1
|
Rostami M, Lee A, Frazer AK, Akalu Y, Siddique U, Pearce AJ, Tallent J, Kidgell DJ. Determining the effects of transcranial alternating current stimulation on corticomotor excitability and motor performance: A sham-controlled comparison of four frequencies. Neuroscience 2025; 568:12-26. [PMID: 39798837 DOI: 10.1016/j.neuroscience.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/11/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Transcranial alternating current stimulation (tACS) modulates brain oscillations and corticomotor plasticity. We examined the effects of four tACS frequencies (20 Hz, 40 Hz, 60 Hz, and 80 Hz) on motor cortex (M1) excitability and motor performance. In a randomised crossover design, 12 adults received 20-minute tACS sessions, with Sham as control. Corticomotor and intracortical excitability was measured up to 60-minutes post-tACS. Motor performance was evaluated using the Grooved Pegboard Test (GPT) and sensorimotor assessments. Our findings demonstrated frequency-dependent modulation of corticomotor excitability based on MEP amplitude. 20 Hz and 40 Hz tACS reduced MEPs, while 60 Hz and 80 Hz increased MEPs. Inhibition (cortical silent period, SP) was reduced across all tACS frequencies compared to Sham, with 20 Hz and 40 Hz showing consistent reductions, 60 Hz showing effects at post-0 and post-30, and 80 Hz at post-60. Furthermore, 60 Hz tACS decreased intracortical inhibition at post-0, while intracortical facilitation increased with 20 Hz and 60 Hz at post-0, and 40 Hz at post-60. Motor performance remained unaffected across frequencies. Regression analyses revealed that shorter SP at 60 min post 60 Hz tACS predicted faster reaction times, while greater MEP amplitudes at 60 min following 80 Hz tACS predicted improved hand dexterity. Overall, beta and gamma tACS frequencies modulate M1 excitability, with consistent effects on SP, suggesting potential use in conditions involving SP elongation, such as stroke and Huntington's disease. These findings highlight 60 Hz tACS as a potential tool for motor rehabilitation therapies.
Collapse
Affiliation(s)
- Mohamad Rostami
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia
| | - Annemarie Lee
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia
| | - Ashlyn K Frazer
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia
| | - Yonas Akalu
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia; Department of Human Physiology School of Medicine University of Gondar Ethiopia
| | - Ummatul Siddique
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia
| | - Alan J Pearce
- School of Health Science Swinburne University of Technology Melbourne Australia
| | - Jamie Tallent
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia; School of Sport Rehabilitation and Exercise Sciences University of Essex Colchester UK
| | - Dawson J Kidgell
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia.
| |
Collapse
|
2
|
Benussi A, Cantoni V, Rivolta J, Zoppi N, Cotelli MS, Bianchi M, Cotelli M, Borroni B. Alpha tACS Improves Cognition and Modulates Neurotransmission in Dementia with Lewy Bodies. Mov Disord 2024; 39:1993-2003. [PMID: 39136447 DOI: 10.1002/mds.29969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) is characterized by a marked shift of electroencephalographic (EEG) power and dominant rhythm, from the α toward the θ frequency range. Transcranial alternate current stimulation (tACS) is a non-invasive brain stimulation technique that allows entrainment of cerebral oscillations at desired frequencies. OBJECTIVES Our goal is to evaluate the effects of occipital α-tACS on cognitive functions and neurophysiological measures in patients with DLB. METHODS We conducted a double-blind, randomized, sham-controlled, cross-over clinical trial in 14 participants with DLB. Participants were randomized to receive either α-tACS (60 minutes of 3 mA peak-to-peak stimulation at 12 Hz) or sham stimulation applied over the occipital cortex. Clinical evaluations were performed to assess visuospatial and executive functions, as well as verbal episodic memory. Neurophysiological assessments and EEG recordings were conducted at baseline and following both α-tACS and sham stimulations. RESULTS Occipital α-tACS was safe and well-tolerated. We observed a significant enhancement in visuospatial abilities and executive functions, but no improvement in verbal episodic memory. We observed an increase in short latency afferent inhibition, a neurophysiological marker indirectly and partially dependent on cholinergic transmission, coinciding with an increase in α power and a decrease in Δ power following α-tACS stimulation, effects not seen with sham stimulation. CONCLUSIONS This study demonstrates that occipital α-tACS is safe and enhances visuospatial and executive functions in patients with DLB. Improvements in indirect markers of cholinergic transmission and EEG changes indicate significant neurophysiological engagement. These findings justify further exploration of α-tACS as a therapeutic option for DLB patients. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Valentina Cantoni
- Cognitive and Behavioural Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Jasmine Rivolta
- Cognitive and Behavioural Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Nicola Zoppi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Neurology, San Jacopo Hospital, Pistoia, Italy
| | - Maria Sofia Cotelli
- Cognitive and Behavioural Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili di Brescia, Brescia, Italy
- Neurology Unit, Valle Camonica Hospital, Brescia, Italy
| | - Marta Bianchi
- Neurology Unit, Valle Camonica Hospital, Brescia, Italy
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Cognitive and Behavioural Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
3
|
Fang Z, Sack AT, Leunissen I. The phase of tACS-entrained pre-SMA beta oscillations modulates motor inhibition. Neuroimage 2024; 290:120572. [PMID: 38490584 DOI: 10.1016/j.neuroimage.2024.120572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
Inhibitory control has been linked to beta oscillations in the fronto-basal ganglia network. Here we aim to investigate the functional role of the phase of this oscillatory beta rhythm for successful motor inhibition. We applied 20 Hz transcranial alternating current stimulation (tACS) to the pre-supplementary motor area (pre-SMA) while presenting stop signals at 4 (Experiment 1) and 8 (Experiment 2) equidistant phases of the tACS entrained beta oscillations. Participants showed better inhibitory performance when stop signals were presented at the trough of the beta oscillation whereas their inhibitory control performance decreased with stop signals being presented at the oscillatory beta peak. These results are consistent with the communication through coherence theory, in which postsynaptic effects are thought to be greater when an input arrives at an optimal phase within the oscillatory cycle of the target neuronal population. The current study provides mechanistic insights into the neural communication principles underlying successful motor inhibition and may have implications for phase-specific interventions aimed at treating inhibitory control disorders such as PD or OCD.
Collapse
Affiliation(s)
- Zhou Fang
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Oxfordlaan 55, 6229EV, Maastricht, The Netherlands
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Oxfordlaan 55, 6229EV, Maastricht, The Netherlands; Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Inge Leunissen
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Oxfordlaan 55, 6229EV, Maastricht, The Netherlands.
| |
Collapse
|
4
|
Ibáñez J, Zicher B, Brown KE, Rocchi L, Casolo A, Del Vecchio A, Spampinato D, Vollette CA, Rothwell JC, Baker SN, Farina D. Standard intensities of transcranial alternating current stimulation over the motor cortex do not entrain corticospinal inputs to motor neurons. J Physiol 2023; 601:3187-3199. [PMID: 35776944 DOI: 10.1113/jp282983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
Transcranial alternating current stimulation (TACS) is commonly used to synchronize a cortical area and its outputs to the stimulus waveform, but gathering evidence for this based on brain recordings in humans is challenging. The corticospinal tract transmits beta oscillations (∼21 Hz) from the motor cortex to tonically contracted limb muscles linearly. Therefore, muscle activity may be used to measure the level of beta entrainment in the corticospinal tract due to TACS over the motor cortex. Here, we assessed whether TACS is able to modulate the neural inputs to muscles, which would provide indirect evidence for TACS-driven neural entrainment. In the first part of the study, we ran simulations of motor neuron (MN) pools receiving inputs from corticospinal neurons with different levels of beta entrainment. Results suggest that MNs are highly sensitive to changes in corticospinal beta activity. Then, we ran experiments on healthy human subjects (N = 10) in which TACS (at 1 mA) was delivered over the motor cortex at 21 Hz (beta stimulation), or at 7 Hz or 40 Hz (control conditions) while the abductor digiti minimi or the tibialis anterior muscle were tonically contracted. Muscle activity was measured using high-density electromyography, which allowed us to decompose the activity of pools of motor units innervating the muscles. By analysing motor unit pool activity, we observed that none of the TACS conditions could consistently alter the spectral contents of the common neural inputs received by the muscles. These results suggest that 1 mA TACS over the motor cortex given at beta frequencies does not entrain corticospinal activity. KEY POINTS: Transcranial alternating current stimulation (TACS) is commonly used to entrain the communication between brain regions. It is challenging to find direct evidence supporting TACS-driven neural entrainment due to the technical difficulties in recording brain activity during stimulation. Computational simulations of motor neuron pools receiving common inputs in the beta (∼21 Hz) band indicate that motor neurons are highly sensitive to corticospinal beta entrainment. Motor unit activity from human muscles does not support TACS-driven corticospinal entrainment.
Collapse
Affiliation(s)
- Jaime Ibáñez
- BSICoS group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain
- Department of Bioengineering, Imperial College, London, UK
- Department for Clinical and movement neurosciences, Institute of Neurology, University College London, UK
| | - Blanka Zicher
- Department of Bioengineering, Imperial College, London, UK
| | - Katlyn E Brown
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Lorenzo Rocchi
- Department for Clinical and movement neurosciences, Institute of Neurology, University College London, UK
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Andrea Casolo
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, Faculty of Engineering, 17 Friedrich-Alexander University, Erlangen, Germany
| | - Danny Spampinato
- Non-Invasive Brain Stimulation Unit, Department of Behavioral and Clinical Neurology, Santa Lucia Foundation, Rome, Italy
| | | | | | - Stuart N Baker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Dario Farina
- Department of Bioengineering, Imperial College, London, UK
| |
Collapse
|
5
|
Resolving equivocal gain modulation of corticospinal excitability. Neuroimage 2023; 269:119891. [PMID: 36706940 DOI: 10.1016/j.neuroimage.2023.119891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/06/2022] [Accepted: 01/03/2023] [Indexed: 01/27/2023] Open
Abstract
The ratio between the input and output of neuronal populations, usually referred to as gain modulation, is rhythmically modulated along the oscillatory cycle. Previous research on spinal neurons, however, revealed contradictory findings: both uni- and bimodal patterns of increased responsiveness for synaptic input have been proposed for the oscillatory beta rhythm. In this study, we compared previous approaches of phase estimation directly on simulated data and empirically tested the corresponding predictions in healthy males and females. We applied single-pulse transcranial magnetic stimulation over the primary motor cortex at rest, and assessed the spinal output generated by this input. Specifically, the peak-to-peak amplitude of the motor evoked potential in the contralateral forearm was estimated as a function of the EMG phase at which the stimulus was applied. The findings indicated that human spinal neurons adhere to a unimodal pattern of increased responsiveness, and suggest that the rising phase of the upper beta band maximizes gain modulation. Importantly, a bimodal pattern of increased responsiveness was shown to result in an artifact during data analysis and filtering. This observation of invalid preprocessing could be generalized to other frequency bands (i.e., delta, theta, alpha, and gamma), different task conditions (i.e., voluntary muscle contraction), and EEG-based phase estimations. Appropriate analysis algorithms, such as broad-band filtering, enable us to accurately determine gain modulation of neuronal populations and to avoid erroneous phase estimations. This may facilitate novel phase-specific interventions for targeted neuromodulation.
