracing of cholinergic projections and [ 18 F] FEOBV PET in mice confirmed a gradient of axonal arborization across individual BF cholinergic neurons. Like humans, cholinergic neurons with the highest arborization project to cingulo-insular areas of the mouse isocortex. Altogether, our findings reveal that BF cholinergic neurons vary in their branch complexity, with certain subpopulations exhibiting greater modularity and others greater diffusivity in the functional integration of their cortical targets.
Collapse
|
13
|
Lozovaya N, Moumen A, Hammond C. Basal Forebrain Cholinergic Neurons Have Specific Characteristics during the Perinatal Period. eNeuro 2024; 11:ENEURO.0538-23.2024. [PMID: 38755010 PMCID: PMC11137802 DOI: 10.1523/eneuro.0538-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024] Open
Abstract
Cholinergic neurons of the basal forebrain represent the main source of cholinergic innervation of large parts of the neocortex and are involved in adults in the modulation of attention, memory, and arousal. During the first postnatal days, they play a crucial role in the development of cortical neurons and cortical cytoarchitecture. However, their characteristics, during this period have not been studied. To understand how they can fulfill this role, we investigated the morphological and electrophysiological maturation of cholinergic neurons of the substantia innominata-nucleus basalis of Meynert (SI/NBM) complex in the perinatal period in mice. We show that cholinergic neurons, whether or not they express gamma-aminobutyric acid (GABA) as a cotransmitter, are already functional at Embryonic Day 18. Until the end of the first postnatal week, they constitute a single population of neurons with a well developed dendritic tree, a spontaneous activity including bursting periods, and a short-latency response to depolarizations (early-firing). They are excited by both their GABAergic and glutamatergic afferents. During the second postnatal week, a second, less excitable, neuronal population emerges, with a longer delay response to depolarizations (late-firing), together with the hyperpolarizing action of GABAA receptor-mediated currents. This classification into early-firing (40%) and late-firing (60%) neurons is again independent of the coexpression of GABAergic markers. These results strongly suggest that during the first postnatal week, the specific properties of developing SI/NBM cholinergic neurons allow them to spontaneously release acetylcholine (ACh), or ACh and GABA, into the developing cortex.
Collapse
|
14
|
Zou Y, Tong C, Peng W, Qiu Y, Li J, Xia Y, Pei M, Zhang K, Li W, Xu M, Liang Z. Cell-type-specific optogenetic fMRI on basal forebrain reveals functional network basis of behavioral preference. Neuron 2024; 112:1342-1357.e6. [PMID: 38359827 DOI: 10.1016/j.neuron.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
The basal forebrain (BF) is a complex structure that plays key roles in regulating various brain functions. However, it remains unclear how cholinergic and non-cholinergic BF neurons modulate large-scale functional networks and their relevance in intrinsic and extrinsic behaviors. With an optimized awake mouse optogenetic fMRI approach, we revealed that optogenetic stimulation of four BF neuron types evoked distinct cell-type-specific whole-brain BOLD activations, which could be attributed to BF-originated low-dimensional structural networks. Additionally, optogenetic activation of VGLUT2, ChAT, and PV neurons in the BF modulated the preference for locomotion, exploration, and grooming, respectively. Furthermore, we uncovered the functional network basis of the above BF-modulated behavioral preference through a decoding model linking the BF-modulated BOLD activation, low-dimensional structural networks, and behavioral preference. To summarize, we decoded the functional network basis of differential behavioral preferences with cell-type-specific optogenetic fMRI on the BF and provided an avenue for investigating mouse behaviors from a whole-brain view.
Collapse
Affiliation(s)
- Yijuan Zou
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Chuanjun Tong
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Wanling Peng
- Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yue Qiu
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University Shanghai, Shanghai 200032, China
| | - Jiangxue Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Xia
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mengchao Pei
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kaiwei Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weishuai Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zhifeng Liang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
15
|
Gong Y, Laheji F, Berenson A, Li Y, Moser A, Qian A, Frosch M, Sadjadi R, Hahn R, Maguire CA, Eichler F. Role of Basal Forebrain Neurons in Adrenomyeloneuropathy in Mice and Humans. Ann Neurol 2024; 95:442-458. [PMID: 38062617 PMCID: PMC10949091 DOI: 10.1002/ana.26849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVE X-linked adrenoleukodystrophy is caused by mutations in the peroxisomal half-transporter ABCD1. The most common manifestation is adrenomyeloneuropathy, a hereditary spastic paraplegia of adulthood. The present study set out to understand the role of neuronal ABCD1 in mice and humans with adrenomyeloneuropathy. METHODS Neuronal expression of ABCD1 during development was assessed in mice and humans. ABCD1-deficient mice and human brain tissues were examined for corresponding pathology. Next, we silenced ABCD1 in cholinergic Sh-sy5y neurons to investigate its impact on neuronal function. Finally, we tested adeno-associated virus vector-mediated ABCD1 delivery to the brain in mice with adrenomyeloneuropathy. RESULTS ABCD1 is highly expressed in neurons located in the periaqueductal gray matter, basal forebrain and hypothalamus. In ABCD1-deficient mice (Abcd1-/y), these structures showed mild accumulations of α-synuclein. Similarly, healthy human controls had high expression of ABCD1 in deep gray nuclei, whereas X-ALD patients showed increased levels of phosphorylated tau, gliosis, and complement activation in those same regions, albeit not to the degree seen in neurodegenerative tauopathies. Silencing ABCD1 in Sh-sy5y neurons impaired expression of functional proteins and decreased acetylcholine levels, similar to observations in plasma of Abcd1-/y mice. Notably, hind limb clasping in Abcd1-/y mice was corrected through transduction of ABCD1 in basal forebrain neurons following intracerebroventricular gene delivery. INTERPRETATION Our study suggests that the basal forebrain-cortical cholinergic pathway may contribute to dysfunction in adrenomyeloneuropathy. Rescuing peroxisomal transport activity in basal forebrain neurons and supporting glial cells might represent a viable therapeutic strategy. ANN NEUROL 2024;95:442-458.
Collapse
Affiliation(s)
- Yi Gong
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston
| | - Fiza Laheji
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston
| | - Anna Berenson
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston
| | - Yedda Li
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston
| | - Ann Moser
- Peroxisome Disease Lab, Hugo W Moser Research Institute, Baltimore, MD, USA
| | - April Qian
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston
| | - Matthew Frosch
- Massachusetts General Hospital, Department of Neuropathology, Harvard Medical School, Boston
| | - Reza Sadjadi
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston
| | - Ryan Hahn
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston
| | - Casey A. Maguire
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston
| | - Florian Eichler
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston
| |
Collapse
|
16
|
Rajebhosale P, Ananth MR, Kim R, Crouse R, Jiang L, López-Hernández G, Zhong C, Arty C, Wang S, Jone A, Desai NS, Li Y, Picciotto MR, Role LW, Talmage DA. Functionally refined encoding of threat memory by distinct populations of basal forebrain cholinergic projection neurons. eLife 2024; 13:e86581. [PMID: 38363713 DOI: 10.7554/elife.86581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/14/2024] [Indexed: 02/18/2024] Open
Abstract
Neurons of the basal forebrain nucleus basalis and posterior substantia innominata (NBM/SIp) comprise the major source of cholinergic input to the basolateral amygdala (BLA). Using a genetically encoded acetylcholine (ACh) sensor in mice, we demonstrate that BLA-projecting cholinergic neurons can 'learn' the association between a naive tone and a foot shock (training) and release ACh in the BLA in response to the conditioned tone 24 hr later (recall). In the NBM/SIp cholinergic neurons express the immediate early gene, Fos following both training and memory recall. Cholinergic neurons that express Fos following memory recall display increased intrinsic excitability. Chemogenetic silencing of these learning-activated cholinergic neurons prevents expression of the defensive behavior to the tone. In contrast, we show that NBM/SIp cholinergic neurons are not activated by an innately threatening stimulus (predator odor). Instead, VP/SIa cholinergic neurons are activated and contribute to defensive behaviors in response to predator odor, an innately threatening stimulus. Taken together, we find that distinct populations of cholinergic neurons are recruited to signal distinct aversive stimuli, demonstrating functionally refined organization of specific types of memory within the cholinergic basal forebrain of mice.
