1
|
Abstract
The human brain possesses neural networks and mechanisms enabling the representation of numbers, basic arithmetic operations, and mathematical reasoning. Without the ability to represent numerical quantity and perform calculations, our scientifically and technically advanced culture would not exist. However, the origins of numerical abilities are grounded in an intuitive understanding of quantity deeply rooted in biology. Nevertheless, more advanced symbolic arithmetic skills require a cultural background with formal mathematical education. In the past two decades, cognitive neuroscience has seen significant progress in understanding the workings of the calculating brain through various methods and model systems. This review begins by exploring the mental and neuronal representations of nonsymbolic numerical quantity and then progresses to symbolic representations acquired in childhood. During arithmetic operations (addition, subtraction, multiplication, and division), these representations are processed and transformed according to arithmetic rules and principles, leveraging different mental strategies and types of arithmetic knowledge that can be dissociated in the brain. Although it was once believed that number processing and calculation originated from the language faculty, it is now evident that mathematical and linguistic abilities are primarily processed independently in the brain. Understanding how the healthy brain processes numerical information is crucial for gaining insights into debilitating numerical disorders, including acquired conditions like acalculia and learning-related calculation disorders such as developmental dyscalculia.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Pinheiro-Chagas P, Sava-Segal C, Akkol S, Daitch A, Parvizi J. Spatiotemporal Dynamics of Successive Activations across the Human Brain during Simple Arithmetic Processing. J Neurosci 2024; 44:e2118222024. [PMID: 38485257 PMCID: PMC11044197 DOI: 10.1523/jneurosci.2118-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 03/26/2024] Open
Abstract
Previous neuroimaging studies have offered unique insights about the spatial organization of activations and deactivations across the brain; however, these were not powered to explore the exact timing of events at the subsecond scale combined with a precise anatomical source of information at the level of individual brains. As a result, we know little about the order of engagement across different brain regions during a given cognitive task. Using experimental arithmetic tasks as a prototype for human-unique symbolic processing, we recorded directly across 10,076 brain sites in 85 human subjects (52% female) using the intracranial electroencephalography. Our data revealed a remarkably distributed change of activity in almost half of the sampled sites. In each activated brain region, we found juxtaposed neuronal populations preferentially responsive to either the target or control conditions, arranged in an anatomically orderly manner. Notably, an orderly successive activation of a set of brain regions-anatomically consistent across subjects-was observed in individual brains. The temporal order of activations across these sites was replicable across subjects and trials. Moreover, the degree of functional connectivity between the sites decreased as a function of temporal distance between regions, suggesting that the information is partially leaked or transformed along the processing chain. Our study complements prior imaging studies by providing hitherto unknown information about the timing of events in the brain during arithmetic processing. Such findings can be a basis for developing mechanistic computational models of human-specific cognitive symbolic systems.
Collapse
Affiliation(s)
- Pedro Pinheiro-Chagas
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Science, Stanford University, Stanford, California 94305
- UCSF Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California
| | - Clara Sava-Segal
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Science, Stanford University, Stanford, California 94305
| | - Serdar Akkol
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Science, Stanford University, Stanford, California 94305
| | - Amy Daitch
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Science, Stanford University, Stanford, California 94305
| | - Josef Parvizi
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Science, Stanford University, Stanford, California 94305
| |
Collapse
|
3
|
Ren X, Libertus ME. Identifying the Neural Bases of Math Competence Based on Structural and Functional Properties of the Human Brain. J Cogn Neurosci 2023; 35:1212-1228. [PMID: 37172121 DOI: 10.1162/jocn_a_02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Human populations show large individual differences in math performance and math learning abilities. Early math skill acquisition is critical for providing the foundation for higher quantitative skill acquisition and succeeding in modern society. However, the neural bases underlying individual differences in math competence remain unclear. Modern neuroimaging techniques allow us to not only identify distinct local cortical regions but also investigate large-scale neural networks underlying math competence both structurally and functionally. To gain insights into the neural bases of math competence, this review provides an overview of the structural and functional neural markers for math competence in both typical and atypical populations of children and adults. Although including discussion of arithmetic skills in children, this review primarily focuses on the neural markers associated with complex math skills. Basic number comprehension and number comparison skills are outside the scope of this review. By synthesizing current research findings, we conclude that neural markers related to math competence are not confined to one particular region; rather, they are characterized by a distributed and interconnected network of regions across the brain, primarily focused on frontal and parietal cortices. Given that human brain is a complex network organized to minimize the cost of information processing, an efficient brain is capable of integrating information from different regions and coordinating the activity of various brain regions in a manner that maximizes the overall efficiency of the network to achieve the goal. We end by proposing that frontoparietal network efficiency is critical for math competence, which enables the recruitment of task-relevant neural resources and the engagement of distributed neural circuits in a goal-oriented manner. Thus, it will be important for future studies to not only examine brain activation patterns of discrete regions but also examine distributed network patterns across the brain, both structurally and functionally.