Collapse
|
6
|
Calvert GHM, Carson RG. Induction of interhemispheric facilitation by short bursts of transcranial alternating current stimulation. Neurosci Lett 2023; 803:137190. [PMID: 36921664 DOI: 10.1016/j.neulet.2023.137190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
Interhemispheric facilitation (IHF) describes potentiation of motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over primary motor cortex (M1), when they are preceded (3-6 ms) by conditioning TMS below motor threshold (MT) delivered over the opposite M1. This effect is however obtained only when the conditioning stimulation is sufficiently circumscribed. In paired associative protocols, (500 ms) bursts of 140 Hz transcranial alternating current stimulation (tACS) interact with the state of neural circuits in the opposite hemisphere in a similar manner to sub-threshold TMS. We hypothesised that tACS applied over M1 would elevate the amplitudes of MEPs elicited by suprathreshold TMS applied 6 ms later over the opposite M1. Thirty healthy right-handed participants were tested. In a control condition, MEPs were recorded in right flexor carpi radialis (rFCR) following 120% resting MT TMS over left M1. In 11 experimental conditions, 1 mA (peak-to-peak) 140 Hz (30, 100, 500 ms) or 670 Hz (6, 12, 100, 500 ms) tACS, or 100-640 Hz (6, 12, 100, 500 ms) transcranial random noise stimulation (tRNS), was delivered over right M1, 6 ms in advance of the TMS. IHF was obtained by conditioning with 30 ms (but not 100 or 500 ms) 140 Hz tACS. The magnitude of IHF (12% increase; d = 0.56 (0.21-0.98)) was within the range reported for dual-coil TMS studies. Conditioning by 670 Hz tACS or tRNS had no effect. Our findings indicate that short bursts of 140 Hz tACS, applied over M1, have distributed effects similar to those of subthreshold TMS.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
7
|
Suzuki M, Saito K, Maeda Y, Cho K, Iso N, Okabe T, Suzuki T, Yamamoto J. Effects of Paired Associative Stimulation on Cortical Plasticity in Agonist–Antagonist Muscle Representations. Brain Sci 2023; 13:brainsci13030475. [PMID: 36979285 PMCID: PMC10046224 DOI: 10.3390/brainsci13030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Paired associative stimulation (PAS) increases and decreases cortical excitability in primary motor cortex (M1) neurons, depending on the spike timing-dependent plasticity, i.e., long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity, respectively. However, how PAS affects the cortical circuits for the agonist and antagonist muscles of M1 is unclear. Here, we investigated the changes in the LTP- and LTD-like plasticity for agonist and antagonist muscles during PAS: 200 pairs of 0.25-Hz peripheral electric stimulation of the right median nerve at the wrist, followed by a transcranial magnetic stimulation of the left M1 with an interstimulus interval of 25 ms (PAS-25 ms) and 10 ms (PAS-10 ms). The unconditioned motor evoked potential amplitudes of the agonist muscles were larger after PAS-25 ms than after PAS-10 ms, while those of the antagonist muscles were smaller after PAS-25 ms than after PAS-10 ms. The γ-aminobutyric acid A (GABAA)- and GABAB-mediated cortical inhibition for the agonist and antagonist muscles were higher after PAS-25 ms than after PAS-10 ms. The cortical excitability for the agonist and antagonist muscles reciprocally and topographically increased and decreased after PAS, respectively; however, GABAA and GABAB-mediated cortical inhibitory functions for the agonist and antagonist muscles were less topographically decreased after PAS-10 ms. Thus, PAS-25 ms and PAS-10 ms differentially affect the LTP- and LTD-like plasticity in agonist and antagonist muscles.
Collapse
Affiliation(s)
- Makoto Suzuki
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama City 350-1398, Saitama, Japan
- Faculty of Systems Design, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji City 192-0397, Tokyo, Japan
- Correspondence: ; Tel.: +81-42-955-6074
| | - Kazuo Saito
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama City 350-1398, Saitama, Japan
| | - Yusuke Maeda
- School of Health Sciences at Odawara, International University of Health and Welfare, 1-2-25 Shiroyama, Odawara City 250-8588, Kanagawa, Japan
| | - Kilchoon Cho
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama City 350-1398, Saitama, Japan
| | - Naoki Iso
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama City 350-1398, Saitama, Japan
| | - Takuhiro Okabe
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama City 350-1398, Saitama, Japan
| | - Takako Suzuki
- School of Health Sciences, Saitama Prefectural University, 820 Sannomiya, Koshigaya City 343-8540, Saitama, Japan
| | - Junichi Yamamoto
- Faculty of Systems Design, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji City 192-0397, Tokyo, Japan
| |
Collapse
|
8
|
Yu J, Wu Y, Wu B, Xu C, Cai J, Wen X, Meng F, Zhang L, He F, Hong L, Gao J, Li J, Yu J, Luo B. Sleep patterns correlates with the efficacy of tDCS on post-stroke patients with prolonged disorders of consciousness. J Transl Med 2022; 20:601. [PMID: 36522680 PMCID: PMC9756665 DOI: 10.1186/s12967-022-03710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/18/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The subclassification of prolonged disorders of consciousness (DoC) based on sleep patterns is important for the evaluation and treatment of the disease. This study evaluates the correlation between polysomnographic patterns and the efficacy of transcranial direct current stimulation (tDCS) in patients with prolonged DoC due to stroke. METHODS In total, 33 patients in the vegetative state (VS) with sleep cycles or without sleep cycles were randomly assigned to either active or sham tDCS groups. Polysomnography was used to monitor sleep changes before and after intervention. Additionally, clinical scale scores and electroencephalogram (EEG) analysis were performed before and after intervention to evaluate the efficacy of tDCS on the patients subclassified according to their sleep patterns. RESULTS The results suggest that tDCS improved the sleep structure, significantly prolonged total sleep time (TST) (95%CI: 14.387-283.527, P = 0.013) and NREM sleep stage 2 (95%CI: 3.157-246.165, P = 0.040) of the VS patients with sleep cycles. It also significantly enhanced brain function of patients with sleep cycles, which were reflected by the increased clinical scores (95%CI: 0.340-3.440, P < 0.001), the EEG powers and functional connectivity in the brain and the 6-month prognosis. Moreover, the changes in NREM sleep stage 2 had a significant positive correlation with each index of the β band. CONCLUSION This study reveals the importance of sleep patterns in the prognosis and treatment of prolonged DoC and provides new evidence for the efficacy of tDCS in post-stroke patients with VS patients subclassified by sleep pattern. Trial registration URL: https://www. CLINICALTRIALS gov . Unique identifier: NCT03809936. Registered 18 January 2019.
Collapse
Affiliation(s)
- Jie Yu
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang China
| | - Yuehao Wu
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang China ,Department of Neurology, First People’s Hospital of Linping District, Hangzhou, 310003 Zhejiang China
| | - Biwen Wu
- grid.415999.90000 0004 1798 9361Center for Sleep Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Chuan Xu
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang China
| | - Jiaye Cai
- grid.415999.90000 0004 1798 9361Center for Sleep Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Xinrui Wen
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang China
| | - Fanxia Meng
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang China
| | - Li Zhang
- grid.417401.70000 0004 1798 6507Rehabilitation Medicine Center, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang China
| | - Fangping He
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang China
| | - Lirong Hong
- Department of Rehabilitation, Hangzhou Hospital of Zhejiang Armed Police Corps, Hangzhou, 310051 China
| | - Jian Gao
- Department of Rehabilitation, Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou, 311215 China
| | - Jingqi Li
- Department of Rehabilitation, Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou, 311215 China
| | - Jintai Yu
- grid.411405.50000 0004 1757 8861Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031 China
| | - Benyan Luo
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang China
| |
Collapse
|
9
|
Nakazono H, Taniguchi T, Mitsutake T, Takeda A, Yamada E, Ogata K. Phase-dependent modulation of the vestibular-cerebellar network via combined alternating current stimulation influences human locomotion and posture. Front Neurosci 2022; 16:1057021. [PMID: 36590300 PMCID: PMC9795064 DOI: 10.3389/fnins.2022.1057021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Background Human locomotion induces rhythmic movements of the trunk and head. Vestibular signaling is relayed to multiple regions in the brainstem and cerebellum, and plays an essential role in maintaining head stability. However, how the vestibular-cerebellar network contributes to the rhythmic locomotor pattern in humans is unclear. Transcranial alternating current stimulation (tACS) has been used to investigate the effects of the task-related network between stimulation regions in a phase-dependent manner. Here, we investigated the relationship between the vestibular system and the cerebellum during walking imagery using combined tACS over the left cerebellum and alternating current galvanic vestibular stimulation (AC-GVS). Methods In Experiment 1, we tested the effects of AC-GVS alone at around individual gait stride frequencies. In Experiment 2, we then determined the phase-specificity of combined stimulation at the gait frequency. Combined stimulation was applied at in-phase (0° phase lag) or anti-phase (180° phase lag) between the left vestibular and left cerebellar stimulation, and the sham stimulation. We evaluated the AC-GVS-induced periodic postural response during walking imagery or no-imagery using the peak oscillatory power on the angular velocity signals of the head in both experiments. In Experiment 2, we also examined the phase-locking value (PLV) between the periodic postural responses and the left AC-GVS signals to estimate entrainment of the postural response by AC-GVS. Results AC-GVS alone induced the periodic postural response in the yaw and roll axes, but no interactions with imagery walking were observed in Experiment 1 (p > 0.05). By contrast, combined in-phase stimulation increased yaw motion (0.345 ± 0.23) compared with sham (-0.044 ± 0.19) and anti-phase stimulation (-0.066 ± 0.18) during imaginary walking (in-phase vs. other conditions, imagery: p < 0.05; no-imagery: p ≥ 0.125). Furthermore, there was a positive correlation between the yaw peak power of actual locomotion and in-phase stimulation in the imagery session (imagery: p = 0.041; no-imagery: p = 0.177). Meanwhile, we found no imagery-dependent effects in roll peak power or PLV, although in-phase stimulation enhanced roll motion and PLV in Experiment 2. Conclusion These findings suggest that combined stimulation can influence vestibular-cerebellar network activity, and modulate postural control and locomotion systems in a temporally sensitive manner. This novel combined tACS/AC-GVS stimulation approach may advance development of therapeutic applications.
Collapse
Affiliation(s)
- Hisato Nakazono
- Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan,*Correspondence: Hisato Nakazono,
| | - Takanori Taniguchi
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Tsubasa Mitsutake
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Akinori Takeda
- Research Center for Brain Communication, Research Institute, Kochi University of Technology, Kochi, Japan
| | - Emi Yamada
- Department of Linguistics, Faculty of Humanities, Kyushu University, Fukuoka, Japan
| | - Katsuya Ogata
- Department of Pharmaceutical Sciences, School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
10
|
Hu K, Wan R, Liu Y, Niu M, Guo J, Guo F. Effects of transcranial alternating current stimulation on motor performance and motor learning for healthy individuals: A systematic review and meta-analysis. Front Physiol 2022; 13:1064584. [PMID: 36467691 PMCID: PMC9715745 DOI: 10.3389/fphys.2022.1064584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2023] Open
Abstract
Objective:Previous behavioral studies have reported the potential of transcranial alternating current stimulation in analyzing the causal relationship between neural activity and behavior. However, the efficacy of tACS on motor performance and learning in healthy individuals remains unclear. This systematic reviewexamines the effectiveness of tACS on motor performance and motor learning in healthy individuals. Methods: Literature was systematically searched through the Cochrane Library, PubMed, EMBASE, and Web of Science until 16 October 2022. Studies were eligible for review if they were randomized, parallel, or crossover experimental designs and reported the efficacy of tACS on motor performance and motor learning in healthy adults. Review Manager 5.3 was used to evaluate the methodological quality and analyze the combined effect. Results: Ten studies (270 participants) met all the inclusion criteria. The results showed that motor performance was not significantly greater than that with sham tACS stimulation [I2 = 44%, 95% CI (-0.01, 0.35), p = 0.06, standardized mean difference = 0.17], whereas motor learning ability improved significantly [I2 = 33%, 95% CI (-1.03, -0.31), p = 0.0002, SMD = -0.67]. Subgroup analysis found that gamma bend tACS could affect the changes in motor performance (I2 = 6%, 95% CI (0.05, 0.51), p = 0.02, SMD = 0.28), and online tACS did as well [I2 = 54%, 95% CI (0.12, 0.56), p = 0.002, SMD = 0.34]. Conclusion: The results showed that tACS effectively improves motor performance (gamma band and online mode) and motor learning in healthy individuals, which indicates that tACS may be a potential therapeutic tool to improve motor behavioral outcomes. However, further evidence is needed to support these promising results. Systematic Review Registration: PROSPERO, identifier CRD42022342884.
Collapse
Affiliation(s)
- Kun Hu
- College of Human Kinesiology, Shenyang Sport University, Shenyang, Liaoning, China
| | - Ruihan Wan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Ying Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Maolin Niu
- College of Human Kinesiology, Shenyang Sport University, Shenyang, Liaoning, China
| | - Jianrui Guo
- College of Human Kinesiology, Shenyang Sport University, Shenyang, Liaoning, China
| | - Feng Guo
- College of Human Kinesiology, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
11
|
Battaglini L, Di Ponzio M, Ghiani A, Mena F, Santacesaria P, Casco C. Vision recovery with perceptual learning and non-invasive brain stimulation: Experimental set-ups and recent results, a review of the literature. Restor Neurol Neurosci 2022; 40:137-168. [PMID: 35964213 DOI: 10.3233/rnn-221261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Vision is the sense which we rely on the most to interact with the environment and its integrity is fundamental for the quality of our life. However, around the globe, more than 1 billion people are affected by debilitating vision deficits. Therefore, finding a way to treat (or mitigate) them successfully is necessary. OBJECTIVE This narrative review aims to examine options for innovative treatment of visual disorders (retinitis pigmentosa, macular degeneration, optic neuropathy, refractory disorders, hemianopia, amblyopia), especially with Perceptual Learning (PL) and Electrical Stimulation (ES). METHODS ES and PL can enhance visual abilities in clinical populations, inducing plastic changes. We describe the experimental set-ups and discuss the results of studies using ES or PL or their combination in order to suggest, based on literature, which treatment is the best option for each clinical condition. RESULTS Positive results were obtained using ES and PL to enhance visual functions. For example, repetitive transorbital Alternating Current Stimulation (rtACS) appeared as the most effective treatment for pre-chiasmatic disorders such as optic neuropathy. A combination of transcranial Direct Current Stimulation (tDCS) and visual training seems helpful for people with hemianopia, while transcranial Random Noise Stimulation (tRNS) makes visual training more efficient in people with amblyopia and mild myopia. CONCLUSIONS This narrative review highlights the effect of different ES montages and PL in the treatment of visual disorders. Furthermore, new options for treatment are suggested. It is noteworthy to mention that, in some cases, unclear results emerged and others need to be more deeply investigated.