Collapse
Affiliation(s)
| | - Mala R Ananth
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, United States
| | - Ronald Kim
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, United States
| | - Richard Crouse
- Yale Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| | - Li Jiang
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, United States
| | | | - Chongbo Zhong
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, United States
| | | | - Shaohua Wang
- National Institute of Environmental Health Sciences, Durham, United States
| | - Alice Jone
- Program in Neuroscience, Stony Brook University, Stony Brook, United States
| | - Niraj S Desai
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, United States
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Marina R Picciotto
- Yale Interdepartmental Neuroscience Program, Yale University, New Haven, United States
- Department of Psychiatry, Yale University, New Haven, United States
| | - Lorna W Role
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, United States
| | - David A Talmage
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, United States
| |
Collapse
|
17
|
Rajebhosale P, Ananth MR, Kim R, Crouse R, Jiang L, López-Hernández G, Zhong C, Arty C, Wang S, Jone A, Desai NS, Li Y, Picciotto MR, Role LW, Talmage DA. Functionally refined encoding of threat memory by distinct populations of basal forebrain cholinergic projection neurons. RESEARCH SQUARE 2024:rs.3.rs-3938016. [PMID: 38405824 PMCID: PMC10889048 DOI: 10.21203/rs.3.rs-3938016/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Neurons of the basal forebrain nucleus basalis and posterior substantia innominata (NBM/SIp) comprise the major source of cholinergic input to the basolateral amygdala (BLA). Using a genetically-encoded acetylcholine (ACh) sensor in mice, we demonstrate that BLA-projecting cholinergic neurons can "learn" the association between a naïve tone and a foot shock (training) and release ACh in the BLA in response to the conditioned tone 24h later (recall). In the NBM/SIp cholinergic neurons express the immediate early gene, Fos following both training and memory recall. Cholinergic neurons that express Fos following memory recall display increased intrinsic excitability. Chemogenetic silencing of these learning-activated cholinergic neurons prevents expression of the defensive behavior to the tone. In contrast, we show that NBM/SIp cholinergic neurons are not activated by an innately threatening stimulus (predator odor). Instead, VP/SIa cholinergic neurons are activated and contribute to defensive behaviors in response to predator odor, an innately threatening stimulus. Taken together, we find that distinct populations of cholinergic neurons are recruited to signal distinct aversive stimuli, demonstrating functionally refined organization of specific types of memory within the cholinergic basal forebrain of mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shaohua Wang
- National Institute of Environmental Health Sciences
| | | | | | - Yulong Li
- Peking University School of Life Sciences
| | | | | | | |
Collapse
|
18
|
Weiss DA, Borsa AM, Pala A, Sederberg AJ, Stanley GB. A machine learning approach for real-time cortical state estimation. J Neural Eng 2024; 21:016016. [PMID: 38232377 PMCID: PMC10868597 DOI: 10.1088/1741-2552/ad1f7b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Objective.Cortical function is under constant modulation by internally-driven, latent variables that regulate excitability, collectively known as 'cortical state'. Despite a vast literature in this area, the estimation of cortical state remains relatively ad hoc, and not amenable to real-time implementation. Here, we implement robust, data-driven, and fast algorithms that address several technical challenges for online cortical state estimation.Approach. We use unsupervised Gaussian mixture models to identify discrete, emergent clusters in spontaneous local field potential signals in cortex. We then extend our approach to a temporally-informed hidden semi-Markov model (HSMM) with Gaussian observations to better model and infer cortical state transitions. Finally, we implement our HSMM cortical state inference algorithms in a real-time system, evaluating their performance in emulation experiments.Main results. Unsupervised clustering approaches reveal emergent state-like structure in spontaneous electrophysiological data that recapitulate arousal-related cortical states as indexed by behavioral indicators. HSMMs enable cortical state inferences in a real-time context by modeling the temporal dynamics of cortical state switching. Using HSMMs provides robustness to state estimates arising from noisy, sequential electrophysiological data.Significance. To our knowledge, this work represents the first implementation of a real-time software tool for continuously decoding cortical states with high temporal resolution (40 ms). The software tools that we provide can facilitate our understanding of how cortical states dynamically modulate cortical function on a moment-by-moment basis and provide a basis for state-aware brain machine interfaces across health and disease.
Collapse
Affiliation(s)
- David A Weiss
- Program in Bioengineering, Georgia Institute of Technology, Atlanta, GA, United States of America
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Adriano Mf Borsa
- Program in Bioengineering, Georgia Institute of Technology, Atlanta, GA, United States of America
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Aurélie Pala
- Department of Biology, Emory University, Atlanta, GA, United States of America
| | - Audrey J Sederberg
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Medical Discovery Team in Optical Imaging and Brain Science, University of Minnesota, Minneapolis, MN, United States of America
| | - Garrett B Stanley
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| |
Collapse
|
19
|
Wang H, Ortega HK, Kelly EB, Indajang J, Feng J, Li Y, Kwan AC. Frontal noradrenergic and cholinergic transients exhibit distinct spatiotemporal dynamics during competitive decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576893. [PMID: 38328186 PMCID: PMC10849696 DOI: 10.1101/2024.01.23.576893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Norepinephrine (NE) and acetylcholine (ACh) are neuromodulators that are crucial for learning and decision-making. In the cortex, NE and ACh are released at specific sites along neuromodulatory axons, which would constrain their spatiotemporal dynamics at the subcellular scale. However, how the fluctuating patterns of NE and ACh signaling may be linked to behavioral events is unknown. Here, leveraging genetically encoded NE and ACh indicators, we use two-photon microscopy to visualize neuromodulatory signals in the superficial layer of the mouse medial frontal cortex during decision-making. Head-fixed mice engage in a competitive game called matching pennies against a computer opponent. We show that both NE and ACh transients carry information about decision-related variables including choice, outcome, and reinforcer. However, the two neuromodulators differ in their spatiotemporal pattern of task-related activation. Spatially, NE signals are more segregated with choice and outcome encoded at distinct locations, whereas ACh signals can multiplex and reflect different behavioral correlates at the same site. Temporally, task-driven NE transients were more synchronized and peaked earlier than ACh transients. To test functional relevance, using optogenetics we found that evoked elevation of NE, but not ACh, in the medial frontal cortex increases the propensity of the animals to switch and explore alternate options. Taken together, the results reveal distinct spatiotemporal patterns of rapid ACh and NE transients at the subcellular scale during decision-making in mice, which may endow these neuromodulators with different ways to impact neural plasticity to mediate learning and adaptive behavior.
Collapse
Affiliation(s)
- Hongli Wang
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Heather K. Ortega
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Emma B. Kelly
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Jonathan Indajang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Alex C. Kwan
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, 10065, USA
| |
Collapse
|
20
|
Mishra W, Kheradpezhouh E, Arabzadeh E. Activation of M1 cholinergic receptors in mouse somatosensory cortex enhances information processing and detection behaviour. Commun Biol 2024; 7:3. [PMID: 38168628 PMCID: PMC10761830 DOI: 10.1038/s42003-023-05699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
To optimise sensory representations based on environmental demands, the activity of cortical neurons is regulated by neuromodulators such as Acetylcholine (ACh). ACh is implicated in cognitive functions including attention, arousal and sleep cycles. However, it is not clear how specific ACh receptors shape the activity of cortical neurons in response to sensory stimuli. Here, we investigate the role of a densely expressed muscarinic ACh receptor M1 in information processing in the mouse primary somatosensory cortex and its influence on the animal's sensitivity to detect vibrotactile stimuli. We show that M1 activation results in faster and more reliable neuronal responses, manifested by a significant reduction in response latencies and the trial-to-trial variability. At the population level, M1 activation reduces the network synchrony, and thus enhances the capacity of cortical neurons in conveying sensory information. Consistent with the neuronal findings, we show that M1 activation significantly improves performances in a vibriotactile detection task.
Collapse
Affiliation(s)
- Wricha Mishra
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ehsan Kheradpezhouh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
21
|
Koelle S, Mastrovito D, Whitesell JD, Hirokawa KE, Zeng H, Meila M, Harris JA, Mihalas S. Modeling the cell-type-specific mesoscale murine connectome with anterograde tracing experiments. Netw Neurosci 2023; 7:1497-1512. [PMID: 38144695 PMCID: PMC10745083 DOI: 10.1162/netn_a_00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 09/10/2023] [Indexed: 12/26/2023] Open
Abstract
The Allen Mouse Brain Connectivity Atlas consists of anterograde tracing experiments targeting diverse structures and classes of projecting neurons. Beyond regional anterograde tracing done in C57BL/6 wild-type mice, a large fraction of experiments are performed using transgenic Cre-lines. This allows access to cell-class-specific whole-brain connectivity information, with class defined by the transgenic lines. However, even though the number of experiments is large, it does not come close to covering all existing cell classes in every area where they exist. Here, we study how much we can fill in these gaps and estimate the cell-class-specific connectivity function given the simplifying assumptions that nearby voxels have smoothly varying projections, but that these projection tensors can change sharply depending on the region and class of the projecting cells. This paper describes the conversion of Cre-line tracer experiments into class-specific connectivity matrices representing the connection strengths between source and target structures. We introduce and validate a novel statistical model for creation of connectivity matrices. We extend the Nadaraya-Watson kernel learning method that we previously used to fill in spatial gaps to also fill in gaps in cell-class connectivity information. To do this, we construct a "cell-class space" based on class-specific averaged regionalized projections and combine smoothing in 3D space as well as in this abstract space to share information between similar neuron classes. Using this method, we construct a set of connectivity matrices using multiple levels of resolution at which discontinuities in connectivity are assumed. We show that the connectivities obtained from this model display expected cell-type- and structure-specific connectivities. We also show that the wild-type connectivity matrix can be factored using a sparse set of factors, and analyze the informativeness of this latent variable model.