Collapse
|
4
|
Cheng D, Cui Z, Hu Y, Zhou X. Which visual property correlates with the relationship between numerosity sense and arithmetic fluency. VISUAL COGNITION 2022. [DOI: 10.1080/13506285.2022.2128130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Dazhi Cheng
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, People’s Republic of China
- Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, People’s Republic of China
- Department of Pediatric Neurology, Capital Institute of Pediatrics, Beijing, People’s Republic of China
| | - Zhijun Cui
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, People’s Republic of China
- Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, People’s Republic of China
| | - Yuwei Hu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, People’s Republic of China
- Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, People’s Republic of China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, People’s Republic of China
- Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Caucheteux C, King JR. Brains and algorithms partially converge in natural language processing. Commun Biol 2022; 5:134. [PMID: 35173264 PMCID: PMC8850612 DOI: 10.1038/s42003-022-03036-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
Deep learning algorithms trained to predict masked words from large amount of text have recently been shown to generate activations similar to those of the human brain. However, what drives this similarity remains currently unknown. Here, we systematically compare a variety of deep language models to identify the computational principles that lead them to generate brain-like representations of sentences. Specifically, we analyze the brain responses to 400 isolated sentences in a large cohort of 102 subjects, each recorded for two hours with functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). We then test where and when each of these algorithms maps onto the brain responses. Finally, we estimate how the architecture, training, and performance of these models independently account for the generation of brain-like representations. Our analyses reveal two main findings. First, the similarity between the algorithms and the brain primarily depends on their ability to predict words from context. Second, this similarity reveals the rise and maintenance of perceptual, lexical, and compositional representations within each cortical region. Overall, this study shows that modern language algorithms partially converge towards brain-like solutions, and thus delineates a promising path to unravel the foundations of natural language processing.
Collapse
Affiliation(s)
- Charlotte Caucheteux
- Facebook AI Research, Paris, France.
- Université Paris-Saclay, Inria, CEA, Palaiseau, France.
| | - Jean-Rémi King
- Facebook AI Research, Paris, France.
- École normale supérieure, PSL University, CNRS, Paris, France.