Collapse
Affiliation(s)
- Luca Battaglini
- Department of General Psychology, University of Padova, Italy.,Centro di Ateneo dei Servizi Clinici Universitari Psicologici (SCUP), University of Padova, Padova, Italy.,Neuro.Vis.U.S, University of Padova, Padova, Italy
| | - Michele Di Ponzio
- Department of General Psychology, University of Padova, Italy.,Istituto di Neuroscienze, Florence, Italy
| | - Andrea Ghiani
- Department of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | - Federica Mena
- Department of General Psychology, University of Padova, Italy
| | | | - Clara Casco
- Department of General Psychology, University of Padova, Italy.,Centro di Ateneo dei Servizi Clinici Universitari Psicologici (SCUP), University of Padova, Padova, Italy.,Neuro.Vis.U.S, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Transcranial alternating current stimulation rescues motor deficits in a mouse model of Parkinson's disease via the production of glial cell line-derived neurotrophic factor. Brain Stimul 2022; 15:645-653. [DOI: 10.1016/j.brs.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/15/2022] Open
|
13
|
Fabbrini A, Guerra A, Giangrosso M, Manzo N, Leodori G, Pasqualetti P, Conte A, Di Lazzaro V, Berardelli A. Transcranial alternating current stimulation modulates cortical processing of somatosensory information in a frequency- and time-specific manner. Neuroimage 2022; 254:119119. [PMID: 35321858 DOI: 10.1016/j.neuroimage.2022.119119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/16/2022] [Accepted: 03/19/2022] [Indexed: 10/18/2022] Open
Abstract
Neural oscillations can be modulated by non-invasive brain stimulation techniques, including transcranial alternating current stimulation (tACS). However, direct evidence of tACS effects at the cortical level in humans is still limited. In a tACS-electroencephalography co-registration setup, we investigated the ability of tACS to modulate cortical somatosensory information processing as assessed by somatosensory-evoked potentials (SEPs). To better elucidate the neural substrates of possible tACS effects we also recorded peripheral and spinal SEPs components, high-frequency oscillations (HFOs), and long-latency reflexes (LLRs). Finally, we studied whether changes were limited to the stimulation period or persisted thereafter. SEPs, HFOs, and LLRs were recorded during tACS applied at individual mu and beta frequencies and at the theta frequency over the primary somatosensory cortex (S1). Sham-tACS was used as a control condition. In a separate experiment, we assessed the time course of mu-tACS effects by recording SEPs before (T0), during (T1), and 1 min (T2) and 10 min (T3) after stimulation. Mu-tACS increased the amplitude of the N20 component of SEPs compared to both sham and theta-tACS. No differences were found between sham, beta-, and theta-tACS conditions. Also, peripheral and spinal SEPs, P25, HFOs, and LLRs did not change during tACS. Finally, mu-tACS-induced modulation of N20 amplitude specifically occurred during stimulation (T1) and vanished afterwards (i.e., at T2 and T3). Our findings suggest that TACS applied at the individual mu frequency is able to modulate early somatosensory information processing at the S1 level and the effect is limited to the stimulation period.
Collapse
Affiliation(s)
- Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Andrea Guerra
- IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Margherita Giangrosso
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Nicoletta Manzo
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS San Camillo Hospital, Via Alberoni 70, Venice 30126, Italy
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Patrizio Pasqualetti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Via Álvaro Del Portillo 21, Rome 00128, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy.
| |
Collapse
|
14
|
Momi D, Ozdemir RA, Tadayon E, Boucher P, Di Domenico A, Fasolo M, Shafi MM, Pascual-Leone A, Santarnecchi E. Phase-dependent local brain states determine the impact of image-guided transcranial magnetic stimulation on motor network electroencephalographic synchronization. J Physiol 2022; 600:1455-1471. [PMID: 34799873 PMCID: PMC9728936 DOI: 10.1113/jp282393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022] Open
Abstract
Recent studies have synchronized transcranial magnetic stimulation (TMS) application with pre-defined brain oscillatory phases showing how brain response to perturbation depends on the brain state. However, none have investigated whether phase-dependent TMS can possibly modulate connectivity with homologous distant brain regions belonging to the same network. In the framework of network-targeted TMS, we investigated whether stimulation delivered at a specific phase of ongoing brain oscillations might favour stronger cortico-cortical (c-c) synchronization of distant network nodes connected to the stimulation target. Neuronavigated TMS pulses were delivered over the primary motor cortex (M1) during ongoing electroencephalography recording in 24 healthy individuals over two repeated sessions 1 month apart. Stimulation effects were analysed considering whether the TMS pulse was delivered at the time of a positive (peak) or negative (trough) phase of μ-frequency oscillation, which determines c-c synchrony within homologous areas of the sensorimotor network. Diffusion weighted imaging was used to study c-c connectivity within the sensorimotor network and identify contralateral regions connected with the stimulation spot. Depending on when during the μ-activity the TMS-pulse was applied (peak or trough), its impact on inter-hemispheric network synchrony varied significantly. Higher M1-M1 phase-lock synchronization after the TMS-pulse (0-200 ms) in the μ-frequency band was found for trough compared to peak stimulation trials in both study visits. Phase-dependent TMS delivery might be crucial not only to amplify local effects but also to increase the magnitude and reliability of the response to the external perturbation, with implications for interventions aimed at engaging more distributed functional brain networks. KEY POINTS: Synchronized transcranial magnetic stimulation (TMS) pulses with pre-defined brain oscillatory phases allow evaluation of the impact of brain states on TMS effects. TMS pulses over M1 at the negative peak of the μ-frequency band induce higher phase-lock synchronization with interconnected contralateral homologous regions. Cortico-cortical synchronization changes are linearly predicted by the fibre density and cross-section of the white matter tract that connects the two brain regions. Phase-dependent TMS delivery might be crucial not only to amplify local effects but also to increase the magnitude and reliability of within-network synchronization.
Collapse
Affiliation(s)
- Davide Momi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti
| | - Recep A. Ozdemir
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ehsan Tadayon
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Pierre Boucher
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alberto Di Domenico
- Department of Psychological Science, Humanities and Territory, University of Chieti-Pescara, Chieti, Italy
| | - Mirco Fasolo
- Department of Psychological Science, Humanities and Territory, University of Chieti-Pescara, Chieti, Italy
| | - Mouhsin M. Shafi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston MA,Department of Neurology, Harvard Medical School, Boston, MA, USA,Guttmann Brain Health Institute, Guttmann Institut, Universitat Autonoma, Barcelona, Spain
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Suzuki M, Tanaka S, Gomez-Tames J, Okabe T, Cho K, Iso N, Hirata A. Nonequivalent After-Effects of Alternating Current Stimulation on Motor Cortex Oscillation and Inhibition: Simulation and Experimental Study. Brain Sci 2022; 12:brainsci12020195. [PMID: 35203958 PMCID: PMC8870173 DOI: 10.3390/brainsci12020195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
The effects of transcranial alternating current stimulation (tACS) frequency on brain oscillations and cortical excitability are still controversial. Therefore, this study investigated how different tACS frequencies differentially modulate cortical oscillation and inhibition. To do so, we first determined the optimal positioning of tACS electrodes through an electric field simulation constructed from magnetic resonance images. Seven electrode configurations were tested on the electric field of the precentral gyrus (hand motor area). We determined that the Cz-CP1 configuration was optimal, as it resulted in higher electric field values and minimized the intra-individual differences in the electric field. Therefore, tACS was delivered to the hand motor area through this arrangement at a fixed frequency of 10 Hz (alpha-tACS) or 20 Hz (beta-tACS) with a peak-to-peak amplitude of 0.6 mA for 20 min. We found that alpha- and beta-tACS resulted in larger alpha and beta oscillations, respectively, compared with the oscillations observed after sham-tACS. In addition, alpha- and beta-tACS decreased the amplitudes of conditioned motor evoked potentials and increased alpha and beta activity, respectively. Correspondingly, alpha- and beta-tACSs enhanced cortical inhibition. These results show that tACS frequency differentially affects motor cortex oscillation and inhibition.
Collapse
Affiliation(s)
- Makoto Suzuki
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama 350-1398, Saitama, Japan; (T.O.); (K.C.); (N.I.)
- Correspondence: ; Tel.: +81-42-955-6074
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Jose Gomez-Tames
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan; (J.G.-T.); (A.H.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan
| | - Takuhiro Okabe
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama 350-1398, Saitama, Japan; (T.O.); (K.C.); (N.I.)
| | - Kilchoon Cho
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama 350-1398, Saitama, Japan; (T.O.); (K.C.); (N.I.)
| | - Naoki Iso
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama 350-1398, Saitama, Japan; (T.O.); (K.C.); (N.I.)
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan; (J.G.-T.); (A.H.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan
| |
Collapse
|
16
|
Suppa A, Asci F, Guerra A. Transcranial magnetic stimulation as a tool to induce and explore plasticity in humans. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:73-89. [PMID: 35034759 DOI: 10.1016/b978-0-12-819410-2.00005-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activity-dependent synaptic plasticity is the main theoretical framework to explain mechanisms of learning and memory. Synaptic plasticity can be explored experimentally in animals through various standardized protocols for eliciting long-term potentiation and long-term depression in hippocampal and cortical slices. In humans, several non-invasive protocols of repetitive transcranial magnetic stimulation and transcranial direct current stimulation have been designed and applied to probe synaptic plasticity in the primary motor cortex, as reflected by long-term changes in motor evoked potential amplitudes. These protocols mimic those normally used in animal studies for assessing long-term potentiation and long-term depression. In this chapter, we first discuss the physiologic basis of theta-burst stimulation, paired associative stimulation, and transcranial direct current stimulation. We describe the current biophysical and theoretical models underlying the molecular mechanisms of synaptic plasticity and metaplasticity, defined as activity-dependent changes in neural functions that modulate subsequent synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), in the human motor cortex including calcium-dependent plasticity, spike-timing-dependent plasticity, the role of N-methyl-d-aspartate-related transmission and gamma-aminobutyric-acid interneuronal activity. We also review the putative microcircuits responsible for synaptic plasticity in the human motor cortex. We critically readdress the issue of variability in studies investigating synaptic plasticity and propose available solutions. Finally, we speculate about the utility of future studies with more advanced experimental approaches.
Collapse
Affiliation(s)
- Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed Institute, Pozzilli (IS), Italy.
| | | | | |
Collapse
|
17
|
Rossi S, Santarnecchi E, Feurra M. Noninvasive brain stimulation and brain oscillations. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:239-247. [PMID: 35034738 DOI: 10.1016/b978-0-12-819410-2.00013-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Recent technological advances in the field of noninvasive brain stimulation (NIBS) have allowed to interact with endogenous brain oscillatory activity, the main neural communication code of our brain, opening new scenarios for transient modifications of cognitive and behavioral performances: such a possibility can be capitalized both for research purposes in healthy subjects, as well as in the context of therapeutic and rehabilitative settings. Among NiBS methodologies, transcranial magnetic stimulation (TMS) has been the first used to this purpose, and also thanks to the technical development of TMS-EEG co-registering systems, the mechanistic knowledge regarding the role of brain oscillations has been improved. Another approach to brain oscillations considers electric stimulation methods, such as transcranial direct current stimulation (tDCS), and especially transcranial alternating current stimulation (tACS), for which -however- some technical and conceptual caveats have emerged. In this chapter, we briefly review the uses of NiBS in this field up to now, by providing an update on the current status of research applications as well as of its attempts of exploitation in translational clinical applications, especially regarding motor disorders and for understanding and reducing some psychiatric symptoms.
