1
|
Herber CS, Pratt KJ, Shea JM, Villeda SA, Giocomo LM. Spatial Coding Dysfunction and Network Instability in the Aging Medial Entorhinal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.588890. [PMID: 38659809 PMCID: PMC11042240 DOI: 10.1101/2024.04.12.588890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Across species, spatial memory declines with age, possibly reflecting altered hippocampal and medial entorhinal cortex (MEC) function. However, the integrity of cellular and network-level spatial coding in aged MEC is unknown. Here, we leveraged in vivo electrophysiology to assess MEC function in young, middle-aged, and aged mice navigating virtual environments. In aged grid cells, we observed impaired stabilization of context-specific spatial firing, correlated with spatial memory deficits. Additionally, aged grid networks shifted firing patterns often but with poor alignment to context changes. Aged spatial firing was also unstable in an unchanging environment. In these same mice, we identified 458 genes differentially expressed with age in MEC, 61 of which had expression correlated with spatial firing stability. These genes were enriched among interneurons and related to synaptic transmission. Together, these findings identify coordinated transcriptomic, cellular, and network changes in MEC implicated in impaired spatial memory in aging.
Collapse
Affiliation(s)
- Charlotte S. Herber
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Karishma J.B. Pratt
- Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, Box 0452, San Francisco, CA, 94143, USA
- These authors contributed equally
| | - Jeremy M. Shea
- Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, Box 0452, San Francisco, CA, 94143, USA
- These authors contributed equally
| | - Saul A. Villeda
- Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, Box 0452, San Francisco, CA, 94143, USA
- Bakar Aging Research Institute, San Francisco, CA, 94143, USA
| | - Lisa M. Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
- Lead contact
| |
Collapse
|
2
|
Savelli F. Spontaneous Dynamics of Hippocampal Place Fields in a Model of Combinatorial Competition among Stable Inputs. J Neurosci 2024; 44:e1663232024. [PMID: 38316560 PMCID: PMC10977031 DOI: 10.1523/jneurosci.1663-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
We present computer simulations illustrating how the plastic integration of spatially stable inputs could contribute to the dynamic character of hippocampal spatial representations. In novel environments of slightly larger size than typical apparatus, the emergence of well-defined place fields in real place cells seems to rely on inputs from normally functioning grid cells. Theoretically, the grid-to-place transformation is possible if a place cell is able to respond selectively to a combination of suitably aligned grids. We previously identified the functional characteristics that allow a synaptic plasticity rule to accomplish this selection by synaptic competition during rat foraging behavior. Here, we show that the synaptic competition can outlast the formation of place fields, contributing to their spatial reorganization over time, when the model is run in larger environments and the topographical/modular organization of grid inputs is taken into account. Co-simulated cells that differ only by their randomly assigned grid inputs display different degrees and kinds of spatial reorganization-ranging from place-field remapping to more subtle in-field changes or lapses in firing. The model predicts a greater number of place fields and propensity for remapping in place cells recorded from more septal regions of the hippocampus and/or in larger environments, motivating future experimental standardization across studies and animal models. In sum, spontaneous remapping could arise from rapid synaptic learning involving inputs that are functionally homogeneous, spatially stable, and minimally stochastic.
Collapse
Affiliation(s)
- Francesco Savelli
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
- Neurosciences Institute, The University of Texas at San Antonio, San Antonio, Texas 78249
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
3
|
Gonzalez A, Giocomo LM. Parahippocampal neurons encode task-relevant information for goal-directed navigation. eLife 2024; 12:RP85646. [PMID: 38363198 PMCID: PMC10942598 DOI: 10.7554/elife.85646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
A behavioral strategy crucial to survival is directed navigation to a goal, such as a food or home location. One potential neural substrate for supporting goal-directed navigation is the parahippocampus, which contains neurons that represent an animal's position, orientation, and movement through the world, and that change their firing activity to encode behaviorally relevant variables such as reward. However, little prior work on the parahippocampus has considered how neurons encode variables during goal-directed navigation in environments that dynamically change. Here, we recorded single units from rat parahippocampal cortex while subjects performed a goal-directed task. The maze dynamically changed goal-locations via a visual cue on a trial-to-trial basis, requiring subjects to use cue-location associations to receive reward. We observed a mismatch-like signal, with elevated neural activity on incorrect trials, leading to rate-remapping. The strength of this remapping correlated with task performance. Recordings during open-field foraging allowed us to functionally define navigational coding for a subset of the neurons recorded in the maze. This approach revealed that head-direction coding units remapped more than other functional-defined units. Taken together, this work thus raises the possibility that during goal-directed navigation, parahippocampal neurons encode error information reflective of an animal's behavioral performance.
Collapse
Affiliation(s)
- Alexander Gonzalez
- Department of Neurobiology, Stanford University School of MedicineStanfordUnited States
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
4
|
Bowler JC, Losonczy A. Direct cortical inputs to hippocampal area CA1 transmit complementary signals for goal-directed navigation. Neuron 2023; 111:4071-4085.e6. [PMID: 37816349 PMCID: PMC11490304 DOI: 10.1016/j.neuron.2023.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/14/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023]
Abstract
The subregions of the entorhinal cortex (EC) are conventionally thought to compute dichotomous representations for spatial processing, with the medial EC (MEC) providing a global spatial map and the lateral EC (LEC) encoding specific sensory details of experience. Yet, little is known about the specific types of information EC transmits downstream to the hippocampus. Here, we exploit in vivo sub-cellular imaging to record from EC axons in CA1 while mice perform navigational tasks in virtual reality (VR). We uncover distinct yet overlapping representations of task, location, and context in both MEC and LEC axons. MEC transmitted highly location- and context-specific codes; LEC inputs were biased by ongoing navigational goals. However, during tasks with reliable reward locations, the animals' position could be accurately decoded from either subregion. Our results revise the prevailing dogma about EC information processing, revealing novel ways spatial and non-spatial information is routed and combined upstream of the hippocampus.