| |
Collapse
|
6
|
Gaglianese A, Branco MP, Groen IIA, Benson NC, Vansteensel MJ, Murray MM, Petridou N, Ramsey NF. Electrocorticography Evidence of Tactile Responses in Visual Cortices. Brain Topogr 2020; 33:559-570. [PMID: 32661933 PMCID: PMC7429547 DOI: 10.1007/s10548-020-00783-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/28/2020] [Indexed: 01/30/2023]
Abstract
There is ongoing debate regarding the extent to which human cortices are specialized for processing a given sensory input versus a given type of information, independently of the sensory source. Many neuroimaging and electrophysiological studies have reported that primary and extrastriate visual cortices respond to tactile and auditory stimulation, in addition to visual inputs, suggesting these cortices are intrinsically multisensory. In particular for tactile responses, few studies have proven neuronal processes in visual cortex in humans. Here, we assessed tactile responses in both low-level and extrastriate visual cortices using electrocorticography recordings in a human participant. Specifically, we observed significant spectral power increases in the high frequency band (30-100 Hz) in response to tactile stimuli, reportedly associated with spiking neuronal activity, in both low-level visual cortex (i.e. V2) and in the anterior part of the lateral occipital-temporal cortex. These sites were both involved in processing tactile information and responsive to visual stimulation. More generally, the present results add to a mounting literature in support of task-sensitive and sensory-independent mechanisms underlying functions like spatial, motion, and self-processing in the brain and extending from higher-level as well as to low-level cortices.
Collapse
Affiliation(s)
- Anna Gaglianese
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, University Hospital Center, University of Lausanne, Rue Centrale 7, Lausanne, 1003, Switzerland.
- Department of Neurosurgery and Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Mariana P Branco
- Department of Neurosurgery and Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Iris I A Groen
- Department of Psychology, New York University, Washington Place 6, New York, 10003, NY, USA
| | - Noah C Benson
- Department of Psychology, New York University, Washington Place 6, New York, 10003, NY, USA
- eScience Institute, University of Washington, 15th Ave NE, Seattle, 98195, WA, USA
| | - Mariska J Vansteensel
- Department of Neurosurgery and Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Micah M Murray
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, University Hospital Center, University of Lausanne, Rue Centrale 7, Lausanne, 1003, Switzerland
- Sensory, Perceptual and Cognitive Neuroscience Section, Center for Biomedical Imaging (CIBM), Station 6, Lausanne, 1015, Switzerland
- Ophthalmology Service, Fondation Asile des aveugles and University of Lausanne, Avenue de France 15, Lausanne, 1004, Switzerland
- Department of Hearing and Speech Sciences, Vanderbilt University, 21st Avenue South 1215, Nashville, 37232, TN, USA
| | - Natalia Petridou
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Nick F Ramsey
- Department of Neurosurgery and Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
7
|
Klichowski M, Kroliczak G. Mental Shopping Calculations: A Transcranial Magnetic Stimulation Study. Front Psychol 2020; 11:1930. [PMID: 32849133 PMCID: PMC7417662 DOI: 10.3389/fpsyg.2020.01930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
One of the most critical skills behind consumer's behavior is the ability to assess whether a price after a discount is a real bargain. Yet, the neural underpinnings and cognitive mechanisms associated with such a skill are largely unknown. While there is general agreement that the posterior parietal cortex (PPC) on the left is critical for mental calculations, and there is also recent repetitive transcranial magnetic stimulation (rTMS) evidence pointing to the supramarginal gyrus (SMG) of the right PPC as crucial for consumer-like arithmetic (e.g., multi-digit mental addition or subtraction), it is still unknown whether SMG is involved in calculations of sale prices. Here, we show that the neural mechanisms underlying discount arithmetic characteristic for shopping are different from complex addition or subtraction, with discount calculations engaging left SMG more. We obtained these outcomes by remodeling our laboratory to resemble a shop and asking participants to calculate prices after discounts (e.g., $8.80-25 or $4.80-75%), while stimulating left and right SMG with neuronavigated rTMS. Our results indicate that such complex shopping calculations as establishing the price after a discount involve SMG asymmetrically, whereas simpler calculations such as price addition do not. These findings have some consequences for neural models of mathematical cognition and shed some preliminary light on potential consumer's behavior in natural settings.
