1
|
Choi D, Förster K, Alexander N, Kanske P. Downsides to the empathic brain? A review of neural correlates of empathy in major depressive disorder. Front Hum Neurosci 2024; 18:1456570. [PMID: 39211533 PMCID: PMC11357912 DOI: 10.3389/fnhum.2024.1456570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Empathy as one of the basic prerequisites for successful social interactions seems to be aberrant in individuals with major depressive disorder (MDD). Although understanding empathic impairments in MDD is crucial considering the frequently reported social skill deficits in patients, the current state of research is still inconclusive, pointing to both elevated and impaired levels of empathy. In this review, we extend previous reports of MDD-related aberrations in self-reported and behavioral empathy by shedding light on the neural correlates of empathy in MDD. Study findings indicate a complex and potentially state-dependent association, comprising both elevated and lower neural activity in empathy-related brain regions such as the inferior frontal gyri, bilateral anterior insulae, and cingulate areas. Predominantly, lower activity in these areas seems to be induced by antidepressant treatment or remission, with accompanying behavioral results indicating a reduced negativity-bias in empathic processing compared to acute states of MDD. We propose a preliminary model of empathy development throughout the course of the disorder, comprising initially elevated levels of empathy and a somewhat detached and lower empathic responding during the further progression of the disorder or post-treatment. The seemingly multifaceted nature of the association between empathy and MDD requires further exploration in future multimodal and longitudinal studies. The study of neural correlates of empathy in MDD should prospectively be enlarged by including further socio-affective and -cognitive capacities in MDD and related mental disorders.
Collapse
Affiliation(s)
- Dahna Choi
- Clinical Psychology and Behavioral Neuroscience, Department of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Katharina Förster
- Clinical Psychology and Behavioral Neuroscience, Department of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Philipp Kanske
- Clinical Psychology and Behavioral Neuroscience, Department of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Xiao J, Adkinson JA, Myers J, Allawala AB, Mathura RK, Pirtle V, Najera R, Provenza NR, Bartoli E, Watrous AJ, Oswalt D, Gadot R, Anand A, Shofty B, Mathew SJ, Goodman WK, Pouratian N, Pitkow X, Bijanki KR, Hayden B, Sheth SA. Beta activity in human anterior cingulate cortex mediates reward biases. Nat Commun 2024; 15:5528. [PMID: 39009561 PMCID: PMC11250824 DOI: 10.1038/s41467-024-49600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/07/2024] [Indexed: 07/17/2024] Open
Abstract
The rewards that we get from our choices and actions can have a major influence on our future behavior. Understanding how reward biasing of behavior is implemented in the brain is important for many reasons, including the fact that diminution in reward biasing is a hallmark of clinical depression. We hypothesized that reward biasing is mediated by the anterior cingulate cortex (ACC), a cortical hub region associated with the integration of reward and executive control and with the etiology of depression. To test this hypothesis, we recorded neural activity during a biased judgment task in patients undergoing intracranial monitoring for either epilepsy or major depressive disorder. We found that beta (12-30 Hz) oscillations in the ACC predicted both associated reward and the size of the choice bias, and also tracked reward receipt, thereby predicting bias on future trials. We found reduced magnitude of bias in depressed patients, in whom the beta-specific effects were correspondingly reduced. Our findings suggest that ACC beta oscillations may orchestrate the learning of reward information to guide adaptive choice, and, more broadly, suggest a potential biomarker for anhedonia and point to future development of interventions to enhance reward impact for therapeutic benefit.
Collapse
Affiliation(s)
- Jiayang Xiao
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joshua A Adkinson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - John Myers
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Raissa K Mathura
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Victoria Pirtle
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ricardo Najera
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nicole R Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eleonora Bartoli
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew J Watrous
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Denise Oswalt
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ron Gadot
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Adrish Anand
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ben Shofty
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sanjay J Mathew
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wayne K Goodman
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xaq Pitkow
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kelly R Bijanki
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Benjamin Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
3
|
Patel E, Ramaiah P, Mamaril-Davis JC, Bauer IL, Koujah D, Seideman T, Kelbert J, Nosova K, Bina RW. Outcome differences between males and females undergoing deep brain stimulation for treatment-resistant depression: systematic review and individual patient data meta-analysis. J Affect Disord 2024; 351:481-488. [PMID: 38296058 DOI: 10.1016/j.jad.2024.01.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Treatment-resistant depression (TRD) occurs more commonly in women. Deep brain stimulation (DBS) is an emerging treatment for TRD, and its efficacy continues to be explored. However, differences in treatment outcomes between males and females have yet to be explored in formal analysis. METHODS A PRISMA-compliant systematic review of DBS for TRD studies was conducted. Patient-level data were independently extracted by two authors. Treatment response was defined as a 50 % or greater reduction in depression score. Percent change in depression scores by gender were evaluated using random-effects analyses. RESULTS Of 737 records, 19 studies (129 patients) met inclusion criteria. The mean reduction in depression score for females was 57.7 % (95 % CI, 64.33 %-51.13 %), whereas for males it was 35.2 % (95 % CI, 45.12 %-25.23 %) (p < 0.0001). Females were more likely to respond to DBS for TRD when compared to males (OR = 2.44, 95 % CI 1.06, 1.95). These differences varied in significance when stratified by DBS anatomical target, age, and timeframe for responder classification. LIMITATIONS Studies included were open-label trials with small sample sizes. CONCLUSIONS Our findings suggest that females with TRD respond at higher rates to DBS treatment than males. Further research is needed to elucidate the implications of these results, which may include connectomic sexual dimorphism, depression phenotype variations, or unrecognized symptom reporting differences. Methodological standardization of outcome scales, granular demographic data, and individual subject outcomes would allow for more robust comparisons between trials.
Collapse
Affiliation(s)
- Ekta Patel
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Priya Ramaiah
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | | | - Isabel L Bauer
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Dalia Koujah
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Travis Seideman
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - James Kelbert
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Kristin Nosova
- Department of Neurosurgery, Banner University Medical Center/University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Robert W Bina
- Department of Neurosurgery, Banner University Medical Center/University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
4
|
Kilian HM, Schiller B, Meyer-Doll DM, Heinrichs M, Schläpfer TE. Normalized affective responsiveness following deep brain stimulation of the medial forebrain bundle in depression. Transl Psychiatry 2024; 14:6. [PMID: 38191528 PMCID: PMC10774255 DOI: 10.1038/s41398-023-02712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Deep brain stimulation (DBS) of the supero-lateral medial forebrain bundle (slMFB) is associated with rapid and sustained antidepressant effects in treatment-resistant depression (TRD). Beyond that, improvements in social functioning have been reported. However, it is unclear whether social skills, the basis of successful social functioning, are systematically altered following slMFB DBS. Therefore, the current study investigated specific social skills (affective empathy, compassion, and theory of mind) in patients with TRD undergoing slMFB DBS in comparison to healthy subjects. 12 patients with TRD and 12 age- and gender-matched healthy subjects (5 females) performed the EmpaToM, a video-based naturalistic paradigm differentiating between affective empathy, compassion, and theory of mind. Patients were assessed before and three months after DBS onset and compared to an age- and gender-matched sample of healthy controls. All data were analyzed using non-parametric Mann-Whitney U tests. DBS treatment significantly affected patients' affective responsiveness towards emotional versus neutral situations (i.e. affective empathy): While their affective responsiveness was reduced compared to healthy subjects at baseline, they showed normalized affective responsiveness three months after slMFB DBS onset. No effects occurred in other domains with persisting deficits in compassion and intact socio-cognitive skills. Active slMFB DBS resulted in a normalized affective responsiveness in patients with TRD. This specific effect might represent one factor supporting the resumption of social activities after recovery from chronic depression. Considering the small size of this unique sample as well as the explorative nature of this study, future studies are needed to investigate the robustness of these effects.
Collapse
Affiliation(s)
- Hannah Marlene Kilian
- Division of Interventional Biological Psychiatry, Department of Psychiatry and Psychotherapy Medical Center - University of Freiburg, Faculty of Medicine, DE-79104, Freiburg, Germany.
| | - Bastian Schiller
- Department of Psychology, Laboratory for Biological Psychology, Clinical Psychology and Psychotherapy, University of Freiburg, DE-79104, Freiburg, Germany
| | - Dora Margarete Meyer-Doll
- Division of Interventional Biological Psychiatry, Department of Psychiatry and Psychotherapy Medical Center - University of Freiburg, Faculty of Medicine, DE-79104, Freiburg, Germany
| | - Markus Heinrichs
- Department of Psychology, Laboratory for Biological Psychology, Clinical Psychology and Psychotherapy, University of Freiburg, DE-79104, Freiburg, Germany
| | - Thomas Eduard Schläpfer
- Division of Interventional Biological Psychiatry, Department of Psychiatry and Psychotherapy Medical Center - University of Freiburg, Faculty of Medicine, DE-79104, Freiburg, Germany
| |
Collapse
|
5
|
Alagapan S, Choi KS, Heisig S, Riva-Posse P, Crowell A, Tiruvadi V, Obatusin M, Veerakumar A, Waters AC, Gross RE, Quinn S, Denison L, O'Shaughnessy M, Connor M, Canal G, Cha J, Hershenberg R, Nauvel T, Isbaine F, Afzal MF, Figee M, Kopell BH, Butera R, Mayberg HS, Rozell CJ. Cingulate dynamics track depression recovery with deep brain stimulation. Nature 2023; 622:130-138. [PMID: 37730990 PMCID: PMC10550829 DOI: 10.1038/s41586-023-06541-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 08/09/2023] [Indexed: 09/22/2023]
Abstract
Deep brain stimulation (DBS) of the subcallosal cingulate (SCC) can provide long-term symptom relief for treatment-resistant depression (TRD)1. However, achieving stable recovery is unpredictable2, typically requiring trial-and-error stimulation adjustments due to individual recovery trajectories and subjective symptom reporting3. We currently lack objective brain-based biomarkers to guide clinical decisions by distinguishing natural transient mood fluctuations from situations requiring intervention. To address this gap, we used a new device enabling electrophysiology recording to deliver SCC DBS to ten TRD participants (ClinicalTrials.gov identifier NCT01984710). At the study endpoint of 24 weeks, 90% of participants demonstrated robust clinical response, and 70% achieved remission. Using SCC local field potentials available from six participants, we deployed an explainable artificial intelligence approach to identify SCC local field potential changes indicating the patient's current clinical state. This biomarker is distinct from transient stimulation effects, sensitive to therapeutic adjustments and accurate at capturing individual recovery states. Variable recovery trajectories are predicted by the degree of preoperative damage to the structural integrity and functional connectivity within the targeted white matter treatment network, and are matched by objective facial expression changes detected using data-driven video analysis. Our results demonstrate the utility of objective biomarkers in the management of personalized SCC DBS and provide new insight into the relationship between multifaceted (functional, anatomical and behavioural) features of TRD pathology, motivating further research into causes of variability in depression treatment.