Collapse
Affiliation(s)
- John C Bowler
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA.
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
5
|
Schøyen V, Pettersen MB, Holzhausen K, Fyhn M, Malthe-Sørenssen A, Lepperød ME. Coherently remapping toroidal cells but not Grid cells are responsible for path integration in virtual agents. iScience 2023; 26:108102. [PMID: 37867941 PMCID: PMC10589895 DOI: 10.1016/j.isci.2023.108102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/25/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
It is widely believed that grid cells provide cues for path integration, with place cells encoding an animal's location and environmental identity. When entering a new environment, these cells remap concurrently, sparking debates about their causal relationship. Using a continuous attractor recurrent neural network, we study spatial cell dynamics in multiple environments. We investigate grid cell remapping as a function of global remapping in place-like units through random resampling of place cell centers. Dimensionality reduction techniques reveal that a subset of cells manifest a persistent torus across environments. Unexpectedly, these toroidal cells resemble band-like cells rather than high grid score units. Subsequent pruning studies reveal that toroidal cells are crucial for path integration while grid cells are not. As we extend the model to operate across many environments, we delineate its generalization boundaries, revealing challenges with modeling many environments in current models.
Collapse
Affiliation(s)
- Vemund Schøyen
- Department of Biosciences, University of Oslo, Oslo 0313, Norway
| | | | | | - Marianne Fyhn
- Department of Biosciences, University of Oslo, Oslo 0313, Norway
- Simula Research Laboratory, Norway
| | - Anders Malthe-Sørenssen
- Department of Physics, University of Oslo, Oslo 0313, Norway
- Simula Research Laboratory, Norway
| | - Mikkel Elle Lepperød
- Department of Physics, University of Oslo, Oslo 0313, Norway
- Department of Biosciences, University of Oslo, Oslo 0313, Norway
- Simula Research Laboratory, Norway
| |
Collapse
|
6
|
Savelli F. Spontaneous dynamics of hippocampal place fields in a model of combinatorial competition among stable inputs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.556254. [PMID: 37732194 PMCID: PMC10508775 DOI: 10.1101/2023.09.04.556254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
We present computer simulations illustrating how the plastic integration of spatially stable inputs could contribute to the dynamic character of hippocampal spatial representations. In novel environments of slightly larger size than typical apparatus, the emergence of well-defined place fields in real place cells seems to rely on inputs from normally functioning grid cells. Theoretically, the grid-to-place transformation is possible if a place cell is able to respond selectively to a combination of suitably aligned grids. We previously identified the functional characteristics that allow a synaptic plasticity rule to accomplish this selection by synaptic competition during rat foraging behavior. Here, we show that the synaptic competition can outlast the formation of place fields, contributing to their spatial reorganization over time, when the model is run in larger environments and the topographical/modular organization of grid inputs is taken into account. Co-simulated cells that differ only by their randomly assigned grid inputs display different degrees and kinds of spatial reorganization-ranging from place-field remapping to more subtle in-field changes or lapses in firing. The model predicts a greater number of place fields and propensity for remapping in place cells recorded from more septal regions of the hippocampus and/or in larger environments, motivating future experimental standardization across studies and animal models. In sum, spontaneous remapping could arise from rapid synaptic learning involving inputs that are functionally homogeneous, spatially stable, and minimally stochastic. Significance Statement In both AI and theoretical neuroscience, learning systems often rely on the asymptotic convergence of slow-acting learning rules applied to input spaces that are presumed to be sampled repeatedly, for example over developmental timescales. Place cells of the hippocampus testify to a neural system capable of rapidly encoding cognitive variables-such as the animal's position in space-from limited experience. These internal representations undergo "spontaneous" changes over time, spurring much interest in their cognitive significance and underlying mechanisms. We investigate a model suggesting that some of these changes could be a tradeoff of rapid learning.
Collapse
|
7
|
Jeffery KJ. Symmetries and asymmetries in the neural encoding of 3D space. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210452. [PMID: 36511410 PMCID: PMC9745873 DOI: 10.1098/rstb.2021.0452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The neural coding of space centres on three foundational cell types: place cells, head direction cells and grid cells. One notable characteristic of these neurons is the symmetry properties of their spatial firing patterns. In symmetric environments, firing patterns are often also symmetric: for example, place cells show translational symmetry in aligned sub-compartments of a multi-compartment environment. A single head direction cell has a mirror-symmetric firing pattern, while a sub-class of head direction cells can show multi-fold rotational symmetries in multi-compartment environments, matching the symmetry of the recently experienced environment. The entorhinal grid cells are notable for the symmetry of their firing patterns in both rotational and translational domains. However, these symmetries are broken in a variety of situations. These symmetry-making and -breaking observations shed light on the underlying computations that generate these firing patterns, and also invite speculation as to whether they may have a functional role. This article outlines these findings and speculates on the consequences of the resultant firing symmetries and asymmetries for spatial coding and cognition. This article is part of a discussion meeting issue 'New approaches to 3D vision'.