Collapse
Affiliation(s)
- Michal Klichowski
- Faculty of Educational Studies, Adam Mickiewicz University, Poznan, Poland
| | - Gregory Kroliczak
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
8
|
Conrad BN, Wilkey ED, Yeo DJ, Price GR. Network topology of symbolic and nonsymbolic number comparison. Netw Neurosci 2020; 4:714-745. [PMID: 32885123 PMCID: PMC7462424 DOI: 10.1162/netn_a_00144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Studies of brain activity during number processing suggest symbolic and nonsymbolic numerical stimuli (e.g., Arabic digits and dot arrays) engage both shared and distinct neural mechanisms. However, the extent to which number format influences large-scale functional network organization is unknown. In this study, using 7 Tesla MRI, we adopted a network neuroscience approach to characterize the whole-brain functional architecture supporting symbolic and nonsymbolic number comparison in 33 adults. Results showed the degree of global modularity was similar for both formats. The symbolic format, however, elicited stronger community membership among auditory regions, whereas for nonsymbolic, stronger membership was observed within and between cingulo-opercular/salience network and basal ganglia communities. The right posterior inferior temporal gyrus, left intraparietal sulcus, and two regions in the right ventromedial occipital cortex demonstrated robust differences between formats in terms of their community membership, supporting prior findings that these areas are differentially engaged based on number format. Furthermore, a unified fronto-parietal/dorsal attention community in the nonsymbolic condition was fractionated into two components in the symbolic condition. Taken together, these results reveal a pattern of overlapping and distinct network architectures for symbolic and nonsymbolic number processing.
Collapse
Affiliation(s)
- Benjamin N. Conrad
- Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Eric D. Wilkey
- Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Brain & Mind Institute, Western University, London, ON, Canada
| | - Darren J. Yeo
- Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Division of Psychology, School of Social Sciences, Nanyang Technological University, Singapore
| | - Gavin R. Price
- Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
9
|
Grotheer M, Zhen Z, Lerma-Usabiaga G, Grill-Spector K. Separate lanes for adding and reading in the white matter highways of the human brain. Nat Commun 2019; 10:3675. [PMID: 31417075 PMCID: PMC6695422 DOI: 10.1038/s41467-019-11424-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 07/09/2019] [Indexed: 01/11/2023] Open
Abstract
Math and reading involve distributed brain networks and have both shared (e.g. encoding of visual stimuli) and dissociated (e.g. quantity processing) cognitive components. Yet, to date, the shared vs. dissociated gray and white matter substrates of the math and reading networks are unknown. Here, we define these networks and evaluate the structural properties of their fascicles using functional MRI, diffusion MRI, and quantitative MRI. Our results reveal that there are distinct gray matter regions which are preferentially engaged in either math (adding) or reading, and that the superior longitudinal and arcuate fascicles are shared across the math and reading networks. Strikingly, within these fascicles, reading- and math-related tracts are segregated into parallel sub-bundles and show structural differences related to myelination. These findings open a new avenue of research that examines the contribution of sub-bundles within fascicles to specific behaviors.
Collapse
Affiliation(s)
- Mareike Grotheer
- Psychology Department, Stanford University, Stanford, CA, 94305, USA.
| | - Zonglei Zhen
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Garikoitz Lerma-Usabiaga
- Psychology Department, Stanford University, Stanford, CA, 94305, USA
- BCBL. Basque Center on Cognition, Brain and Language, Mikeletegi Pasealekua 69, Donostia - San Sebastián, 20009, Gipuzkoa, Spain
| | - Kalanit Grill-Spector
- Psychology Department, Stanford University, Stanford, CA, 94305, USA
- Stanford Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
10
|
Nemmi F, Schel MA, Klingberg T. Connectivity of the Human Number Form Area Reveals Development of a Cortical Network for Mathematics. Front Hum Neurosci 2018; 12:465. [PMID: 30534064 PMCID: PMC6275176 DOI: 10.3389/fnhum.2018.00465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/05/2018] [Indexed: 02/05/2023] Open
Abstract
The adult brain contains cortical areas thought to be specialized for the analysis of numbers (the putative number form area, NFA) and letters (the visual word form area, VWFA). Although functional development of the VWFA has been investigated, it is largely unknown when and how the NFA becomes specialized and connected to the rest of the brain. One hypothesis is that NFA and VWFA derive their special functions through differential connectivity, but the development of this differential connectivity has not been shown. Here, we mapped the resting state connectivity of NFA and VWFA to the rest of the brain in a large sample (n = 437) of individuals (age 3.2-21 years). We show that within NFA-math network and within VWFA-reading network the strength of connectivity increases with age. The right NFA is significantly connected to the right intraparietal cortex already at the earliest age tested (age 3), before formal mathematical education has begun. This connection might support or enable an early understanding of magnitude or numerosity In contrast, the functional connectivity from NFA to the left anterior intraparietal cortex and to the right dorsolateral prefrontal cortex is not different from the functional connectivity of VWFA to these regions until around 12-14 years of age. The increase in connectivity to these regions was associated with a gradual increase in mathematical ability in an independent sample. In contrast, VWFA connects significantly to Broca's region around age 6, and this connectivity is correlated with reading ability. These results show how the differential connectivity of the networks for mathematics and reading slowly emerges through years of training and education.