Collapse
Affiliation(s)
- Sankaraleengam Alagapan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen Heisig
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrea Crowell
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Vineet Tiruvadi
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Mosadoluwa Obatusin
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashan Veerakumar
- Department of Psychiatry, Schulich School of Medicine and Dentistry at Western University, London, Ontario, Canada
| | - Allison C Waters
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert E Gross
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sinead Quinn
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Lydia Denison
- Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew O'Shaughnessy
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Marissa Connor
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gregory Canal
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jungho Cha
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Hershenberg
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Tanya Nauvel
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Faical Isbaine
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Muhammad Furqan Afzal
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian H Kopell
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Butera
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Christopher J Rozell
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
6
|
Elias GJB, Germann J, Boutet A, Beyn ME, Giacobbe P, Song HN, Choi KS, Mayberg HS, Kennedy SH, Lozano AM. Local neuroanatomical and tract-based proxies of optimal subcallosal cingulate deep brain stimulation. Brain Stimul 2023; 16:1259-1272. [PMID: 37611657 DOI: 10.1016/j.brs.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/02/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Deep brain stimulation of the subcallosal cingulate area (SCC-DBS) is a promising neuromodulatory therapy for treatment-resistant depression (TRD). Biomarkers of optimal target engagement are needed to guide surgical targeting and stimulation parameter selection and to reduce variance in clinical outcome. OBJECTIVE/HYPOTHESIS We aimed to characterize the relationship between stimulation location, white matter tract engagement, and clinical outcome in a large (n = 60) TRD cohort treated with SCC-DBS. A smaller cohort (n = 22) of SCC-DBS patients with differing primary indications (bipolar disorder/anorexia nervosa) was utilized as an out-of-sample validation cohort. METHODS Volumes of tissue activated (VTAs) were constructed in standard space using high-resolution structural MRI and individual stimulation parameters. VTA-based probabilistic stimulation maps (PSMs) were generated to elucidate voxelwise spatial patterns of efficacious stimulation. A whole-brain tractogram derived from Human Connectome Project diffusion-weighted MRI data was seeded with VTA pairs, and white matter streamlines whose overlap with VTAs related to outcome ('discriminative' streamlines; Puncorrected < 0.05) were identified using t-tests. Linear modelling was used to interrogate the potential clinical relevance of VTA overlap with specific structures. RESULTS PSMs varied by hemisphere: high-value left-sided voxels were located more anterosuperiorly and squarely in the lateral white matter, while the equivalent right-sided voxels fell more posteroinferiorly and involved a greater proportion of grey matter. Positive discriminative streamlines localized to the bilateral (but primarily left) cingulum bundle, forceps minor/rostrum of corpus callosum, and bilateral uncinate fasciculus. Conversely, negative discriminative streamlines mostly belonged to the right cingulum bundle and bilateral uncinate fasciculus. The best performing linear model, which utilized information about VTA volume overlap with each of the positive discriminative streamline bundles as well as the negative discriminative elements of the right cingulum bundle, explained significant variance in clinical improvement in the primary TRD cohort (R = 0.46, P < 0.001) and survived repeated 10-fold cross-validation (R = 0.50, P = 0.040). This model was also able to predict outcome in the out-of-sample validation cohort (R = 0.43, P = 0.047). CONCLUSION(S) These findings reinforce prior indications of the importance of white matter engagement to SCC-DBS treatment success while providing new insights that could inform surgical targeting and stimulation parameter selection decisions.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, M5T 1W7, Canada
| | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Peter Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, M4N 3M5, Canada
| | - Ha Neul Song
- Nash Family Center for Advanced Circuit Therapeutics, Mount Sinai West, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Mount Sinai West, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Mount Sinai West, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA; Departments of Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sidney H Kennedy
- Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada; ASR Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, M5B 1M8, Canada; Department of Psychiatry, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada.
| |
Collapse
|
7
|
Davidson B, Scherer M, Giacobbe P, Nestor S, Abrahao A, Rabin JS, Phung L, Lin FH, Lipsman N, Milosevic L, Hamani C. Mood biomarkers of response to deep brain stimulation in depression measured with a sensing system. Brain Stimul 2023; 16:1371-1373. [PMID: 37696354 DOI: 10.1016/j.brs.2023.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Canada; Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Canada.
| | - Maximilian Scherer
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Peter Giacobbe
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Canada
| | - Sean Nestor
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Canada
| | - Agessandro Abrahao
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Canada; Department of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada
| | - Liane Phung
- Sunnybrook Research Institute, Toronto, Canada
| | | | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Canada; Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Canada
| | - Luka Milosevic
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Canada; Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Canada.
| |
Collapse
|
8
|
Zhang W, Xiong B, Wu Y, Xiao L, Wang W. Local field potentials in major depressive and obsessive-compulsive disorder: a frequency-based review. Front Psychiatry 2023; 14:1080260. [PMID: 37181878 PMCID: PMC10169609 DOI: 10.3389/fpsyt.2023.1080260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Objectives The purpose of this paper is to provide a mini-review covering the recent progress in human and animal studies on local field potentials (LFPs) of major depressive disorder (MDD) and obsessive-compulsive disorder (OCD). Materials and methods PubMed and EMBASE were searched to identify related studies. Inclusion criteria were (1) reported the LFPs on OCD or MDD, (2) published in English, and (3) human or animal studies. Exclusion criteria were (1) review or meta-analysis or other literature types without original data and (2) conference abstract without full text. Descriptive synthesis of data was performed. Results Eight studies on LFPs of OCD containing 22 patients and 32 rats were included: seven were observational studies with no controls, and one animal study included a randomized and controlled phase. Ten studies on LFPs of MDD containing 71 patients and 52 rats were included: seven were observational studies with no controls, one study with control, and two animal studies included a randomized and controlled phase. Conclusion The available studies revealed that different frequency bands were associated with specific symptoms. Low frequency activity seemed to be closely related to OCD symptoms, whereas LFPs findings in patients with MDD were more complicated. However, limitations of recent studies restrict the drawing of definite conclusions. Combined with other measures such as Electroencephalogram, Electrocorticography, or Magnetoencephalography and long-term recordings in various physiological states (rest state, sleep state, task state) could help to improve the understanding of potential mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Kilian HM, Schiller B, Schläpfer TE, Heinrichs M. Impaired socio-affective, but intact socio-cognitive skills in patients with treatment-resistant, recurrent depression. J Psychiatr Res 2022; 153:206-212. [PMID: 35841816 DOI: 10.1016/j.jpsychires.2022.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/03/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Social withdrawal is a key symptom of depression. The resulting loss of social reinforcement in turn contributes to chronic, recurrent courses of the disease. However, it is not clear whether depressed patients have less motivation to socially interact, or whether their skills in doing so are impaired. The current study investigates potential skill deficits in patients with treatment-resistant depression (TRD). METHODS 15 TRD patients and 19 age- and sex-matched healthy controls performed the EmpaToM, a paradigm which includes naturalistic video stimuli of either neutral or emotional valence and which differentiates between socio-affective (affective empathy, compassion) and socio-cognitive (theory of mind) skills. RESULTS Controlling for the baseline affective state in neutral situations, TRD patients displayed significantly reduced affective empathy towards emotional situations compared to healthy controls. Furthermore, TRD patients were less compassionate in both neutral and emotional situations. In contrast, socio-cognitive skill performances did not differ between patients and healthy controls. LIMITATIONS Further studies might explore socio-affective and socio-cognitive skills in TRD patients using socio-affective/-cognitive tasks involving face-to-face social interactions. CONCLUSION Our study revealed a specific socio-affective deficit in TRD patients, while showing intact socio-cognitive skills. Patients were less able to affectively resonate with others (affective empathy) and exhibited generally reduced feelings of compassion. These deficits might interfere with providing and receiving social support. Our study contributes to a better understanding of the underlying causes of social withdrawal and stresses the need to specifically address pervasive socio-affective deficits in psychotherapy of TRD patients.
Collapse
Affiliation(s)
- Hannah M Kilian
- Division of Interventional Biological Psychiatry, Department of Psychiatry and Psychotherapy Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Bastian Schiller
- Department of Psychology, Laboratory for Biological Psychology, Clinical Psychology and Psychotherapy, University of Freiburg, DE, 79104, Freiburg, Germany.
| | - Thomas E Schläpfer
- Division of Interventional Biological Psychiatry, Department of Psychiatry and Psychotherapy Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Johns Hopkins University, Baltimore, MD, USA
| | - Markus Heinrichs
- Department of Psychology, Laboratory for Biological Psychology, Clinical Psychology and Psychotherapy, University of Freiburg, DE, 79104, Freiburg, Germany
| |
Collapse
|
10
|
He C, Guan X, Zhang W, Li J, Liu C, Wei H, Xu X, Zhang Y. Quantitative susceptibility atlas construction in Montreal Neurological Institute space: towards histological-consistent iron-rich deep brain nucleus subregion identification. Brain Struct Funct 2022:10.1007/s00429-022-02547-1. [PMID: 36038737 DOI: 10.1007/s00429-022-02547-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/27/2022] [Indexed: 01/25/2023]
Abstract
Iron-rich deep brain nuclei (DBN) of the human brain are involved in various motoric, emotional and cognitive brain functions. The abnormal iron alterations in the DBN are closely associated with multiple neurological and psychiatric diseases. Quantitative susceptibility mapping (QSM) provides the spatial distribution of the magnetic susceptibility of human brain tissues. Compared to traditional structural imaging, QSM provides superiority for imaging the iron-rich DBN owing to the susceptibility difference existing between brain tissues. In this study, we constructed a Montreal Neurological Institute (MNI) space unbiased QSM human brain atlas via group-wise registration from 100 healthy subjects aged 19-29 years. The atlas construction process was guided by hybrid images that were fused from multi-modal magnetic resonance images (MRI). We named it as Multi-modal-fused magnetic Susceptibility (MuSus-100) atlas. The high-quality susceptibility atlas provides extraordinary image contrast between iron-rich DBN with their surroundings. Parcellation maps of DBN and their subregions that are highly related to neurological and psychiatric pathology were then manually labeled based on the atlas set with the assistance of an image border-enhancement process. Especially, the bilateral thalamus was delineated into 64 detailed subregions referring to the Schaltenbrand-Wahren stereotactic atlas. To our best knowledge, the histological-consistent thalamic nucleus parcellation map is well defined for the first time in the MNI space. Compared with existing atlases that emphasizing DBN parcellation, the newly proposed atlas outperforms on the task of atlas-guided individual brain image DBN segmentation both in accuracy and robustness. Moreover, we applied the proposed DBN parcellation map to conduct detailed identification of the pathology-related iron content alterations in subcortical nuclei for Parkinson's Disease (PD) patients. We envision that the MuSus-100 atlas can play a crucial role in improving the accuracy of DBN segmentation for the research of neurological and psychiatric disease progress and also be helpful for target planning in deep brain stimulation surgery.