Collapse
Affiliation(s)
- Kate J. Jeffery
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, 26 Bedford Way, London WC1H 0AP, UK
| |
Collapse
|
8
|
Gateway identity and spatial remapping in a combined grid and place cell attractor. Neural Netw 2023; 157:226-239. [DOI: 10.1016/j.neunet.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/04/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
|
9
|
Cholvin T, Hainmueller T, Bartos M. The hippocampus converts dynamic entorhinal inputs into stable spatial maps. Neuron 2021; 109:3135-3148.e7. [PMID: 34619088 PMCID: PMC8516433 DOI: 10.1016/j.neuron.2021.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/31/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
The medial entorhinal cortex (MEC)-hippocampal network plays a key role in the processing, storage, and recall of spatial information. However, how the spatial code provided by MEC inputs relates to spatial representations generated by principal cell assemblies within hippocampal subfields remains enigmatic. To investigate this coding relationship, we employed two-photon calcium imaging in mice navigating through dissimilar virtual environments. Imaging large MEC bouton populations revealed spatially tuned activity patterns. MEC inputs drastically changed their preferred spatial field locations between environments, whereas hippocampal cells showed lower levels of place field reconfiguration. Decoding analysis indicated that higher place field reliability and larger context-dependent activity-rate differences allow low numbers of principal cells, particularly in the DG and CA1, to provide information about location and context more accurately and rapidly than MEC inputs. Thus, conversion of dynamic MEC inputs into stable spatial hippocampal maps may enable fast encoding and efficient recall of spatio-contextual information. MEC inputs to the DG, CA3, and CA1 show different spatial coding properties MEC inputs remap even more strongly than hippocampal principal cells Hippocampal principal cell activity is more reliable and stable than their MEC inputs Hippocampal principal cells allow improved spatial and contextual readout
Collapse
Affiliation(s)
- Thibault Cholvin
- Institute for Physiology I, University of Freiburg, Medical Faculty, Freiburg 79104, Germany
| | - Thomas Hainmueller
- NYU Neuroscience Institute, 435 East 30th Street, New York, NY 10016, USA
| | - Marlene Bartos
- Institute for Physiology I, University of Freiburg, Medical Faculty, Freiburg 79104, Germany.
| |
Collapse
|
10
|
Low IIC, Williams AH, Campbell MG, Linderman SW, Giocomo LM. Dynamic and reversible remapping of network representations in an unchanging environment. Neuron 2021; 109:2967-2980.e11. [PMID: 34363753 DOI: 10.1016/j.neuron.2021.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/26/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022]
Abstract
Neurons in the medial entorhinal cortex alter their firing properties in response to environmental changes. This flexibility in neural coding is hypothesized to support navigation and memory by dividing sensory experience into unique episodes. However, it is unknown how the entorhinal circuit as a whole transitions between different representations when sensory information is not delineated into discrete contexts. Here we describe rapid and reversible transitions between multiple spatial maps of an unchanging task and environment. These remapping events were synchronized across hundreds of neurons, differentially affected navigational cell types, and correlated with changes in running speed. Despite widespread changes in spatial coding, remapping comprised a translation along a single dimension in population-level activity space, enabling simple decoding strategies. These findings provoke reconsideration of how the medial entorhinal cortex dynamically represents space and suggest a remarkable capacity of cortical circuits to rapidly and substantially reorganize their neural representations.
Collapse
Affiliation(s)
- Isabel I C Low
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| | - Alex H Williams
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Department of Statistics, Stanford University, Stanford, CA, USA
| | - Malcolm G Campbell
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott W Linderman
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Department of Statistics, Stanford University, Stanford, CA, USA
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Poth M, Herz AVM. Burst activity plays no role in the field-to-field variability and rate remapping of grid cells. Hippocampus 2021; 31:1128-1136. [PMID: 34314076 DOI: 10.1002/hipo.23378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 02/17/2021] [Accepted: 07/07/2021] [Indexed: 11/08/2022]
Abstract
Grid cells in rodent medial entorhinal cortex are thought to play a key role for spatial navigation. When the animal is freely moving in an open arena the firing fields of each grid cell tend to form a highly regular, hexagonal lattice spanning the environment. However, firing rates vary from field to field and change under contextual modifications, whereas the field locations shift at most by a small amount under such "rate remapping." The observed differences in firing rate could reflect overall activity changes or changes in the detailed spike-train statistics. As these two alternatives imply distinct neural coding schemes, we investigated whether temporal firing patterns vary from field to field and whether they change under rate remapping. Focusing on short time scales, we found that the proportion of bursts compared to all discharge events is similar in all firing fields of a given grid cell and does not change under rate remapping. For each cell, mean firing rates with bursts are proportional to mean firing rates without bursts. However, this ratio varies across cells. Additionally, we looked at how rate remapping relates to entorhinal theta-frequency oscillations. Theta-phase coding was preserved despite firing-rate changes from rate remapping but we did not observe differences between the first and second half of the theta cycle, as had been reported for CA1. Our results indicate that both, the heterogeneity between firing fields and rate remapping, are not due to altered firing patterns on short time scales but reflect location-specific changes at the firing-rate level.
Collapse
Affiliation(s)
- Michaela Poth
- Bernstein Center for Computational Neuroscience Munich and Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Andreas V M Herz
- Bernstein Center for Computational Neuroscience Munich and Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
12
|
Remapping and realignment in the human hippocampal formation predict context-dependent spatial behavior. Nat Neurosci 2021; 24:863-872. [PMID: 33859438 DOI: 10.1038/s41593-021-00835-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/08/2021] [Indexed: 02/02/2023]
Abstract
To guide spatial behavior, the brain must retrieve memories that are appropriately associated with different navigational contexts. Contextual memory might be mediated by cell ensembles in the hippocampal formation that alter their responses to changes in context, processes known as remapping and realignment in the hippocampus and entorhinal cortex, respectively. However, whether remapping and realignment guide context-dependent spatial behavior is unclear. To address this issue, human participants learned object-location associations within two distinct virtual reality environments and subsequently had their memory tested during functional MRI (fMRI) scanning. Entorhinal grid-like representations showed realignment between the two contexts, and coincident changes in fMRI activity patterns consistent with remapping were observed in the hippocampus. Critically, in a third ambiguous context, trial-by-trial remapping and realignment in the hippocampal-entorhinal network predicted context-dependent behavior. These results reveal the hippocampal-entorhinal mechanisms mediating human contextual memory and suggest that the hippocampal formation plays a key role in spatial behavior under uncertainty.