Collapse
Affiliation(s)
- Federico Nemmi
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- INSERM U1214 Centre d’Imagerie Neuro Toulouse, Toulouse, France
| | - Margot A. Schel
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Institute of Psychology, Leiden University, Leiden, Netherlands
| | - Torkel Klingberg
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
11
|
Baek S, Daitch A, Pinheiro-Chagas P, Parvizi J. Neuronal Population Responses in the Human Ventral Temporal and Lateral Parietal Cortex during Arithmetic Processing with Digits and Number Words. J Cogn Neurosci 2018; 30:1315-1322. [PMID: 29916786 PMCID: PMC6178219 DOI: 10.1162/jocn_a_01296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Past research has identified anatomically specific sites within the posterior inferior temporal gyrus (PITG) and the intraparietal sulcus (IPS) areas that are engaged during arithmetic processing. Although a small region of the PITG (known as the number form area) is selectively engaged in the processing of numerals, its surrounding area is activated during both digit and number word processing. In eight participants with intracranial electrodes, we compared the timing and selectivity of electrophysiological responses in the number form area-surround and IPS regions during arithmetic processing with digits and number words. Our recordings revealed stronger electrophysiological responses in the high-frequency broadband range in both regions to digits than number words, with the difference that number words elicited delayed activity in the IPS but not PITG. Our findings of distinct profiles of responses in the PITG and the IPS to digits compared with number words provide novel information that is relevant to existing theoretical models of mathematical cognition.
Collapse
Affiliation(s)
- S. Baek
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Electrophysiology Program (SHICEP), Stanford University Medical Center, 300 Pasteur drive, Palo Alto, CA 94305, USA
| | - A.L. Daitch
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Electrophysiology Program (SHICEP), Stanford University Medical Center, 300 Pasteur drive, Palo Alto, CA 94305, USA
| | - P. Pinheiro-Chagas
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France)
| | - J. Parvizi
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Electrophysiology Program (SHICEP), Stanford University Medical Center, 300 Pasteur drive, Palo Alto, CA 94305, USA
| |
Collapse
|
12
|
Pinheiro-Chagas P, Daitch A, Parvizi J, Dehaene S. Brain Mechanisms of Arithmetic: A Crucial Role for Ventral Temporal Cortex. J Cogn Neurosci 2018; 30:1757-1772. [PMID: 30063177 DOI: 10.1162/jocn_a_01319] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Elementary arithmetic requires a complex interplay between several brain regions. The classical view, arising from fMRI, is that the intraparietal sulcus (IPS) and the superior parietal lobe (SPL) are the main hubs for arithmetic calculations. However, recent studies using intracranial electroencephalography have discovered a specific site, within the posterior inferior temporal cortex (pITG), that activates during visual perception of numerals, with widespread adjacent responses when numerals are used in calculation. Here, we reexamined the contribution of the IPS, SPL, and pITG to arithmetic by recording intracranial electroencephalography signals while participants solved addition problems. Behavioral results showed a classical problem size effect: RTs increased with the size of the operands. We then examined how high-frequency broadband (HFB) activity is modulated by problem size. As expected from previous fMRI findings, we showed that the total HFB activity in IPS and SPL sites increased with problem size. More surprisingly, pITG sites showed an initial burst of HFB activity that decreased as the operands got larger, yet with a constant integral over the whole trial, thus making these signals invisible to slow fMRI. Although parietal sites appear to have a more sustained function in arithmetic computations, the pITG may have a role of early identification of the problem difficulty, beyond merely digit recognition. Our results ask for a reevaluation of the current models of numerical cognition and reveal that the ventral temporal cortex contains regions specifically engaged in mathematical processing.