Collapse
Affiliation(s)
- Simone Rossi
- Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
| | - Emiliano Santarnecchi
- Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Matteo Feurra
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russian Federation
| |
Collapse
|
18
|
Dissanayaka T, Zoghi M, Farrell M, Egan G, Jaberzadeh S. The effects of monophasic anodal transcranial pulsed current stimulation on corticospinal excitability and motor performance in healthy young adults: A randomized double-blind sham-controlled study. Brain Connect 2021; 12:260-274. [PMID: 34963309 DOI: 10.1089/brain.2020.0949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Transcranial pulsed current stimulation (tPCS) could be used to deliver electrical pulses at different frequencies to entrain the cortical neurons of the brain. Frequency dependence of these pulses in the induction of changes in corticospinal excitability (CSE) has not been reported. OBJECTIVE We aimed to assess the effect of anodal tPCS (a-tPCS) at theta (4 Hz), and gamma (75 Hz) frequencies on CSE as assessed by the peak-to-peak amplitude of transcranial magnetic stimulation (TMS) induced motor evoked potentials (MEPs) and motor performance. METHOD In a randomized double-blinded sham-controlled cross over design study, seventeen healthy participants attended three experimental sessions and received either a-tPCS at 4 Hz, 75 Hz, or sham a-tPCS with 1.5 mA for 15 min. The amplitude of TMS induced resting MEPs and time for completion of the grooved pegboard test were recorded at baseline, immediately after, and 30-min after a-tPCS. RESULTS Both a-tPCS at 75 Hz and 4 Hz showed significantly increased CSE compared to sham. The a-tPCS at 75 Hz induced significantly higher CSE changes compared to 4 Hz. There was a significant increase in intracortical facilitation and a significant reduction in short-interval intra-cortical inhibition with both 4 and 75 Hz stimulation. However, the inhibition and facilitation did not correlate with CSE. Motor performance was unaffected by the interventions. CONCLUSION The high CSE changes in M1 in a-tPCS at 75 Hz provides an initial understanding of the frequency-specific effect of a-tPCS. More research is needed to establish this concept and to assess its behavioural relevance.
Collapse
Affiliation(s)
- Thusharika Dissanayaka
- Monash University, 2541, 6/63, Frankston-flinders road, Frankston, Frankston, Victoria, Australia, 3199;
| | - Maryam Zoghi
- La Trobe University, 2080, Melbourne, Victoria, Australia;
| | - Michael Farrell
- Monash University, 2541, Medical Imaging and Radiation Sciences, Wellington Road, Clayton, Victoria, Australia, 3800.,Monash University;
| | - Gary Egan
- Monash University, Monash Biomedical Imaging; School of Psychological Sciences, Melbourne, Victoria, Australia.,ARC Centre of Excellence for Integrative Brain Function, Melbourne, Australia;
| | | |
Collapse
|
19
|
Facilitation of Motor Evoked Potentials in Response to a Modified 30 Hz Intermittent Theta-Burst Stimulation Protocol in Healthy Adults. Brain Sci 2021; 11:brainsci11121640. [PMID: 34942942 PMCID: PMC8699605 DOI: 10.3390/brainsci11121640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 12/24/2022] Open
Abstract
Theta-burst stimulation (TBS) is a form of repetitive transcranial magnetic stimulation (rTMS) developed to induce neuroplasticity. TBS usually consists of 50 Hz bursts at 5 Hz intervals. It can facilitate motor evoked potentials (MEPs) when applied intermittently, although this effect can vary between individuals. Here, we sought to determine whether a modified version of intermittent TBS (iTBS) consisting of 30 Hz bursts repeated at 6 Hz intervals would lead to lasting MEP facilitation. We also investigated whether recruitment of early and late indirect waves (I-waves) would predict individual responses to 30 Hz iTBS. Participants (n = 19) underwent single-pulse TMS to assess MEP amplitude at baseline and variations in MEP latency in response to anterior-posterior, posterior-anterior, and latero-medial stimulation. Then, 30 Hz iTBS was administered, and MEP amplitude was reassessed at 5-, 20- and 45-min. Post iTBS, most participants (13/19) exhibited MEP facilitation, with significant effects detected at 20- and 45-min. Contrary to previous evidence, recruitment of early I-waves predicted facilitation to 30 Hz iTBS. These observations suggest that 30 Hz/6 Hz iTBS is effective in inducing lasting facilitation in corticospinal excitability and may offer an alternative to the standard 50 Hz/5 Hz protocol.
Collapse
|
20
|
Ogata K, Nakazono H, Ikeda T, Oka SI, Goto Y, Tobimatsu S. After-Effects of Intermittent Theta-Burst Stimulation Are Differentially and Phase-Dependently Suppressed by α- and β-Frequency Transcranial Alternating Current Stimulation. Front Hum Neurosci 2021; 15:750329. [PMID: 34867243 PMCID: PMC8636087 DOI: 10.3389/fnhum.2021.750329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Intermittent theta-burst stimulation (iTBS) using transcranial magnetic stimulation (TMS) is known to produce excitatory after-effects over the primary motor cortex (M1). Recently, transcranial alternating current stimulation (tACS) at 10 Hz (α) and 20 Hz (β) have been shown to modulate M1 excitability in a phase-dependent manner. Therefore, we hypothesized that tACS would modulate the after-effects of iTBS depending on the stimulation frequency and phase. To test our hypothesis, we examined the effects of α- and β-tACS on iTBS using motor evoked potentials (MEPs). Eighteen and thirteen healthy participants were recruited for α and β tACS conditions, respectively. tACS electrodes were attached over the left M1 and Pz. iTBS over left M1 was performed concurrently with tACS. The first pulse of the triple-pulse burst of iTBS was controlled to match the peak (90°) or trough (270°) phase of the tACS. A sham tACS condition was used as a control in which iTBS was administered without tACS. Thus, each participant was tested in three conditions: the peak and trough of the tACS phases and sham tACS. As a result, MEPs were enhanced after iTBS without tACS (sham condition), as observed in previous studies. α-tACS suppressed iTBS effects at the peak phase but not at the trough phase, while β-tACS suppressed the effects at both phases. Thus, although both types of tACS inhibited the facilitatory effects of iTBS, only α-tACS did so in a phase-dependent manner. Phase-dependent inhibition by α-tACS is analogous to our previous finding in which α-tACS inhibited MEPs online at the peak condition. Conversely, β-tACS reduced the effects of iTBS irrespective of its phase. The coupling of brain oscillations and tACS rhythms is considered important in the generation of spike-timing-dependent plasticity. Additionally, the coupling of θ and γ oscillations is assumed to be important for iTBS induction through long-term potentiation (LTP). Therefore, excessive coupling between β oscillations induced by tACS and γ or θ oscillations induced by iTBS might disturb the coupling of θ and γ oscillations during iTBS. To conclude, the action of iTBS is differentially modulated by neuronal oscillations depending on whether α- or β-tACS is applied.
Collapse
Affiliation(s)
- Katsuya Ogata
- Department of Pharmacy, School of Pharmaceutical Sciences at Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Hisato Nakazono
- Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Takuro Ikeda
- Department of Physical Therapy, School of Health Sciences, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Shin-Ichiro Oka
- Department of Physical Therapy, School of Health Sciences, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Yoshinobu Goto
- School of Medicine, International University of Health and Welfare, Naritaa, Japan
| | - Shozo Tobimatsu
- Department of Orthoptics, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
21
|
Janssens SEW, Sack AT. Spontaneous Fluctuations in Oscillatory Brain State Cause Differences in Transcranial Magnetic Stimulation Effects Within and Between Individuals. Front Hum Neurosci 2021; 15:802244. [PMID: 34924982 PMCID: PMC8674306 DOI: 10.3389/fnhum.2021.802244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) can cause measurable effects on neural activity and behavioral performance in healthy volunteers. In addition, TMS is increasingly used in clinical practice for treating various neuropsychiatric disorders. Unfortunately, TMS-induced effects show large intra- and inter-subject variability, hindering its reliability, and efficacy. One possible source of this variability may be the spontaneous fluctuations of neuronal oscillations. We present recent studies using multimodal TMS including TMS-EMG (electromyography), TMS-tACS (transcranial alternating current stimulation), and concurrent TMS-EEG-fMRI (electroencephalography, functional magnetic resonance imaging), to evaluate how individual oscillatory brain state affects TMS signal propagation within targeted networks. We demonstrate how the spontaneous oscillatory state at the time of TMS influences both immediate and longer-lasting TMS effects. These findings indicate that at least part of the variability in TMS efficacy may be attributable to the current practice of ignoring (spontaneous) oscillatory fluctuations during TMS. Ignoring this state-dependent spread of activity may cause great individual variability which so far is poorly understood and has proven impossible to control. We therefore also compare two technical solutions to directly account for oscillatory state during TMS, namely, to use (a) tACS to externally control these oscillatory states and then apply TMS at the optimal (controlled) brain state, or (b) oscillatory state-triggered TMS (closed-loop TMS). The described multimodal TMS approaches are paramount for establishing more robust TMS effects, and to allow enhanced control over the individual outcome of TMS interventions aimed at modulating information flow in the brain to achieve desirable changes in cognition, mood, and behavior.
Collapse
Affiliation(s)
- Shanice E. W. Janssens
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands
| | - Alexander T. Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain + Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
- Centre for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
22
|
Hosseinian T, Yavari F, Kuo MF, Nitsche MA, Jamil A. Phase synchronized 6 Hz transcranial electric and magnetic stimulation boosts frontal theta activity and enhances working memory. Neuroimage 2021; 245:118772. [PMID: 34861393 DOI: 10.1016/j.neuroimage.2021.118772] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/30/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022] Open
Abstract
Network-level synchronization of theta oscillations in the cerebral cortex is linked to many vital cognitive functions across daily life, such as executive functions or regulation of arousal and consciousness. However, while neuroimaging has uncovered the ubiquitous functional relevance of theta rhythms in cognition, there remains a limited set of techniques for externally enhancing and stabilizing theta in the human brain non-invasively. Here, we developed and employed a new phase-synchronized low-intensity electric and magnetic stimulation technique to induce and stabilize narrowband 6-Hz theta oscillations in a group of healthy human adult participants, and then demonstrated how this technique also enhances cognitive processing by assaying working memory. Our findings demonstrate a technological advancement of brain stimulation methods, while also validating the causal link between theta activity and concurrent cognitive behavior, which may ultimately help to not only explain mechanisms, but offer perspectives for restoring deficient theta-band network activity observed in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Tiam Hosseinian
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund 44139, Germany
| | - Fatemeh Yavari
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund 44139, Germany
| | - Min-Fang Kuo
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund 44139, Germany
| | - Michael A Nitsche
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund 44139, Germany; Department Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany.
| | - Asif Jamil
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund 44139, Germany; Laboratory for Neuropsychiatry and Neuromodulation, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Boston, MA, USA.
| |
Collapse
|
23
|
Kojima S, Miyaguchi S, Yokota H, Saito K, Inukai Y, Otsuru N, Onishi H. The Number or Type of Stimuli Used for Somatosensory Stimulation Affected the Modulation of Corticospinal Excitability. Brain Sci 2021; 11:brainsci11111494. [PMID: 34827493 PMCID: PMC8615945 DOI: 10.3390/brainsci11111494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/04/2022] Open
Abstract
Motor evoked potentials (MEPs) evoked by transcranial magnetic stimulation (TMS) a few milliseconds after this cortical activity following electrical stimulation (ES) result in an inhibition comparable to that by TMS alone; this is called short-latency afferent inhibition (SAI). Cortical activity is observed after mechanical tactile stimulation (MS) and is affected by the number of stimuli by ES. We determined the effects of somatosensory stimulus methods and multiple conditioning stimuli on SAI in 19 participants. In experiment 1, the interstimulus intervals between the conditioning stimulation and TMS were 25, 27 and 29 ms for ES and 28, 30 and 32 ms for MS. In experiment 2, we used 1, 2, 3 and 4 conditioning stimulations of ES and MS. The interstimulus interval between the ES or MS and TMS was 27 or 30 ms, respectively. In experiment 1, MEPs were significantly decreased in both the ES and MS conditions. In experiment 2, MEPs after ES were significantly decreased in all conditions. Conversely, MEPs after MS were significantly decreased after one stimulus and increased after four stimulations, indicating the SAI according to the number of stimuli. Therefore, the somatosensory stimulus methods and multiple conditioning stimuli affected the SAI.