Collapse
|
13
|
Nagele J, Herz AVM, Stemmler MB. Untethered firing fields and intermittent silences: Why grid-cell discharge is so variable. Hippocampus 2020; 30:367-383. [PMID: 32045073 DOI: 10.1002/hipo.23191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 11/07/2022]
Abstract
Grid cells in medial entorhinal cortex are notoriously variable in their responses, despite the striking hexagonal arrangement of their spatial firing fields. Indeed, when the animal moves through a firing field, grid cells often fire much more vigorously than predicted or do not fire at all. The source of this trial-to-trial variability is not completely understood. By analyzing grid-cell spike trains from mice running in open arenas and on linear tracks, we characterize the phenomenon of "missed" firing fields using the statistical theory of zero inflation. We find that one major cause of grid-cell variability lies in the spatial representation itself: firing fields are not as strongly anchored to spatial location as the averaged grid suggests. In addition, grid fields from different cells drift together from trial to trial, regardless of whether the environment is real or virtual, or whether the animal moves in light or darkness. Spatial realignment across trials sharpens the grid representation, yielding firing fields that are more pronounced and significantly narrower. These findings indicate that ensembles of grid cells encode relative position more reliably than absolute position.
Collapse
Affiliation(s)
- Johannes Nagele
- Bernstein Center for Computational Neuroscience Munich and Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas V M Herz
- Bernstein Center for Computational Neuroscience Munich and Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin B Stemmler
- Bernstein Center for Computational Neuroscience Munich and Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
14
|
Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories. Nat Rev Neurosci 2020; 21:153-168. [PMID: 32042144 DOI: 10.1038/s41583-019-0260-z] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
Abstract
The dentate gyrus (DG) has a key role in hippocampal memory formation. Intriguingly, DG lesions impair many, but not all, hippocampus-dependent mnemonic functions, indicating that the rest of the hippocampus (CA1-CA3) can operate autonomously under certain conditions. An extensive body of theoretical work has proposed how the architectural elements and various cell types of the DG may underlie its function in cognition. Recent studies recorded and manipulated the activity of different neuron types in the DG during memory tasks and have provided exciting new insights into the mechanisms of DG computational processes, particularly for the encoding, retrieval and discrimination of similar memories. Here, we review these DG-dependent mnemonic functions in light of the new findings and explore mechanistic links between the cellular and network properties of, and the computations performed by, the DG.
Collapse
|
15
|
Butler WN, Hardcastle K, Giocomo LM. Remembered reward locations restructure entorhinal spatial maps. Science 2019; 363:1447-1452. [PMID: 30923222 DOI: 10.1126/science.aav5297] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/06/2019] [Indexed: 01/19/2023]
Abstract
Ethologically relevant navigational strategies often incorporate remembered reward locations. Although neurons in the medial entorhinal cortex provide a maplike representation of the external spatial world, whether this map integrates information regarding learned reward locations remains unknown. We compared entorhinal coding in rats during a free-foraging task and a spatial memory task. Entorhinal spatial maps restructured to incorporate a learned reward location, which in turn improved positional decoding near this location. This finding indicates that different navigational strategies drive the emergence of discrete entorhinal maps of space and points to a role for entorhinal codes in a diverse range of navigational behaviors.
Collapse
Affiliation(s)
- William N Butler
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kiah Hardcastle
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
16
|
Dannenberg H, Alexander AS, Robinson JC, Hasselmo ME. The Role of Hierarchical Dynamical Functions in Coding for Episodic Memory and Cognition. J Cogn Neurosci 2019; 31:1271-1289. [PMID: 31251890 DOI: 10.1162/jocn_a_01439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Behavioral research in human verbal memory function led to the initial definition of episodic memory and semantic memory. A complete model of the neural mechanisms of episodic memory must include the capacity to encode and mentally reconstruct everything that humans can recall from their experience. This article proposes new model features necessary to address the complexity of episodic memory encoding and recall in the context of broader cognition and the functional properties of neurons that could contribute to this broader scope of memory. Many episodic memory models represent individual snapshots of the world with a sequence of vectors, but a full model must represent complex functions encoding and retrieving the relations between multiple stimulus features across space and time on multiple hierarchical scales. Episodic memory involves not only the space and time of an agent experiencing events within an episode but also features shown in neurophysiological data such as coding of speed, direction, boundaries, and objects. Episodic memory includes not only a spatio-temporal trajectory of a single agent but also segments of spatio-temporal trajectories for other agents and objects encountered in the environment consistent with data on encoding the position and angle of sensory features of objects and boundaries. We will discuss potential interactions of episodic memory circuits in the hippocampus and entorhinal cortex with distributed neocortical circuits that must represent all features of human cognition.
Collapse
|
17
|
Grid-like Neural Representations Support Olfactory Navigation of a Two-Dimensional Odor Space. Neuron 2019; 102:1066-1075.e5. [PMID: 31023509 DOI: 10.1016/j.neuron.2019.03.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/28/2018] [Accepted: 03/21/2019] [Indexed: 12/15/2022]
Abstract
Searching for food, friends, and mates often begins with an airborne scent. Importantly, odor concentration rises with physical proximity to an odorous source, suggesting a framework for orienting within olfactory landscapes to optimize behavior. Here, we created a two-dimensional odor space composed purely of odor stimuli to model how a navigator encounters smells in a natural environment. We show that human subjects can learn to navigate in olfactory space and form predictions of to-be-encountered smells. During navigation, fMRI responses in entorhinal cortex and ventromedial prefrontal cortex take the form of grid-like representations with hexagonal periodicity and entorhinal grid strength scaled with behavioral performance across subjects. The identification of olfactory grid-like codes with 6-fold symmetry highlights a unique neural mechanism by which odor information can be assembled into spatially navigable cognitive maps, optimizing orientation, and path finding toward an odor source.