Collapse
Affiliation(s)
- Pedro Pinheiro-Chagas
- CEA DRF/12BM, INSERM, Université Paris-Sud, Université Paris-Saclay.,Stanford University
| | | | | | - Stanislas Dehaene
- CEA DRF/12BM, INSERM, Université Paris-Sud, Université Paris-Saclay.,Collège de France, Paris
| |
Collapse
|
13
|
Pinheiro-Chagas P, Piazza M, Dehaene S. Decoding the processing stages of mental arithmetic with magnetoencephalography. Cortex 2018; 114:124-139. [PMID: 30177399 DOI: 10.1016/j.cortex.2018.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/25/2018] [Accepted: 07/16/2018] [Indexed: 01/24/2023]
Abstract
Elementary arithmetic is highly prevalent in our daily lives. However, despite decades of research, we are only beginning to understand how the brain solves simple calculations. Here, we applied machine learning techniques to magnetoencephalography (MEG) signals in an effort to decompose the successive processing stages and mental transformations underlying elementary arithmetic. Adults subjects verified single-digit addition and subtraction problems such as 3 + 2 = 9 in which each successive symbol was presented sequentially. MEG signals revealed a cascade of partially overlapping brain states. While the first operand could be transiently decoded above chance level, primarily based on its visual properties, the decoding of the second operand was more accurate and lasted longer. Representational similarity analyses suggested that this decoding rested on both visual and magnitude codes. We were also able to decode the operation type (additions vs. subtraction) during practically the entire trial after the presentation of the operation sign. At the decision stage, MEG indicated a fast and highly overlapping temporal dynamics for (1) identifying the proposed result, (2) judging whether it was correct or incorrect, and (3) pressing the response button. Surprisingly, however, the internally computed result could not be decoded. Our results provide a first comprehensive picture of the unfolding processing stages underlying arithmetic calculations at a single-trial level, and suggest that externally and internally generated neural codes may have different neural substrates.
Collapse
Affiliation(s)
- Pedro Pinheiro-Chagas
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif/Yvette, France.
| | - Manuela Piazza
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif/Yvette, France; Collège de France, 11 Place Marcelin Berthelot, Paris, France
| |
Collapse
|
14
|
Skagenholt M, Träff U, Västfjäll D, Skagerlund K. Examining the Triple Code Model in numerical cognition: An fMRI study. PLoS One 2018; 13:e0199247. [PMID: 29953456 PMCID: PMC6023115 DOI: 10.1371/journal.pone.0199247] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/04/2018] [Indexed: 01/11/2023] Open
Abstract
The Triple Code Model (TCM) of numerical cognition argues for the existence of three representational codes for number: Arabic digits, verbal number words, and analog nonsymbolic magnitude representations, each subserved by functionally dissociated neural substrates. Despite the popularity of the TCM, no study to date has explored all three numerical codes within one fMRI paradigm. We administered three tasks, associated with each of the aforementioned numerical codes, in order to explore the neural correlates of numerosity processing in a sample of adults (N = 46). Independent task-control contrast analyses revealed task-dependent activity in partial support of the model, but also highlight the inherent complexity of a distributed and overlapping fronto-parietal network involved in all numerical codes. The results indicate that the TCM correctly predicts the existence of some functionally dissociated neural substrates, but requires an update that accounts for interactions with attentional processes. Parametric contrasts corresponding to differences in task difficulty revealed specific neural correlates of the distance effect, where closely spaced numbers become more difficult to discriminate than numbers spaced further apart. A conjunction analysis illustrated overlapping neural correlates across all tasks, in line with recent proposals for a fronto-parietal network of number processing. We additionally provide tentative results suggesting the involvement of format-independent numerosity-sensitive retinotopic maps in the early visual stream, extending previous findings of nonsymbolic stimulus selectivity. We discuss the functional roles of the components associated with the model, as well as the purported fronto-parietal network, and offer arguments in favor of revising the TCM.