Collapse
Affiliation(s)
- Samson Koelle
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
| | | | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Marina Meila
- Department of Statistics, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
22
|
Won J, Zaborszky L, Purcell JJ, Ranadive SM, Gentili RJ, Smith JC. Basal forebrain functional connectivity as a mediator of associations between cardiorespiratory fitness and cognition in healthy older women. Brain Imaging Behav 2023; 17:571-583. [PMID: 37273101 PMCID: PMC11005819 DOI: 10.1007/s11682-023-00784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/06/2023]
Abstract
Age-related cholinergic dysfunction within the basal forebrain (BF) is one of the key hallmarks for age-related cognitive decline. Given that higher cardiorespiratory fitness (CRF) induces neuroprotective effects that may differ by sex, we investigated the moderating effects of sex on the associations between CRF, BF cholinergic function, and cognitive function in older adults. 176 older adults (68.5 years) were included from the Nathan Kline Institute Rockland Sample. Functional connectivity (rsFC) of the BF subregions including the medial septal nucleus/diagonal band of Broca (MS/DB) and nucleus basalis of Meynert (NBM) were computed from resting-sate functional MRI. Modified Astrand-Ryhming submaximal cycle ergometer protocol was used to estimate CRF. Trail making task and inhibition performance during the color word interference test from the Delis-Kaplan Executive Function System and Rey Auditory Verbal Learning Test were used to examine cognitive function. Linear regression models were used to assess the associations between CRF, BF rsFC, and cognitive performance after controlling for age, sex, and years of education. Subsequently, we measured the associations between the variables in men and women separately to investigate the sex differences. There was an association between higher CRF and greater rsFC between the NBM and right middle frontal gyrus in older men and women. There were significant associations between CRF, NBM rsFC, and trail making task number-letter switching performance only in women. In women, greater NBM rsFC mediated the association between higher CRF and better trail making task number-letter switching performance. These findings provide evidence that greater NBM rsFC, particularly in older women, may be an underlying neural mechanism for the relationship between higher CRF and better executive function.
Collapse
Affiliation(s)
- Junyeon Won
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Jeremy J Purcell
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Sushant M Ranadive
- Department of Kinesiology, School of Public Health, University of Maryland, 2351 SPH Bldg #255, College Park, MD, 20742, USA
| | - Rodolphe J Gentili
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
- Department of Kinesiology, School of Public Health, University of Maryland, 2351 SPH Bldg #255, College Park, MD, 20742, USA
| | - J Carson Smith
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA.
- Department of Kinesiology, School of Public Health, University of Maryland, 2351 SPH Bldg #255, College Park, MD, 20742, USA.
| |
Collapse
|
23
|
Nir Y, de Lecea L. Sleep and vigilance states: Embracing spatiotemporal dynamics. Neuron 2023; 111:1998-2011. [PMID: 37148873 DOI: 10.1016/j.neuron.2023.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/08/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
The classic view of sleep and vigilance states is a global stationary perspective driven by the interaction between neuromodulators and thalamocortical systems. However, recent data are challenging this view by demonstrating that vigilance states are highly dynamic and regionally complex. Spatially, sleep- and wake-like states often co-occur across distinct brain regions, as in unihemispheric sleep, local sleep in wakefulness, and during development. Temporally, dynamic switching prevails around state transitions, during extended wakefulness, and in fragmented sleep. This knowledge, together with methods monitoring brain activity across multiple regions simultaneously at millisecond resolution with cell-type specificity, is rapidly shifting how we consider vigilance states. A new perspective incorporating multiple spatial and temporal scales may have important implications for considering the governing neuromodulatory mechanisms, the functional roles of vigilance states, and their behavioral manifestations. A modular and dynamic view highlights novel avenues for finer spatiotemporal interventions to improve sleep function.
Collapse
Affiliation(s)
- Yuval Nir
- Department of Physiology and Pharmacology, Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; The Sieratzki-Sagol Center for Sleep Medicine, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel.
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
24
|
Venegas JP, Navarrete M, Orellana-Garcia L, Rojas M, Avello-Duarte F, Nunez-Parra A. Basal Forebrain Modulation of Olfactory Coding In Vivo. Int J Psychol Res (Medellin) 2023; 16:62-86. [PMID: 38106956 PMCID: PMC10723750 DOI: 10.21500/20112084.6486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/23/2022] [Accepted: 12/07/2022] [Indexed: 12/19/2023] Open
Abstract
Sensory perception is one of the most fundamental brain functions, allowing individuals to properly interact and adapt to a constantly changing environment. This process requires the integration of bottom-up and topdown neuronal activity, which is centrally mediated by the basal forebrain, a brain region that has been linked to a series of cognitive processes such as attention and alertness. Here, we review the latest research using optogenetic approaches in rodents and in vivo electrophysiological recordings that are shedding light on the role of this region, in regulating olfactory processing and decisionmaking. Moreover, we summarize evidence highlighting the anatomical and physiological differences in the basal forebrain of individuals with autism spectrum disorder, which could underpin the sensory perception abnormalities they exhibit, and propose this research line as a potential opportunity to understand the neurobiological basis of this disorder.
Collapse
Affiliation(s)
- Juan Pablo Venegas
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| | - Marcela Navarrete
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| | - Laura Orellana-Garcia
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| | - Marcelo Rojas
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| | - Felipe Avello-Duarte
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| | - Alexia Nunez-Parra
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| |
Collapse
|
25
|
Yamazaki Y, Suwabe K, Nagano-Saito A, Saotome K, Kuwamizu R, Hiraga T, Torma F, Suzuki K, Sankai Y, Yassa MA, Soya H. A possible contribution of the locus coeruleus to arousal enhancement with mild exercise: evidence from pupillometry and neuromelanin imaging. Cereb Cortex Commun 2023; 4:tgad010. [PMID: 37323937 PMCID: PMC10267300 DOI: 10.1093/texcom/tgad010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 06/17/2023] Open
Abstract
Acute mild exercise has been observed to facilitate executive function and memory. A possible underlying mechanism of this is the upregulation of the ascending arousal system, including the catecholaminergic system originating from the locus coeruleus (LC). Prior work indicates that pupil diameter, as an indirect marker of the ascending arousal system, including the LC, increases even with very light-intensity exercise. However, it remains unclear whether the LC directly contributes to exercise-induced pupil-linked arousal. Here, we examined the involvement of the LC in the change in pupil dilation induced by very light-intensity exercise using pupillometry and neuromelanin imaging to assess the LC integrity. A sample of 21 young males performed 10 min of very light-intensity exercise, and we measured changes in the pupil diameters and psychological arousal levels induced by the exercise. Neuromelanin-weighted magnetic resonance imaging scans were also obtained. We observed that pupil diameter and psychological arousal levels increased during very light-intensity exercise, which is consistent with previous findings. Notably, the LC contrast, a marker of LC integrity, predicted the magnitude of pupil dilation and psychological arousal enhancement with exercise. These relationships suggest that the LC-catecholaminergic system is a potential a mechanism for pupil-linked arousal induced by very light-intensity exercise.
Collapse
Affiliation(s)
- Yudai Yamazaki
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tannoudai, Tsukuba, Ibaraki 305-8574, Japan
- Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8574, Japan
| | - Kazuya Suwabe
- Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8574, Japan
- Faculty of Health and Sport Sciences, Ryutsu Keizai University, 120 Ryugasaki, Ibaraki 301-0844, Japan
- Center for Cybernics Research, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Atsuko Nagano-Saito
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tannoudai, Tsukuba, Ibaraki 305-8574, Japan
- Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8574, Japan
- Department of Radiology, Ushiku Aiwa General Hospital, 896 Inoko-cho, Ushiku, Ibaraki 300-1296, Japan
| | - Kousaku Saotome
- Center for Cybernics Research, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| | - Ryuta Kuwamizu
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tannoudai, Tsukuba, Ibaraki 305-8574, Japan
- Graduate School of Letters, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Taichi Hiraga
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tannoudai, Tsukuba, Ibaraki 305-8574, Japan
| | - Ferenc Torma
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tannoudai, Tsukuba, Ibaraki 305-8574, Japan
- Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8574, Japan
| | - Kenji Suzuki
- Center for Cybernics Research, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yoshiyuki Sankai
- Center for Cybernics Research, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Michael A Yassa
- Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8574, Japan
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92679-3800, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92679-3800, United States
| | - Hideaki Soya
- Corresponding author: Laboratory of Exercise Biochemistry and Neuroendocrinology; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8574, Japan.
| |
Collapse
|
26
|
Shine JM. Neuromodulatory control of complex adaptive dynamics in the brain. Interface Focus 2023; 13:20220079. [PMID: 37065268 PMCID: PMC10102735 DOI: 10.1098/rsfs.2022.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 04/18/2023] Open
Abstract
How is the massive dimensionality and complexity of the microscopic constituents of the nervous system brought under sufficiently tight control so as to coordinate adaptive behaviour? A powerful means for striking this balance is to poise neurons close to the critical point of a phase transition, at which a small change in neuronal excitability can manifest a nonlinear augmentation in neuronal activity. How the brain could mediate this critical transition is a key open question in neuroscience. Here, I propose that the different arms of the ascending arousal system provide the brain with a diverse set of heterogeneous control parameters that can be used to modulate the excitability and receptivity of target neurons-in other words, to act as control parameters for mediating critical neuronal order. Through a series of worked examples, I demonstrate how the neuromodulatory arousal system can interact with the inherent topological complexity of neuronal subsystems in the brain to mediate complex adaptive behaviour.