Collapse
|
18
|
Boccara CN, Nardin M, Stella F, O’Neill J, Csicsvari J. The entorhinal cognitive map is attracted to goals. Science 2019; 363:1443-1447. [DOI: 10.1126/science.aav4837] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 02/06/2019] [Indexed: 01/15/2023]
Abstract
Grid cells with their rigid hexagonal firing fields are thought to provide an invariant metric to the hippocampal cognitive map, yet environmental geometrical features have recently been shown to distort the grid structure. Given that the hippocampal role goes beyond space, we tested the influence of nonspatial information on the grid organization. We trained rats to daily learn three new reward locations on a cheeseboard maze while recording from the medial entorhinal cortex and the hippocampal CA1 region. Many grid fields moved toward goal location, leading to long-lasting deformations of the entorhinal map. Therefore, distortions in the grid structure contribute to goal representation during both learning and recall, which demonstrates that grid cells participate in mnemonic coding and do not merely provide a simple metric of space.
Collapse
|
19
|
Jacob PY, Capitano F, Poucet B, Save E, Sargolini F. Path integration maintains spatial periodicity of grid cell firing in a 1D circular track. Nat Commun 2019; 10:840. [PMID: 30783085 PMCID: PMC6381105 DOI: 10.1038/s41467-019-08795-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Entorhinal grid cells are thought to provide a 2D spatial metric of the environment. In this study we demonstrate that in a familiar 1D circular track (i.e., a continuous space) grid cells display a novel 1D equidistant firing pattern based on integrated distance rather than travelled distance or time. In addition, field spacing is increased compared to a 2D open field, probably due to a reduced access to the visual cue in the track. This metrical modification is accompanied by a change in LFP theta oscillations, but no change in intrinsic grid cell rhythmicity, or firing activity of entorhinal speed and head-direction cells. These results suggest that in a 1D circular space grid cell spatial selectivity is shaped by path integration processes, while grid scale relies on external information. In an open field, the preferential firing of grid cells on a hexagonal lattice is formed by integrating external as well as self-motion cues. Here, the authors show that on a 1D circular track, path integration cues shape the spatial selectivity of grid cells while external cues determine the scale of the grid.
Collapse
Affiliation(s)
- Pierre-Yves Jacob
- Aix Marseille Université, CNRS, LNC UMR 7291, 13331, Marseille, France.
| | - Fabrizio Capitano
- Aix Marseille Université, CNRS, LNC UMR 7291, 13331, Marseille, France
| | - Bruno Poucet
- Aix Marseille Université, CNRS, LNC UMR 7291, 13331, Marseille, France
| | - Etienne Save
- Aix Marseille Université, CNRS, LNC UMR 7291, 13331, Marseille, France
| | | |
Collapse
|
20
|
Hawkins J, Lewis M, Klukas M, Purdy S, Ahmad S. A Framework for Intelligence and Cortical Function Based on Grid Cells in the Neocortex. Front Neural Circuits 2019; 12:121. [PMID: 30687022 PMCID: PMC6336927 DOI: 10.3389/fncir.2018.00121] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/24/2018] [Indexed: 11/17/2022] Open
Abstract
How the neocortex works is a mystery. In this paper we propose a novel framework for understanding its function. Grid cells are neurons in the entorhinal cortex that represent the location of an animal in its environment. Recent evidence suggests that grid cell-like neurons may also be present in the neocortex. We propose that grid cells exist throughout the neocortex, in every region and in every cortical column. They define a location-based framework for how the neocortex functions. Whereas grid cells in the entorhinal cortex represent the location of one thing, the body relative to its environment, we propose that cortical grid cells simultaneously represent the location of many things. Cortical columns in somatosensory cortex track the location of tactile features relative to the object being touched and cortical columns in visual cortex track the location of visual features relative to the object being viewed. We propose that mechanisms in the entorhinal cortex and hippocampus that evolved for learning the structure of environments are now used by the neocortex to learn the structure of objects. Having a representation of location in each cortical column suggests mechanisms for how the neocortex represents object compositionality and object behaviors. It leads to the hypothesis that every part of the neocortex learns complete models of objects and that there are many models of each object distributed throughout the neocortex. The similarity of circuitry observed in all cortical regions is strong evidence that even high-level cognitive tasks are learned and represented in a location-based framework.
Collapse
|
21
|
Rodríguez-Domínguez U, Caplan JB. A hexagonal Fourier model of grid cells. Hippocampus 2018; 29:37-45. [DOI: 10.1002/hipo.23028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/29/2018] [Accepted: 09/02/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Ulises Rodríguez-Domínguez
- Department of Psychology and Neuroscience and Mental Health Institute; University of Alberta; Edmonton Alberta Canada
| | - Jeremy B. Caplan
- Department of Psychology and Neuroscience and Mental Health Institute; University of Alberta; Edmonton Alberta Canada
| |
Collapse
|
22
|
Grid-Cell Activity on Linear Tracks Indicates Purely Translational Remapping of 2D Firing Patterns at Movement Turning Points. J Neurosci 2018; 38:7004-7011. [PMID: 29976622 DOI: 10.1523/jneurosci.0413-18.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/21/2018] [Accepted: 06/24/2018] [Indexed: 12/15/2022] Open
Abstract
Grid cells in rodent medial entorhinal cortex are thought to play a critical role for spatial navigation. When the animal is freely moving in an open arena the firing fields of each grid cell tend to form a hexagonal lattice spanning the environment. For movements along a linear track the cells seem to respond differently. They show multiple firing fields that are not periodically arranged and whose shape and position change when the running direction is reversed. In addition, peak firing rates vary widely from field to field. Measured along one running direction only, firing fields are, however, compatible with a slice through a two-dimensional (2D) hexagonal pattern. It is an open question, whether this is also true if leftward and rightward runs are jointly considered. By analyzing data from 15 male Long-Evans rats, we show that a single hexagonal firing pattern explains the linear-track data if translational shifts of the pattern are allowed at the movement turning points. A rotation or scaling of the grid is not required. The agreement is further improved if the peak firing rates of the underlying 2D grid fields can vary from field to field, as suggested by recent studies. These findings have direct consequences for experiments using linear tracks in virtual reality.SIGNIFICANCE STATEMENT Various types of neurons support spatial navigation. Their response properties are often studied in reduced settings and might change when the animal can freely explore its environment. Grid cells in rodents, for example, exhibit seemingly irregular firing fields when animal movement is restricted to a linear track but highly regular patterns in two-dimensional (2D) arenas. We show that linear-track responses of a cell for both leftward and rightward running directions can be explained as cuts through a single hexagonal pattern if translational remapping is allowed at movement turning points; neither rotations nor scale transformations are needed. These results provide a basis to quantify grid-cell activity in 1D virtual reality and could help to detect and categorize grid cells without experiments in 2D environments.