Collapse
Affiliation(s)
- Mikael Skagenholt
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
- Department of Management and Engineering, Division of Economics, JEDI-Lab, Linköping University, Linköping, Sweden
| | - Ulf Träff
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
| | - Daniel Västfjäll
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
- Department of Management and Engineering, Division of Economics, JEDI-Lab, Linköping University, Linköping, Sweden
- Decision Research, Eugene, OR, United States of America
- Department of Psychology, University of Oregon, Eugene, OR, United States of America
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden
| | - Kenny Skagerlund
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
- Department of Management and Engineering, Division of Economics, JEDI-Lab, Linköping University, Linköping, Sweden
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden
| |
Collapse
|
15
|
Grotheer M, Jeska B, Grill-Spector K. A preference for mathematical processing outweighs the selectivity for Arabic numbers in the inferior temporal gyrus. Neuroimage 2018; 175:188-200. [PMID: 29604456 DOI: 10.1016/j.neuroimage.2018.03.064] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/24/2018] [Accepted: 03/27/2018] [Indexed: 11/26/2022] Open
Abstract
A region in the posterior inferior temporal gyrus (ITG), referred to as the number form area (NFA, here ITG-numbers) has been implicated in the visual processing of Arabic numbers. However, it is unknown if this region is specifically involved in the visual encoding of Arabic numbers per se or in mathematical processing more broadly. Using functional magnetic resonance imaging (fMRI) during experiments that systematically vary tasks and stimuli, we find that mathematical processing, not preference to Arabic numbers, consistently drives both mean and distributed responses in the posterior ITG. While we replicated findings of higher responses in ITG-numbers to numbers than other visual stimuli during a 1-back task, this preference to numbers was abolished when participants engaged in mathematical processing. In contrast, an ITG region (ITG-math) that showed higher responses during an adding task vs. other tasks maintained this preference for mathematical processing across a wide range of stimuli including numbers, number/letter morphs, hands, and dice. Analysis of distributed responses across an anatomically-defined posterior ITG expanse further revealed that mathematical task but not Arabic number form can be successfully and consistently decoded from these distributed responses. Together, our findings suggest that the function of neuronal regions in the posterior ITG goes beyond the specific visual processing of Arabic numbers. We hypothesize that they ascribe numerical content to the visual input, irrespective of the format of the stimulus.
Collapse
Affiliation(s)
- Mareike Grotheer
- Psychology Department, Stanford University, Stanford, CA, 94305, USA.