Collapse
Affiliation(s)
- James M. Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| |
Collapse
|
27
|
Orlando IF, Shine JM, Robbins TW, Rowe JB, O'Callaghan C. Noradrenergic and cholinergic systems take centre stage in neuropsychiatric diseases of ageing. Neurosci Biobehav Rev 2023; 149:105167. [PMID: 37054802 DOI: 10.1016/j.neubiorev.2023.105167] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Noradrenergic and cholinergic systems are among the most vulnerable brain systems in neuropsychiatric diseases of ageing, including Alzheimer's disease, Parkinson's disease, Lewy body dementia, and progressive supranuclear palsy. As these systems fail, they contribute directly to many of the characteristic cognitive and psychiatric symptoms. However, their contribution to symptoms is not sufficiently understood, and pharmacological interventions targeting noradrenergic and cholinergic systems have met with mixed success. Part of the challenge is the complex neurobiology of these systems, operating across multiple timescales, and with non-linear changes across the adult lifespan and disease course. We address these challenges in a detailed review of the noradrenergic and cholinergic systems, outlining their roles in cognition and behaviour, and how they influence neuropsychiatric symptoms in disease. By bridging across levels of analysis, we highlight opportunities for improving drug therapies and for pursuing personalised medicine strategies.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - James M Shine
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, CB2 3EB, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, CB2 0SZ, United Kingdom
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia.
| |
Collapse
|
28
|
Chaves-Coira I, García-Magro N, Zegarra-Valdivia J, Torres-Alemán I, Núñez Á. Cognitive Deficits in Aging Related to Changes in Basal Forebrain Neuronal Activity. Cells 2023; 12:1477. [PMID: 37296598 PMCID: PMC10252596 DOI: 10.3390/cells12111477] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Aging is a physiological process accompanied by a decline in cognitive performance. The cholinergic neurons of the basal forebrain provide projections to the cortex that are directly engaged in many cognitive processes in mammals. In addition, basal forebrain neurons contribute to the generation of different rhythms in the EEG along the sleep/wakefulness cycle. The aim of this review is to provide an overview of recent advances grouped around the changes in basal forebrain activity during healthy aging. Elucidating the underlying mechanisms of brain function and their decline is especially relevant in today's society as an increasingly aged population faces higher risks of developing neurodegenerative diseases such as Alzheimer's disease. The profound age-related cognitive deficits and neurodegenerative diseases associated with basal forebrain dysfunction highlight the importance of investigating the aging of this brain region.
Collapse
Affiliation(s)
- Irene Chaves-Coira
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| | - Nuria García-Magro
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Jonathan Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; (J.Z.-V.); (I.T.-A.)
- Facultad de Ciencias de la Salud, Universidad Señor de Sipán, Chiclayo 02001, Peru
| | - Ignacio Torres-Alemán
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; (J.Z.-V.); (I.T.-A.)
- Ikerbasque Science Foundation, 48009 Bilbao, Spain
| | - Ángel Núñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| |
Collapse
|
29
|
Collins L, Francis J, Emanuel B, McCormick DA. Cholinergic and noradrenergic axonal activity contains a behavioral-state signal that is coordinated across the dorsal cortex. eLife 2023; 12:e81826. [PMID: 37102362 PMCID: PMC10238096 DOI: 10.7554/elife.81826] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/24/2023] [Indexed: 04/28/2023] Open
Abstract
Fluctuations in brain and behavioral state are supported by broadly projecting neuromodulatory systems. In this study, we use mesoscale two-photon calcium imaging to examine spontaneous activity of cholinergic and noradrenergic axons in awake mice in order to determine the interaction between arousal/movement state transitions and neuromodulatory activity across the dorsal cortex at distances separated by up to 4 mm. We confirm that GCaMP6s activity within axonal projections of both basal forebrain cholinergic and locus coeruleus noradrenergic neurons track arousal, indexed as pupil diameter, and changes in behavioral engagement, as reflected by bouts of whisker movement and/or locomotion. The broad coordination in activity between even distant axonal segments indicates that both of these systems can communicate, in part, through a global signal, especially in relation to changes in behavioral state. In addition to this broadly coordinated activity, we also find evidence that a subpopulation of both cholinergic and noradrenergic axons may exhibit heterogeneity in activity that appears to be independent of our measures of behavioral state. By monitoring the activity of cholinergic interneurons in the cortex, we found that a subpopulation of these cells also exhibit state-dependent (arousal/movement) activity. These results demonstrate that cholinergic and noradrenergic systems provide a prominent and broadly synchronized signal related to behavioral state, and therefore may contribute to state-dependent cortical activity and excitability.
Collapse
Affiliation(s)
- Lindsay Collins
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - John Francis
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Brett Emanuel
- Institute of Neuroscience, University of OregonEugeneUnited States
| | | |
Collapse
|
30
|
Taylor NL, Shine JM. A whole new world: embracing the systems-level to understand the indirect impact of pathology in neurodegenerative disorders. J Neurol 2023; 270:1969-1975. [PMID: 36577819 DOI: 10.1007/s00415-022-11550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
The direct link between neuropathology and the symptoms that emerge from damage to the brain is often difficult to discern. In this perspective, we argue that a satisfying account of neurodegenerative symptoms most naturally emerges from the consideration of the brain from the systems-level. Specifically, we will highlight the role of the neuromodulatory arousal system, which is uniquely positioned to coordinate the brain's ability to flexibly integrate the otherwise segregated structures required to support higher cognitive functions. Importantly, the neuromodulatory arousal system is highly heterogeneous, encompassing structures that are common sites of neurodegeneration across Alzheimer's and Parkinson's disease. We will review studies that implicate the dysfunctional interactions amongst distributed brain regions as a side-effect of pathological involvement of the neuromodulatory arousal system in these neurodegenerative disorders. From this perspective, we will argue that future work in clinical neuroscience should attempt to consider the inherent complexity in the brain and employ analytic techniques that do not solely focus on regional functional impairments, but rather captures the brain as an inherently dynamic, distributed, multi-scale system. Through this lens, we hope that we will devise new and improved diagnostic markers and interventional approaches to aid in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Natasha L Taylor
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - James M Shine
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| |
Collapse
|
31
|
Ananth MR, Rajebhosale P, Kim R, Talmage DA, Role LW. Basal forebrain cholinergic signalling: development, connectivity and roles in cognition. Nat Rev Neurosci 2023; 24:233-251. [PMID: 36823458 PMCID: PMC10439770 DOI: 10.1038/s41583-023-00677-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Acetylcholine plays an essential role in fundamental aspects of cognition. Studies that have mapped the activity and functional connectivity of cholinergic neurons have shown that the axons of basal forebrain cholinergic neurons innervate the pallium with far more topographical and functional organization than was historically appreciated. Together with the results of studies using new probes that allow release of acetylcholine to be detected with high spatial and temporal resolution, these findings have implicated cholinergic networks in 'binding' diverse behaviours that contribute to cognition. Here, we review recent findings on the developmental origins, connectivity and function of cholinergic neurons, and explore the participation of cholinergic signalling in the encoding of cognition-related behaviours.
Collapse
Affiliation(s)
- Mala R Ananth
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Prithviraj Rajebhosale
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ronald Kim
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - David A Talmage
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lorna W Role
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
32
|
Somera B, Frick M, Fadel JR. Age-related changes in basal forebrain afferent activation in response to food paired stimuli. Neurosci Lett 2023; 802:137155. [PMID: 36842481 PMCID: PMC10155118 DOI: 10.1016/j.neulet.2023.137155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/28/2023]
Abstract
The basal forebrain contains a phenotypically-diverse assembly of neurons, including those using acetylcholine as their neurotransmitter. This basal forebrain cholinergic system projects to the entire neocortical mantle as well as subcortical limbic structures that include the hippocampus and amygdala. Basal forebrain pathology, including cholinergic dysfunction, is thought to underlie the cognitive impairments associated with several age-related neurodegenerative conditions, including Alzheimer's disease. Basal forebrain dysfunction may stem, in part, from a failure of normal afferent regulation of cholinergic and other neurons in this area. However, little is understood regarding how aging, alone, affects the functional regulation of basal forebrain afferents in the context of motivated behavior. Here, we used neuronal tract-tracing combined with motivationally salient stimuli in an aged rodent model to examine how aging alters activity in basal forebrain inputs arising from several cortical, limbic and brainstem structures. Young rats showed greater stimulus-associated activation of basal forebrain inputs arising from prelimbic cortex, nucleus accumbens and the ventral tegmental area compared with aged rats. Aged rats also showed increased latency to respond to palatable food presentation compared to young animals. Changes in activation of intrinsic basal forebrain cell populations or afferents were also observed as a function of age or experimental condition. These data further demonstrate that age-related changes in basal forebrain activation and related behavioral and cognitive functions reflect a failure of afferent regulation of this important brain region.