Collapse
|
23
|
Grieves RM, Duvelle É, Dudchenko PA. A boundary vector cell model of place field repetition. SPATIAL COGNITION AND COMPUTATION 2018. [DOI: 10.1080/13875868.2018.1437621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Roddy M Grieves
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK
| | - Éléonore Duvelle
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK
| | - Paul A Dudchenko
- School of Natural Sciences, University of Stirling, Stirling, UK
- Centre for Cognitive and Neural Systems, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
24
|
Hinman JR, Dannenberg H, Alexander AS, Hasselmo ME. Neural mechanisms of navigation involving interactions of cortical and subcortical structures. J Neurophysiol 2018; 119:2007-2029. [PMID: 29442559 DOI: 10.1152/jn.00498.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Animals must perform spatial navigation for a range of different behaviors, including selection of trajectories toward goal locations and foraging for food sources. To serve this function, a number of different brain regions play a role in coding different dimensions of sensory input important for spatial behavior, including the entorhinal cortex, the retrosplenial cortex, the hippocampus, and the medial septum. This article will review data concerning the coding of the spatial aspects of animal behavior, including location of the animal within an environment, the speed of movement, the trajectory of movement, the direction of the head in the environment, and the position of barriers and objects both relative to the animal's head direction (egocentric) and relative to the layout of the environment (allocentric). The mechanisms for coding these important spatial representations are not yet fully understood but could involve mechanisms including integration of self-motion information or coding of location based on the angle of sensory features in the environment. We will review available data and theories about the mechanisms for coding of spatial representations. The computation of different aspects of spatial representation from available sensory input requires complex cortical processing mechanisms for transformation from egocentric to allocentric coordinates that will only be understood through a combination of neurophysiological studies and computational modeling.
Collapse
Affiliation(s)
- James R Hinman
- Center for Systems Neuroscience, Boston University , Boston, Massachusetts
| | - Holger Dannenberg
- Center for Systems Neuroscience, Boston University , Boston, Massachusetts
| | - Andrew S Alexander
- Center for Systems Neuroscience, Boston University , Boston, Massachusetts
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Boston University , Boston, Massachusetts
| |
Collapse
|
25
|
Latuske P, Kornienko O, Kohler L, Allen K. Hippocampal Remapping and Its Entorhinal Origin. Front Behav Neurosci 2018; 11:253. [PMID: 29354038 PMCID: PMC5758554 DOI: 10.3389/fnbeh.2017.00253] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/13/2017] [Indexed: 11/13/2022] Open
Abstract
The activity of hippocampal cell ensembles is an accurate predictor of the position of an animal in its surrounding space. One key property of hippocampal cell ensembles is their ability to change in response to alterations in the surrounding environment, a phenomenon called remapping. In this review article, we present evidence for the distinct types of hippocampal remapping. The progressive divergence over time of cell ensembles active in different environments and the transition dynamics between pre-established maps are discussed. Finally, we review recent work demonstrating that hippocampal remapping can be triggered by neurons located in the entorhinal cortex.
Collapse
Affiliation(s)
- Patrick Latuske
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Medical Faculty of Heidelberg University, Heidelberg University, Heidelberg, Germany
| | - Olga Kornienko
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Medical Faculty of Heidelberg University, Heidelberg University, Heidelberg, Germany
| | - Laura Kohler
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Medical Faculty of Heidelberg University, Heidelberg University, Heidelberg, Germany
| | - Kevin Allen
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Medical Faculty of Heidelberg University, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
26
|
Grieves RM, Duvelle É, Wood ER, Dudchenko PA. Field repetition and local mapping in the hippocampus and the medial entorhinal cortex. J Neurophysiol 2017; 118:2378-2388. [PMID: 28814638 PMCID: PMC5646201 DOI: 10.1152/jn.00933.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 11/22/2022] Open
Abstract
Hippocampal place cells support spatial cognition and are thought to form the neural substrate of a global "cognitive map." A widely held view is that parts of the hippocampus also underlie the ability to separate patterns or to provide different neural codes for distinct environments. However, a number of studies have shown that in environments composed of multiple, repeating compartments, place cells and other spatially modulated neurons show the same activity in each local area. This repetition of firing fields may reflect pattern completion and may make it difficult for animals to distinguish similar local environments. In this review we 1) highlight some of the navigation difficulties encountered by humans in repetitive environments, 2) summarize literature demonstrating that place and grid cells represent local and not global space, and 3) attempt to explain the origin of these phenomena. We argue that the repetition of firing fields can be a useful tool for understanding the relationship between grid cells in the entorhinal cortex and place cells in the hippocampus, the spatial inputs shared by these cells, and the propagation of spatially related signals through these structures.