| | - Brianna Jeska
- Psychology Department, Stanford University, Stanford, CA, 94305, USA
| | - Kalanit Grill-Spector
- Psychology Department, Stanford University, Stanford, CA, 94305, USA; Neurosciences Program, Stanford University School of Medicine, Stanford, CA, 94305, USA; Stanford Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
16
|
Yeo DJ, Wilkey ED, Price GR. The search for the number form area: A functional neuroimaging meta-analysis. Neurosci Biobehav Rev 2017; 78:145-160. [DOI: 10.1016/j.neubiorev.2017.04.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/16/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
|
17
|
Mapping human temporal and parietal neuronal population activity and functional coupling during mathematical cognition. Proc Natl Acad Sci U S A 2016; 113:E7277-E7286. [PMID: 27821758 DOI: 10.1073/pnas.1608434113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Brain areas within the lateral parietal cortex (LPC) and ventral temporal cortex (VTC) have been shown to code for abstract quantity representations and for symbolic numerical representations, respectively. To explore the fast dynamics of activity within each region and the interaction between them, we used electrocorticography recordings from 16 neurosurgical subjects implanted with grids of electrodes over these two regions and tracked the activity within and between the regions as subjects performed three different numerical tasks. Although our results reconfirm the presence of math-selective hubs within the VTC and LPC, we report here a remarkable heterogeneity of neural responses within each region at both millimeter and millisecond scales. Moreover, we show that the heterogeneity of response profiles within each hub mirrors the distinct patterns of functional coupling between them. Our results support the existence of multiple bidirectional functional loops operating between discrete populations of neurons within the VTC and LPC during the visual processing of numerals and the performance of arithmetic functions. These findings reveal information about the dynamics of numerical processing in the brain and also provide insight into the fine-grained functional architecture and connectivity within the human brain.
Collapse
|
18
|
Abstract
The human species has developed complex mathematical skills which likely emerge from a combination of multiple foundational abilities. One of them seems to be a preverbal capacity to extract and manipulate the numerosity of sets of objects which is shared with other species and in humans is thought to be integrated with symbolic knowledge to result in a more abstract representation of numerical concepts. For what concerns the functional neuroanatomy of this capacity, neuropsychology and functional imaging have localized key substrates of numerical processing in parietal and frontal cortex. However, traditional fMRI mapping relying on a simple subtraction approach to compare numerical and nonnumerical conditions is limited to tackle with sufficient precision and detail the issue of the underlying code for number, a question which more easily lends itself to investigation by methods with higher spatial resolution, such as neurophysiology. In recent years, progress has been made through the introduction of approaches sensitive to within-category discrimination in combination with fMRI (adaptation and multivariate pattern recognition), and the present review summarizes what these have revealed so far about the neural coding of individual numbers in the human brain, the format of these representations and parallels between human and monkey neurophysiology findings.
Collapse
Affiliation(s)
- E Eger
- INSERM Cognitive Neuroimaging Unit, NeuroSpin Center, CEA DSV/I2BM, Université Paris-Sud, Université Paris-Saclay, Gif/Yvette, France.
| |
Collapse
|
19
|
|
20
|
Grotheer M, Ambrus GG, Kovács G. Causal evidence of the involvement of the number form area in the visual detection of numbers and letters. Neuroimage 2016; 132:314-319. [DOI: 10.1016/j.neuroimage.2016.02.069] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 11/27/2022] Open
|
21
|
Origins of the brain networks for advanced mathematics in expert mathematicians. Proc Natl Acad Sci U S A 2016; 113:4909-17. [PMID: 27071124 DOI: 10.1073/pnas.1603205113] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The origins of human abilities for mathematics are debated: Some theories suggest that they are founded upon evolutionarily ancient brain circuits for number and space and others that they are grounded in language competence. To evaluate what brain systems underlie higher mathematics, we scanned professional mathematicians and mathematically naive subjects of equal academic standing as they evaluated the truth of advanced mathematical and nonmathematical statements. In professional mathematicians only, mathematical statements, whether in algebra, analysis, topology or geometry, activated a reproducible set of bilateral frontal, Intraparietal, and ventrolateral temporal regions. Crucially, these activations spared areas related to language and to general-knowledge semantics. Rather, mathematical judgments were related to an amplification of brain activity at sites that are activated by numbers and formulas in nonmathematicians, with a corresponding reduction in nearby face responses. The evidence suggests that high-level mathematical expertise and basic number sense share common roots in a nonlinguistic brain circuit.
Collapse
|