Collapse
Affiliation(s)
- Chenyu He
- School of Information Science and Technology, ShanghaiTech University, 393 Huaxia Road, Shanghai, 201210, China
| | - Xiaojun Guan
- Department of Radiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Weimin Zhang
- School of Information Science and Technology, ShanghaiTech University, 393 Huaxia Road, Shanghai, 201210, China
| | - Jun Li
- School of Information Science and Technology, ShanghaiTech University, 393 Huaxia Road, Shanghai, 201210, China
| | - Chunlei Liu
- Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, 94720, United States
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200030, China
| | - Xiaojun Xu
- Department of Radiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, 393 Huaxia Road, Shanghai, 201210, China. .,Shanghai Engineering Research Center of Intelligent Vision and Imaging, ShanghaiTech University, 393 Huaxia Road, Shanghai, 201210, China.
| |
Collapse
|
11
|
Merk T, Peterson V, Köhler R, Haufe S, Richardson RM, Neumann WJ. Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation. Exp Neurol 2022; 351:113993. [PMID: 35104499 PMCID: PMC10521329 DOI: 10.1016/j.expneurol.2022.113993] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/18/2021] [Accepted: 01/22/2022] [Indexed: 12/30/2022]
Abstract
Sensing enabled implantable devices and next-generation neurotechnology allow real-time adjustments of invasive neuromodulation. The identification of symptom and disease-specific biomarkers in invasive brain signal recordings has inspired the idea of demand dependent adaptive deep brain stimulation (aDBS). Expanding the clinical utility of aDBS with machine learning may hold the potential for the next breakthrough in the therapeutic success of clinical brain computer interfaces. To this end, sophisticated machine learning algorithms optimized for decoding of brain states from neural time-series must be developed. To support this venture, this review summarizes the current state of machine learning studies for invasive neurophysiology. After a brief introduction to the machine learning terminology, the transformation of brain recordings into meaningful features for decoding of symptoms and behavior is described. Commonly used machine learning models are explained and analyzed from the perspective of utility for aDBS. This is followed by a critical review on good practices for training and testing to ensure conceptual and practical generalizability for real-time adaptation in clinical settings. Finally, first studies combining machine learning with aDBS are highlighted. This review takes a glimpse into the promising future of intelligent adaptive DBS (iDBS) and concludes by identifying four key ingredients on the road for successful clinical adoption: i) multidisciplinary research teams, ii) publicly available datasets, iii) open-source algorithmic solutions and iv) strong world-wide research collaborations.
Collapse
Affiliation(s)
- Timon Merk
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Victoria Peterson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Richard Köhler
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Stefan Haufe
- Berlin Center for Advanced Neuroimaging (BCAN), Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
12
|
Kochanski RB, Slavin KV. The future perspectives of psychiatric neurosurgery. PROGRESS IN BRAIN RESEARCH 2022; 270:211-228. [PMID: 35396029 DOI: 10.1016/bs.pbr.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The future of psychiatric neurosurgery can be viewed from two separate perspectives: the immediate future and the distant future. Both show promise, but the treatment strategy for mental diseases and the technology utilized during these separate periods will likely differ dramatically. It can be expected that the initial advancements will be built upon progress of neuroimaging and stereotactic targeting while surgical technology becomes adapted to patient-specific symptomatology and structural/functional imaging parameters. This individualized approach has already begun to show significant promise when applied to deep brain stimulation for treatment-resistant depression and obsessive-compulsive disorder. If effectiveness of these strategies is confirmed by well designed, double-blind, placebo-controlled clinical studies, further technological advances will continue into the distant future, and will likely involve precise neuromodulation at the cellular level, perhaps using wireless technology with or without closed-loop design. This approach, being theoretically less invasive and carrying less risk, may ultimately propel psychiatric neurosurgery to the forefront in the treatment algorithm of mental illness. Despite prominent development of non-invasive therapeutic options, such as stereotactic radiosurgery or transcranial magnetic resonance-guided focused ultrasound, chances are there will still be a need in surgical management of patients with most intractable psychiatric conditions.
Collapse
Affiliation(s)
- Ryan B Kochanski
- Neurosurgery, Methodist Healthcare System, San Antonio, TX, United States
| | - Konstantin V Slavin
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, United States; Neurology Service, Jesse Brown Veterans Administration Medical Center, Chicago, IL, United States.
| |
Collapse
|
13
|
Bijanzadeh M, Khambhati AN, Desai M, Wallace DL, Shafi A, Dawes HE, Sturm VE, Chang EF. Decoding naturalistic affective behaviour from spectro-spatial features in multiday human iEEG. Nat Hum Behav 2022; 6:823-836. [PMID: 35273355 DOI: 10.1038/s41562-022-01310-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 01/18/2022] [Indexed: 02/04/2023]
Abstract
The neurological basis of affective behaviours in everyday life is not well understood. We obtained continuous intracranial electroencephalography recordings from the human mesolimbic network in 11 participants with epilepsy and hand-annotated spontaneous behaviours from 116 h of multiday video recordings. In individual participants, binary random forest models decoded affective behaviours from neutral behaviours with up to 93% accuracy. Both positive and negative affective behaviours were associated with increased high-frequency and decreased low-frequency activity across the mesolimbic network. The insula, amygdala, hippocampus and anterior cingulate cortex made stronger contributions to affective behaviours than the orbitofrontal cortex, but the insula and anterior cingulate cortex were most critical for differentiating behaviours with observable affect from those without. In a subset of participants (N = 3), multiclass decoders distinguished amongst the positive, negative and neutral behaviours. These results suggest that spectro-spatial features of brain activity in the mesolimbic network are associated with affective behaviours of everyday life.
Collapse
Affiliation(s)
- Maryam Bijanzadeh
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ankit N Khambhati
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Maansi Desai
- Department of Communication Sciences and Disorders, Moody College of Communication, University of Texas at Austin, Austin, TX, USA
| | - Deanna L Wallace
- Department of Mechanical Engineering, Psychology and Neurology, University of Texas at Austin, Austin, TX, USA
| | - Alia Shafi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Heather E Dawes
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Virginia E Sturm
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Yuen J, Rusheen AE, Price JB, Barath AS, Shin H, Kouzani AZ, Berk M, Blaha CD, Lee KH, Oh Y. Biomarkers for Deep Brain Stimulation in Animal Models of Depression. Neuromodulation 2022; 25:161-170. [PMID: 35125135 PMCID: PMC8655028 DOI: 10.1111/ner.13483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Despite recent advances in depression treatment, many patients still do not respond to serial conventional therapies and are considered "treatment resistant." Deep brain stimulation (DBS) has therapeutic potential in this context. This comprehensive review of recent studies of DBS for depression in animal models identifies potential biomarkers for improving therapeutic efficacy and predictability of conventional DBS to aid future development of closed-loop control of DBS systems. MATERIALS AND METHODS A systematic search was performed in Pubmed, EMBASE, and Cochrane Review using relevant keywords. Overall, 56 animal studies satisfied the inclusion criteria. RESULTS Outcomes were divided into biochemical/physiological, electrophysiological, and behavioral categories. Promising biomarkers include biochemical assays (in particular, microdialysis and electrochemical measurements), which provide real-time results in awake animals. Electrophysiological tests, showing changes at both the target site and downstream structures, also revealed characteristic changes at several anatomic targets (such as the medial prefrontal cortex and locus coeruleus). However, the substantial range of models and DBS targets limits the ability to draw generalizable conclusions in animal behavioral models. CONCLUSIONS Overall, DBS is a promising therapeutic modality for treatment-resistant depression. Different outcomes have been used to assess its efficacy in animal studies. From the review, electrophysiological and biochemical markers appear to offer the greatest potential as biomarkers for depression. However, to develop closed-loop DBS for depression, additional preclinical and clinical studies with a focus on identifying reliable, safe, and effective biomarkers are warranted.
Collapse
Affiliation(s)
- Jason Yuen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
| | - Aaron E Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | | | | | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
15
|
Molecular characterization of depression trait and state. Mol Psychiatry 2022; 27:1083-1094. [PMID: 34686766 DOI: 10.1038/s41380-021-01347-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 11/09/2022]
Abstract
Major depressive disorder (MDD) is a brain disorder often characterized by recurrent episode and remission phases. The molecular correlates of MDD have been investigated in case-control comparisons, but the biological alterations associated with illness trait (regardless of clinical phase) or current state (symptomatic and remitted phases) remain largely unknown, limiting targeted drug discovery. To characterize MDD trait- and state-dependent changes, in single or recurrent depressive episode or remission, we generated transcriptomic profiles of subgenual anterior cingulate cortex of postmortem subjects in first MDD episode (n = 20), in remission after a single episode (n = 15), in recurrent episode (n = 20), in remission after recurring episodes (n = 15) and control subject (n = 20). We analyzed the data at the gene, biological pathway, and cell-specific molecular levels, investigated putative causal events and therapeutic leads. MDD-trait was associated with genes involved in inflammation, immune activation, and reduced bioenergetics (q < 0.05) whereas MDD-states were associated with altered neuronal structure and reduced neurotransmission (q < 0.05). Cell-level deconvolution of transcriptomic data showed significant change in density of GABAergic interneurons positive for corticotropin-releasing hormone, somatostatin, or vasoactive-intestinal peptide (p < 3 × 10-3). A probabilistic Bayesian-network approach showed causal roles of immune-system-activation (q < 8.67 × 10-3), cytokine-response (q < 4.79 × 10-27) and oxidative-stress (q < 2.05 × 10-3) across MDD-phases. Gene-sets associated with these putative causal changes show inverse associations with the transcriptomic effects of dopaminergic and monoaminergic ligands. The study provides first insights into distinct cellular and molecular pathologies associated with trait- and state-MDD, on plasticity mechanisms linking the two pathologies, and on a method of drug discovery focused on putative disease-causing pathways.