Collapse
Affiliation(s)
- Brandy Somera
- Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Marla Frick
- Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Jim R Fadel
- Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States.
| |
Collapse
|
33
|
Soares-Cunha C, Heinsbroek JA. Ventral pallidal regulation of motivated behaviors and reinforcement. Front Neural Circuits 2023; 17:1086053. [PMID: 36817646 PMCID: PMC9932340 DOI: 10.3389/fncir.2023.1086053] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
The interconnected nuclei of the ventral basal ganglia have long been identified as key regulators of motivated behavior, and dysfunction of this circuit is strongly implicated in mood and substance use disorders. The ventral pallidum (VP) is a central node of the ventral basal ganglia, and recent studies have revealed complex VP cellular heterogeneity and cell- and circuit-specific regulation of reward, aversion, motivation, and drug-seeking behaviors. Although the VP is canonically considered a relay and output structure for this circuit, emerging data indicate that the VP is a central hub in an extensive network for reward processing and the regulation of motivation that extends beyond classically defined basal ganglia borders. VP neurons respond temporally faster and show more advanced reward coding and prediction error processing than neurons in the upstream nucleus accumbens, and regulate the activity of the ventral mesencephalon dopamine system. This review will summarize recent findings in the literature and provide an update on the complex cellular heterogeneity and cell- and circuit-specific regulation of motivated behaviors and reinforcement by the VP with a specific focus on mood and substance use disorders. In addition, we will discuss mechanisms by which stress and drug exposure alter the functioning of the VP and produce susceptibility to neuropsychiatric disorders. Lastly, we will outline unanswered questions and identify future directions for studies necessary to further clarify the central role of VP neurons in the regulation of motivated behaviors. Significance: Research in the last decade has revealed a complex cell- and circuit-specific role for the VP in reward processing and the regulation of motivated behaviors. Novel insights obtained using cell- and circuit-specific interrogation strategies have led to a major shift in our understanding of this region. Here, we provide a comprehensive review of the VP in which we integrate novel findings with the existing literature and highlight the emerging role of the VP as a linchpin of the neural systems that regulate motivation, reward, and aversion. In addition, we discuss the dysfunction of the VP in animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jasper A. Heinsbroek
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
34
|
Hegedüs P, Sviatkó K, Király B, Martínez-Bellver S, Hangya B. Cholinergic activity reflects reward expectations and predicts behavioral responses. iScience 2022; 26:105814. [PMID: 36636356 PMCID: PMC9830220 DOI: 10.1016/j.isci.2022.105814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) play an important role in associative learning, suggesting that BFCNs may participate in processing stimuli that predict future outcomes. However, the impact of outcome probabilities on BFCN activity remained elusive. Therefore, we performed bulk calcium imaging and recorded spiking of identified cholinergic neurons from the basal forebrain of mice performing a probabilistic Pavlovian cued outcome task. BFCNs responded more to sensory cues that were often paired with reward. Reward delivery also activated BFCNs, with surprising rewards eliciting a stronger response, whereas punishments evoked uniform positive-going responses. We propose that BFCNs differentially weigh predictions of positive and negative reinforcement, reflecting divergent relative salience of forecasting appetitive and aversive outcomes, partially explained by a simple reinforcement learning model of a valence-weighed unsigned prediction error. Finally, the extent of cue-driven cholinergic activation predicted subsequent decision speed, suggesting that the expectation-gated cholinergic firing is instructive to reward-seeking behaviors.
Collapse
Affiliation(s)
- Panna Hegedüs
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083 Budapest, Hungary,János Szentágothai Doctoral School of Neurosciences, Semmelweis University, H-1085 Budapest, Hungary
| | - Katalin Sviatkó
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083 Budapest, Hungary,János Szentágothai Doctoral School of Neurosciences, Semmelweis University, H-1085 Budapest, Hungary
| | - Bálint Király
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083 Budapest, Hungary,Department of Biological Physics, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Sergio Martínez-Bellver
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083 Budapest, Hungary,Department of Anatomy and Human Embryology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083 Budapest, Hungary,Corresponding author
| |
Collapse
|
35
|
Bohnen NI, Roytman S, Kanel P, Müller MLTM, Scott PJH, Frey KA, Albin RL, Koeppe RA. Progression of regional cortical cholinergic denervation in Parkinson's disease. Brain Commun 2022; 4:fcac320. [PMID: 36569603 PMCID: PMC9772878 DOI: 10.1093/braincomms/fcac320] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/13/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022] Open
Abstract
Cortical cholinergic deficits contribute to cognitive decline and other deficits in Parkinson's disease. Cross-sectional imaging studies suggest a stereotyped pattern of posterior-to-anterior cortical cholinergic denervation accompanying disease progression in Parkinson's disease. We used serial acetylcholinesterase PET ligand imaging to characterize the trajectory of regional cholinergic synapse deficits in Parkinson's disease, testing the hypothesis of posterior-to-anterior progression of cortical cholinergic deficits. The 16 Parkinson's disease subjects (4 females/12 males; mean age: 64.4 ± 6.7 years; disease duration: 5.5 ± 4.2 years; Hoehn & Yahr stage: 2.3 ± 0.6 at entry) completed serial 11C-methyl-4-piperidinyl propionate acetylcholinesterase PET scans over a 4-8 year period (median 5 years). Three-dimensional stereotactic cortical surface projections and volume-of-interest analyses were performed. Cholinergic synapse integrity was assessed by the magnitude, k 3, of acetylcholinesterase hydrolysis of 11C-methyl-4-piperidinyl propionate. Based on normative data, we generated Z-score maps for both the k 3 and the k 1 parameters, the latter as a proxy for regional cerebral blood flow. Compared with control subjects, baseline scans showed predominantly posterior cortical k 3 deficits in Parkinson's disease subjects. Interval change analyses showed evidence of posterior-to-anterior progression of cholinergic cortical deficits in the posterior cortices. In frontal cortices, an opposite gradient of anterior-to-posterior progression of cholinergic deficits was found. The topography of k 3 changes exhibited regionally specific disconnection from k 1 changes. Interval-change analysis based on k 3/k 1 ratio images (k 3 adjustment for regional cerebral blood flow changes) showed interval reductions (up to 20%) in ventral frontal, anterior cingulate and Brodmann area 6 cortices. In contrast, interval k 3 reductions in the posterior cortices, especially Brodmann areas 17-19, were largely proportional to k 1 changes. Our results partially support the hypothesis of progressive posterior-to-cortical cholinergic denervation in Parkinson's disease. This pattern appears characteristic of posterior cortices. In frontal cortices, an opposite pattern of anterior-to-posterior progression of cholinergic deficits was found. The progressive decline of posterior cortical acetylcholinesterase activity was largely proportional to declining regional cerebral blood flow, suggesting that posterior cortical cholinergic synapse deficits are part of a generalized loss of synapses. The disproportionate decline in regional frontal cortical acetylcholinesterase activity relative to regional cerebral blood flow suggests preferential loss or dysregulation of cholinergic synapses in these regions. Our observations suggest that cortical cholinergic synapse vulnerability in Parkinson's disease is mediated by both diffuse processes affecting cortical synapses and processes specific to subpopulations of cortical cholinergic afferents.
Collapse
Affiliation(s)
- Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stiven Roytman
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Martijn L T M Müller
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson Consortium, Critical Path Institute, Tucson, AZ 85718, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kirk A Frey
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
36
|
Lohani S, Moberly AH, Benisty H, Landa B, Jing M, Li Y, Higley MJ, Cardin JA. Spatiotemporally heterogeneous coordination of cholinergic and neocortical activity. Nat Neurosci 2022; 25:1706-1713. [PMID: 36443609 PMCID: PMC10661869 DOI: 10.1038/s41593-022-01202-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/12/2022] [Indexed: 11/30/2022]
Abstract
Variation in an animal's behavioral state is linked to fluctuations in brain activity and cognitive ability. In the neocortex, state-dependent circuit dynamics may reflect neuromodulatory influences such as that of acetylcholine (ACh). Although early literature suggested that ACh exerts broad, homogeneous control over cortical function, recent evidence indicates potential anatomical and functional segregation of cholinergic signaling. In addition, it is unclear whether states as defined by different behavioral markers reflect heterogeneous cholinergic and cortical network activity. Here, we perform simultaneous, dual-color mesoscopic imaging of both ACh and calcium across the neocortex of awake mice to investigate their relationships with behavioral variables. We find that higher arousal, categorized by different motor behaviors, is associated with spatiotemporally dynamic patterns of cholinergic modulation and enhanced large-scale network correlations. Overall, our findings demonstrate that ACh provides a highly dynamic and spatially heterogeneous signal that links fluctuations in behavior to functional reorganization of cortical networks.
Collapse
Affiliation(s)
- Sweyta Lohani
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew H Moberly
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Hadas Benisty
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Boris Landa
- Program in Applied Mathematics, Yale University, New Haven, CT, USA
| | - Miao Jing
- Chinese Institute for Brain Research, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| | - Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
37
|
Li L, Zhang B, Tang X, Yu Q, He A, Lu Y, Li X. A selective degeneration of cholinergic neurons mediated by NRADD in an Alzheimer's disease mouse model. CELL INSIGHT 2022; 1:100060. [PMID: 37193353 PMCID: PMC10120297 DOI: 10.1016/j.cellin.2022.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 05/18/2023]
Abstract
Cholinergic neurons in the basal forebrain constitute a major source of cholinergic inputs to the forebrain, modulate diverse functions including sensory processing, memory and attention, and are vulnerable to Alzheimer's disease (AD). Recently, we classified cholinergic neurons into two distinct subpopulations; calbindin D28K-expressing (D28K+) versus D28K-lacking (D28K-) neurons. Yet, which of these two cholinergic subpopulations are selectively degenerated in AD and the molecular mechanisms underlying this selective degeneration remain unknown. Here, we reported a discovery that D28K+ neurons are selectively degenerated and this degeneration induces anxiety-like behaviors in the early stage of AD. Neuronal type specific deletion of NRADD effectively rescues D28K+ neuronal degeneration, whereas genetic introduction of exogenous NRADD causes D28K- neuronal loss. This gain- and loss-of-function study reveals a subtype specific degeneration of cholinergic neurons in the disease progression of AD and hence warrants a novel molecular target for AD therapy.