Collapse
Affiliation(s)
- Roddy M Grieves
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, United Kingdom
| | - Éléonore Duvelle
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, United Kingdom
| | - Emma R Wood
- Centre for Cognitive and Neural Systems, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom; and
| | - Paul A Dudchenko
- Centre for Cognitive and Neural Systems, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom; and
- Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
27
|
Ismakov R, Barak O, Jeffery K, Derdikman D. Grid Cells Encode Local Positional Information. Curr Biol 2017; 27:2337-2343.e3. [PMID: 28756950 PMCID: PMC5558037 DOI: 10.1016/j.cub.2017.06.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/30/2017] [Accepted: 06/13/2017] [Indexed: 11/30/2022]
Abstract
The brain has an extraordinary ability to create an internal spatial map of the external world [1]. This map-like representation of environmental surroundings is encoded through specific types of neurons, located within the hippocampus and entorhinal cortex, which exhibit spatially tuned firing patterns [2, 3]. In addition to encoding space, these neurons are believed to be related to contextual information and memory [4, 5, 6, 7]. One class of such cells is the grid cells, which are located within the entorhinal cortex, presubiculum, and parasubiculum [3, 8]. Grid cell firing forms a hexagonal array of firing fields, a pattern that is largely thought to reflect the operation of intrinsic self-motion-related computations [9, 10, 11, 12]. If this is the case, then fields should be relatively uniform in size, number of spikes, and peak firing rate. However, it has been suggested that this is not in fact the case [3, 13]. The possibility exists that local spatial information also influences grid cells, which—if true—would greatly change the way in which grid cells are thought to contribute to place coding. Accordingly, we asked how discriminable the individual fields of a given grid cell are by looking at the distribution of field firing rates and reproducibility of this distribution across trials. Grid fields were less uniform in intensity than expected, and the pattern of strong and weak fields was spatially stable and recurred across trials. The distribution remained unchanged even after arena rescaling, but not after remapping. This suggests that additional local information is being overlaid onto the global hexagonal pattern of grid cells. Individual grid cell fields exhibit large variability in firing rates The fields firing rate ratios tend to remain stable within and across sessions The fields' firing rate ratios are stable even during rescaling of the arena The firing profile of different fields is retained until remapping occurs
Collapse
Affiliation(s)
- Revekka Ismakov
- Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 31096, Israel
| | - Omri Barak
- Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 31096, Israel; Network Biology Research Laboratories, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Kate Jeffery
- Institute of Behavioural Neuroscience, University College London, 26 Bedford Way, London WC1H 0AP, UK
| | - Dori Derdikman
- Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 31096, Israel.
| |
Collapse
|
28
|
Grid and Nongrid Cells in Medial Entorhinal Cortex Represent Spatial Location and Environmental Features with Complementary Coding Schemes. Neuron 2017; 94:83-92.e6. [PMID: 28343867 DOI: 10.1016/j.neuron.2017.03.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 12/19/2016] [Accepted: 03/02/2017] [Indexed: 01/29/2023]
Abstract
The medial entorhinal cortex (mEC) has been identified as a hub for spatial information processing by the discovery of grid, border, and head-direction cells. Here we find that in addition to these well-characterized classes, nearly all of the remaining two-thirds of mEC cells can be categorized as spatially selective. We refer to these cells as nongrid spatial cells and confirmed that their spatial firing patterns were unrelated to running speed and highly reproducible within the same environment. However, in response to manipulations of environmental features, such as box shape or box color, nongrid spatial cells completely reorganized their spatial firing patterns. At the same time, grid cells retained their spatial alignment and predominantly responded with redistributed firing rates across their grid fields. Thus, mEC contains a joint representation of both spatial and environmental feature content, with specialized cell types showing different types of integrated coding of multimodal information.
Collapse
|
29
|
Savelli F, Luck JD, Knierim JJ. Framing of grid cells within and beyond navigation boundaries. eLife 2017; 6. [PMID: 28084992 PMCID: PMC5271608 DOI: 10.7554/elife.21354] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
Grid cells represent an ideal candidate to investigate the allocentric determinants of the brain's cognitive map. Most studies of grid cells emphasized the roles of geometric boundaries within the navigational range of the animal. Behaviors such as novel route-taking between local environments indicate the presence of additional inputs from remote cues beyond the navigational borders. To investigate these influences, we recorded grid cells as rats explored an open-field platform in a room with salient, remote cues. The platform was rotated or translated relative to the room frame of reference. Although the local, geometric frame of reference often exerted the strongest control over the grids, the remote cues demonstrated a consistent, sometimes dominant, countervailing influence. Thus, grid cells are controlled by both local geometric boundaries and remote spatial cues, consistent with prior studies of hippocampal place cells and providing a rich representational repertoire to support complex navigational (and perhaps mnemonic) processes.