Collapse
|
16
|
de Hemptinne C, Chen W, Racine CA, Seritan AL, Miller AM, Yaroshinsky MS, Wang SS, Gilron R, Little S, Bledsoe I, San Luciano M, Katz M, Chang EF, Dawes HE, Ostrem JL, Starr PA. Prefrontal Physiomarkers of Anxiety and Depression in Parkinson's Disease. Front Neurosci 2021; 15:748165. [PMID: 34744613 PMCID: PMC8568318 DOI: 10.3389/fnins.2021.748165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022] Open
Abstract
Objective: Anxiety and depression are prominent non-motor symptoms of Parkinson’s disease (PD), but their pathophysiology remains unclear. We sought to understand their neurophysiological correlates from chronic invasive recordings of the prefrontal cortex (PFC). Methods: We studied four patients undergoing deep brain stimulation (DBS) for their motor signs, who had comorbid mild to moderate anxiety and/or depressive symptoms. In addition to their basal ganglia leads, we placed a permanent prefrontal subdural 4-contact lead. These electrodes were attached to an investigational pulse generator with the capability to sense and store field potential signals, as well as deliver therapeutic neurostimulation. At regular intervals over 3–5 months, participants paired brief invasive neural recordings with self-ratings of symptoms related to depression and anxiety. Results: Mean age was 61 ± 7 years, mean disease duration was 11 ± 8 years and a mean Unified Parkinson’s Disease Rating Scale, with part III (UPDRS-III) off medication score of 37 ± 13. Mean Beck Depression Inventory (BDI) score was 14 ± 5 and Beck Anxiety Index was 16.5 ± 5. Prefrontal cortex spectral power in the beta band correlated with patient self-ratings of symptoms of depression and anxiety, with r-values between 0.31 and 0.48. Mood scores showed negative correlation with beta spectral power in lateral locations, and positive correlation with beta spectral power in a mesial recording location, consistent with the dichotomous organization of reward networks in PFC. Interpretation: These findings suggest a physiological basis for anxiety and depression in PD, which may be useful in the development of neurostimulation paradigms for these non-motor disease features.
Collapse
Affiliation(s)
- Coralie de Hemptinne
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Witney Chen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Caroline A Racine
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Andreea L Seritan
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Andrew M Miller
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Maria S Yaroshinsky
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Sarah S Wang
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Roee Gilron
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Simon Little
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Ian Bledsoe
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Marta San Luciano
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Maya Katz
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Heather E Dawes
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Jill L Ostrem
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
17
|
Intraoperative neural signals predict rapid antidepressant effects of deep brain stimulation. Transl Psychiatry 2021; 11:551. [PMID: 34728599 PMCID: PMC8563808 DOI: 10.1038/s41398-021-01669-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) of the subcallosal cingulate (SCC) is a promising intervention for treatment-resistant depression (TRD). Despite the failure of a clinical trial, multiple case series have described encouraging results, especially with the introduction of improved surgical protocols. Recent evidence further suggests that tractography targeting and intraoperative exposure to stimulation enhances early antidepressant effects that further evolve with ongoing chronic DBS. Accelerating treatment gains is critical to the care of this at-risk population, and identification of intraoperative electrophysiological biomarkers of early antidepressant effects will help guide future treatment protocols. Eight patients underwent intraoperative electrophysiological recording when bilateral DBS leads were implanted in the SCC using a connectomic approach at the site previously shown to optimize 6-month treatment outcomes. A machine learning classification method was used to discriminate between intracranial local field potentials (LFPs) recorded at baseline (stimulation-naïve) and after the first exposure to SCC DBS during surgical procedures. Spectral inputs (theta, 4-8 Hz; alpha, 9-12 Hz; beta, 13-30 Hz) to the model were then evaluated for importance to classifier success and tested as predictors of the antidepressant response. A decline in depression scores by 45.6% was observed after 1 week and this early antidepressant response correlated with a decrease in SCC LFP beta power, which most contributed to classifier success. Intraoperative exposure to therapeutic stimulation may result in an acute decrease in symptoms of depression following SCC DBS surgery. The correlation of symptom improvement with an intraoperative reduction in SCC beta power suggests this electrophysiological finding as a biomarker for treatment optimization.
Collapse
|
18
|
Elias GJB, Germann J, Boutet A, Pancholi A, Beyn ME, Bhatia K, Neudorfer C, Loh A, Rizvi SJ, Bhat V, Giacobbe P, Woodside DB, Kennedy SH, Lozano AM. Structuro-functional surrogates of response to subcallosal cingulate deep brain stimulation for depression. Brain 2021; 145:362-377. [PMID: 34324658 DOI: 10.1093/brain/awab284] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/01/2021] [Accepted: 07/07/2021] [Indexed: 11/14/2022] Open
Abstract
Subcallosal cingulate deep brain stimulation (SCC-DBS) produces long-term clinical improvement in approximately half of patients with severe treatment-resistant depression (TRD). We hypothesized that both structural and functional brain attributes may be important in determining responsiveness to this therapy. In a TRD SCC-DBS cohort, we retrospectively examined baseline and longitudinal differences in MRI-derived brain volume (n = 65) and 18F-fluorodeoxyglucose-PET glucose metabolism (n = 21) between responders and non-responders. Support-vector machines (SVMs) were subsequently trained to classify patients' response status based on extracted baseline imaging features. A machine learning model incorporating pre-operative frontopolar, precentral/frontal opercular, and orbitofrontal local volume values classified binary response status (12 months) with 83% accuracy (leave-one-out cross-validation (LOOCV): 80% accuracy) and explained 32% of the variance in continuous clinical improvement. It was also predictive in an out-of-sample SCC-DBS cohort (n = 21) with differing primary indications (bipolar disorder/anorexia nervosa) (76% accuracy). Adding pre-operative glucose metabolism information from rostral anterior cingulate cortex and temporal pole improved model performance, enabling it to predict response status in the TRD cohort with 86% accuracy (LOOCV: 81% accuracy) and explain 67% of clinical variance. Response-related patterns of metabolic and structural post-DBS change were also observed, especially in anterior cingulate cortex and neighbouring white matter. Areas where responders differed from non-responders - both at baseline and longitudinally - largely overlapped with depression-implicated white matter tracts, namely uncinate fasciculus, cingulum bundle, and forceps minor/rostrum of corpus callosum. The extent of patient-specific engagement of these same tracts (according to electrode location and stimulation parameters) also served as a predictor of TRD response status (72% accuracy; LOOCV: 70% accuracy) and augmented performance of the volume-based (88% accuracy; LOOCV: 82% accuracy) and combined volume/metabolism-based SVMs (100% accuracy; LOOCV: 94% accuracy). Taken together, these results indicate that responders and non-responders to SCC-DBS exhibit differences in brain volume and metabolism, both pre- and post-surgery. Baseline imaging features moreover predict response to treatment (particularly when combined with information about local tract engagement) and could inform future patient selection and other clinical decisions.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada.,Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada.,Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada.,Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, M5T 1W7, Canada
| | - Aditya Pancholi
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Kartik Bhatia
- Joint Department of Medical Imaging, University of Toronto, Toronto, M5T 1W7, Canada
| | - Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada.,Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| | - Sakina J Rizvi
- ASR Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, M5B 1M8, Canada.,Department of Psychiatry, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Venkat Bhat
- ASR Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, M5B 1M8, Canada.,Department of Psychiatry, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Peter Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, M4N 3M5, Canada
| | - D Blake Woodside
- ASR Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, M5B 1M8, Canada
| | - Sidney H Kennedy
- Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada.,ASR Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, M5B 1M8, Canada.,Department of Psychiatry, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada.,Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| |
Collapse
|
19
|
Osborne NR, Anastakis DJ, Kim JA, El-Sayed R, Cheng JC, Rogachov A, Hemington KS, Bosma RL, Fauchon C, Davis KD. Sex-Specific Abnormalities and Treatment-Related Plasticity of Subgenual Anterior Cingulate Cortex Functional Connectivity in Chronic Pain. FRONTIERS IN PAIN RESEARCH 2021; 2:673538. [PMID: 35295450 PMCID: PMC8915549 DOI: 10.3389/fpain.2021.673538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
The subgenual anterior cingulate cortex (sgACC) is a key node of the descending antinociceptive system with sex differences in its functional connectivity (FC). We previously reported that, in a male-prevalent chronic pain condition, sgACC FC is abnormal in women but not in men. This raises the possibility that, within a sex, sgACC FC may be either protective or represent a vulnerability to develop a sex-dominant chronic pain condition. The aim of this study was to characterize sgACC FC in a female-dominant chronic pain condition, carpal tunnel syndrome (CTS), to investigate whether sgACC abnormalities are a common feature in women with chronic pain or unique to individuals with pain conditions that are more prevalent in the opposite sex. We used fMRI to determine the resting state FC of the sgACC in healthy controls (HCs, n = 25, 18 women; 7 men) and people with CTS before (n = 25, 18 women; 7 men) and after (n = 17, 13 women; 4 men) successful surgical treatment. We found reduced sgACC FC with the medial pre-frontal cortex (mPFC) and temporal lobe in CTS compared with HCs. The group-level sgACC-mPFC FC abnormality was driven by men with CTS, while women with CTS did not have sgACC FC abnormalities compared with healthy women. We also found that age and sex influenced sgACC FC in both CTS and HCs, with women showing greater FC with bilateral frontal poles and men showing greater FC with the parietal operculum. After surgery, there was reduced sgACC FC with the orbitofrontal cortex, striatum, and premotor areas and increased FC with the posterior insula and precuneus compared with pre-op scans. Abnormally reduced sgACC-mPFC FC in men but not women with a female-prevalent chronic pain condition suggests pain-related sgACC abnormalities may not be specific to women but rather to individuals who develop chronic pain conditions that are more dominant in the opposite sex. Our data suggest the sgACC plays a role in chronic pain in a sex-specific manner, and its communication with other regions of the dynamic pain connectome undergoes plasticity following pain-relieving treatment, supporting it as a potential therapeutic target for neuromodulation in chronic pain.