Collapse
|
24
|
Parker T, Raghu A, Huang Y, Gillies MJ, FitzGerald JJ, Aziz T, Green AL. Paired Acute Invasive/Non-invasive Stimulation (PAINS) study: A phase I/II randomized, sham-controlled crossover trial in chronic neuropathic pain. Brain Stimul 2021; 14:1576-1585. [PMID: 34673258 DOI: 10.1016/j.brs.2021.10.384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Dorsal root ganglion (DRG) stimulation, an invasive method of neuromodulation, and transcranial direct current stimulation (tDCS), a non-invasive method of altering cortical excitability, have both proven effective in relieving chronic pain. OBJECTIVE We employed a randomized, sham-controlled crossover study design to investigate whether single-session tDCS would have an additive therapeutic effect alongside DRG stimulation (DRGS) in the treatment of chronic pain. METHODS Sixteen neuropathic pain patients who were previously implanted with DRG stimulators were recruited. Baseline pain scores were established with DRGS-OFF. Pain scores were then recorded with DRGS-ON, after paired sham tDCS stimulation, and after paired active anodal tDCS (a-tDCS) stimulation. For active tDCS, patients were randomized to 'MEG (magnetoencephalography) localized' tDCS or contralateral motor cortex (M1) tDCS for 30 min. EEG recordings and evaluations of tDCS adverse effects were also collected. RESULTS All participants reported the interventions to be tolerable with no significant adverse effects during the session. Paired DRGS/active tDCS resulted in a significant reduction in pain scores compared to paired DRGS-ON/sham tDCS or DRGS alone. There was no difference in the additive effect of M1 vs. MEG-localized tDCS. Significant augmentation of beta activity was observed between DRGS-OFF and DRGS-ON conditions, as well as between paired DRGS-ON/sham tDCS and paired DRGS-ON/active tDCS. CONCLUSION Our results indicate that a single session of tDCS alongside DRGS is safe and can significantly reduce pain acutely in neuropathic pain patients. Paired invasive/non-invasive neuromodulation is a promising new treatment strategy for pain management and should be evaluated further to assess long-term benefits.
Collapse
Affiliation(s)
- Tariq Parker
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom; Neurosurgery Department, Massachusetts General Hospital, Boston, MA, USA.
| | - Ashley Raghu
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Yongzhi Huang
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Martin J Gillies
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - James J FitzGerald
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Tipu Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Schilberg L, Ten Oever S, Schuhmann T, Sack AT. Phase and power modulations on the amplitude of TMS-induced motor evoked potentials. PLoS One 2021; 16:e0255815. [PMID: 34529682 PMCID: PMC8445484 DOI: 10.1371/journal.pone.0255815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022] Open
Abstract
The evaluation of transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs) promises valuable information about fundamental brain related mechanisms and may serve as a diagnostic tool for clinical monitoring of therapeutic progress or surgery procedures. However, reports about spontaneous fluctuations of MEP amplitudes causing high intra-individual variability have led to increased concerns about the reliability of this measure. One possible cause for high variability of MEPs could be neuronal oscillatory activity, which reflects fluctuations of membrane potentials that systematically increase and decrease the excitability of neuronal networks. Here, we investigate the dependence of MEP amplitude on oscillation power and phase by combining the application of single pulse TMS over the primary motor cortex with concurrent recordings of electromyography and electroencephalography. Our results show that MEP amplitude is correlated to alpha phase, alpha power as well as beta phase. These findings may help explain corticospinal excitability fluctuations by highlighting the modulatory effect of alpha and beta phase on MEPs. In the future, controlling for such a causal relationship may allow for the development of new protocols, improve this method as a (diagnostic) tool and increase the specificity and efficacy of general TMS applications.
Collapse
Affiliation(s)
- Lukas Schilberg
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sanne Ten Oever
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Language and Computation in Neural Systems Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Teresa Schuhmann
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Centre for Integrative Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Alexander T. Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Centre for Integrative Neuroscience, Maastricht University, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
26
|
Fehér KD, Nakataki M, Morishima Y. Phase-Synchronized Transcranial Alternating Current Stimulation-Induced Neural Oscillations Modulate Cortico-Cortical Signaling Efficacy. Brain Connect 2021; 12:443-453. [PMID: 34210152 DOI: 10.1089/brain.2021.0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction: Synchronized oscillatory brain activity is considered a basis for flexible neuronal network communication. However, the causal role of inter-regional oscillatory phase relations in modulating signaling efficacy in cortical networks has not been directly demonstrated in humans so far. Aim: The current study addresses the causal role of transcranial alternating current stimulation (tACS)-induced oscillatory cross-network phase relations in modulating signaling efficacy across human cortical networks. Methods: To this end, concurrent tACS, transcranial magnetic stimulation (TMS), and electroencephalography (EEG) were employed to measure the modulation of excitability and signaling efficacy across cortical networks during externally induced neural oscillations. Theta oscillatory activity was introduced through tACS in two nodes of the human frontoparietal network: the dorsolateral prefrontal cortex (DLPFC) and the posterior parietal cortex (PPC). Six Hertz tACS was applied to the DLPFC and PPC simultaneously in an in-phase or antiphase manner. In addition, single-pulse TMS was administered over the DLPFC at four different phases of tACS and the propagation of TMS-evoked neuronal activity was measured with EEG. Results: We show that tACS-induced theta oscillations modulate TMS-evoked potentials (TEPs) in a phase-dependent manner, and that the induced oscillatory phase relation across the frontoparietal network affects the propagation of phase-dependent TEPs within as well as beyond the frontoparietal network. Conclusion: We show that the effect of tACS-induced phase relation across the frontoparietal network on signal transmission extends beyond the frontoparietal network. The results support a causal role of inter-nodal oscillatory phase synchrony in routing cortico-cortical information flow.
Collapse
Affiliation(s)
- Kristoffer D Fehér
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Masahito Nakataki
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Yosuke Morishima
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.,Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
27
|
Guerra A, Colella D, Giangrosso M, Cannavacciuolo A, Paparella G, Fabbrini G, Suppa A, Berardelli A, Bologna M. Driving motor cortex oscillations modulates bradykinesia in Parkinson's disease. Brain 2021; 145:224-236. [PMID: 34245244 DOI: 10.1093/brain/awab257] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
In Parkinson's disease (PD) patients, beta (β) and gamma (γ) oscillations are altered in the basal ganglia, and this abnormality contributes to the pathophysiology of bradykinesia. However, it is unclear whether β and γ rhythms at the primary motor cortex (M1) level influence bradykinesia. Transcranial alternating current stimulation (tACS) can modulate cortical rhythms by entraining endogenous oscillations. We tested whether β- and γ-tACS on M1 modulate bradykinesia in PD patients by analyzing the kinematic features of repetitive finger tapping, including movement amplitude, velocity, and sequence effect, recorded during β-, γ-, and sham tACS. We also verified whether possible tACS-induced bradykinesia changes depended on modifications in specific M1 circuits, as assessed by short-interval intracortical inhibition (SICI) and short-latency afferent inhibition (SAI). Patients were studied OFF and ON dopaminergic therapy. Results were compared to those obtained in a group of healthy subjects (HS). In patients, movement velocity significantly worsened during β-tACS and movement amplitude improved during γ-tACS, while the sequence effect did not change. In addition, SAI decreased (reduced inhibition) during β-tACS and SICI decreased during both γ- and β-tACS in PD. The effects of tACS were comparable between OFF and ON sessions. In patients OFF therapy, the degree of SICI modulation during β- and γ-tACS correlated with movement velocity and amplitude changes. Moreover, there was a positive correlation between the effect of γ-tACS on movement amplitude and motor symptoms severity. Our results show that cortical β and γ oscillations are relevant in the pathophysiology of bradykinesia in PD and that changes in inhibitory GABA-A-ergic interneuronal activity may reflect compensatory M1 mechanisms to counteract bradykinesia. In conclusion, abnormal oscillations at the M1 level of the basal ganglia-thalamo-cortical network play a relevant role in the pathophysiology of bradykinesia in PD.
Collapse
Affiliation(s)
| | - Donato Colella
- Department of Human Neurosciences, Sapienza University of Rome, Italy
| | | | | | | | - Giovanni Fabbrini
- IRCCS Neuromed, Pozzilli (IS), Italy.,Department of Human Neurosciences, Sapienza University of Rome, Italy
| | - Antonio Suppa
- IRCCS Neuromed, Pozzilli (IS), Italy.,Department of Human Neurosciences, Sapienza University of Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli (IS), Italy.,Department of Human Neurosciences, Sapienza University of Rome, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli (IS), Italy.,Department of Human Neurosciences, Sapienza University of Rome, Italy
| |
Collapse
|
28
|
Thompson L, Khuc J, Saccani MS, Zokaei N, Cappelletti M. Gamma oscillations modulate working memory recall precision. Exp Brain Res 2021; 239:2711-2724. [PMID: 34223958 PMCID: PMC8448714 DOI: 10.1007/s00221-021-06051-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
Working memory (WM)—the ability to keep information in mind for short periods of time—is linked to attention and inhibitory abilities, i.e., the capacity to ignore task-irrelevant information. These abilities have been associated with brain oscillations, especially parietal gamma and alpha bands, but it is yet unknown whether these oscillations also modulate attention and inhibitory abilities. To test this, we compared parietal gamma-transcranial alternating current stimulation (tACS) to alpha-tACS and to a non-stimulation condition (Sham) in 51 young participants. Stimulation was coupled with a WM task probing memory-based attention and inhibitory abilities by means of probabilistic retrospective cues, including informative (valid), uninformative (invalid) and neutral. Our results show that relative to alpha and sham stimulation, parietal gamma-tACS significantly increased working memory recall precision. Additional post hoc analyses also revealed strong individual variability before and following stimulation; low-baseline performers showed no significant changes in performance following both gamma and alpha-tACS relative to sham. In contrast, in high-baseline performers gamma- (but not alpha) tACS selectively and significantly improved misbinding-feature errors as well as memory precision, particularly in uninformative (invalid) cues which rely more strongly on attentional abilities. We concluded that parietal gamma oscillations, therefore, modulate working memory recall processes, although baseline performance may further influence the effect of stimulation.
Collapse
Affiliation(s)
- Lyall Thompson
- Department of Psychology, Goldsmiths, University of London, Lewisham Way, London, SE14 6NW, UK
| | - Janine Khuc
- Department of Psychology, Goldsmiths, University of London, Lewisham Way, London, SE14 6NW, UK
| | - Maria Silvia Saccani
- Department of Psychology, Goldsmiths, University of London, Lewisham Way, London, SE14 6NW, UK
| | - Nahid Zokaei
- Department of Experimental Psychology, South Parks Road, Oxford, OX1 3UD, UK.,Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
| | - Marinella Cappelletti
- Department of Psychology, Goldsmiths, University of London, Lewisham Way, London, SE14 6NW, UK. .,Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AR, UK.
| |
Collapse
|
29
|
Nakazono H, Ogata K, Takeda A, Yamada E, Oka S, Tobimatsu S. A specific phase of transcranial alternating current stimulation at the β frequency boosts repetitive paired-pulse TMS-induced plasticity. Sci Rep 2021; 11:13179. [PMID: 34162993 PMCID: PMC8222330 DOI: 10.1038/s41598-021-92768-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/09/2021] [Indexed: 11/09/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) at 20 Hz (β) has been shown to modulate motor evoked potentials (MEPs) when paired with transcranial magnetic stimulation (TMS) in a phase-dependent manner. Repetitive paired-pulse TMS (rPPS) with I-wave periodicity (1.5 ms) induced short-lived facilitation of MEPs. We hypothesized that tACS would modulate the facilitatory effects of rPPS in a frequency- and phase-dependent manner. To test our hypothesis, we investigated the effects of combined tACS and rPPS. We applied rPPS in combination with peak or trough phase tACS at 10 Hz (α) or β, or sham tACS (rPPS alone). The facilitatory effects of rPPS in the sham condition were temporary and variable among participants. In the β tACS peak condition, significant increases in single-pulse MEPs persisted for over 30 min after the stimulation, and this effect was stable across participants. In contrast, β tACS in the trough condition did not modulate MEPs. Further, α tACS parameters did not affect single-pulse MEPs after the intervention. These results suggest that a rPPS-induced increase in trans-synaptic efficacy could be strengthened depending on the β tACS phase, and that this technique could produce long-lasting plasticity with respect to cortical excitability.