Collapse
Affiliation(s)
- Francesco Savelli
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, United States
| | - J D Luck
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, United States
| | - James J Knierim
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, United States.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
30
|
Pérez-Escobar JA, Kornienko O, Latuske P, Kohler L, Allen K. Visual landmarks sharpen grid cell metric and confer context specificity to neurons of the medial entorhinal cortex. eLife 2016; 5. [PMID: 27449281 PMCID: PMC4987135 DOI: 10.7554/elife.16937] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/21/2016] [Indexed: 01/19/2023] Open
Abstract
Neurons of the medial entorhinal cortex (MEC) provide spatial representations critical for navigation. In this network, the periodic firing fields of grid cells act as a metric element for position. The location of the grid firing fields depends on interactions between self-motion information, geometrical properties of the environment and nonmetric contextual cues. Here, we test whether visual information, including nonmetric contextual cues, also regulates the firing rate of MEC neurons. Removal of visual landmarks caused a profound impairment in grid cell periodicity. Moreover, the speed code of MEC neurons changed in darkness and the activity of border cells became less confined to environmental boundaries. Half of the MEC neurons changed their firing rate in darkness. Manipulations of nonmetric visual cues that left the boundaries of a 1D environment in place caused rate changes in grid cells. These findings reveal context specificity in the rate code of MEC neurons. DOI:http://dx.doi.org/10.7554/eLife.16937.001
Collapse
Affiliation(s)
- José Antonio Pérez-Escobar
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University, Heidelberg, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Olga Kornienko
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University, Heidelberg, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Patrick Latuske
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University, Heidelberg, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Laura Kohler
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University, Heidelberg, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Kevin Allen
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University, Heidelberg, Germany.,German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
31
|
Keene CS, Bladon J, McKenzie S, Liu CD, O'Keefe J, Eichenbaum H. Complementary Functional Organization of Neuronal Activity Patterns in the Perirhinal, Lateral Entorhinal, and Medial Entorhinal Cortices. J Neurosci 2016; 36:3660-75. [PMID: 27030753 PMCID: PMC4812128 DOI: 10.1523/jneurosci.4368-15.2016] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/16/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED It is commonly conceived that the cortical areas of the hippocampal region are functionally divided into the perirhinal cortex (PRC) and the lateral entorhinal cortex (LEC), which selectively process object information; and the medial entorhinal cortex (MEC), which selectively processes spatial information. Contrary to this notion, in rats performing a task that demands both object and spatial information processing, single neurons in PRC, LEC, and MEC, including those in both superficial and deep cortical areas and in grid, border, and head direction cells of MEC, have a highly similar range of selectivity to object and spatial dimensions of the task. By contrast, representational similarity analysis of population activity reveals a key distinction in the organization of information in these areas, such that PRC and LEC populations prioritize object over location information, whereas MEC populations prioritize location over object information. These findings bring to the hippocampal system a growing emphasis on population analyses as a powerful tool for characterizing neural representations supporting cognition and memory. SIGNIFICANCE STATEMENT Contrary to the common view that brain regions in the "what" and "where" streams distinctly process object and spatial cues, respectively, we found that both streams encode both object and spatial information but distinctly organize memories for objects and space. Specifically, perirhinal cortex and lateral entorhinal cortex represent objects and, within the object-specific representations, the locations where they occur. Conversely, medial entorhinal cortex represents relevant locations and, within those spatial representations, the objects that occupy them. Furthermore, these findings reach beyond simple notions of perirhinal cortex and lateral entorhinal cortex neurons as object detectors and MEC neurons as position detectors, and point to a more complex organization of memory representations within the medial temporal lobe system.
Collapse
Affiliation(s)
- Christopher S Keene
- Center for Memory and Brain, Boston University, Boston, Massachusetts 02215, and
| | - John Bladon
- Center for Memory and Brain, Boston University, Boston, Massachusetts 02215, and
| | - Sam McKenzie
- The Neuroscience Institute, New York University Langone Medical Center, New York, New York 10016
| | - Cindy D Liu
- Center for Memory and Brain, Boston University, Boston, Massachusetts 02215, and
| | - Joseph O'Keefe
- Center for Memory and Brain, Boston University, Boston, Massachusetts 02215, and
| | - Howard Eichenbaum
- Center for Memory and Brain, Boston University, Boston, Massachusetts 02215, and
| |
Collapse
|
32
|
Hayman RMA, Casali G, Wilson JJ, Jeffery KJ. Grid cells on steeply sloping terrain: evidence for planar rather than volumetric encoding. Front Psychol 2015; 6:925. [PMID: 26236245 PMCID: PMC4502341 DOI: 10.3389/fpsyg.2015.00925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/22/2015] [Indexed: 11/29/2022] Open
Abstract
Neural encoding of navigable space involves a network of structures centered on the hippocampus, whose neurons –place cells – encode current location. Input to the place cells includes afferents from the entorhinal cortex, which contains grid cells. These are neurons expressing spatially localized activity patches, or firing fields, that are evenly spaced across the floor in a hexagonal close-packed array called a grid. It is thought that grids function to enable the calculation of distances. The question arises as to whether this odometry process operates in three dimensions, and so we queried whether grids permeate three-dimensional (3D) space – that is, form a lattice – or whether they simply follow the environment surface. If grids form a 3D lattice then this lattice would ordinarily be aligned horizontally (to explain the usual hexagonal pattern observed). A tilted floor would transect several layers of this putative lattice, resulting in interruption of the hexagonal pattern. We model this prediction with simulated grid lattices, and show that the firing of a grid cell on a 40°-tilted surface should cover proportionally less of the surface, with smaller field size, fewer fields, and reduced hexagonal symmetry. However, recording of real grid cells as animals foraged on a 40°-tilted surface found that firing of grid cells was almost indistinguishable, in pattern or rate, from that on the horizontal surface, with if anything increased coverage and field number, and preserved field size. It thus appears unlikely that the sloping surface transected a lattice. However, grid cells on the slope displayed slightly degraded firing patterns, with reduced coherence and slightly reduced symmetry. These findings collectively suggest that the grid cell component of the metric representation of space is not fixed in absolute 3D space but is influenced both by the surface the animal is on and by the relationship of this surface to the horizontal, supporting the hypothesis that the neural map of space is “multi-planar” rather than fully volumetric.
Collapse
Affiliation(s)
- Robin M A Hayman
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, Faculty of Brain Sciences, University College London London, UK
| | - Giulio Casali
- Institute of Behavioural Neuroscience, Research Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London London, UK
| | - Jonathan J Wilson
- Institute of Behavioural Neuroscience, Research Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London London, UK
| | - Kate J Jeffery
- Institute of Behavioural Neuroscience, Research Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London London, UK
| |
Collapse
|