Collapse
Affiliation(s)
- Natalie R. Osborne
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Dimitri J. Anastakis
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Junseok Andrew Kim
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rima El-Sayed
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Joshua C. Cheng
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Anton Rogachov
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Kasey S. Hemington
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rachael L. Bosma
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Camille Fauchon
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Karen D. Davis
- Krembil Research Institute, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- *Correspondence: Karen D. Davis
| |
Collapse
|
20
|
Cognitive and emotional empathy after stimulation of brain mineralocorticoid and NMDA receptors in patients with major depression and healthy controls. Neuropsychopharmacology 2020; 45:2155-2161. [PMID: 32722659 PMCID: PMC7785026 DOI: 10.1038/s41386-020-0777-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/19/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Mineralocorticoid receptors (MR) are predominantly expressed in the hippocampus and prefrontal cortex. Both brain areas are associated with social cognition, which includes cognitive empathy (ability to understand others' emotions) and emotional empathy (ability to empathize with another person). MR stimulation improves memory and executive functioning in patients with major depressive disorder (MDD) and healthy controls, and leads to glutamate-mediated N-methyl-D-aspartate receptor (NMDA-R) signaling. We examined whether the beneficial effects of MR stimulation can be extended to social cognition (empathy), and whether DCS would have additional beneficial effects. In this double-blind placebo-controlled single-dose study, we randomized 116 unmedicated MDD patients (mean age 34 years, 78% women) and 116 age-, sex-, and education years-matched healthy controls to four conditions: MR stimulation (fludrocortisone (0.4 mg) + placebo), NMDA-R stimulation (placebo + D-cycloserine (250 mg)), MR and NMDA-R stimulation (both drugs), or placebo. Cognitive and emotional empathy were assessed by the Multifaceted Empathy Test. The study was registered on clinicaltrials.gov (NCT03062150). MR stimulation increased cognitive empathy across groups, whereas NMDA-R stimulation decreased cognitive empathy in MDD patients only. Independent of receptor stimulation, cognitive empathy did not differ between groups. Emotional empathy was not affected by MR or NMDA-R stimulation. However, MDD patients showed decreased emotional empathy compared with controls but, according to exploratory analyses, only for positive emotions. We conclude that MR stimulation has beneficial effects on cognitive empathy in MDD patients and healthy controls, whereas NMDA-R stimulation decreased cognitive empathy in MDD patients. It appears that MR rather than NMDA-R are potential treatment targets to modulate cognitive empathy in MDD.
Collapse
|
21
|
Ramon-Duaso C, Gener T, Consegal M, Fernández-Avilés C, Gallego JJ, Castarlenas L, Swanson MS, de la Torre R, Maldonado R, Puig MV, Robledo P. Methylphenidate Attenuates the Cognitive and Mood Alterations Observed in Mbnl2 Knockout Mice and Reduces Microglia Overexpression. Cereb Cortex 2020; 29:2978-2997. [PMID: 30060068 DOI: 10.1093/cercor/bhy164] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/25/2018] [Indexed: 12/15/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem disorder affecting muscle and central nervous system (CNS) function. The cellular mechanisms underlying CNS alterations are poorly understood and no useful treatments exist for the neuropsychological deficits observed in DM1 patients. We investigated the progression of behavioral deficits present in male and female muscleblind-like 2 (Mbnl2) knockout (KO) mice, a rodent model of CNS alterations in DM1, and determined the biochemical and electrophysiological correlates in medial prefrontal cortex (mPFC), striatum and hippocampus (HPC). Male KO exhibited more cognitive impairment and depressive-like behavior than female KO mice. In the mPFC, KO mice showed an overexpression of proinflammatory microglia, increased transcriptional levels of Dat, Drd1, and Drd2, exacerbated dopamine levels, and abnormal neural spiking and oscillatory activities in the mPFC and HPC. Chronic treatment with methylphenidate (MPH) (1 and 3 mg/kg) reversed the behavioral deficits, reduced proinflammatory microglia in the mPFC, normalized prefrontal Dat and Drd2 gene expression, and increased Bdnf and Nrf2 mRNA levels. These findings unravel the mechanisms underlying the beneficial effects of MPH on cognitive deficits and depressive-like behaviors observed in Mbnl2 KO mice, and suggest that MPH could be a potential candidate to treat the CNS deficiencies in DM1 patients.
Collapse
Affiliation(s)
- Carla Ramon-Duaso
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Thomas Gener
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Marta Consegal
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Cristina Fernández-Avilés
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Juan José Gallego
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Laura Castarlenas
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology and the Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.,CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBERON), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Maldonado
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.,Laboratory of Neuropharmacology, Department of Experimental al Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - M Victoria Puig
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.,Laboratory of Neuropharmacology, Department of Experimental al Health Sciences, Pompeu Fabra University, Barcelona, Spain
| |
Collapse
|
22
|
Jiang H, Hua L, Dai Z, Tian S, Yao Z, Lu Q, Popov T. Spectral fingerprints of facial affect processing bias in major depression disorder. Soc Cogn Affect Neurosci 2020; 14:1233-1242. [PMID: 31850496 PMCID: PMC7057280 DOI: 10.1093/scan/nsz096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/16/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
In major depressive disorder (MDD), processing of facial affect is thought to reflect a perceptual bias (toward negative emotion, away from positive emotion, and interpretation of neutral as emotional). However, it is unclear to what extent and which specific perceptual bias is represented in MDD at the behavior and neuronal level. The present report examined 48 medication naive MDD patients and 41 healthy controls (HCs) performing a facial affect judgment task while magnetoencephalography was recorded. MDD patients were characterized by overall slower response times and lower perceptual judgment accuracies. In comparison with HC, MDD patients exhibited less somatosensory beta activity (20–30 Hz) suppression, more visual gamma activity (40–80 Hz) modulation and somatosensory beta and visual gamma interaction deficit. Moreover, frontal gamma activity during positive facial expression judgment was found to be negatively correlated with depression severity. Present findings suggest that perceptual bias in MDD is associated with distinct spatio-spectral manifestations on the neural level, which potentially establishes aberrant pathways during facial emotion processing and contributes to MDD pathology.
Collapse
Affiliation(s)
- Haiteng Jiang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lingling Hua
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongpeng Dai
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.,Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Shui Tian
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.,Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China.,Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Qing Lu
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.,Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Tzvetan Popov
- Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, 68159 Mannheim, Germany
| |
Collapse
|
23
|
Koshiyama D, Kirihara K, Usui K, Tada M, Fujioka M, Morita S, Kawakami S, Yamagishi M, Sakurada H, Sakakibara E, Satomura Y, Okada N, Kondo S, Araki T, Jinde S, Kasai K. Resting-state EEG beta band power predicts quality of life outcomes in patients with depressive disorders: A longitudinal investigation. J Affect Disord 2020; 265:416-422. [PMID: 32090768 DOI: 10.1016/j.jad.2020.01.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 11/23/2019] [Accepted: 01/05/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND Quality of life is severely impaired in patients with depressive disorders. Previous studies have focused on biomarkers predicting depressive symptomatology; however, studies investigating biomarkers predicting quality of life outcomes are limited. Improving quality of life is important because it is related not only to mental health but also to physical health. We need to develop a biomarker related to quality of life as a therapeutic target for patients with depressive disorders. Resting-state electroencephalography (EEG) is easy to record in clinical settings. The index of bandwidth spectral power predicts treatment response in depressive disorders and thus may be a candidate biomarker. However, no longitudinal studies have investigated whether EEG-recorded power could predict quality of life outcomes in patients with depressive disorders. METHODS The resting-state EEG-recorded bandwidth spectral power at baseline and the World Health Organization Quality of Life (QOL)-26 scores at 3-year follow-up were measured in 44 patients with depressive disorders. RESULTS The high beta band power (20-30 Hz) at baseline significantly predicted QOL at the 3-year follow-up after considering depressive symptoms and medication effects in a longitudinal investigation in patients with depressive disorders (β = 0.38, p = 0.01). LIMITATIONS We did not have healthy subjects as a comparison group in this study. CONCLUSIONS Our findings suggest that resting-state beta activity has the potential to be a useful biomarker for predicting future quality of life outcomes in patients with depressive disorders.
Collapse
Affiliation(s)
- Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Kirihara
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kaori Usui
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mariko Tada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Mao Fujioka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Susumu Morita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shintaro Kawakami
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mika Yamagishi
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hanako Sakurada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eisuke Sakakibara
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Satomura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Shinsuke Kondo
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Araki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
24
|
The Relationship between DNA Methylation and Antidepressant Medications: A Systematic Review. Int J Mol Sci 2020; 21:ijms21030826. [PMID: 32012861 PMCID: PMC7037192 DOI: 10.3390/ijms21030826] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/25/2020] [Accepted: 01/26/2020] [Indexed: 01/31/2023] Open
Abstract
Major depressive disorder (MDD) is the leading cause of disability worldwide and is associated with high rates of suicide and medical comorbidities. Current antidepressant medications are suboptimal, as most MDD patients fail to achieve complete remission from symptoms. At present, clinicians are unable to predict which antidepressant is most effective for a particular patient, exposing patients to multiple medication trials and side effects. Since MDD’s etiology includes interactions between genes and environment, the epigenome is of interest for predictive utility and treatment monitoring. Epigenetic mechanisms of antidepressant medications are incompletely understood. Differences in epigenetic profiles may impact treatment response. A systematic literature search yielded 24 studies reporting the interaction between antidepressants and eight genes (BDNF, MAOA, SLC6A2, SLC6A4, HTR1A, HTR1B, IL6, IL11) and whole genome methylation. Methylation of certain sites within BDNF, SLC6A4, HTR1A, HTR1B, IL11, and the whole genome was predictive of antidepressant response. Comparing DNA methylation in patients during depressive episodes, during treatment, in remission, and after antidepressant cessation would help clarify the influence of antidepressant medications on DNA methylation. Individuals’ unique methylation profiles may be used clinically for personalization of antidepressant choice in the future.
Collapse
|
25
|
Cotler MJ, Rousseau EB, Ramadi KB, Fang J, Graybiel AM, Langer R, Cima MJ. Steerable Microinvasive Probes for Localized Drug Delivery to Deep Tissue. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901459. [PMID: 31183933 DOI: 10.1002/smll.201901459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Enhanced understanding of neuropathologies has created a need for more advanced tools. Current neural implants result in extensive glial scarring and are not able to highly localize drug delivery due to their size. Smaller implants reduce surgical trauma and improve spatial resolution, but such a reduction requires improvements in device design to enable accurate and chronic implantation in subcortical structures. Flexible needle steering techniques offer improved control over implant placement, but often require complex closed-loop control for accurate implantation. This study reports the development of steerable microinvasive neural implants (S-MINIs) constructed from borosilicate capillaries (OD = 60 µm, ID = 20 µm) that do not require closed-loop guidance or guide tubes. S-MINIs reduce glial scarring 3.5-fold compared to prior implants. Bevel steered needles are utilized for open-loop targeting of deep-brain structures. This study demonstrates a sinusoidal relationship between implant bevel angle and the trajectory radius of curvature both in vitro and ex vivo. This relationship allows for bevel-tipped capillaries to be steered to a target with an average error of 0.23 mm ± 0.19 without closed-loop control. Polished microcapillaries present a new microinvasive tool for chronic, predictable targeting of pathophysiological structures without the need for closed-loop feedback and complex imaging.