Collapse
Affiliation(s)
- Lanfang Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bing Zhang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaomei Tang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Quntao Yu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aodi He
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Anatomy, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinyan Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Anatomy, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
38
|
Li X, Yu H, Zhang B, Li L, Chen W, Yu Q, Huang X, Ke X, Wang Y, Jing W, Du H, Li H, Zhang T, Liu L, Zhu LQ, Lu Y. Molecularly defined and functionally distinct cholinergic subnetworks. Neuron 2022; 110:3774-3788.e7. [PMID: 36130594 DOI: 10.1016/j.neuron.2022.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/27/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022]
Abstract
Cholinergic neurons in the medial septum (MS) constitute a major source of cholinergic input to the forebrain and modulate diverse functions, including sensory processing, memory, and attention. Most studies to date have treated cholinergic neurons as a single population; as such, the organizational principles underling their functional diversity remain unknown. Here, we identified two subsets (D28K+ versus D28K-) of cholinergic neurons that are topographically segregated in mice, Macaca fascicularis, and humans. These cholinergic subpopulations possess unique electrophysiological signatures, express mutually exclusive marker genes (kcnh1 and aifm3 versus cacna1h and gga3), and make differential connections with physiologically distinct neuronal classes in the hippocampus to form two structurally defined and functionally distinct circuits. Gain- and loss-of-function studies on these circuits revealed their differential roles in modulation of anxiety-like behavior and spatial memory. These results provide a molecular and circuitry-based theory for how cholinergic neurons contribute to their diverse behavioral functions.
Collapse
Affiliation(s)
- Xinyan Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongyan Yu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bing Zhang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lanfang Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenting Chen
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Quntao Yu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xian Huang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao Ke
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yunyun Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Jing
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huiyun Du
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongmei Zhang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling-Qiang Zhu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
39
|
Sizer SE, Price ME, Parrish BC, Barth SH, Heaney CF, Raab-Graham KF, McCool BA. Chronic Intermittent Ethanol Exposure Dysregulates Nucleus Basalis Magnocellularis Afferents in the Basolateral Amygdala. eNeuro 2022; 9:ENEURO.0164-22.2022. [PMID: 36280288 PMCID: PMC9668348 DOI: 10.1523/eneuro.0164-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/22/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022] Open
Abstract
Nucleus basalis magnocellularis (NBM) cholinergic projections to the basolateral amygdala (BLA) regulate the acquisition and consolidation of fear-like and anxiety-like behaviors. However, it is unclear whether the alterations in the NBM-BLA circuit promote negative affect during ethanol withdrawal (WD). Therefore, we performed ex vivo whole-cell patch-clamp electrophysiology in both the NBM and the BLA of male Sprague Dawley rats following 10 d of chronic intermittent ethanol (CIE) exposure and 24 h of WD. We found that CIE exposure and withdrawal enhanced the neuronal excitability of NBM putative "cholinergic" neurons. We subsequently used optogenetics to directly manipulate NBM terminal activity within the BLA and measure cholinergic modulation of glutamatergic afferents and BLA pyramidal neurons. Our findings indicate that CIE and withdrawal upregulate NBM cholinergic facilitation of glutamate release via activation of presynaptic nicotinic acetylcholine receptors (AChRs). Ethanol withdrawal-induced increases in NBM terminal activity also enhance BLA pyramidal neuron firing. Collectively, our results provide a novel characterization of the NBM-BLA circuit and suggest that CIE-dependent modifications to NBM afferents enhance BLA pyramidal neuron activity during ethanol withdrawal.
Collapse
Affiliation(s)
- Sarah E Sizer
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Michaela E Price
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Brian C Parrish
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Samuel H Barth
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Chelcie F Heaney
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Kimberly F Raab-Graham
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Brian A McCool
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| |
Collapse
|
40
|
Maness EB, Burk JA, McKenna JT, Schiffino FL, Strecker RE, McCoy JG. Role of the locus coeruleus and basal forebrain in arousal and attention. Brain Res Bull 2022; 188:47-58. [PMID: 35878679 PMCID: PMC9514025 DOI: 10.1016/j.brainresbull.2022.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 12/11/2022]
Abstract
Experimental evidence has implicated multiple neurotransmitter systems in either the direct or indirect modulation of cortical arousal and attention circuitry. In this review, we selectively focus on three such systems: 1) norepinephrine (NE)-containing neurons of the locus coeruleus (LC), 2) acetylcholine (ACh)-containing neurons of the basal forebrain (BF), and 3) parvalbumin (PV)-containing gamma-aminobutyric acid neurons of the BF. Whereas BF-PV neurons serve as a rapid and transient arousal system, LC-NE and BF-ACh neuromodulation are typically activated on slower but longer-lasting timescales. Recent findings suggest that the BF-PV system serves to rapidly respond to even subtle sensory stimuli with a microarousal. We posit that salient sensory stimuli, such as those that are threatening or predict the need for a response, will quickly activate the BF-PV system and subsequently activate both the BF-ACh and LC-NE systems if the circumstances require longer periods of arousal and vigilance. We suggest that NE and ACh have overlapping psychological functions with the main difference being the precise internal/environmental sensory situations/contexts that recruit each neurotransmitter system - a goal for future research to determine. Implications of dysfunction of each of these three attentional systems for our understanding of neuropsychiatric conditions are considered. Finally, the contemporary availability of research tools to selectively manipulate and measure the activity of these distinctive neuronal populations promises to answer longstanding questions, such as how various arousal systems influence downstream decision-making and motor responding.
Collapse
Affiliation(s)
- Eden B Maness
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA.
| | - Joshua A Burk
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA 23187, USA
| | - James T McKenna
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA
| | - Felipe L Schiffino
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA; Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Robert E Strecker
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA.
| | - John G McCoy
- Department of Psychology, Stonehill College, Easton, MA 02357, USA.
| |
Collapse
|
41
|
Zheng Y, Tao S, Liu Y, Liu J, Sun L, Zheng Y, Tian Y, Su P, Zhu X, Xu F. Basal Forebrain-Dorsal Hippocampus Cholinergic Circuit Regulates Olfactory Associative Learning. Int J Mol Sci 2022; 23:ijms23158472. [PMID: 35955605 PMCID: PMC9368792 DOI: 10.3390/ijms23158472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
The basal forebrain, an anatomically heterogeneous brain area containing multiple distinct subregions and neuronal populations, innervates many brain regions including the hippocampus (HIP), a key brain region responsible for learning and memory. Although recent studies have revealed that basal forebrain cholinergic neurons (BFCNs) are involved in olfactory associative learning and memory, the potential neural circuit is not clearly dissected yet. Here, using an anterograde monosynaptic tracing strategy, we revealed that BFCNs in different subregions projected to many brain areas, but with significant differentiations. Our rabies virus retrograde tracing results found that the dorsal HIP (dHIP) received heavy projections from the cholinergic neurons in the nucleus of the horizontal limb of the diagonal band (HDB), magnocellular preoptic nucleus (MCPO), and substantia innominate (SI) brain regions, which are known as the HMS complex (HMSc). Functionally, fiber photometry showed that cholinergic neurons in the HMSc were significantly activated in odor-cued go/no-go discrimination tasks. Moreover, specific depletion of the HMSc cholinergic neurons innervating the dHIP significantly decreased the performance accuracies in odor-cued go/no-go discrimination tasks. Taken together, these studies provided detailed information about the projections of different BFCN subpopulations and revealed that the HMSc-dHIP cholinergic circuit plays a crucial role in regulating olfactory associative learning.
Collapse
Affiliation(s)
- Yingwei Zheng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (Y.Z.); (L.S.); (Y.Z.)
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (S.T.); (Y.L.); (Y.T.)
| | - Sijue Tao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (S.T.); (Y.L.); (Y.T.)
| | - Yue Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (S.T.); (Y.L.); (Y.T.)
| | - Jingjing Liu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (J.L.); (P.S.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Sun
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (Y.Z.); (L.S.); (Y.Z.)
| | - Yawen Zheng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (Y.Z.); (L.S.); (Y.Z.)
| | - Yu Tian
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (S.T.); (Y.L.); (Y.T.)
| | - Peng Su
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (J.L.); (P.S.)
| | - Xutao Zhu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (J.L.); (P.S.)
- Correspondence: (X.Z.); (F.X.)
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (S.T.); (Y.L.); (Y.T.)
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (J.L.); (P.S.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (X.Z.); (F.X.)
| |
Collapse
|
42
|
Taylor NL, D'Souza A, Munn BR, Lv J, Zaborszky L, Müller EJ, Wainstein G, Calamante F, Shine JM. Structural connections between the noradrenergic and cholinergic system shape the dynamics of functional brain networks. Neuroimage 2022; 260:119455. [PMID: 35809888 PMCID: PMC10114918 DOI: 10.1016/j.neuroimage.2022.119455] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022] Open
Abstract
Complex cognitive abilities are thought to arise from the ability of the brain to adaptively reconfigure its internal network structure as a function of task demands. Recent work has suggested that this inherent flexibility may in part be conferred by the widespread projections of the ascending arousal systems. While the different components of the ascending arousal system are often studied in isolation, there are anatomical connections between neuromodulatory hubs that we hypothesise are crucial for mediating key features of adaptive network dynamics, such as the balance between integration and segregation. To test this hypothesis, we estimated the strength of structural connectivity between key hubs of the noradrenergic and cholinergic arousal systems (the locus coeruleus [LC] and nucleus basalis of Meynert [nbM], respectively). We then asked whether the strength of structural LC and nbM inter-connectivity was related to individual differences in the emergent, dynamical signatures of functional integration measured from resting state fMRI data, such as network and attractor topography. We observed a significant positive relationship between the strength of white-matter connections between the LC and nbM and the extent of network-level integration following BOLD signal peaks in LC relative to nbM activity. In addition, individuals with denser white-matter streamlines interconnecting neuromodulatory hubs also demonstrated a heightened ability to shift to novel brain states. These results suggest that individuals with stronger structural connectivity between the noradrenergic and cholinergic systems have a greater capacity to mediate the flexible network dynamics required to support complex, adaptive behaviour. Furthermore, our results highlight the underlying static features of the neuromodulatory hubs can impose some constraints on the dynamic features of the brain.