Collapse
Affiliation(s)
- Hisato Nakazono
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan. .,Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, 814-0001, Japan.
| | - Katsuya Ogata
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Pharmaceutical Sciences, School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka, 831-8501, Japan
| | - Akinori Takeda
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,Research Center for Brain Communication, Research Institute, Kochi University of Technology, Kochi, 782-8502, Japan
| | - Emi Yamada
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Linguistics, Faculty of Humanities, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shinichiro Oka
- Department of Physical Therapy, School of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, 831-8501, Japan
| | - Shozo Tobimatsu
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Orthoptics, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, 814-0001, Japan
| |
Collapse
|
30
|
Turco CV, Toepp SL, Foglia SD, Dans PW, Nelson AJ. Association of short- and long-latency afferent inhibition with human behavior. Clin Neurophysiol 2021; 132:1462-1480. [PMID: 34030051 DOI: 10.1016/j.clinph.2021.02.402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/26/2021] [Accepted: 02/12/2021] [Indexed: 01/04/2023]
Abstract
Transcranial magnetic stimulation (TMS) paired with nerve stimulation evokes short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI), which are non-invasive assessments of the excitability of the sensorimotor system. SAI and LAI are abnormally reduced in various special populations in comparison to healthy controls. However, the relationship between afferent inhibition and human behavior remains unclear. The purpose of this review is to survey the current literature and synthesize observations and patterns that affect the interpretation of SAI and LAI in the context of human behavior. We discuss human behaviour across the motor and cognitive domains, and in special and control populations. Further, we discuss future considerations for research in this field and the potential for clinical applications. By understanding how human behavior is mediated by changes in SAI and LAI, this can allow us to better understand the neurophysiological underpinnings of human motor control.
Collapse
Affiliation(s)
- Claudia V Turco
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Stephen L Toepp
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Stevie D Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Patrick W Dans
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
31
|
Peles O, Werner-Reiss U, Bergman H, Israel Z, Vaadia E. Phase-Specific Microstimulation Differentially Modulates Beta Oscillations and Affects Behavior. Cell Rep 2021; 30:2555-2566.e3. [PMID: 32101735 DOI: 10.1016/j.celrep.2020.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/13/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
It is widely accepted that Beta-band oscillations play a role in sensorimotor behavior. To further explore this role, we developed a hybrid platform to combine neural operant conditioning and phase-specific intracortical microstimulation (ICMS). We trained monkeys, implanted with 96 electrode arrays in the motor cortex, to volitionally enhance local field potential (LFP) Beta-band (20-30 Hz) activity at selected sites using a brain-machine interface. We find that Beta oscillations of LFP and single-unit spiking activity increase dramatically with brain-machine interface training and that pre-movement Beta power is anti-correlated with task performance. We also find that phase-specific ICMS modulates the power and phase of oscillations, shifting local networks between oscillatory and non-oscillatory states. Furthermore, ICMS induces phase-dependent effects in animal reaction times and success rates. These findings contribute to unraveling the functional role of cortical oscillations and to the future development of clinical tools for ameliorating abnormal neuronal activities in brain disease.
Collapse
Affiliation(s)
- Oren Peles
- Department of Medical Neurobiology, Institute of Medical Research-Israel Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel; Edmond and Lily Safra Centre for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Uri Werner-Reiss
- Department of Medical Neurobiology, Institute of Medical Research-Israel Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel; Edmond and Lily Safra Centre for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology, Institute of Medical Research-Israel Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel; Edmond and Lily Safra Centre for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Zvi Israel
- Department of Neurosurgery, Hadassah University Hospital, Jerusalem 9112102, Israel
| | - Eilon Vaadia
- Department of Medical Neurobiology, Institute of Medical Research-Israel Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel; Edmond and Lily Safra Centre for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
32
|
Guerra A, Asci F, Zampogna A, D'Onofrio V, Berardelli A, Suppa A. The effect of gamma oscillations in boosting primary motor cortex plasticity is greater in young than older adults. Clin Neurophysiol 2021; 132:1358-1366. [PMID: 33781703 DOI: 10.1016/j.clinph.2021.01.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE In healthy subjects, the long-term potentiation (LTP)-like plasticity of the primary motor cortex (M1) induced by intermittent theta-burst stimulation (iTBS) can be boosted by modulating gamma (γ) oscillations through transcranial alternating current stimulation (tACS). γ-tACS also reduces short-interval intracortical inhibition (SICI). We tested whether the effects of γ-tACS differ between young (YA) and older adults (OA). METHODS Twenty YA (27.2 ± 2.7 years) and twenty OA (65.3 ± 9.5 years) underwent iTBS-γ tACS and iTBS-sham tACS in randomized sessions. In a separate session, we delivered γ-tACS alone and recorded SICI during stimulation. RESULTS iTBS-sham tACS produced comparable motor evoked potential (MEP) facilitation between groups. While iTBS-γ tACS boosted MEP facilitation in both the YA and OA groups, the magnitude of its effect was significantly lower in OA. Similarly, γ-tACS-induced modulation of GABA-A-ergic neurotransmission, as tested by SICI, was reduced in OA. The effect of iTBS-γ tACS negatively correlated with the age of OA subjects. CONCLUSIONS Mechanisms underlying the effects of γ oscillations on LTP-like plasticity become less efficient in older adults. This could reflect age-related changes in neural elements of M1 resonant to γ oscillations, including GABA-A-ergic interneurons. SIGNIFICANCE The beneficial effect of γ-tACS on iTBS-induced plasticity is reduced in older adults.
Collapse
Affiliation(s)
- Andrea Guerra
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Francesco Asci
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Alessandro Zampogna
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | - Valentina D'Onofrio
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy; Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy.
| | - Antonio Suppa
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy; Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| |
Collapse
|
33
|
Online and offline effects of transcranial alternating current stimulation of the primary motor cortex. Sci Rep 2021; 11:3854. [PMID: 33594133 PMCID: PMC7887242 DOI: 10.1038/s41598-021-83449-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/05/2021] [Indexed: 01/31/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that allows interaction with endogenous cortical oscillatory rhythms by means of external sinusoidal potentials. The physiological mechanisms underlying tACS effects are still under debate. Whereas online (e.g., ongoing) tACS over the motor cortex induces robust state-, phase- and frequency-dependent effects on cortical excitability, the offline effects (i.e. after-effects) of tACS are less clear. Here, we explored online and offline effects of tACS in two single-blind, sham-controlled experiments. In both experiments we used neuronavigated transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) as a probe to index changes of cortical excitability and delivered M1 tACS at 10 Hz (alpha), 20 Hz (beta) and sham (30 s of low-frequency transcranial random noise stimulation; tRNS). Corticospinal excitability was measured by single pulse TMS-induced motor evoked potentials (MEPs). tACS was delivered online in Experiment 1 and offline in Experiment 2. In Experiment 1, the increase of MEPs size was maximal with the 20 Hz stimulation, however in Experiment 2 neither the 10 Hz nor the 20 Hz stimulation induced tACS offline effects. These findings support the idea that tACS affects cortical excitability only during online application, at least when delivered on the scalp overlying M1, thereby contributing to the development of effective protocols that can be applied to clinical populations.
Collapse
|
34
|
Vallence AM, Dansie K, Goldsworthy MR, McAllister SM, Yang R, Rothwell JC, Ridding MC. Examining motor evoked potential amplitude and short-interval intracortical inhibition on the up-going and down-going phases of a transcranial alternating current stimulation (tacs) imposed alpha oscillation. Eur J Neurosci 2021; 53:2755-2762. [PMID: 33480046 DOI: 10.1111/ejn.15124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/19/2020] [Accepted: 01/17/2021] [Indexed: 01/18/2023]
Abstract
Many brain regions exhibit rhythmical activity thought to reflect the summed behaviour of large populations of neurons. The endogenous alpha rhythm has been associated with phase-dependent modulation of corticospinal excitability. However, whether exogenous alpha rhythm, induced using transcranial alternating current stimulation (tACS) also has a phase-dependent effect on corticospinal excitability remains unknown. Here, we triggered transcranial magnetic stimuli (TMS) on the up- or down-going phase of a tACS-imposed alpha oscillation and measured motor evoked potential (MEP) amplitude and short-interval intracortical inhibition (SICI). There was no significant difference in MEP amplitude or SICI when TMS was triggered on the up- or down-going phase of the tACS-imposed alpha oscillation. The current study provides no evidence of differences in corticospinal excitability or GABAergic inhibition when targeting the up-going (peak) and down-going (trough) phase of the tACS-imposed oscillation.
Collapse
Affiliation(s)
- Ann-Maree Vallence
- Discipline of Psychology, College of Science, Health, Engineering, and Education, Murdoch University, Perth, Australia
| | - Kathryn Dansie
- Australia and New Zealand Dialysis and Transplant Registry (ANZDATA), South Australian Health and Medical Research Institute (SAHMIR), Adelaide, South, Australia
| | - Mitchell R Goldsworthy
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Suzanne M McAllister
- Formerly of the Discipline of Physiology, School of Medical Science, University of Adelaide, Adelaide, Australia
| | | | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Michael C Ridding
- University of South Australia, IIMPACT in Health, Adelaide, Australia
| |
Collapse
|
35
|
Zhang W, Song A, Zeng H, Xu B, Miao M. Closed-Loop Phase-Dependent Vibration Stimulation Improves Motor Imagery-Based Brain-Computer Interface Performance. Front Neurosci 2021; 15:638638. [PMID: 33568973 PMCID: PMC7868341 DOI: 10.3389/fnins.2021.638638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
The motor imagery (MI) paradigm has been wildly used in brain-computer interface (BCI), but the difficulties in performing imagery tasks limit its application. Mechanical vibration stimulus has been increasingly used to enhance the MI performance, but its improvement consistence is still under debate. To develop more effective vibration stimulus methods for consistently enhancing MI, this study proposes an EEG phase-dependent closed-loop mechanical vibration stimulation method. The subject's index finger of the non-dominant hand was given 4 different vibration stimulation conditions (i.e., continuous open-loop vibration stimulus, two different phase-dependent closed-loop vibration stimuli and no stimulus) when performing two tasks of imagining movement and rest of the index finger from his/her dominant hand. We compared MI performance and brain oscillatory patterns under different conditions to verify the effectiveness of this method. The subjects performed 80 trials of each type in a random order, and the average phase-lock value of closed-loop stimulus conditions was 0.71. It was found that the closed-loop vibration stimulus applied in the falling phase helped the subjects to produce stronger event-related desynchronization (ERD) and sustain longer. Moreover, the classification accuracy was improved by about 9% compared with MI without any vibration stimulation (p = 0.012, paired t-test). This method helps to modulate the mu rhythm and make subjects more concentrated on the imagery and without negative enhancement during rest tasks, ultimately improves MI-based BCI performance. Participants reported that the tactile fatigue under closed-loop stimulation conditions was significantly less than continuous stimulation. This novel method is an improvement to the traditional vibration stimulation enhancement research and helps to make stimulation more precise and efficient.
Collapse
Affiliation(s)
- Wenbin Zhang
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Aiguo Song
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Hong Zeng
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Baoguo Xu
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Minmin Miao
- School of Information Engineering, Huzhou University, Huzhou, China
| |
Collapse
|
36
|
Rossi A, Feurra M, Rossi S, Santarnecchi E, Ginanneschi F. Impact of β-range-induced oscillatory activity on human input-output relationship of the corticospinal pathway. Neurol Res 2021; 43:496-502. [PMID: 33441044 DOI: 10.1080/01616412.2020.1870358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: The aim of the study was to show that short-lasting (90 s) transcranial alternating current stimulation (tACS) at 20 Hz delivered over the left primary motor cortex (M1) is able to change the shape of recruitment curve of the corticospinal pathway.Methods: The corticospinal pathway was studied during tACS by means of the relationship between the intensity of transcranial magnetic stimulation (TMS) delivered over the left M1 and corresponding motor evoked potentials (MEPs) recorded from the right first dorsal interosseus muscle (FDI), in nine healthy subjects. In order to extract characteristics of the input-output relationship that have particular physiological relevance, data were fitted to the Boltzmann sigmoidal function by the Levenberg-Marquardt nonlinear, least mean squares algorithm.Results: The β-rhythm tACS influenced the shape and parameters of the input-output relation, so that the initial segment of the conditioned curve (from threshold to 30% of maximum muscle size) diverged, while the subsequent segment converged to overlap the unconditioned control curve.Discussion: β-rhythm tACS conditions only a definite subset of corticospinal elements influencing less than 30% of the entire motoneuronal pool. The fact that β-rhythm tACS mainly affects the most excitable motoneurons could explain the observed antikinetic effect of the tACS at β-rhythm applied in the motor regions.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Medical, Surgery and Neurological Sciences, Brain Investigation and Neuromodulation Lab (Si-bin Lab), University of Siena, Siena, Italy
| | - Matteo Feurra
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University, Higher School of Economics, Moscow, Russia
| | - Simone Rossi
- Department of Medical, Surgery and Neurological Sciences, Brain Investigation and Neuromodulation Lab (Si-bin Lab), University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Department of Medical, Surgery and Neurological Sciences, Brain Investigation and Neuromodulation Lab (Si-bin Lab), University of Siena, Siena, Italy.,Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Federica Ginanneschi
- Department of Medical, Surgery and Neurological Sciences, Brain Investigation and Neuromodulation Lab (Si-bin Lab), University of Siena, Siena, Italy
| |
Collapse
|
37
|
Dissanayaka T, Zoghi M, Farrell M, Egan G, Jaberzadeh S. The effects of a single-session cathodal transcranial pulsed current stimulation on corticospinal excitability: A randomized sham-controlled double-blinded study. Eur J Neurosci 2020; 52:4908-4922. [PMID: 33128480 DOI: 10.1111/ejn.14916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 06/16/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
Abstract
Transcranial pulsed current stimulation (tPCS) of the human motor cortex has received much attention in recent years. Although the effect of anodal tPCS with different frequencies has been investigated, the effect of cathodal tPCS (c-tPCS) has not been explored yet. Therefore, the aim of the present study was to investigate the effect of c-tPCS at 4 and 75 Hz frequencies on corticospinal excitability (CSE) and motor performance. In a randomized sham-controlled crossover design, fifteen healthy participants attended three experimental sessions and received either c-tPCS at 75 Hz, 4 Hz or sham with 1.5 mA for 15 min. Transcranial magnetic stimulation and grooved pegboard test were performed before, immediately after and 30 min after the completion of stimulation at rest. The findings indicate that c-tPCS at both 4 and 75 Hz significantly increased CSE compared to sham. Both c-tPCS at 75 and 4 Hz showed a significant increase in intracortical facilitation compared to sham, whereas the effect on short-interval intracortical inhibition was not significant. The c-tPCS at 4 Hz but not 75 Hz induced modulation of intracortical facilitation correlated with the CSE. Motor performance did not show any significant changes. These results suggest that, compared with sham stimulation, c-tPCS at both 4 and 75 Hz induces an increase in CSE.