Collapse
Affiliation(s)
- Max J Cotler
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Erin B Rousseau
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Khalil B Ramadi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Joshua Fang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Michael J Cima
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| |
Collapse
|
26
|
Mithani K, Meng Y, Abrahao A, Mikhail M, Hamani C, Giacobbe P, Lipsman N. Electroencephalography in Psychiatric Surgery: Past Use and Future Directions. Stereotact Funct Neurosurg 2019; 97:141-152. [PMID: 31412334 DOI: 10.1159/000500994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/08/2019] [Indexed: 11/19/2022]
Abstract
The last two decades have seen a re-emergence of surgery for intractable psychiatric disease, in large part due to increased use of deep brain stimulation. The development of more precise, image-guided, less invasive interventions has improved the safety of these procedures, even though the relative merits of modulation at various targets remain under investigation. With an increase in the number and type of interventions for modulating mood/anxiety circuits, the need for biomarkers to guide surgeries and predict treatment response is as critical as ever. Electroencephalography (EEG) has a long history in clinical neurology, cognitive neuroscience, and functional neurosurgery, but has limited prior usage in psychiatric surgery. MEDLINE, Embase, and Psyc-INFO searches on the use of EEG in guiding psychiatric surgery yielded 611 articles, which were screened for relevance and quality. We synthesized three important themes. First, considerable evidence supports EEG as a biomarker for response to various surgical and non-surgical therapies, but large-scale investigations are lacking. Second, intraoperative EEG is likely more valuable than surface EEG for guiding target selection, but comes at the cost of greater invasiveness. Finally, EEG may be a promising tool for objective functional feedback in developing "closed-loop" psychosurgeries, but more systematic investigations are required.
Collapse
Affiliation(s)
- Karim Mithani
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ying Meng
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Mirriam Mikhail
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, Ontario, Canada,
| |
Collapse
|
27
|
Levy J, Yirmiya K, Goldstein A, Feldman R. Chronic trauma impairs the neural basis of empathy in mothers: Relations to parenting and children's empathic abilities. Dev Cogn Neurosci 2019; 38:100658. [PMID: 31121480 PMCID: PMC6969352 DOI: 10.1016/j.dcn.2019.100658] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 01/10/2023] Open
Abstract
Early life stress carries long-term negative consequences for children's well-being and maturation of the social brain. Here, we utilize a unique cohort to test its effects on mothers' social brain, targeting mothers' neural empathic response in relation to caregiving and child empathic abilities. Mother-child dyads living in a zone of repeated war-related trauma were followed from early childhood and mother-child behavioral synchrony was repeatedly observed. At pre-adolescence(11-13 years) children's empathic abilities were assessed and mothers(N = 88, N = 44 war-exposed) underwent magnetoencephalography(MEG) while exposed to vicarious pain. All mothers showed alpha suppression in sensorimotor regions, indicating automatic response to others' pain. However, trauma-exposed mothers did not exhibit gamma oscillations in viceromotor cortex, a neural marker of mature empathy which utilizes interoceptive mechanisms for higher-order understanding and does not emerge before adulthood. Mother-child synchrony across the first decade predicted mothers' viceromotor gamma, and both synchrony and maternal viceromotor gamma mediated the relations between war-exposure and child empathic abilities, possibly charting a cross-generational pathway from mothers' mature neural empathy to children's empathic capacities. Our findings are first to probe the maternal social brain in adolescence in relation to parenting and underscore the need for targeted interventions to mothers raising children in contexts of chronic stress.
Collapse
Affiliation(s)
| | - Karen Yirmiya
- Interdisciplinary Center, Herzliya, 46150, Israel; Department of Psychology and the Gonda Brain Center, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Abraham Goldstein
- Department of Psychology and the Gonda Brain Center, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Ruth Feldman
- Interdisciplinary Center, Herzliya, 46150, Israel; Yale University, Child Study Center, New Haven, CT, 06520, USA.
| |
Collapse
|
28
|
Wang Q, Tian S, Tang H, Liu X, Yan R, Hua L, Shi J, Chen Y, Zhu R, Lu Q, Yao Z. Identification of major depressive disorder and prediction of treatment response using functional connectivity between the prefrontal cortices and subgenual anterior cingulate: A real-world study. J Affect Disord 2019; 252:365-372. [PMID: 30999093 DOI: 10.1016/j.jad.2019.04.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/19/2019] [Accepted: 04/08/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is associated with a heavy disease burden due to the difficulty in diagnosing the disorder and the uncertainty of treatment outcomes. Previous studies have demonstrated the value of functional connectivity (FC) between the dorsolateral prefrontal cortex (DLPFC) and the subgenual anterior cingulate cortex (sgACC) in the identification of MDD and the prediction of antidepressant efficacy. In the present study, we aimed to investigate whether FC is helpful in discriminating patients from healthy controls and in predicting treatment outcome. METHODS Seventy-six medication-free patients with MDD and 28 healthy controls were enrolled in the study. Magnetoencephalography (MEG) and the Hamilton Rating Score for Depression (HRSD-17) were administered at baseline. Then, the HRSD-17 was assessed weekly until each patient met the remission criteria, defined as a total HRSD-17 score ≤ 7. Time-dependent Cox regression analysis was used to evaluate the association between FC and the incidence of remission. RESULTS Healthy controls and MDD patients had opposite FC patterns; this may be helpful for identifying MDD (AUC = 0.8, p < 0.001, sensitivity 85.7%, specificity 67.9%). Alpha connectivity between the DLPFC and sgACC (HR 1.858, 95%CI 1.013-3.408, p = 0.045) was found to be an independent factor associated with better final antidepressant outcome. LIMITATIONS This study was conducted in a small sample of subjects. Further, the direction of regulation between the DLPFC and sgACC was not considered. CONCLUSIONS FC may help identify depression and may be related to the severity of depressive symptoms and predict the efficacy of antidepressant treatment.
Collapse
Affiliation(s)
- Qiang Wang
- Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Shui Tian
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Hao Tang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaoxue Liu
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Rui Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lingling Hua
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiabo Shi
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yu Chen
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Rongxin Zhu
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China.
| | - Zhijian Yao
- Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, China; Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
29
|
Weightman MJ, Knight MJ, Baune BT. A systematic review of the impact of social cognitive deficits on psychosocial functioning in major depressive disorder and opportunities for therapeutic intervention. Psychiatry Res 2019; 274:195-212. [PMID: 30807971 DOI: 10.1016/j.psychres.2019.02.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/01/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
Abstract
Social cognition is the ability to identify, perceive and interpret socially relevant information from the external world. It is an important adaptive trait, but is frequently affected in major depressive disorder by a mood-congruent interpretive bias. The present review examined the existing body of literature to determine (i) the impact social cognitive deficits in depression have on psychosocial functioning; and (ii) the utility of psychotropic, psychological and procedural interventions employed to target these deficits. A total of 107 studies met inclusion criteria for review. Social cognitive performance was found to adversely impact depressed patients' psychosocial functioning across the key domains of general cognitive functioning and quality of life. Secondly, many current therapies were found to have a normalising effect on the social cognitive abilities of subjects with major depressive disorder, both at a neural and functional level. In particular, certain anti-depressant medications corrected facial affect recognition deficits, while several psychotherapeutic approaches improved impairments in theory of mind and negative interpretive bias.
Collapse
Affiliation(s)
- Michael James Weightman
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Matthew James Knight
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Bernhard Theodor Baune
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia; Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Psychiatry, University of Münster, Münster, Germany.
| |
Collapse
|
30
|
Staudt MD, Herring EZ, Gao K, Miller JP, Sweet JA. Evolution in the Treatment of Psychiatric Disorders: From Psychosurgery to Psychopharmacology to Neuromodulation. Front Neurosci 2019; 13:108. [PMID: 30828289 PMCID: PMC6384258 DOI: 10.3389/fnins.2019.00108] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/29/2019] [Indexed: 12/22/2022] Open
Abstract
The treatment of psychiatric patients presents significant challenges to the clinical community, and a multidisciplinary approach to diagnosis and management is essential to facilitate optimal care. In particular, the neurosurgical treatment of psychiatric disorders, or “psychosurgery,” has held fascination throughout human history as a potential method of influencing behavior and consciousness. Early evidence of such procedures can be traced to prehistory, and interest flourished in the nineteenth and early twentieth century with greater insight into cerebral functional and anatomic localization. However, any discussion of psychosurgery invariably invokes controversy, as the widespread and indiscriminate use of the transorbital lobotomy in the mid-twentieth century resulted in profound ethical ramifications that persist to this day. The concurrent development of effective psychopharmacological treatments virtually eliminated the need and desire for psychosurgical procedures, and accordingly the research and practice of psychosurgery was dormant, but not forgotten. There has been a recent resurgence of interest for non-ablative therapies, due in part to modern advances in functional and structural neuroimaging and neuromodulation technology. In particular, deep brain stimulation is a promising treatment paradigm with the potential to modulate abnormal pathways and networks implicated in psychiatric disease states. Although there is enthusiasm regarding these recent advancements, it is important to reflect on the scientific, social, and ethical considerations of this controversial field.