Collapse
Affiliation(s)
- N L Taylor
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - A D'Souza
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; Sydney School of Medicine, Central Clinical School, The University of Sydney, Australia
| | - B R Munn
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - J Lv
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; School of Biomedical Engineering, The University of Sydney, Sydney, Australia
| | - L Zaborszky
- School of Arts and Sciences, Rutgers University, New Jersey, USA
| | - E J Müller
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - G Wainstein
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - F Calamante
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; School of Biomedical Engineering, The University of Sydney, Sydney, Australia; Sydney Imaging, The University of Sydney, Sydney, Australia
| | - J M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, Australia.
| |
Collapse
|
43
|
Brito MA, Li D, Fields CW, Rybicki-Kler C, Dean JG, Liu T, Mashour GA, Pal D. Cortical Acetylcholine Levels Correlate With Neurophysiologic Complexity During Subanesthetic Ketamine and Nitrous Oxide Exposure in Rats. Anesth Analg 2022; 134:1126-1139. [PMID: 34928887 PMCID: PMC9093725 DOI: 10.1213/ane.0000000000005835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neurophysiologic complexity has been shown to decrease during states characterized by a depressed level of consciousness, such as sleep or anesthesia. Conversely, neurophysiologic complexity is increased during exposure to serotonergic psychedelics or subanesthetic doses of dissociative anesthetics. However, the neurochemical substrates underlying changes in neurophysiologic complexity are poorly characterized. Cortical acetylcholine appears to relate to cortical activation and changes in states of consciousness, but the relationship between cortical acetylcholine and complexity has not been formally studied. We addressed this gap by analyzing simultaneous changes in cortical acetylcholine (prefrontal and parietal) and neurophysiologic complexity before, during, and after subanesthetic ketamine (10 mg/kg/h) or 50% nitrous oxide. METHODS Under isoflurane anesthesia, adult Sprague Dawley rats (n = 24, 12 male and 12 female) were implanted with stainless-steel electrodes across the cortex to record monopolar electroencephalogram (0.5-175 Hz; 30 channels) and guide canulae in prefrontal and parietal cortices for local microdialysis quantification of acetylcholine levels. One subgroup of these rats was instrumented with a chronic catheter in jugular vein for ketamine infusion (n = 12, 6 male and 6 female). The electroencephalographic data were analyzed to determine subanesthetic ketamine or nitrous oxide-induced changes in Lempel-Ziv complexity and directed frontoparietal connectivity. Changes in complexity and connectivity were analyzed for correlation with concurrent changes in prefrontal and parietal acetylcholine. RESULTS Subanesthetic ketamine produced sustained increases in normalized Lempel-Ziv complexity (0.5-175 Hz; P < .001) and high gamma frontoparietal connectivity (125-175 Hz; P < .001). This was accompanied by progressive increases in prefrontal (104%; P < .001) and parietal (159%; P < .001) acetylcholine levels that peaked after 50 minutes of infusion. Nitrous oxide induction produced a transient increase in complexity (P < .05) and high gamma connectivity (P < .001), which was accompanied by increases (P < .001) in prefrontal (56%) and parietal (43%) acetylcholine levels. In contrast, the final 50 minutes of nitrous oxide administration were characterized by a decrease in prefrontal (38%; P < .001) and parietal (45%; P < .001) acetylcholine levels, reduced complexity (P < .001), and comparatively weaker frontoparietal high gamma connectivity (P < .001). Cortical acetylcholine and complexity were correlated with both subanesthetic ketamine (prefrontal: cluster-weighted marginal correlation [CW r] [144] = 0.42, P < .001; parietal: CW r[144] = 0.42, P < .001) and nitrous oxide (prefrontal: CW r[156] = 0.46, P < .001; parietal: CW r[156] = 0.56, P < .001) cohorts. CONCLUSIONS These data bridge changes in cortical acetylcholine with concurrent changes in neurophysiologic complexity, frontoparietal connectivity, and the level of consciousness.
Collapse
Affiliation(s)
- Michael A. Brito
- From the Department of Anesthesiology
- Neuroscience Graduate Program
- Center for Consciousness Science
| | - Duan Li
- From the Department of Anesthesiology
- Center for Consciousness Science
| | | | | | - Jon G. Dean
- From the Department of Anesthesiology
- Center for Consciousness Science
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | | | - George A. Mashour
- From the Department of Anesthesiology
- Neuroscience Graduate Program
- Center for Consciousness Science
| | - Dinesh Pal
- From the Department of Anesthesiology
- Neuroscience Graduate Program
- Center for Consciousness Science
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
44
|
Subcortical control of the default mode network: Role of the basal forebrain and implications for neuropsychiatric disorders. Brain Res Bull 2022; 185:129-139. [PMID: 35562013 PMCID: PMC9290753 DOI: 10.1016/j.brainresbull.2022.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 01/03/2023]
Abstract
The precise interplay between large-scale functional neural systems throughout the brain is essential for performance of cognitive processes. In this review we focus on the default mode network (DMN), one such functional network that is active during periods of quiet wakefulness and believed to be involved in introspection and planning. Abnormalities in DMN functional connectivity and activation appear across many neuropsychiatric disorders, including schizophrenia. Recent evidence suggests subcortical regions including the basal forebrain are functionally and structurally important for regulation of DMN activity. Within the basal forebrain, subregions like the ventral pallidum may influence DMN activity and the nucleus basalis of Meynert can inhibit switching between brain networks. Interactions between DMN and other functional networks including the medial frontoparietal network (default), lateral frontoparietal network (control), midcingulo-insular network (salience), and dorsal frontoparietal network (attention) are also discussed in the context of neuropsychiatric disorders. Several subtypes of basal forebrain neurons have been identified including basal forebrain parvalbumin-containing or somatostatin-containing neurons which can regulate cortical gamma band oscillations and DMN-like behaviors, and basal forebrain cholinergic neurons which might gate access to sensory information during reinforcement learning. In this review, we explore this evidence, discuss the clinical implications on neuropsychiatric disorders, and compare neuroanatomy in the human vs rodent DMN. Finally, we address technological advancements which could help provide a more complete understanding of modulation of DMN function and describe newly identified BF therapeutic targets that could potentially help restore DMN-associated functional deficits in patients with a variety of neuropsychiatric disorders.
Collapse
|
45
|
Zhong P, Cao Q, Yan Z. Selective impairment of circuits between prefrontal cortex glutamatergic neurons and basal forebrain cholinergic neurons in a tauopathy mouse model. Cereb Cortex 2022; 32:5569-5579. [PMID: 35235649 PMCID: PMC9753040 DOI: 10.1093/cercor/bhac036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/25/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder linked to cognitive decline. To understand how specific neuronal circuits are impaired in AD, we have used optogenetic and electrophysiological approaches to reveal the functional changes between prefrontal cortex (PFC) and basal forebrain (BF), 2 key regions controlling cognitive processes, in a tauopathy mouse model. We found that the glutamatergic synaptic responses in BF cholinergic neurons from P301S Tau mice (6-8 months old) were markedly diminished. The attenuated long-range PFC to BF pathway in the AD model significantly increased the failure rate of action potential firing of BF cholinergic neurons triggered by optogenetic stimulations of glutamatergic terminals from PFC. In contrast, the projection from PFC to other regions, such as amygdala and striatum, was largely unaltered. On the other hand, optogenetic stimulation of cholinergic terminals from BF induced a persistent reduction of the excitability of PFC pyramidal neurons from Tau mice, instead of the transient reduction exhibited in wild-type mice. Taken together, these data have revealed a selective aberration of the pathway between PFC pyramidal neurons and BF cholinergic neurons in a tauopathy mouse model. This circuit deficit may underlie the loss of attention and executive function in AD.
Collapse
Affiliation(s)
- Ping Zhong
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, United States
| | - Qing Cao
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, United States
| | - Zhen Yan
- Corresponding author: State University of New York at Buffalo, 955 Main St., Room 3102, Buffalo, NY 14203, United States.
| |
Collapse
|
46
|
De Saint Jan D. Target-specific control of olfactory bulb periglomerular cells by GABAergic and cholinergic basal forebrain inputs. eLife 2022; 11:71965. [PMID: 35225232 PMCID: PMC8901171 DOI: 10.7554/elife.71965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
The olfactory bulb (OB), the first relay for odor processing in the brain, receives dense GABAergic and cholinergic long-range projections from basal forebrain (BF) nuclei that provide information about the internal state and behavioral context of the animal. However, the targets, impact, and dynamic of these afferents are still unclear. How BF synaptic inputs modulate activity in diverse subtypes of periglomerular (PG) interneurons using optogenetic stimulation and loose cell-attached or whole-cell patch-clamp recording in OB slices from adult mice were studied in this article. GABAergic BF inputs potently blocked PG cells firing except in a minority of calretinin-expressing cells in which GABA release elicited spiking. Parallel cholinergic projections excited a previously overlooked PG cell subtype via synaptic activation of M1 muscarinic receptors. Low-frequency stimulation of the cholinergic axons drove persistent firing in these PG cells, thereby increasing tonic inhibition in principal neurons. Taken together, these findings suggest that modality-specific BF inputs can orchestrate synaptic inhibition in OB glomeruli using multiple, potentially independent, inhibitory or excitatory target-specific pathways.