Collapse
Affiliation(s)
- Thusharika Dissanayaka
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Vic., Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied health, La Trobe University, Bundoora, Melbourne, Vic., Australia
| | - Michael Farrell
- Monash Biomedical Imaging, Monash University, Melbourne, Vic., Australia.,Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Vic., Australia
| | - Gary Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Vic., Australia
| | - Shapour Jaberzadeh
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
38
|
Guerra A, Asci F, Zampogna A, D'Onofrio V, Petrucci S, Ginevrino M, Berardelli A, Suppa A. Gamma-transcranial alternating current stimulation and theta-burst stimulation: inter-subject variability and the role of BDNF. Clin Neurophysiol 2020; 131:2691-2699. [DOI: 10.1016/j.clinph.2020.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
|
39
|
Investigating the effects of transcranial alternating current stimulation on primary somatosensory cortex. Sci Rep 2020; 10:17129. [PMID: 33051523 PMCID: PMC7553944 DOI: 10.1038/s41598-020-74072-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023] Open
Abstract
Near-threshold tactile stimuli perception and somatosensory temporal discrimination threshold (STDT) are encoded in the primary somatosensory cortex (S1) and largely depend on alpha and beta S1 rhythm. Transcranial alternating current stimulation (tACS) is a non-invasive neurophysiological technique that allows cortical rhythm modulation. We investigated the effects of tACS delivered over S1 at alpha, beta, and gamma frequencies on near-threshold tactile stimuli perception and STDT, as well as phase-dependent tACS effects on near-threshold tactile stimuli perception in healthy subjects. In separate sessions, we tested the effects of different tACS montages, and tACS at the individualised S1 μ-alpha frequency peak, on STDT and near-threshold tactile stimuli perception. We found that tACS applied over S1 at alpha, beta, and gamma frequencies did not modify STDT or near-threshold tactile stimuli perception. Moreover, we did not detect effects of tACS phase or montage. Finally, tACS did not modify near-threshold tactile stimuli perception and STDT even when delivered at the individualised μ-alpha frequency peak. Our study showed that tACS does not alter near-threshold tactile stimuli or STDT, possibly due to the inability of tACS to activate deep S1 layers. Future investigations may clarify tACS effects over S1 in patients with focal dystonia, whose pathophysiology implicates increased STDT.
Collapse
|
40
|
Guggenberger R, Raco V, Gharabaghi A. State-Dependent Gain Modulation of Spinal Motor Output. Front Bioeng Biotechnol 2020; 8:523866. [PMID: 33117775 PMCID: PMC7561675 DOI: 10.3389/fbioe.2020.523866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 09/17/2020] [Indexed: 01/04/2023] Open
Abstract
Afferent somatosensory information plays a crucial role in modulating efferent motor output. A better understanding of this sensorimotor interplay may inform the design of neurorehabilitation interfaces. Current neurotechnological approaches that address motor restoration after trauma or stroke combine motor imagery (MI) and contingent somatosensory feedback, e.g., via peripheral stimulation, to induce corticospinal reorganization. These interventions may, however, change the motor output already at the spinal level dependent on alterations of the afferent input. Neuromuscular electrical stimulation (NMES) was combined with measurements of wrist deflection using a kinematic glove during either MI or rest. We investigated 360 NMES bursts to the right forearm of 12 healthy subjects at two frequencies (30 and 100 Hz) in random order. For each frequency, stimulation was assessed at nine intensities. Measuring the induced wrist deflection across different intensities allowed us to estimate the input-output curve (IOC) of the spinal motor output. MI decreased the slope of the IOC independent of the stimulation frequency. NMES with 100 Hz vs. 30 Hz decreased the threshold of the IOC. Human-machine interfaces for neurorehabilitation that combine MI and NMES need to consider bidirectional communication and may utilize the gain modulation of spinal circuitries by applying low-intensity, high-frequency stimulation.
Collapse
Affiliation(s)
- Robert Guggenberger
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University of Tüebingen, Tüebingen, Germany
| | - Valerio Raco
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University of Tüebingen, Tüebingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University of Tüebingen, Tüebingen, Germany
| |
Collapse
|
41
|
Madrid J, Benninger DH. Non-invasive brain stimulation for Parkinson's disease: Clinical evidence, latest concepts and future goals: A systematic review. J Neurosci Methods 2020; 347:108957. [PMID: 33017643 DOI: 10.1016/j.jneumeth.2020.108957] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is becoming a major public-health issue in an aging population. Available approaches to treat advanced PD still have limitations; new therapies are needed. The non-invasive brain stimulation (NIBS) may offer a complementary approach to treat advanced PD by personalized stimulation. Although NIBS is not as effective as the gold-standard levodopa, recent randomized controlled trials show promising outcomes in the treatment of PD symptoms. Nevertheless, only a few NIBS-stimulation paradigms have shown to improve PD's symptoms. Current clinical recommendations based on the level of evidence are reported in Table 1 through Table 3. Furthermore, novel technological advances hold promise and may soon enable the non-invasive stimulation of deeper brain structures for longer periods.
Collapse
Affiliation(s)
- Julian Madrid
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| | - David H Benninger
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
42
|
Cardellicchio P, Hilt PM, Dolfini E, Fadiga L, D'Ausilio A. Beta Rebound as an Index of Temporal Integration of Somatosensory and Motor Signals. Front Syst Neurosci 2020; 14:63. [PMID: 32982705 PMCID: PMC7492746 DOI: 10.3389/fnsys.2020.00063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/29/2020] [Indexed: 01/15/2023] Open
Abstract
Modulation of cortical beta rhythm (15–30 Hz) is present during preparation for and execution of voluntary movements as well as during somatosensory stimulation. A rebound in beta synchronization is observed after the end of voluntary movements as well as after somatosensory stimulation and is believed to describe the return to baseline of sensorimotor networks. However, the contribution of efferent and afferent signals to the beta rebound remains poorly understood. Here, we applied electrical median nerve stimulation (MNS) to the right side followed by transcranial magnetic stimulation (TMS) on the left primary motor cortex after either 15 or 25 ms. Because the afferent volley reaches the somatosensory cortex after about 20 ms, TMS on the motor cortex was either anticipating or following the cortical arrival of the peripheral stimulus. We show modulations in different beta sub-bands and in both hemispheres, following a pattern of greater resynchronization when motor signals are paired with a peripheral one. The beta rebound in the left hemisphere (stimulated) is modulated in its lower frequency range when TMS precedes the cortical arrival of the afferent volley. In the right hemisphere (unstimulated), instead, the increase is limited to higher beta frequencies when TMS is delivered after the arrival of the afferent signal. In general, we demonstrate that the temporal integration of afferent and efferent signals plays a key role in the genesis of the beta rebound and that these signals may be carried in parallel by different beta sub-bands.
Collapse
Affiliation(s)
- Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy
| | - Pauline M Hilt
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy
| | - Elisa Dolfini
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy.,Department of Biomedical and Specialized Surgical Sciences, Division of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Luciano Fadiga
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy.,Department of Biomedical and Specialized Surgical Sciences, Division of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Alessandro D'Ausilio
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy.,Department of Biomedical and Specialized Surgical Sciences, Division of Human Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
43
|
Bello EM, Agnesi F, Xiao Y, Dao J, Johnson MD. Frequency-dependent spike-pattern changes in motor cortex during thalamic deep brain stimulation. J Neurophysiol 2020; 124:1518-1529. [PMID: 32965147 DOI: 10.1152/jn.00198.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebellar-receiving area of the motor thalamus is the primary anatomical target for treating essential tremor with deep brain stimulation (DBS). Although neuroimaging studies have shown that higher stimulation frequencies in this target correlate with increased cortical metabolic activity, less is known about the cellular-level functional changes that occur in the primary motor cortex (M1) with thalamic stimulation and how these changes depend on the frequency of DBS. In this study, we used a preclinical animal model of DBS to collect single-unit spike recordings in M1 before, during, and after DBS targeting the cerebellar-receiving area of the motor thalamus (VPLo, nucleus ventralis posterior lateralis pars oralis). The effects of VPLo-DBS on M1 spike rates, interspike interval entropy, and peristimulus phase-locking were compared across stimulus pulse train frequencies ranging from 10 to 130 Hz. Although VPLo-DBS modulated the spike rates of 20-50% of individual M1 cells in a frequency-dependent manner, the population-level average spike rate only weakly depended on stimulation frequency. In contrast, the population-level entropy measure showed a pronounced decrease with high-frequency stimulation, caused by a subpopulation of cells that exhibited strong phase-locking and general spike-pattern regularization. Contrarily, low-frequency stimulation induced an entropy increase (spike-pattern disordering) in a relatively large portion of the recorded population, which diminished with higher stimulation frequencies. These results also suggest that changes in phase-locking and spike-pattern entropy are not necessarily equivalent pattern phenomena, but rather that they should both be weighed when quantifying stimulation-induced spike-pattern changes.NEW & NOTEWORTHY The network mechanisms of thalamic deep brain stimulation (DBS) are not well understood at the cellular level. This study investigated the neuronal firing rate and pattern changes in the motor cortex resulting from stimulation of the cerebellar-receiving area of the motor thalamus. We showed that there is a nonintuitive relationship between general entropy-based spike-pattern measures and phase-locked regularization to DBS.
Collapse
Affiliation(s)
- Edward M Bello
- Department of Biomedical Engineering, University of Minnesota, Minneapolis
| | - Filippo Agnesi
- Department of Biomedical Engineering, University of Minnesota, Minneapolis
| | - Yizi Xiao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis
| | - Joan Dao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis
| |
Collapse
|
44
|
Abstract
Rhythms are a fundamental and defining feature of neuronal activity in animals including humans. This rhythmic brain activity interacts in complex ways with rhythms in the internal and external environment through the phenomenon of 'neuronal entrainment', which is attracting increasing attention due to its suggested role in a multitude of sensory and cognitive processes. Some senses, such as touch and vision, sample the environment rhythmically, while others, like audition, are faced with mostly rhythmic inputs. Entrainment couples rhythmic brain activity to external and internal rhythmic events, serving fine-grained routing and modulation of external and internal signals across multiple spatial and temporal hierarchies. This interaction between a brain and its environment can be experimentally investigated and even modified by rhythmic sensory stimuli or invasive and non-invasive neuromodulation techniques. We provide a comprehensive overview of the topic and propose a theoretical framework of how neuronal entrainment dynamically structures information from incoming neuronal, bodily and environmental sources. We discuss the different types of neuronal entrainment, the conceptual advances in the field, and converging evidence for general principles.
Collapse
Affiliation(s)
- Peter Lakatos
- Translational Neuroscience Laboratories, Nathan Kline Institute, Old Orangeburg Road 140, Orangeburg, New York 10962, USA; Department of Psychiatry, New York University School of Medicine, One, 8, Park Ave, New York, NY 10016, USA.