Collapse
Affiliation(s)
- Michael D Staudt
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States.,Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| | - Eric Z Herring
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Keming Gao
- Department of Psychiatry, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Jonathan P Miller
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Jennifer A Sweet
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
31
|
Neumann WJ, Turner RS, Blankertz B, Mitchell T, Kühn AA, Richardson RM. Toward Electrophysiology-Based Intelligent Adaptive Deep Brain Stimulation for Movement Disorders. Neurotherapeutics 2019; 16:105-118. [PMID: 30607748 PMCID: PMC6361070 DOI: 10.1007/s13311-018-00705-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Deep brain stimulation (DBS) represents one of the major clinical breakthroughs in the age of translational neuroscience. In 1987, Benabid and colleagues demonstrated that high-frequency stimulation can mimic the effects of ablative neurosurgery in Parkinson's disease (PD), while offering two key advantages to previous procedures: adjustability and reversibility. Deep brain stimulation is now an established therapeutic approach that robustly alleviates symptoms in patients with movement disorders, such as Parkinson's disease, essential tremor, and dystonia, who present with inadequate or adverse responses to medication. Currently, stimulation electrodes are implanted in specific target regions of the basal ganglia-thalamic circuit and stimulation pulses are delivered chronically. To achieve optimal therapeutic effect, stimulation frequency, amplitude, and pulse width must be adjusted on a patient-specific basis by a movement disorders specialist. The finding that pathological neural activity can be sampled directly from the target region using the DBS electrode has inspired a novel DBS paradigm: closed-loop adaptive DBS (aDBS). The goal of this strategy is to identify pathological and physiologically normal patterns of neuronal activity that can be used to adapt stimulation parameters to the concurrent therapeutic demand. This review will give detailed insight into potential biomarkers and discuss next-generation strategies, implementing advances in artificial intelligence, to further elevate the therapeutic potential of DBS by capitalizing on its modifiable nature. Development of intelligent aDBS, with an ability to deliver highly personalized treatment regimens and to create symptom-specific therapeutic strategies in real-time, could allow for significant further improvements in the quality of life for movement disorders patients with DBS that ultimately could outperform traditional drug treatment.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Campus Charite Mitte, Chariteplatz 1, 10117, Berlin, Germany.
| | - Robert S Turner
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin Blankertz
- Department of Computer Science, Technische Universität Berlin, Berlin, Germany
| | - Tom Mitchell
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Campus Charite Mitte, Chariteplatz 1, 10117, Berlin, Germany
- Berlin School of Mind and Brain, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Neurocure, Centre of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - R Mark Richardson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Horn A, Li N, Dembek TA, Kappel A, Boulay C, Ewert S, Tietze A, Husch A, Perera T, Neumann WJ, Reisert M, Si H, Oostenveld R, Rorden C, Yeh FC, Fang Q, Herrington TM, Vorwerk J, Kühn AA. Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage 2019; 184:293-316. [PMID: 30179717 PMCID: PMC6286150 DOI: 10.1016/j.neuroimage.2018.08.068] [Citation(s) in RCA: 473] [Impact Index Per Article: 94.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/13/2018] [Accepted: 08/28/2018] [Indexed: 01/09/2023] Open
Abstract
Deep brain stimulation (DBS) is a highly efficacious treatment option for movement disorders and a growing number of other indications are investigated in clinical trials. To ensure optimal treatment outcome, exact electrode placement is required. Moreover, to analyze the relationship between electrode location and clinical results, a precise reconstruction of electrode placement is required, posing specific challenges to the field of neuroimaging. Since 2014 the open source toolbox Lead-DBS is available, which aims at facilitating this process. The tool has since become a popular platform for DBS imaging. With support of a broad community of researchers worldwide, methods have been continuously updated and complemented by new tools for tasks such as multispectral nonlinear registration, structural/functional connectivity analyses, brain shift correction, reconstruction of microelectrode recordings and orientation detection of segmented DBS leads. The rapid development and emergence of these methods in DBS data analysis require us to revisit and revise the pipelines introduced in the original methods publication. Here we demonstrate the updated DBS and connectome pipelines of Lead-DBS using a single patient example with state-of-the-art high-field imaging as well as a retrospective cohort of patients scanned in a typical clinical setting at 1.5T. Imaging data of the 3T example patient is co-registered using five algorithms and nonlinearly warped into template space using ten approaches for comparative purposes. After reconstruction of DBS electrodes (which is possible using three methods and a specific refinement tool), the volume of tissue activated is calculated for two DBS settings using four distinct models and various parameters. Finally, four whole-brain tractography algorithms are applied to the patient's preoperative diffusion MRI data and structural as well as functional connectivity between the stimulation volume and other brain areas are estimated using a total of eight approaches and datasets. In addition, we demonstrate impact of selected preprocessing strategies on the retrospective sample of 51 PD patients. We compare the amount of variance in clinical improvement that can be explained by the computer model depending on the preprocessing method of choice. This work represents a multi-institutional collaborative effort to develop a comprehensive, open source pipeline for DBS imaging and connectomics, which has already empowered several studies, and may facilitate a variety of future studies in the field.
Collapse
Affiliation(s)
- Andreas Horn
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany.
| | - Ningfei Li
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| | - Till A Dembek
- Department of Neurology, University Hospital of Cologne, Germany
| | - Ari Kappel
- Wayne State University, Department of Neurosurgery, Detroit, Michigan, USA
| | | | - Siobhan Ewert
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| | - Anna Tietze
- Institute of Neuroradiology, Charité - University Medicine Berlin, Germany
| | - Andreas Husch
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Interventional Neuroscience Group, Belvaux, Luxembourg
| | - Thushara Perera
- Bionics Institute, East Melbourne, Victoria, Australia; Department of Medical Bionics, University of Melbourne, Parkville, Victoria, Australia
| | - Wolf-Julian Neumann
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany; Institute of Neuroradiology, Charité - University Medicine Berlin, Germany
| | - Marco Reisert
- Medical Physics, Department of Radiology, Faculty of Medicine, University Freiburg, Germany
| | - Hang Si
- Numerical Mathematics and Scientific Computing, Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Germany
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, NL, Netherlands; NatMEG, Karolinska Institutet, Stockholm, SE, Sweden
| | - Christopher Rorden
- McCausland Center for Brain Imaging, University of South Carolina, Columbia, SC, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh PA, USA
| | - Qianqian Fang
- Department of Bioengineering, Northeastern University, Boston, USA
| | - Todd M Herrington
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Johannes Vorwerk
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, USA
| | - Andrea A Kühn
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| |
Collapse
|
33
|
Amemori KI, Amemori S, Gibson DJ, Graybiel AM. Striatal Microstimulation Induces Persistent and Repetitive Negative Decision-Making Predicted by Striatal Beta-Band Oscillation. Neuron 2018; 99:829-841.e6. [PMID: 30100255 DOI: 10.1016/j.neuron.2018.07.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/24/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
Abstract
Persistent thoughts inducing irrationally pessimistic and repetitive decisions are often symptoms of mood and anxiety disorders. Regional neural hyperactivities have been associated with these disorders, but it remains unclear whether there is a specific brain region causally involved in these persistent valuations. Here, we identified potential sources of such persistent states by microstimulating the striatum of macaques performing a task by which we could quantitatively estimate their subjective pessimistic states using their choices to accept or reject conflicting offers. We found that this microstimulation induced irrationally repetitive choices with negative evaluations. Local field potentials recorded in the same microstimulation sessions exhibited modulations of beta-band oscillatory activity that paralleled the persistent negative states influencing repetitive decisions. These findings demonstrate that local striatal zones can causally affect subjective states influencing persistent negative valuation and that abnormal beta-band oscillations can be associated with persistency in valuation accompanied by an anxiety-like state.
Collapse
Affiliation(s)
- Ken-Ichi Amemori
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA; The Hakubi Center for Advanced Research and Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Satoko Amemori
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA
| | - Daniel J Gibson
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA.
| |
Collapse
|
34
|
Smart O, Choi KS, Riva-Posse P, Tiruvadi V, Rajendra J, Waters AC, Crowell AL, Edwards J, Gross RE, Mayberg HS. Initial Unilateral Exposure to Deep Brain Stimulation in Treatment-Resistant Depression Patients Alters Spectral Power in the Subcallosal Cingulate. Front Comput Neurosci 2018; 12:43. [PMID: 29950982 PMCID: PMC6008542 DOI: 10.3389/fncom.2018.00043] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/24/2018] [Indexed: 12/16/2022] Open
Abstract
Background: High-frequency Deep Brain Stimulation (DBS) of the subcallosal cingulate (SCC) region is an emerging strategy for treatment-resistant depression (TRD). This study examined changes in SCC local field potentials (LFPs). The LFPs were recorded from the DBS leads following transient, unilateral stimulation at the neuroimaging-defined optimal electrode contact. The goal was identifying a putative electrophysiological measure of target engagement during implantation. Methods: Fourteen consecutive patients underwent bilateral SCC DBS lead implantation. LFP recordings were collected from all electrodes during randomized testing of stimulation on each DBS contact (eight total). Analyses evaluated changes in spectral power before and after 3 min of unilateral stimulation at the contacts that later facilitated antidepressant response, as a potential biomarker of optimal contact selection in each hemisphere. Results: Lateralized and asymmetric power spectral density changes were detected in the SCC with acute unilateral SCC stimulation at those contacts subsequently selected for chronic, therapeutic stimulation. Left stimulation induced broadband ipsilateral decreases in theta, alpha, beta and gamma bands. Right stimulation effects were restricted to ipsilateral beta and gamma decreases. These asymmetric effects contrasted with identical white matter stimulation maps used in each hemisphere. More variable ipsilateral decreases were seen with stimulation at the adjacent "suboptimal" contacts, but changes were not statistically different from the "optimal" contact in either hemisphere despite obvious differences in impacted white matter bundles. Change in theta power was, however, most robust and specific with left-sided optimal stimulation, which suggested a putative functional biomarker on the left with no such specificity inferred on the right. Conclusion: Hemisphere-specific oscillatory changes can be detected from the DBS lead with acute intraoperative testing at contacts that later engender antidepressant effects. Our approach defined potential target engagement signals for further investigation, particularly left-sided theta decreases following initial exposure to stimulation. More refined models combining tractography, bilateral SCC LFP, and cortical recordings may further improve the precision and specificity of these putative biomarkers. It may also optimize and standardize the lead implantation procedure and provide input signals for next generation closed-loop therapy and/or monitoring technologies for TRD.