Collapse
Affiliation(s)
- Didier De Saint Jan
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
47
|
Qi G, Feldmeyer D. Cell-Type Specific Neuromodulation of Excitatory and Inhibitory Neurons via Muscarinic Acetylcholine Receptors in Layer 4 of Rat Barrel Cortex. Front Neural Circuits 2022; 16:843025. [PMID: 35250496 PMCID: PMC8894850 DOI: 10.3389/fncir.2022.843025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
The neuromodulator acetylcholine (ACh) plays an important role in arousal, attention, vigilance, learning and memory. ACh is released during different behavioural states and affects the brain microcircuit by regulating neuronal and synaptic properties. Here, we investigated how a low concentration of ACh (30 μM) affects the intrinsic properties of electrophysiologically and morphologically identified excitatory and inhibitory neurons in layer 4 (L4) of rat barrel cortex. ACh altered the membrane potential of L4 neurons in a heterogeneous manner. Nearly all L4 regular spiking (RS) excitatory neurons responded to bath-application of ACh with a M4 muscarinic ACh receptor-mediated hyperpolarisation. In contrast, in the majority of L4 fast spiking (FS) and non-fast spiking (nFS) interneurons 30 μM ACh induced a depolarisation while the remainder showed a hyperpolarisation or no response. The ACh-induced depolarisation of L4 FS interneurons was much weaker than that in L4 nFS interneurons. There was no clear difference in the response to ACh for three morphological subtypes of L4 FS interneurons. However, in four morpho-electrophysiological subtypes of L4 nFS interneurons, VIP+-like interneurons showed the strongest ACh-induced depolarisation; occasionally, even action potential firing was elicited. The ACh-induced depolarisation in L4 FS interneurons was exclusively mediated by M1 muscarinic ACh receptors; in L4 nFS interneurons it was mainly mediated by M1 and/or M3/5 muscarinic ACh receptors. In a subset of L4 nFS interneurons, a co-operative activation of muscarinic and nicotinic ACh receptors was also observed. The present study demonstrates that low-concentrations of ACh affect different L4 neuron types in a cell-type specific way. These effects result from a specific expression of different muscarinic and/or nicotinic ACh receptors on the somatodendritic compartments of L4 neurons. This suggests that even at low concentrations ACh may tune the excitability of L4 excitatory and inhibitory neurons and their synaptic microcircuits differentially depending on the behavioural state during which ACh is released.
Collapse
Affiliation(s)
- Guanxiao Qi
- Institute of Neuroscience and Medicine, INM-10, Reseach Centre Jülich, Jülich, Germany
- *Correspondence: Guanxiao Qi,
| | - Dirk Feldmeyer
- Institute of Neuroscience and Medicine, INM-10, Reseach Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Jülich-Aachen Research Alliance-Brain, Translational Brain Medicine, Aachen, Germany
- Dirk Feldmeyer,
| |
Collapse
|
48
|
Pfeffer T, Keitel C, Kluger DS, Keitel A, Russmann A, Thut G, Donner TH, Gross J. Coupling of pupil- and neuronal population dynamics reveals diverse influences of arousal on cortical processing. eLife 2022; 11:e71890. [PMID: 35133276 PMCID: PMC8853659 DOI: 10.7554/elife.71890] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Fluctuations in arousal, controlled by subcortical neuromodulatory systems, continuously shape cortical state, with profound consequences for information processing. Yet, how arousal signals influence cortical population activity in detail has so far only been characterized for a few selected brain regions. Traditional accounts conceptualize arousal as a homogeneous modulator of neural population activity across the cerebral cortex. Recent insights, however, point to a higher specificity of arousal effects on different components of neural activity and across cortical regions. Here, we provide a comprehensive account of the relationships between fluctuations in arousal and neuronal population activity across the human brain. Exploiting the established link between pupil size and central arousal systems, we performed concurrent magnetoencephalographic (MEG) and pupillographic recordings in a large number of participants, pooled across three laboratories. We found a cascade of effects relative to the peak timing of spontaneous pupil dilations: Decreases in low-frequency (2-8 Hz) activity in temporal and lateral frontal cortex, followed by increased high-frequency (>64 Hz) activity in mid-frontal regions, followed by monotonic and inverted U relationships with intermediate frequency-range activity (8-32 Hz) in occipito-parietal regions. Pupil-linked arousal also coincided with widespread changes in the structure of the aperiodic component of cortical population activity, indicative of changes in the excitation-inhibition balance in underlying microcircuits. Our results provide a novel basis for studying the arousal modulation of cognitive computations in cortical circuits.
Collapse
Affiliation(s)
- Thomas Pfeffer
- Universitat Pompeu Fabra, Center for Brain and Cognition, Computational Neuroscience GroupBarcelonaSpain
- University Medical Center Hamburg-Eppendorf, Department of Neurophysiology and PathophysiologyHamburgGermany
| | - Christian Keitel
- University of Stirling, PsychologyStirlingUnited Kingdom
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, MalmedywegMuensterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMuensterGermany
| | - Anne Keitel
- University of Dundee, PsychologyDundeeUnited Kingdom
| | - Alena Russmann
- University Medical Center Hamburg-Eppendorf, Department of Neurophysiology and PathophysiologyHamburgGermany
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| | - Tobias H Donner
- University Medical Center Hamburg-Eppendorf, Department of Neurophysiology and PathophysiologyHamburgGermany
| | - Joachim Gross
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, MalmedywegMuensterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMuensterGermany
| |
Collapse
|
49
|
Cholinergic systems, attentional-motor integration, and cognitive control in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:345-371. [PMID: 35248201 PMCID: PMC8957710 DOI: 10.1016/bs.pbr.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dysfunction and degeneration of CNS cholinergic systems is a significant component of multi-system pathology in Parkinson's disease (PD). We review the basic architecture of human CNS cholinergic systems and the tools available for studying changes in human cholinergic systems. Earlier post-mortem studies implicated abnormalities of basal forebrain corticopetal cholinergic (BFCC) and pedunculopontine-laterodorsal tegmental (PPN-LDT) cholinergic projections in cognitive deficits and gait-balance deficits, respectively. Recent application of imaging methods, particularly molecular imaging, allowed more sophisticated correlation of clinical features with regional cholinergic deficits. BFCC projection deficits correlate with general and domain specific cognitive deficits, particularly for attentional and executive functions. Detailed analyses suggest that cholinergic deficits within the salience and cingulo-opercular task control networks, including both neocortical, thalamic, and striatal nodes, are a significant component of cognitive deficits in non-demented PD subjects. Both BFCC and PPN-LDT cholinergic projection systems, and striatal cholinergic interneuron (SChI), abnormalities are implicated in PD gait-balance disorders. In the context of experimental studies, these results indicate that disrupted attentional functions of BFCC and PPN-LDT cholinergic systems underlie impaired gait-balance functions. SChI dysfunction likely impairs intra-striatal integration of attentional and motor information. Thalamic and entorhinal cortex cholinergic deficits may impair multi-sensory integration. Overt degeneration of CNS systems may be preceded by increased activity of cholinergic neurons compensating for nigrostriatal dopaminergic deficits. Subsequent dysfunction and degeneration of cholinergic systems unmasks and exacerbates functional deficits secondary to dopaminergic denervation. Research on CNS cholinergic systems dysfunctions in PD requires a systems-level approach to understanding PD pathophysiology.
Collapse
|
50
|
Sullivan AE, Tappan SJ, Angstman PJ, Rodriguez A, Thomas GC, Hoppes DM, Abdul-Karim MA, Heal ML, Glaser JR. A Comprehensive, FAIR File Format for Neuroanatomical Structure Modeling. Neuroinformatics 2022; 20:221-240. [PMID: 34601704 PMCID: PMC8975944 DOI: 10.1007/s12021-021-09530-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 01/09/2023]
Abstract
With advances in microscopy and computer science, the technique of digitally reconstructing, modeling, and quantifying microscopic anatomies has become central to many fields of biological research. MBF Bioscience has chosen to openly document their digital reconstruction file format, the Neuromorphological File Specification, available at www.mbfbioscience.com/filespecification (Angstman et al., 2020). The format, created and maintained by MBF Bioscience, is broadly utilized by the neuroscience community. The data format's structure and capabilities have evolved since its inception, with modifications made to keep pace with advancements in microscopy and the scientific questions raised by worldwide experts in the field. More recent modifications to the neuromorphological file format ensure it abides by the Findable, Accessible, Interoperable, and Reusable (FAIR) data principles promoted by the International Neuroinformatics Coordinating Facility (INCF; Wilkinson et al., Scientific Data, 3, 160018,, 2016). The incorporated metadata make it easy to identify and repurpose these data types for downstream applications and investigation. This publication describes key elements of the file format and details their relevant structural advantages in an effort to encourage the reuse of these rich data files for alternative analysis or reproduction of derived conclusions.
Collapse
|