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Malmedyweg 15, 48149 Muenster, Germany; Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, UK.
| | - Gregor Thut
- Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, UK.
| |
Collapse
|
45
|
Fiene M, Schwab BC, Misselhorn J, Herrmann CS, Schneider TR, Engel AK. Phase-specific manipulation of rhythmic brain activity by transcranial alternating current stimulation. Brain Stimul 2020; 13:1254-1262. [PMID: 32534253 DOI: 10.1016/j.brs.2020.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/08/2020] [Accepted: 06/06/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Oscillatory phase has been proposed as a key parameter defining the spatiotemporal structure of neural activity. To enhance our understanding of brain rhythms and improve clinical outcomes in pathological conditions, modulation of neural activity by transcranial alternating current stimulation (tACS) emerged as a promising approach. However, the phase-specificity of tACS effects in humans is still critically debated. OBJECTIVE Here, we investigated the phase-specificity of tACS on visually evoked steady state responses (SSRs) in 24 healthy human participants. METHODS We used an intermittent electrical stimulation protocol and assessed the influence of tACS on SSR amplitude in the interval immediately following tACS. A neural network model served to validate the plausibility of experimental findings. RESULTS We observed a modulation of SSR amplitudes dependent on the phase shift between flicker and tACS. The tACS effect size was negatively correlated with the strength of flicker-evoked activity. Supported by simulations, data suggest that strong network synchronization limits further neuromodulation by tACS. Neural sources of phase-specific effects were localized in the parieto-occipital cortex within flicker-entrained regions. Importantly, the optimal phase shift between flicker and tACS associated with strongest SSRs was correlated with SSR phase delays in the tACS target region. CONCLUSIONS Overall, our data provide electrophysiological evidence for phase-specific modulations of rhythmic brain activity by tACS in humans. As the optimal timing of tACS application was dependent on cortical SSR phase delays, our data suggest that tACS effects were not mediated by retinal co-stimulation. These findings highlight the potential of tACS for controlled, phase-specific modulations of neural activity.
Collapse
Affiliation(s)
- Marina Fiene
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany.
| | - Bettina C Schwab
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Jonas Misselhorn
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University Oldenburg, Oldenburg, 26129, Germany; Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, 26129, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| |
Collapse
|
46
|
Guerra A, Asci F, D'Onofrio V, Sveva V, Bologna M, Fabbrini G, Berardelli A, Suppa A. Enhancing Gamma Oscillations Restores Primary Motor Cortex Plasticity in Parkinson's Disease. J Neurosci 2020; 40:4788-4796. [PMID: 32430296 PMCID: PMC7294804 DOI: 10.1523/jneurosci.0357-20.2020] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/26/2020] [Accepted: 04/26/2020] [Indexed: 11/21/2022] Open
Abstract
In humans, γ oscillations in cortical motor areas reflect asynchronous synaptic activity and contribute to plasticity processes. In Parkinson's disease (PD), γ oscillatory activity in the basal ganglia-thalamo-cortical network is altered and the LTP-like plasticity elicited by intermittent theta burst stimulation (iTBS) is reduced in the primary motor cortex (M1). In this study, we tested whether transcranial alternating current stimulation (tACS) delivered at γ frequency promotes iTBS-induced LTP-like plasticity in M1 in PD patients. Sixteen patients (OFF condition) and 16 healthy subjects (HSs) underwent iTBS during γ-tACS (iTBS-γ tACS) and during sham-tACS (iTBS-sham tACS) in two sessions. Motor-evoked potentials (MEPs) evoked by single-pulse transcranial magnetic stimulation and short-interval intracortical inhibition (SICI) were recorded before and after the costimulation. A subgroup of patients also underwent iTBS during β tACS. iTBS-sham tACS facilitated single-pulse MEPs in HSs, but not in patients. iTBS-γ tACS induced a larger MEP facilitation than iTBS-sham tACS in both groups, with similar values in patients and HSs. In patients, SICI improved after iTBS-γ tACS. The effect produced by iTBS-γ tACS on single-pulse MEPs correlated with disease duration, while changes in SICI correlated with Unified Parkinson's Disease Rating Scale Part III scores. The effect of iTBS-β tACS on both single-pulse MEPs and SICI was similar to that obtained in the iTBS-sham tACS session. Our data suggest that γ oscillations have a role in the pathophysiology of the abnormal LTP-like plasticity in PD. Entraining M1 neurons at the γ rhythm through tACS may be an effective method to restore impaired plasticity.SIGNIFICANCE STATEMENT In Parkinson's disease, the LTP-like plasticity of the primary motor cortex is impaired, and γ oscillations are altered in the basal ganglia-thalamo-cortical network. Using a combined transcranial magnetic stimulation-transcranial alternating current stimulation approach (iTBS-γ tACS costimulation), we demonstrate that driving γ oscillations restores the LTP-like plasticity in patients with Parkinson's disease. The effects correlate with clinical characteristics of patients, being more evident in less affected patients and weaker in patients with longer disease duration. These findings suggest that cortical γ oscillations play a beneficial role in modulating the LTP-like plasticity of M1 in Parkinson's disease. The iTBS-γ tACS approach may be potentially useful in rehabilitative settings in patients.
Collapse
Affiliation(s)
| | - Francesco Asci
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Valentina D'Onofrio
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Valerio Sveva
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Giovanni Fabbrini
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Antonio Suppa
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| |
Collapse
|
47
|
Labree B, Corrie H, Karolis V, Didino D, Cappelletti M. Parietal alpha-based inhibitory abilities are causally linked to numerosity discrimination. Behav Brain Res 2020; 387:112564. [PMID: 32081712 DOI: 10.1016/j.bbr.2020.112564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 10/25/2022]
Abstract
Processing numerosities relies on the innate capacity to understand and manipulate the number of items in a set, and to additional abilities such as inhibitory skills -which are known to be linked to brain oscillations in the alpha range. Whether these inhibitory skills are causally linked to numerosity processing and critical for it is unclear. To address this question, we used alpha-based brain stimulation (transcranial alternate current stimulation, tACS) to target inhibitory abilities in the context of numerosity discrimination. Twenty-nine young adults received bilateral tACS to the parietal lobe, a brain region critical for numerical processes. tACS at target (alpha, 10 Hz), control oscillation frequencies (theta, 4 Hz; beta, 22 Hz; sham, no stimulation), and control areas (bilateral frontal regions) was paired to an established numerosity paradigm that allows distinguishing between congruent and incongruent numerosity trials, the latter requiring to inhibit task-irrelevant information. Performance significantly and specifically worsened in incongruent numerosity trials following bilateral parietal alpha-tACS relative to sham and to the other stimulations used, possibly due to the desynchronization of parietal neuronal oscillations in the alpha range. No significant changes in performance were observed in parietal beta and theta-tACS, relative to sham, nor in frontal alpha-tACS. Likewise, there were no changes in performing congruent numerosity trials. We therefore concluded that parietal alpha oscillations are causally linked to inhibitory abilities, and reinforced the view that these abilities are intrinsic to numerosity discrimination.
Collapse
Affiliation(s)
- Bas Labree
- Department of Psychology, Goldsmiths, University of London, Lewisham Way, London SE14 6NW, UK
| | - Hannah Corrie
- Department of Psychology, Goldsmiths, University of London, Lewisham Way, London SE14 6NW, UK
| | - Vyacheslav Karolis
- Oxford Centre for Functional MRI of the Brain (FMRIB Centre), University of Oxford, Oxford United Kingdom
| | - Daniele Didino
- Department of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489, Germany
| | - Marinella Cappelletti
- Department of Psychology, Goldsmiths, University of London, Lewisham Way, London SE14 6NW, UK; UCL Institute of Cognitive Neuroscience, 17 Queen Square, London, WC1N 3AR, UK.
| |
Collapse
|
48
|
Guerra A, López-Alonso V, Cheeran B, Suppa A. Solutions for managing variability in non-invasive brain stimulation studies. Neurosci Lett 2020; 719:133332. [DOI: 10.1016/j.neulet.2017.12.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022]
|
49
|
Han YL, Dai ZP, Ridwan MC, Lin PH, Zhou HL, Wang HF, Yao ZJ, Lu Q. Connectivity of the Frontal Cortical Oscillatory Dynamics Underlying Inhibitory Control During a Go/No-Go Task as a Predictive Biomarker in Major Depression. Front Psychiatry 2020; 11:707. [PMID: 32848905 PMCID: PMC7416643 DOI: 10.3389/fpsyt.2020.00707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/06/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by core functional deficits in cognitive inhibition, which is crucial for emotion regulation. To assess the response to ruminative and negative mood states, it was hypothesized that MDD patients have prolonged disparities in the oscillatory dynamics of the frontal cortical regions across the life course of the disease. METHOD A "go/no-go" response inhibition paradigm was tested in 31 MDD patients and 19 age-matched healthy controls after magnetoencephalography (MEG) scanning. The use of minimum norm estimates (MNE) examined the changes of inhibitory control network which included the right inferior frontal gyrus (rIFG), pre-supplementary motor area (preSMA), and left primary motor cortex (lM1). The power spectrum (PS) within each node and the functional connectivity (FC) between nodes were compared between two groups. Furthermore, Pearson correlation was calculated to estimate the relationship between altered FC and clinical features. RESULT PS was significantly reduced in left motor and preSMA of MDD patients in both beta (13-30 Hz) and low gamma (30-50 Hz) bands. Compared to the HC group, the MDD group demonstrated higher connectivity between lM1 and preSMA in the beta band (t = 3.214, p = 0.002, FDR corrected) and showed reduced connectivity between preSMA and rIFG in the low gamma band (t = -2.612, p = 0.012, FDR corrected). The FC between lM1 and preSMA in the beta band was positively correlated with illness duration (r = 0.475, p = 0.005, FDR corrected), while the FC between preSMA and rIFG in the low gamma band was negatively correlated with illness duration (r = -0.509, p = 0.002, FDR corrected) and retardation factor scores (r = -0.288, p = 0.022, uncorrected). CONCLUSION In this study, a clinical neurophysiological signature of cognitive inhibition leading to sustained negative affect as well as functional non-recovery in MDD patients is highlighted. Duration of illness (DI) plays a key role in negative emotional processing, heighten rumination, impulsivity, and disinhibition.
Collapse
Affiliation(s)
- Ying-Lin Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhong-Peng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Mohammad Chattun Ridwan
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Pin-Hua Lin
- Medical School of Nanjing University, Nanjing Brain Hospital, Nanjing, China
| | - Hong-Liang Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hao-Fei Wang
- Department of Psychology, Jiangsu Province Hospital Affiliated to Nanjing Medical University , Nanjing, China
| | - Zhi-Jian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.,Medical School of Nanjing University, Nanjing Brain Hospital, Nanjing, China
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| |
Collapse
|
50
|
Rao N, Parikh PJ. Fluctuations in Human Corticospinal Activity Prior to Grasp. Front Syst Neurosci 2019; 13:77. [PMID: 31920572 PMCID: PMC6933951 DOI: 10.3389/fnsys.2019.00077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/29/2019] [Indexed: 12/31/2022] Open
Abstract
Neuronal firing rate variability prior to movement onset contributes to trial-to-trial variability in primate behavior. However, in humans, whether similar mechanisms contribute to trial-to-trial behavioral variability remains unknown. We investigated the time-course of trial-to-trial variability in corticospinal excitability (CSE) using transcranial magnetic stimulation (TMS) during a self-paced reach-to-grasp task. We hypothesized that CSE variability will be modulated prior to the initiation of reach and that such a modulation would explain trial-to-trial behavioral variability. Able-bodied individuals were visually cued to plan their grip force before exertion of either 30% or 5% of their maximum pinch force capacity on an object. TMS was delivered at six time points (0.5, 0.75, 1, 1.1, 1.2, and 1.3 s) following a visual cue that instructed the force level. We first modeled the relation between CSE magnitude and its variability at rest (n = 12) to study the component of CSE variability pertaining to the task but not related to changes in CSE magnitude (n = 12). We found an increase in CSE variability from 1.2 to 1.3 s following the visual cue at 30% but not at 5% of force. This effect was temporally dissociated from the decrease in CSE magnitude that was observed from 0.5 to 0.75 s following the cue. Importantly, the increase in CSE variability explained at least ∼40% of inter-individual differences in trial-to-trial variability in time to peak force rate. These results were found to be repeatable across studies and robust to different analysis methods. Our findings suggest that the neural mechanisms underlying modulation in CSE variability and CSE magnitude are distinct. Notably, the extent of modulation in variability in corticospinal system prior to grasp within individuals may explain their trial-to-trial behavioral variability.
Collapse
Affiliation(s)
| | - Pranav J. Parikh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| |
Collapse
|