Collapse
Affiliation(s)
- Otis Smart
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Ki S Choi
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Vineet Tiruvadi
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.,Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Justin Rajendra
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Allison C Waters
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Andrea L Crowell
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Johnathan Edwards
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States.,Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Helen S Mayberg
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
35
|
Merkl A, Aust S, Schneider GH, Visser-Vandewalle V, Horn A, Kühn AA, Kuhn J, Bajbouj M. Deep brain stimulation of the subcallosal cingulate gyrus in patients with treatment-resistant depression: A double-blinded randomized controlled study and long-term follow-up in eight patients. J Affect Disord 2018; 227:521-529. [PMID: 29161674 DOI: 10.1016/j.jad.2017.11.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/06/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subcallosal cingulate gyrus (SCG) is an experimental approach in treatment-resistant depression (TRD). Short-term results of efficacy in DBS are incongruent and studies investigating long-term effects are warranted. METHODS We assessed efficacy of SCG-DBS in eight patients randomized into a delayed-onset group (sham-DBS four weeks) and a non-delayed-onset group. The primary outcome measure was improvement on the Hamilton Depression Rating-Scale (HAMD-24-item-version). Response was defined as HAMD-24 reduction of at least 50% compared to baseline. Assessment was double-blind for a period of eight weeks and after 6,- 12,- 24,- and 28,- months open-label. RESULTS The average improvement in HAMD-24 scores after 6,- 12,- and 24-months were 34%, 25%, and 37%. After 6 months, HAMD-24 revealed a significant difference (P = .022) and 37.5% of the patients were responders. After 12 months, HAMD-24 scores dropped, but no significant difference was observed. After 24 months, a significant improvement was found (P = .041). After the four weeks lasting sham vs. DBS-ON period, there was no group difference (P = .376) in HAMD-24 and patients did not improve during sham stimulation. Patients were followed until 28 months and two up to 4 years under SCG-DBS and average response rate was 51%, whereas two patients were remitters (33,3%). LIMITATIONS The small sample size limited the statistical power and external validity. CONCLUSIONS Long-term improvement after SCG-DBS revealed a stable effect. There was no significant difference in response rates between the delayed and non-delayed-onset group. DBS for TRD remains experimental and longitudinal investigations of large samples are needed.
Collapse
Affiliation(s)
- Angela Merkl
- Department of Psychiatry, Charité - Universitätsmedizin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| | - Sabine Aust
- Department of Psychiatry, Charité - Universitätsmedizin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité - Universitätsmedizin, Campus Virchow, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Kerpener Str. 62, D-50937 Cologne, Germany
| | - Andreas Horn
- Department of Neurology, Charité - Universitätsmedizin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany; Laboratory for Brain Network Imaging and Modulation Berenson-Allen Center for Noninvasive Brain Stimulation Department for Neurology, Beth Israel Deaconess Center Harvard Medical School, 02215 Boston, United States
| | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Jens Kuhn
- Department of Psychiatry, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Malek Bajbouj
- Department of Psychiatry, Charité - Universitätsmedizin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| |
Collapse
|
36
|
Cao Y, Dingle G, Chan GCK, Cunnington R. Low Mood Leads to Increased Empathic Distress at Seeing Others' Pain. Front Psychol 2017; 8:2024. [PMID: 29209256 PMCID: PMC5702010 DOI: 10.3389/fpsyg.2017.02024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/06/2017] [Indexed: 01/15/2023] Open
Abstract
Previous studies have shown changes in empathy in patients with depression, including an elevated level of trait personal distress. This study examined if low mood causes changes in self-reported empathic distress when seeing others in pain. To test this, we conducted an initial (n = 26) and close replication study (n = 46) in which sad mood was induced in healthy participants (overall mean age M = 21, SD = 5, range = 18–41 years). Participants viewed and rated video stimuli inferring pain experienced by other people. Results showed that participants perceived the videos depicting others’ pain (versus no-pain) to be more distressing under a sad mood compared to a neutral mood condition, implying that sadness enhances one’s emotional reactivity toward others’ distress. This supports previous depression literature suggesting an impaired emotional processing ability, and could contribute to some of the unhelpful behaviors seen in depression such as social withdrawal and avoidance.
Collapse
Affiliation(s)
- Yuan Cao
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
| | - Genevieve Dingle
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
| | - Gary C K Chan
- School of Psychology, University of Queensland, Brisbane, QLD, Australia.,Centre for Youth Substance Abuse Research, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Ross Cunnington
- School of Psychology, University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
37
|
Lavano A, Guzzi G, Donato G. Neurosurgery and neuroethics. J Neurosurg Sci 2017; 63:357-358. [PMID: 29063745 DOI: 10.23736/s0390-5616.17.04214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Angelo Lavano
- Unit of Neurosurgery, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy - .,Department of Health Science, "Magna Græcia" University of Catanzaro, Catanzaro, Italy -
| | - Giusy Guzzi
- Unit of Neurosurgery, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy.,Department of Health Science, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | | |
Collapse
|
38
|
Horn A, Kühn AA, Merkl A, Shih L, Alterman R, Fox M. Probabilistic conversion of neurosurgical DBS electrode coordinates into MNI space. Neuroimage 2017; 150:395-404. [PMID: 28163141 DOI: 10.1016/j.neuroimage.2017.02.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 10/20/2022] Open
Abstract
In neurosurgical literature, findings such as deep brain stimulation (DBS) electrode positions are conventionally reported in relation to the anterior and posterior commissures of the individual patient (AC/PC coordinates). However, the neuroimaging literature including neuroanatomical atlases, activation patterns, and brain connectivity maps has converged on a different population-based standard (MNI coordinates). Ideally, one could relate these two literatures by directly transforming MRIs from neurosurgical patients into MNI space. However obtaining these patient MRIs can prove difficult or impossible, especially for older studies or those with hundreds of patients. Here, we introduce a methodology for mapping an AC/PC coordinate (such as a DBS electrode position) to MNI space without the need for MRI scans from the patients themselves. We validate our approach using a cohort of DBS patients in which MRIs are available, and test whether several variations on our approach provide added benefit. We then use our approach to convert previously reported DBS electrode coordinates from eight different neurological and psychiatric diseases into MNI space. Finally, we demonstrate the value of such a conversion using the DBS target for essential tremor as an example, relating the site of the active DBS contact to different MNI atlases as well as anatomical and functional connectomes in MNI space.
Collapse
Affiliation(s)
- Andreas Horn
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Charité - University Medicine Berlin, Department of Neurology, Movement Disorder and Neuromodulation Unit, Germany.
| | - Andrea A Kühn
- Charité - University Medicine Berlin, Department of Neurology, Movement Disorder and Neuromodulation Unit, Germany
| | - Angela Merkl
- Charité - University Medicine Berlin, Department of Neurology, Movement Disorder and Neuromodulation Unit, Germany
| | - Ludy Shih
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ron Alterman
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Beth Israel Deaconess Medical Center, Neurosurgery Department, Harvard Medical School, Boston, MA 02215
| | - Michael Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
39
|
Clark DL, Brown EC, Ramasubbu R, Kiss ZHT. Intrinsic Local Beta Oscillations in the Subgenual Cingulate Relate to Depressive Symptoms in Treatment-Resistant Depression. Biol Psychiatry 2016; 80:e93-e94. [PMID: 27129412 DOI: 10.1016/j.biopsych.2016.02.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Darren L Clark
- Departments of Psychiatry and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Elliot C Brown
- Departments of Psychiatry and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Rajamannar Ramasubbu
- Departments of Psychiatry and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Zelma H T Kiss
- Departments of Psychiatry and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
40
|
Ineichen C, Baumann-Vogel H, Christen M. Deep Brain Stimulation: In Search of Reliable Instruments for Assessing Complex Personality-Related Changes. Brain Sci 2016; 6:E40. [PMID: 27618110 PMCID: PMC5039469 DOI: 10.3390/brainsci6030040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/23/2016] [Accepted: 09/01/2016] [Indexed: 12/16/2022] Open
Abstract
During the last 25 years, more than 100,000 patients have been treated with Deep Brain Stimulation (DBS). While human clinical and animal preclinical research has shed light on the complex brain-signaling disturbances that underpin e.g., Parkinson's disease (PD), less information is available when it comes to complex psychosocial changes following DBS interventions. In this contribution, we propose to more thoroughly investigate complex personality-related changes following deep brain stimulation through refined and reliable instruments in order to help patients and their relatives in the post-surgery phase. By pursuing this goal, we first outline the clinical importance DBS has attained followed by discussing problematic and undesired non-motor problems that accompany some DBS interventions. After providing a brief definition of complex changes, we move on by outlining the measurement problem complex changes relating to non-motor symptoms currently are associated with. The latter circumstance substantiates the need for refined instruments that are able to validly assess personality-related changes. After providing a brief paragraph with regard to conceptions of personality, we argue that the latter is significantly influenced by certain competencies which themselves currently play only a tangential role in the clinical DBS-discourse. Increasing awareness of the latter circumstance is crucial in the context of DBS because it could illuminate a link between competencies and the emergence of personality-related changes, such as new-onset impulse control disorders that have relevance for patients and their relatives. Finally, we elaborate on the field of application of instruments that are able to measure personality-related changes.
Collapse
Affiliation(s)
- Christian Ineichen
- Institute of Biomedical Ethics and History of Medicine, University of Zurich, Winterthurerstrasse 30, Zurich 8006, Switzerland.
| | - Heide Baumann-Vogel
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland.
| | - Markus Christen
- Institute of Biomedical Ethics and History of Medicine, University of Zurich, Winterthurerstrasse 30, Zurich 8006, Switzerland.
| |
Collapse
|
41
|
Chaudhury D, Liu H, Han MH. Neuronal correlates of depression. Cell Mol Life Sci 2015; 72:4825-48. [PMID: 26542802 PMCID: PMC4709015 DOI: 10.1007/s00018-015-2044-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/27/2015] [Accepted: 09/10/2015] [Indexed: 12/14/2022]
Abstract
Major depressive disorder (MDD) is a common psychiatric disorder effecting approximately 121 million people worldwide and recent reports from the World Health Organization (WHO) suggest that it will be the leading contributor to the global burden of diseases. At present, the most commonly used treatment strategies are still based on the monoamine hypothesis that has been the predominant theory in the last 60 years. Clinical observations show that only a subset of depressed patients exhibits full remission when treated with classical monoamine-based antidepressants together with the fact that patients exhibit multiple symptoms suggest that the pathophysiology leading to mood disorders may differ between patients. Accumulating evidence indicates that depression is a neural circuit disorder and that onset of depression may be located at different regions of the brain involving different transmitter systems and molecular mechanisms. This review synthesises findings from rodent studies from which emerges a role for different, yet interconnected, molecular systems and associated neural circuits to the aetiology of depression.
Collapse
Affiliation(s)
- Dipesh Chaudhury
- Division of Science, Experimental Research Building, Office 106, New York University Abu Dhabi (NYUAD), Saadiyat Island Campus, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | - He Liu
- Division of Science, Experimental Research Building, Office 106, New York University Abu Dhabi (NYUAD), Saadiyat Island Campus, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Ming-Hu Han
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|